Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred
2015-04-06
We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.
Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.
Iliev, Hristo; Chuchumishev, Danail; Buchvarov, Ivan; Petrov, Valentin
2010-03-15
Experimental results on passive mode-locking of a Nd:YVO(4) laser using intracavity frequency doubling in periodically poled KTP (PPKTP) crystal are reported. Both, negative cascaded chi((2)) lensing and frequency doubling nonlinear mirror (FDNLM) are exploited for the laser mode-locking. The FDNLM based on intensity dependent reflection in the laser cavity ensures self-starting and self-sustaining mode-locking while the cascaded chi((2)) lens process contributes to substantial pulse shortening. This hybrid technique enables generation of stable trains of pulses at high-average output power with several picoseconds pulse width. The pulse repetition rate of the laser is 117 MHz with average output power ranging from 0.5 to 3.1 W and pulse duration from 2.9 to 5.2 ps.
Harmonic mode-locking using the double interval technique in quantum dot lasers.
Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F
2010-07-05
Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.
Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.
2011-04-01
Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.
Electronic and elastic mode locking in charge density wave conductors
NASA Astrophysics Data System (ADS)
Zettl, A.
1986-12-01
Mode locking phenomena are investigated in the charge density wave (CDW) materials NbSe 3 and TaS 3. The joint application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with associated ac-induced dynamic coherence lengths ξ D(ac) on the order of several hundred microns. The electronic response couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of simple models of CDW domain synchronization, and internal CDW dynamics.
Longhi, S
2016-10-01
Parity-time (PT) symmetry is one of the most important accomplishments in optics over the past decade. Here the concept of PT mode-locking (ML) of a laser is introduced, in which active phase-locking of cavity axial modes is realized by asymmetric mode coupling in a complex time crystal. PT ML shows a transition from single- to double-pulse emission as the PT symmetry breaking point is crossed. The transition can show a turbulent behavior, depending on a dimensionless modulation parameter that plays the same role as the Reynolds number in hydrodynamic flows.
Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser
NASA Astrophysics Data System (ADS)
Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.
2008-10-01
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Observation of high-order polarization-locked vector solitons in a fiber laser.
Tang, D Y; Zhang, H; Zhao, L M; Wu, X
2008-10-10
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian
2018-05-01
We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser.
Krzempek, Karol; Sotor, Jaroslaw; Abramski, Krzysztof
2016-11-01
The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4 ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 μJ per pulse.
Demirbas, Umit; Baali, Ilyes
2015-10-15
We report significant average power and efficiency scaling of diode-pumped Cr:LiSAF lasers in continuous-wave (cw), cw frequency-doubled, and mode-locked regimes. Four single-emitter broad-area laser diodes around 660 nm were used as the pump source, which provided a total pump power of 7.2 W. To minimize thermal effects, a 20 mm long Cr:LiSAF sample with a relatively low Cr-concentration (0.8%) was used as the gain medium. In cw laser experiments, 2.4 W of output power, a slope efficiency of 50%, and a tuning range covering the 770-1110 nm region were achieved. Intracavity frequency doubling with beta-barium borate (BBO) crystals generated up to 1160 mW of blue power and a record tuning range in the 387-463 nm region. When mode locked with a saturable absorber mirror, the laser produced 195 fs pulses with 580 mW of average power around 820 nm at a 100.3 MHz repetition rate. The optical-to-optical conversion efficiency of the system was 33% in cw, 16% in cw frequency-doubled, and 8% in cw mode-locked regimes.
Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.
Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina
2012-03-01
We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.
Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers
Tandoi, Giuseppe; Ironside, Charles N.; Marsh, John H.; Bryce, A. Catrina
2013-01-01
We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers. PMID:23843678
Self-mode-locking semiconductor disk laser.
Gaafar, Mahmoud; Richter, Philipp; Keskin, Hakan; Möller, Christoph; Wichmann, Matthias; Stolz, Wolfgang; Rahimi-Iman, Arash; Koch, Martin
2014-11-17
The development of mode-locked semiconductor disk lasers received striking attention in the last 14 years and there is still a vast potential of such pulsed lasers to be explored and exploited. While for more than one decade pulsed operation was strongly linked to the employment of a saturable absorber, self-mode-locking emerged recently as an effective and novel technique in this field - giving prospect to a reduced complexity and improved cost-efficiency of such lasers. In this work, we highlight recent achievements regarding self-mode-locked semiconductor devices. It is worth to note, that although nonlinear effects in the active medium are expected to give rise to self-mode-locking, this has to be investigated with care in future experiments. However, there is a controversy whether results presented with respect to self-mode-locking truly show mode-locking. Such concerns are addressed in this work and we provide a clear evidence of mode-locking in a saturable-absorber-free device. By using a BBO crystal outside the cavity, green light originating from second-harmonic generation using the out-coupled laser beam is demonstrated. In addition, long-time-span pulse trains as well as radiofrequency-spectra measurements are presented for our sub-ps pulses at 500 MHz repetition rate which indicate the stable pulse operation of our device. Furthermore, a long-time-span autocorrelation trace is introduced which clearly shows absence of a pedestal or double pulses. Eventually, a beam-profile measurement reveals the excellent beam quality of our device with an M-square factor of less than 1.1 for both axes, showing that self-mode-locking can be achieved for the fundamental transverse mode.
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang
2016-06-15
We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.
Mode-locking evolution in ring fiber lasers with tunable repetition rate.
Korobko, D A; Fotiadi, A A; Zolotovskii, I O
2017-09-04
We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.
Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser
NASA Astrophysics Data System (ADS)
Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu
2018-06-01
We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.
Relationship between locked modes and thermal quenches in DIII-D
NASA Astrophysics Data System (ADS)
Sweeney, R.; Choi, W.; Austin, M.; Brookman, M.; Izzo, V.; Knolker, M.; La Haye, R. J.; Leonard, A.; Strait, E.; Volpe, F. A.; The DIII-D Team
2018-05-01
Locked modes are known to be one of the major causes of disruptions, but the physical mechanisms by which locking leads to disruptions are not well understood. Here we analyze the evolution of the temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial quenches are often observed to be an initial, distinct stage in the full thermal quench. Near the onset of partial quenches, locked island O-points are observed to align with each other on the midplane, and their widths are sufficient to overlap each other, as indicated by the Chirikov parameter. Energy conservation analysis of one partial thermal quench shows that the energy lost is both radiated in the divertor region, and conducted or convected to the divertor. Nonlinear resistive magnetohydrodynamic simulations support the interpretation of stochastic fields causing a partial axisymmetric collapse, though the simulated temperature profile exhibits less degradation than the experimental profiles. In discharges with minimum values of the safety factor above ∼1.2, locked modes are observed to self-stabilize by inducing, possibly via double tearing modes, a minor disruption that removes their neoclassical drive. These high q min discharges often exhibit relatively low ratios of the plasma internal inductance to the safety factor at 95% of the poloidal flux, which might imply classical stability, in agreement with the decay of the mode when the neoclassical drive is removed.
NASA Astrophysics Data System (ADS)
Latiff, A. A.; Rusdi, M. F. M.; Hisyam, M. B.; Ahmad, H.; Harun, S. W.
2016-11-01
This paper reports a few-layer black phosphorus (BP) as a saturable absorber (SA) or phase-locker in generating modelocked pulses from a double-clad ytterbium-doped fiber laser (YDFL). We mechanically exfoliated the BP flakes from BP crystal through a scotch tape, and repeatedly press until the flakes thin and spread homogenously. Then, a piece of BP tape was inserted in the cavity between two fiber connectors end facet. Under 810 mW to 1320 mW pump power, stable mode-locked operation at 1085 nm with a repetition rate of 13.4 MHz is successfully achieved in normal dispersion regime. Before mode-locked operation disappears above maximum pump, the output power and pulse energy is about 80 mW and 6 nJ, respectively. This mode-locked laser produces peak power of 0.74 kW. Our work may validates BP SA as a phase-locker related to two-dimensional nanomaterials and pulsed generation in normal dispersion regime.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser
NASA Astrophysics Data System (ADS)
Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming
2017-03-01
In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.
NASA Astrophysics Data System (ADS)
Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz
2017-11-01
Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.
Burkhart, Stephen S; Adams, Christopher R; Burkhart, Sarah S; Schoolfield, John D
2009-03-01
The purpose of this study was to compare the biomechanical fixation parameters of a standard double-row rotator cuff repair with those of a knotless footprint reconstruction using the double-row SwiveLock-FiberChain technique (Arthrex, Naples, FL). Seven matched pairs of human cadaveric shoulders were used for testing (mean age, 48 +/- 10.3 years). A shoulder from each matched pair was randomly selected to receive a standard 4-anchor double-row repair of the supraspinatus tendon, and the contralateral shoulder received a 4-anchor double-row SwiveLock-FiberChain repair. The tendon was cycled from 10 N to 100 N at 1 Hz for 500 cycles, followed by a single-cycle pull to failure at 33 mm/s. Yield load, ultimate load, cyclic displacement, and mode of failure were recorded. Yield load and ultimate load were higher for the SwiveLock-FiberChain repair compared with the standard double-row repair for 6 of the 7 treatment pairs; however, 1 cadaver had a contrary outcome, so the overall mean differences in yield load and ultimate load were not significantly different from 0 by Student t test (P > .15). Furthermore, smaller differences between yield load and ultimate load for the SwiveLock-FiberChain repair in 5 of the 7 treatment pairs showed a self-reinforcing mechanism. Double-row footprint reconstruction with the knotless SwiveLock-FiberChain system in this study had yield loads, ultimate loads, and cyclic displacements that were statistically equivalent to those of standard double-row rotation cuff reconstructions. The SwiveLock-FiberChain system's combination of strength, self-reinforcement, and decreased operating time may offer advantages to the surgeon, particularly when dealing with older patients in whom poor tissue quality and total operative time are important considerations.
Relationship between locked modes and thermal quenches in DIII-D
Sweeney, R.; Choi, W.; Austin, M.; ...
2018-03-28
Locked modes are known to be one of the major causes of disruptions, but the physical mechanisms by which locking leads to disruptions are not well understood. For this study, we analyze the evolution of the temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial quenches are often observed to be an initial, distinct stage in the full thermal quench. Near the onset of partial quenches, locked island O-points are observed to align with each other on the midplane, and their widths are sufficient to overlap each other, as indicated by themore » Chirikov parameter. Energy conservation analysis of one partial thermal quench shows that the energy lost is both radiated in the divertor region, and conducted or convected to the divertor. Nonlinear resistive magnetohydrodynamic simulations support the interpretation of stochastic fields causing a partial axisymmetric collapse, though the simulated temperature profile exhibits less degradation than the experimental profiles. In discharges with minimum values of the safety factor above ~1.2, locked modes are observed to self-stabilize by inducing, possibly via double tearing modes, a minor disruption that removes their neoclassical drive. These high q min discharges often exhibit relatively low ratios of the plasma internal inductance to the safety factor at 95% of the poloidal flux, which might imply classical stability, in agreement with the decay of the mode when the neoclassical drive is removed.« less
Relationship between locked modes and thermal quenches in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, R.; Choi, W.; Austin, M.
Locked modes are known to be one of the major causes of disruptions, but the physical mechanisms by which locking leads to disruptions are not well understood. For this study, we analyze the evolution of the temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial quenches are often observed to be an initial, distinct stage in the full thermal quench. Near the onset of partial quenches, locked island O-points are observed to align with each other on the midplane, and their widths are sufficient to overlap each other, as indicated by themore » Chirikov parameter. Energy conservation analysis of one partial thermal quench shows that the energy lost is both radiated in the divertor region, and conducted or convected to the divertor. Nonlinear resistive magnetohydrodynamic simulations support the interpretation of stochastic fields causing a partial axisymmetric collapse, though the simulated temperature profile exhibits less degradation than the experimental profiles. In discharges with minimum values of the safety factor above ~1.2, locked modes are observed to self-stabilize by inducing, possibly via double tearing modes, a minor disruption that removes their neoclassical drive. These high q min discharges often exhibit relatively low ratios of the plasma internal inductance to the safety factor at 95% of the poloidal flux, which might imply classical stability, in agreement with the decay of the mode when the neoclassical drive is removed.« less
Laser frequency multiplication
NASA Astrophysics Data System (ADS)
1991-11-01
A high quality mode locked pulse train was obtained at 9.55 microns, the CO2 wavelength chosen for frequency doubling into the atmospheric window at 4.8 microns. The pulse train consists of a 3 micro sec burst of 1.5 nsec pulses separated by 40 nsec, in a TEM (sub 00) mode and with a total energy of 100 mJ. The pulse intensity without focussing is about 3 MW/sq.cm., already quite close to the target intensity of 10 MW/sq.cm. for frequency doubling in a AgGaSe2 crystal. The mode-locked train is obtained by intracavity modulation at 12.5 MHz using a germanium crystal driven with a power of about 30 Watts. Line selection is achieved firstly by the use of a 0.92 mm thick CaF2 plate at the Brewster angle within the cavity, which completely suppresses 10.6 micron band radiation. Secondly, a particular rotational line, the P20 at 9.55 micron, is selected by the injection of a continuous beam is mode-matched to the pulsed laser cavity using a long focal length lens, and for best line-locking it is necessary to fine tune the length of the pulsed laser resonator. Injection causes substantial depression of the gain switched spike.
Laser frequency stabilization by light shift of optical-magnetic double resonances
NASA Astrophysics Data System (ADS)
Zhan, Yuanzhi; Peng, Xiang; Lin, Zaisheng; Gong, Wei; Guo, Hong
2015-05-01
This work adopts the light shift of optical-magnetic double resonance frequency in metastable-state 4He atoms to lock the laser center frequency to the magic point. At this magic frequency, both the left-circularly and right-circularly optical pumping processes will give the same value of optical-magnetic double resonance. With this method and after locking, experimental results show that the laser frequency fluctuation is dramatically reduced to 2.79 MHz in 3600 seconds, comparing with 34.1 MHz drift in the free running mode. In application, with the locked magic laser frequency, the heading error for laser pumped 4He magnetometer can be eliminated much. The National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), the National Natural Science Foundation of China (Grant No. 61101081), and the National Hi-Tech Research and Development (863) Program.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia
2011-02-01
An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.
NASA Astrophysics Data System (ADS)
Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian
2011-01-01
We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.
Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm
NASA Astrophysics Data System (ADS)
Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.
2011-06-01
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.
Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo
2017-04-15
This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.
Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity
Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun
2015-11-24
We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less
Relationship Between Locked Modes and Disruptions in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Sweeney, Ryan
This thesis is organized into three body chapters: (1) the first use of naturally rotating tearing modes to diagnose intrinsic error fields is presented with experimental results from the EXTRAP T2R reversed field pinch, (2) a large scale study of locked modes (LMs) with rotating precursors in the DIII-D tokamak is reported, and (3) an in depth study of LM induced thermal collapses on a few DIII-D discharges is presented. The amplitude of naturally rotating tearing modes (TMs) in EXTRAP T2R is modulated in the presence of a resonant field (given by the superposition of the resonant intrinsic error field, and, possibly, an applied, resonant magnetic perturbation (RMP)). By scanning the amplitude and phase of the RMP and observing the phase-dependent amplitude modulation of the resonant, naturally rotating TM, the corresponding resonant error field is diagnosed. A rotating TM can decelerate and lock in the laboratory frame, under the effect of an electromagnetic torque due to eddy currents induced in the wall. These locked modes often lead to a disruption, where energy and particles are lost from the equilibrium configuration on a timescale of a few to tens of milliseconds in the DIII-D tokamak. In fusion reactors, disruptions pose a problem for the longevity of the reactor. Thus, learning to predict and avoid them is important. A database was developed consisting of ˜ 2000 DIII-D discharges exhibiting TMs that lock. The database was used to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22,500 discharges shows that more than 18% of disruptions present signs of locked or quasi-stationary modes with rotating precursors. A parameter formulated by the plasma internal inductance li divided by the safety factor at 95% of the toroidal flux, q95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as dedge, performs comparably to l i/q95 in its ability to discriminate disruptive locked modes, and it also correlates well with the duration of the locked mode. On average, and within errors, the n=1 perturbed field grows exponentially in the final 50 ms before a disruption, however, the island width cannot discern whether a LM will disrupt or not up to 20 ms before the disruption. A few discharges are selected to analyze the evolution of the electron temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial thermal quenches are often an initial, distinct stage in the full thermal quench caused by radiation, conduction, or convection losses. Here we explore the fundamental mechanism that causes the partial quench. Near the onset of partial thermal quenches, locked islands are observed to align in a unique way, or island widths are observed to grow above a threshold. Energy analysis on one discharge suggests that about half of the energy is lost in the divertor region. In discharges with minimum values of the safety factor above ˜1.2, and with current profiles expected to be classically stable, locked modes are observed to self-stabilize by inducing a full thermal quench, possibly by double tearing modes that remove the pressure gradient across the island, thus removing the neoclassical drive.
Kandemir, Utku; Herfat, Safa; Herzog, Mary; Viscogliosi, Paul; Pekmezci, Murat
2017-02-01
The goal of this study is to compare the fatigue strength of a locking intramedullary nail (LN) construct with a double locking plate (DLP) construct in comminuted proximal extra-articular tibia fractures. Eight pairs of fresh frozen cadaveric tibias with low bone mineral density [age: 80 ± 7 (SD) years, T-score: -2.3 ± 1.2] were used. One tibia from each pair was fixed with LN, whereas the contralateral side was fixed with DLP for complex extra-articular multifragmentary metaphyseal fractures (simulating OTA 41-A3.3). Specimens were cyclically loaded under compression simulating single-leg stance by staircase method out to 260,000 cycles. Every 2500 cycles, localized gap displacements were measured with a 3D motion tracking system, and x-ray images of the proximal tibia were acquired. To allow for mechanical settling, initial metrics were calculated at 2500 cycles. The 2 groups were compared regarding initial construct stiffness, initial medial and lateral gap displacements, stiffness at 30,000 cycles, medial and lateral gap displacements at 30,000 cycles, failure load, number of cycles to failure, and failure mode. Failure metrics were reported for initial and catastrophic failures. DLP constructs exhibited higher initial stiffness and stiffness at 30,000 cycles compared with LN constructs (P < 0.03). There were no significant differences between groups for loads at failure or cycles to failure. For the fixation of extra-articular proximal tibia fractures, a LN provides a similar fatigue performance to double locked plates. The locked nail could be safely used for fixation of proximal tibia fractures with the advantage of limited extramedullary soft tissue damage.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B
2009-12-01
Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p < .05). Locking and non-locking double-row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.
Bunch of restless vector solitons in a fiber laser with SESAM.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2009-05-11
We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed.
Transient photoconductivity in the ferromagnetic semiconductor CdCr2Se4
NASA Technical Reports Server (NTRS)
Walser, A. D.; Alfano, R. R.
1988-01-01
The transient photoconductive response time of the ferromagnetic semiconductor CdCr2Se4 was measured to be smaller than 90 ps, the response time of the scope. The measurements were performed at room temperature (300 K) for 0.53 and 1.06 microns excitations using a mode locked frequency-doubled YAG laser.
Keitch, B C; Thomas, N R; Lucas, D M
2013-03-15
Two cw single-mode violet (397 nm) diode lasers are locked to a single external-cavity master diode laser by optical injection locking. A double-pass 1.6 GHz acousto-optic modulator is used to provide a 3.2 GHz offset frequency between the two slave lasers. We achieve up to 20 mW usable output in each slave beam, with as little as 25 μW of injection power at room temperature. An optical heterodyne measurement of the beat note between the two slave beams gives a linewidth of ≤10 Hz at 3.2 GHz. We also estimate the free-running linewidth of the master laser to be approximately 3 MHz by optical heterodyning with a similar device.
Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin
2013-03-01
Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.
Physics and Control of Locked Modes in the DIII-D Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volpe, Francesco
This Final Technical Report summarizes an investigation, carried out under the auspices of the DOE Early Career Award, of the physics and control of non-rotating magnetic islands (“locked modes”) in tokamak plasmas. Locked modes are one of the main causes of disruptions in present tokamaks, and could be an even bigger concern in ITER, due to its relatively high beta (favoring the formation of Neoclassical Tearing Mode islands) and low rotation (favoring locking). For these reasons, this research had the goal of studying and learning how to control locked modes in the DIII-D National Fusion Facility under ITER-relevant conditions ofmore » high pressure and low rotation. Major results included: the first full suppression of locked modes and avoidance of the associated disruptions; the demonstration of error field detection from the interaction between locked modes, applied rotating fields and intrinsic errors; the analysis of a vast database of disruptive locked modes, which led to criteria for disruption prediction and avoidance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.
A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less
Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.; ...
2016-11-01
A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less
Inversion of the resonance line of Sr/+/ produced by optically pumping Sr atoms
NASA Technical Reports Server (NTRS)
Green, W. R.; Falcone, R. W.
1978-01-01
A description is presented of an experiment which demonstrates the selective production of excited-state ions by an optical absorption from neutrals. An inversion on the resonance line of Sr(+) was produced by laser excitation of a two-electron transition, followed by ionization of one of the excited electrons by the same laser. A pulsed, mode-locked laser operating at 2680 A was used to excite atoms from the Sr ground level. The same laser then ionized the excited atoms. The 2680-A pump beam was generated by frequency doubling the output of a synchronously pumped mode-locked dye laser in a KDP crystal. It is pointed out that the reported results are significant for the construction of vacuum-ultraviolet and X-ray lasers. Many of the proposed methods for making such lasers depend on the selective production of excited-state ions.
408-fs SESAM mode locked Cr:ZnSe laser
NASA Astrophysics Data System (ADS)
Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu
2018-01-01
We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.
Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power
NASA Astrophysics Data System (ADS)
Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong
2018-03-01
We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.
Heterogeneous Silicon III-V Mode-Locked Lasers
NASA Astrophysics Data System (ADS)
Davenport, Michael Loehrlein
Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.
Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn
We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance and the nonlinear island evolution in the Rutherford regime. In particular, mode locking corresponds to the exact steady state of this system. A new exact analytic solution has been obtained for such a steady state, which quantifies the dependence of the locked mode island width on RMP amplitude in different plasma regimes. Furthermore, two different branches of mode locking have been revealed with the new analytic solution andmore » the branch with suppressed island width turns out to be unstable in general. On the other hand, the system also admits stable states of island suppression achieved through the RMP modulation of tearing mode rotational frequency. When the RMP amplitude is above a certain threshold, the island suppression is transient until the tearing mode eventually gets locked. When the RMP amplitude is below the mode locking threshold, the island can be suppressed in a steady state on time-average, along with transient oscillations in rotational frequency and island width due to the absence of mode locking.« less
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
Synchronization of pulses from mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, G.T.
A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less
NASA Astrophysics Data System (ADS)
Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.
2009-10-01
Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.
The locking and unlocking thresholds for tearing modes in a cylindrical tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706
2016-03-15
The locking and unlocking thresholds for tearing modes are in general different. In this work, the physics origin for this difference is illustrated from theory analysis, and a numerical procedure is developed to find both locking and unlocking thresholds. In particular, a new scaling law for the unlocking threshold that is valid in both weak and strong rotation regimes has been derived from the lowest amplitude of the RMP (resonant magnetic perturbation) allowed for the locked-mode solution. Above the unlocking threshold, the criterion for the phase-flip instability is extended to identify the entire locked-mode states. Two different regimes of themore » RMP amplitude in terms of the accessibility of the locked-mode states have been found. In the first regime, the locked-mode state may or may not be accessible depending on the initial conditions of an evolving island. In the second regime, the locked-mode state can always be reached regardless of the initial conditions of the tearing mode. The lowest RMP amplitude for the second regime is determined to be the mode-locking threshold. The different characteristics of the two regimes above the unlocking threshold reveal the underlying physics for the gap between the locking and unlocking thresholds and provide an explanation for the closely related and widely observed hysteresis phenomena in island evolution during the sweeping process of the RMP amplitude up and down across that threshold gap.« less
A racetrack mode-locked silicon evanescent laser.
Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E
2008-01-21
By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.
Josephson oscillation and self-trapping in momentum space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Feng, Shiping; Yang, Shi-Jie
2018-04-01
The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.
He, Xiaoying; Liu, Zhi-bo; Wang, D N
2012-06-15
We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.
Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.
Passively mode-locked Raman fiber laser with 100 GHz repetition rate
NASA Astrophysics Data System (ADS)
Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut
2006-12-01
We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.
Testing ultrafast mode-locking at microhertz relative optical linewidth.
Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun
2009-01-19
We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.
Picosecond passively mode-locked mid-infrared fiber laser
NASA Astrophysics Data System (ADS)
Wei, C.; Zhu, X.; Norwood, R. A.; Kieu, K.; Peyghambarian, N.
2013-02-01
Mode-locked mid-infrared (mid-IR) fiber lasers are of increasing interest due to their many potential applications in spectroscopic sensors, infrared countermeasures, laser surgery, and high-efficiency pump sources for nonlinear wavelength convertors. Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which can emit mid-IR light at 2.65-2.9 μm through the transition from the upper energy level 4I11/2 to the lower laser level 4I13/2, have attracted much attention because of their broad emission range, high optical efficiency, and the ready availability of diode pump lasers at the two absorption peaks of Er3+ ions (975 nm and 976 nm). In recent years, significant progress on high power Er3+- doped ZBLAN fiber lasers has been achieved and over 20 watt cw output at 2.8 μm has been demonstrated; however, there has been little progress on ultrafast mid-IR ZBLAN fiber lasers to date. We report a passively mode-locked Er3+- doped ZBLAN fiber laser in which a Fe2+:ZnSe crystal was used as the intracavity saturable absorber. Fe2+:ZnSe is an ideal material for mid-IR laser pulse generation because of its large saturable absorption cross-section and small saturation energy along with the excellent opto-mechanical (damage threshold ~2 J/cm2) and physical characteristics of the crystalline ZnSe host. A 1.6 m double-clad 8 mol% Er3+-doped ZBLAN fiber was used in our experiment. The fiber core has a diameter of 15 μm and a numerical aperture (NA) of 0.1. The inner circular cladding has a diameter of 125 μm and an NA of 0.5. Both continuous-wave and Q-switched mode-locking pulses at 2.8 μm were obtained. Continuous-wave mode locking operation with a pulse duration of 19 ps and an average power of 51 mW were achieved when a collimated beam traversed the Fe2+:ZnSe crystal. When the cavity was modified to provide a focused beam at the Fe2+:ZnSe crystal, Q-switched mode-locked operation with a pulse duration of 60 ps and an average power of 4.6 mW was achieved. More powerful and narrower pulses are expected if the dispersion of the cavity can be properly managed.
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Wang, Wanjun; Ng, Geok Ing; Zhang, Yu; Xu, Yingqiang; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2018-04-02
A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.
Ultrabright, narrow-band photon-pair source for atomic quantum memories
NASA Astrophysics Data System (ADS)
Tsai, Pin-Ju; Chen, Ying-Cheng
2018-06-01
We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.
NASA Astrophysics Data System (ADS)
Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey
2017-03-01
The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Lorbach, Olaf; Trennheuser, Christian; Kohn, Dieter; Anagnostakos, Konstantinos
2016-07-01
Biomechanical comparison of three different fixation techniques for a proximal biceps tenodesis. Eighteen human cadaver specimens were used for the testing. A tenodesis of the proximal biceps tendon was performed using a double-loaded suture anchor (5.5-mm Corkscrew, Arthrex), a knotless anchor (5.5-mm SwiveLock, Arthrex) or a forked knotless anchor (8-mm SwiveLock, Arthrex). Reconstructions were cyclically loaded for 50 cycles from 10-60 to 10-100 N. Cyclic displacement and ultimate failure loads were determined, and mode of failure was evaluated. Cyclic displacement at 60 N revealed a mean of 3.3 ± 1.1 mm for the Corkscrew, 5.4 ± 1.4 mm for the 5.5-mm SwiveLock and 2.9 ± 1.6 mm for the 8-mm forked SwiveLock. At 100 N, 5.1 ± 2.2 mm were seen for the Corkscrew anchor, 8.7 ± 2.5 mm for the 5.5-mm SwiveLock and 4.8 ± 3.3 mm for the 8-mm forked SwiveLock anchor. Significant lower cyclic displacement was seen for the Corkscrew anchor (p < 0.020) as well as the 8-mm SwiveLock anchor (p < 0.023) compared to the 5.5-mm SwiveLock anchor at 60 N. An ultimate load to failure of 109 ± 27 N was found for the Corkscrew anchor, 125 ± 25 N were measured for the 5.5-mm SwiveLock anchor, and 175 ± 42 N were found for the 8-mm forked SwiveLock anchor. Significant differences were seen between the 8-mm SwiveLock compared to the 5.5-mm SwiveLock (p < 0.044) as well as the Corkscrew anchor (p < 0.009). No significant differences were seen between the Corkscrew and the 5.5-mm SwiveLock anchor. The new 8-mm forked SwiveLock anchor significantly enhances construct stability compared to a 5.5-mm double-loaded Corkscrew anchor as well as the 5.5-mm SwiveLock suture anchor. However, a restrictive postoperative rehabilitation seems to be important in all tested reconstructions in order to avoid early failure of the construct.
Laudanski, Jonathan; Coombes, Stephen; Palmer, Alan R.
2010-01-01
We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN. PMID:20042702
Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.
Kim, Jimyung; Delfyett, Peter J
2008-07-21
We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.
Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam
2012-12-01
This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.
InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate
NASA Astrophysics Data System (ADS)
Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo
2018-02-01
A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.
NASA Astrophysics Data System (ADS)
Eshghi, M. J.; Majdabadi, A.; Koohian, A.
2017-01-01
In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.
Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers.
Fedotov, Andrey; Noronen, Teppo; Gumenyuk, Regina; Ustimchik, Vasiliy; Chamorovskii, Yuri; Golant, Konstantin; Odnoblyudov, Maxim; Rissanen, Joona; Niemi, Tapio; Filippov, Valery
2018-03-19
We present a birefringent Yb-doped tapered double-clad fiber with a record core diameter of 96 µm. An impressive gain of over 38 dB was demonstrated for linearly polarized CW and pulsed sources at a wavelength of 1040 nm. For the CW regime the output power was70 W. For a mode-locked fiber laser a pulse energy of 28 µJ with 292 kW peak power was reached at an average output power of 28 W for a 1 MHz repetition rate. The tapered double-clad fiber has a high value of polarization extinction ratio at 30 dB and is capable of delivering the linearly polarized diffraction-limited beam (M 2 = 1.09).
Peng, Yangfeng; He, Quan; Rohani, Sohrab; Jenkins, Hilary
2012-05-01
During the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed. The investigation demonstrates that hydrophobic layers with corrugated surfaces can fit into the grooves of one another to realize a compact packing, when the molecular structure of resolving agent is much larger than that of the racemate. This "lock-and-key" assembly is recognized to be another characteristic of molecular packing contributing to the chiral discrimination, in addition to the well-known sandwich-like packing by hydrophobic layers with planar boundary surfaces. Copyright © 2012 Wiley Periodicals, Inc.
Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M
2012-03-26
We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-04-01
We demonstrate a passively mode-locked erbium-doped fiber laser in L-band wavelength region with low mode-locking threshold employing a 1425 nm pump wavelength. The mode-locking regime is generated by microfiber-based saturable absorber using carbon nanotube-polymer composite in a ring cavity. This carbon nanotube saturable absorber shows saturation intensity of 9 MW/cm2. In this work, mode-locking laser threshold is observed at 36.4 mW pump power. At the maximum pump power of 107.6 mW, we obtain pulse duration at full-width half-maximum point of 490 fs and time bandwidth product of 0.33, which corresponds to 3-dB spectral bandwidth of 5.8 nm. The pulse repetition rate remains constant throughout the experiment at 5.8 MHz due to fixed cavity length of 35.5 m. Average output power and pulse energy of 10.8 mW and 1.92 nJ are attained respectively through a 30% laser output extracted from the mode-locked cavity. This work highlights the feasibility of attaining a low threshold mode-locked laser source to be employed as seed laser in L-band wavelength region.
Direct control of transitions between different mode-locking states of a fiber laser
NASA Astrophysics Data System (ADS)
Ilday, Fatih; Teamir, Tesfay; Iegorov, Roman; Makey, Ghaith
Mode-locking corresponds to a far-from-equilibrium steady state of a laser, whereby extremely short pulses can be produced. Capability to directly control mode-locking states can be used to improve laser performance with numerous applications, as well as shed light on their far-from-equilibrium physics using the laser as an experimental platform. Here, we demonstrate direct control of the mode-locking state using spectral pulse shaping by incorporating a spatial light modulator at a Fourier plane inside the cavity of an Yb-doped fiber laser. We show that we can halt and restart mode-locking, suppress instabilities, induce controlled reversible and irreversible transitions between mode-locking states, and perform advanced pulse shaping on pulses as short as 40 fs. This capability can be used to experimentally investigate bifurcations, reversible and irreversible transitions, by selecting, steering, and even competing various mode-locking states. Such studies can explore collective dynamics of dissipative soliton molecules, and ultimately test emerging theories about far-from-equilibrium physics, where there is an acute lack of experimental systems that are sufficiently well controlled. ERC CoG 617521, TUBITAK 113F319.
JPRS Report. Science & Technology: China.
1989-03-17
From Simple Colliding-Pulse Mode- Locking Dye Laser With Double Coated Stack Mirrors [Wang Qingyue, et al.; GUANGXUE XUEBAO, No 11, Nov 88] 82...86 Influence of Stimulated Raman Process on Fundamental Solitons in Fibers [Qu Linjie, et al.; GUANGXUE XUEBAO, No 11, Nov 88] 87 650 nm...synapses are the same regarding the relationship of he and hi to N. Each component of the vector lat represents the delay time lat of each synapse as it
Widely tunable Tm-doped mode-locked all-fiber laser
Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2016-01-01
We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655
Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser
NASA Astrophysics Data System (ADS)
Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying
2018-04-01
We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.
Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation
2014-01-01
We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT–polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics. PMID:24735347
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Mansurova, Svetlana; Il'in, Yurij V.; Tarasov, Il'ya S.
2010-06-01
We discuss specifically elaborated approach for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This approach had been previously applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking with an external single-mode fiber cavity. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. However, in the contrast with the previous studies, now we touch an opportunity of describing two chirped optical pulses together. The main reason of involving just a pair of pulses is caused by the simplest opportunity for simulating the properties of just a sequence of pulses rather then an isolated pulse. However, this step leads to a set of specific difficulty inherent generally in applying joint time-frequency distributions to groups of signals and consisting in manifestation of various false signals or artefacts. This is why the joint Chio-Williams time-frequency distribution and the technique of smoothing are under preliminary consideration here.
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2017-02-01
In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.
Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.
2014-03-01
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.
Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Y.; Dai, J.; Wang, Q.
1996-12-31
Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser
NASA Astrophysics Data System (ADS)
Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady
2018-02-01
A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.
Kéfélian, Fabien; O'Donoghue, Shane; Todaro, Maria Teresa; McInerney, John; Huyet, Guillaume
2009-04-13
We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.
High speed strain measurement of active mode locking FBG laser sensor using chirped FBG cavity
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Kim, Joon Young; Park, Chang Hyun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We propose a high speed strain measurement method using an active mode locking (AML) fiber Bragg grating (FBG) laser sensor with a chirped FBG cavity. The mode-locked frequency of the AML laser depends on both the position and Bragg wavelength of the FBG. Thus, the mode-locked frequency of cascaded FBGs can be detected independently along the cavity length of cascaded FBGs. The strain across FBGs can be interrogated dynamically by monitoring the change in mode-locked frequency. In this respect, the chirped FBG critically improves the frequency sensitivity to Bragg wavelength shift as a function of increasing dispersion in the AML cavity. The strain measurement of the FBG sensor shows a highly linear response, with an R-squared value of 0.9997.
State transition of a non-Ohmic damping system in a corrugated plane.
Lü, Kun; Bao, Jing-Dong
2007-12-01
Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0
Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey
2017-01-01
The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement. PMID:28287159
Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective
NASA Astrophysics Data System (ADS)
Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.
2018-01-01
Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.
Mode Locking of Lasers with Atomic Layer Graphene
2012-07-01
polarization components. As in order to obtain the vector soliton operation in a mode locked fiber laser no any polarization ...oscilloscope traces of a polarization locked vector soliton operation state. Figure 21: Oscilloscope traces of pulse train in a phase locked vector ... locked vector solitons , where the polarization of the solitons emitted by the laser is fixed, the polarization of the
CW injection locking for long-term stability of frequency combs
NASA Astrophysics Data System (ADS)
Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.
2009-05-01
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).
Generation of Ultrashort Pulses from Chromium - Forsterite Laser
NASA Astrophysics Data System (ADS)
Seas, Antonios
This thesis discusses the generation of ultrashort pulses from the chromium-doped forsterite laser, the various designs, construction and operation of forsterite laser systems capable of generating picosecond and femtosecond pulses in the near infrared. Various mode-locking techniques including synchronous optical pumping, active mode-locking, and self-mode-locking were successfully engineered and implemented. Active and synchronously pumped mode-locking using a three mirror, astigmatically compensated cavity design and a forsterite crystal with a figure of merit of 26 (FOM = alpha_{rm 1064nm} /alpha_{rm 1250nm }) generated pulses with FWHM of 49 and 260 ps, respectively. The tuning range of the mode-locked forsterite laser in both cases was determined to be in the order of 100 nm limited only by the dielectric coatings of the mirrors used in the cavity. The slope efficiency was measured to be 12.5% for synchronous pumping and 9.1% for active mode-locking. A four mirror astigmatically compensated cavity was found to be more appropriate for mode-locking. Active mode-locking using the four-mirror cavity generated pulses with FWHM of 31 ps. The pulsewidth was further reduced to 6 ps by using a forsterite crystal with a higher figure of merit (FOM = 39). Pulsewidth-bandwidth measurements indicated the presence of chirp in the output pulses. Numerical calculation of the phase characteristics of various optical materials indicated that a pair of prisms made of SF 14 optical glass can be used in the cavity in order to compensate for the chirp. The insertion of the prisms in the cavity resulted in a reduction of the pulsewidth from 6 ps down to 900 fs. Careful optimization of the laser cavity resulted in the generation of stable 90-fs pulses. Pulses as short as 60 fs were generated and self-mode-locked mode of operation using the Cr:forsterite laser was demonstrated for the first time. Pure self-mode-locking was next achieved generating 105-fs pulses tunable between 1230-1270 nm. Numerical calculations of the cubic phase characteristics of the prism pair used indicated that the pair of SF 14 prisms compensated for quadratic phase but introduced a large cubic phase term. Numerical evaluation of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was also observed in the stability of the self-mode-locked forsterite laser and in the ease of achieving mode-locking. Using the same experimental arrangement and a forsterite crystal with improved FOM the pulse width was reduced to 36 fs.
NASA Astrophysics Data System (ADS)
Choi, Myoung-Taek
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S.; Gubenko, A. E.
2016-06-15
The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section ofmore » the saturable absorber, which is sufficient for compensation of the applied bias.« less
Mode-locking behavior of Izhikevich neurons under periodic external forcing
NASA Astrophysics Data System (ADS)
Farokhniaee, AmirAli; Large, Edward W.
2017-06-01
Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated sounds can lead to various forms of n :m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled nonlinear differential equations compared with other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.
1.9 μm square-wave passively Q-witched mode-locked fiber laser.
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin
2018-05-14
We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.
Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé
2016-02-28
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.
Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé
2016-01-01
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques. PMID:26967924
Mode-locked Tm,Ho:KLu(WO(4))(2) laser at 2060 nm using InGaSb-based SESAMs.
Aleksandrov, Veselin; Gluth, Alexander; Petrov, Valentin; Buchvarov, Ivan; Steinmeyer, Günter; Paajaste, Jonna; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Mateos, Xavier; Díaz, Francesc; Griebner, Uwe
2015-02-23
Passive mode-locking of a Tm,Ho:KLu(WO(4))(2) laser operating at 2060 nm using different designs of InGaAsSb quantum-well based semiconductor saturable absorber mirrors (SESAMs) is demonstrated. The self-starting mode-locked laser delivers pulse durations between 4 and 8 ps at a repetition rate of 93 MHz with maximum average output power of 155 mW. Mode-locking performance of a Tm,Ho:KLu(WO(4))(2) laser is compared for usage of a SESAM to a single-walled carbon nanotube saturable absorber.
NASA Astrophysics Data System (ADS)
Zolotovskii, I. O.; Korobko, D. A.; Sysolyatin, A. A.
2018-02-01
We consider a model of a dissipative four-wave mixing, mode-locked fibre ring laser with an intracavity interferometer. The necessary conditions required for mode locking are presented. A pulse train generation is numerically simulated at different repetition rates and gain levels. Admissible ranges of values, for which successful mode locking is possible, are found. It is shown that in the case of normal dispersion of the resonator, a laser with an intracavity interferometer can generate a train of pulses with an energy much greater than that in the case of anomalous dispersion.
Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna
2016-03-21
Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.
Experimental Studies of the He-Ne Laser: Resonators and Self-Locking.
ERIC Educational Resources Information Center
Ruddock, I. S.
1980-01-01
He-Ne laser experiments suitable for an undergraduate laboratory are described. The topics covered are cavity stability, self-mode-locking coherent interactions between pulses and laser medium, and spontaneous transverse mode locking. (Author/DS)
NASA Astrophysics Data System (ADS)
Fridström, R.; Frassinetti, L.; Brunsell, P. R.
2015-10-01
The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)
Picosecond pulse measurements using the active laser medium
NASA Technical Reports Server (NTRS)
Bernardin, James P.; Lawandy, N. M.
1990-01-01
A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N
2012-01-30
Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.
Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A
2018-05-14
Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.
Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng
2011-06-20
A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.
Injection mode-locking Ti-sapphire laser system
Hovater, James Curtis; Poelker, Bernard Matthew
2002-01-01
According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.
Transient behavior of an actively mode-locked semiconductor laser diode
NASA Technical Reports Server (NTRS)
Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.
1982-01-01
Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.
Actively mode-locked fiber laser using a deformable micromirror.
Fabert, Marc; Kermène, Vincent; Desfarges-Berthelemot, Agnès; Blondy, Pierre; Crunteanu, Aurelian
2011-06-15
We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.
A wide bandwidth free-electron laser with mode locking using current modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kur, E.; Dunning, D. J.; McNeil, B. W. J.
2011-01-20
A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
Highly efficient passive mode locking of Nd:Lu2.9Gd0.1Al5O12 garnet crystal
NASA Astrophysics Data System (ADS)
Di, J. Q.; Xu, X. D.; Xia, C. T.; Tan, W. D.; Zhang, J.; Tang, D. Y.; Li, D. Z.; Zhou, D. H.; Wu, F.; Xu, J.
2013-05-01
Passive mode locking of Nd:Lu2.9Gd0.1Al5O12 (Nd:LuGdAG) crystal lasers was experimentally investigated. Stable mode-locked pulses with pulse widths as short as 9.7 ps were obtained for the Nd:LuGdAG crystal; the corresponding maximum output powers were 0.93 W while the mode-locked slope efficiencies were 43%, among the highest efficiencies ever reported for Nd3+ ps lasers. The results demonstrate that Nd:LuGdAG garnet crystal is a promising gain medium for efficient picosecond laser use.
Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics
NASA Astrophysics Data System (ADS)
Nakazawa, Masataka
Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (˜100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10-40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10-40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10-12-10-13.
Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers
NASA Astrophysics Data System (ADS)
Kilen, Isak Ragnvald
Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.
Mode-Locking Behavior of Izhikevich Neuron Under Periodic External Forcing
NASA Astrophysics Data System (ADS)
Farokhniaee, Amirali; Large, Edward
2015-03-01
In this study we obtained the regions of existence of various mode-locked states on the periodic-strength plane, which are called Arnold Tongues, for Izhikevich neurons. The study is based on the new model for neurons by Izhikevich (2003) which is the normal form of Hodgkin-Huxley neuron. This model is much simpler in terms of the dimension of the coupled non-linear differential equations compared to other existing models, but excellent for generating the complex spiking patterns observed in real neurons. Many neurons in the auditory system of the brain must encode amplitude variations of a periodic signal. These neurons under periodic stimulation display rich dynamical states including mode-locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated (AM) sounds can lead to various forms of n : m mode-locked states, similar to mode-locking phenomenon in a LASER resonance cavity. Obtaining Arnold tongues provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. Hence we can describe the construction of harmonic and sub-harmonic responses in the early processing stages of the auditory system, such as the auditory nerve and cochlear nucleus.
Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor
2012-05-10
We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomicmore » states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).« less
Active mode locking of lasers by piezoelectrically induced diffraction modulation
NASA Astrophysics Data System (ADS)
Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.
1990-04-01
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.
Modal gain characteristics of a 2 μm InGaSb/AlGaAsSb passively mode-locked quantum well laser
NASA Astrophysics Data System (ADS)
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Ng, Geok Ing; Zhang, Yu; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2017-12-01
Passive mode locking with a fundamental repetition rate at ˜18.46 GHz is demonstrated in a two-section InGaSb/AlGaAsSb quantum well laser emitting at 2 μm. Modal gain characteristics of the laser are investigated by performing the Hakki-Paoli method to gain better insight into the impact of the absorber bias voltage (Va) on the light output. The lasing action moves to longer wavelengths markedly with increasing negative Va. The light output contains more longitudinal modes in the mode locking regime if the gain bandwidth is larger at a certain Va. Our findings provide guidelines for output characteristics of the mode-locked laser.
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
NASA Astrophysics Data System (ADS)
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-10-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-01-01
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.
Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming
2016-10-06
We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.
Quantum dash based single section mode locked lasers for photonic integrated circuits.
Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois
2014-05-05
We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.
Statistical-mechanics theory of active mode locking with noise.
Gordon, Ariel; Fischer, Baruch
2004-05-01
Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution is established. It gives basic features, such as analytical expressions for the correlation function between modes, and the widths and shapes of the pulses [different from the Kuizenga-Siegman expression; IEEE J. Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with passive mode locking.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
NASA Astrophysics Data System (ADS)
Broslavets, Y. Y.; Fomitchev, A. A.
1996-11-01
We report on investigation of mode-locked regime in tunable Cr4+:YAG laser. Our experiments have been performed using Nd:YAG laser for pumping Cr4+:Y3Al5O12 laser. We have obtained mode-locked generation of tunable radiation in the range from 1,350 to 1,550 nm. There was a generation with pulse duration in ps range and repetition rate of 320 MHz. Using a 0.5 percent transmitting output mirror, as high as 305 mW of useful output power at 1.5 micrometers was obtained from the laser with 5.5 W of absorbed pump power. The laser has threshold for mode-locked regime near 7 W for synchronous mode locking and 5 W for active mode locking. We have analyzed the laser system with Kerr lens feedback in the phase trajectory of five-dimensional space. The computer simulation have shown the presence of asymptotically stable stationary point in behavior of temporal Gaussian beam similar spatial mode structure in the resonators, when the temporal mode does not change passing through all dispersion element in laser. Our calculations show that the sign of dispersion is very important for formation of phase portrait in our laser system. In conclusion, we have demonstrated Cr4+:YAG laser operation in mode-locked regime on the edge of stability region. The analysis of the solutions in our model reveals that chaotic instabilities can be reached through increasing of non-linear interaction temporal and spatial Gaussian beam. The characteristics of this laser systems can provide the source of laser radiation for diagnostics and therapy.
2009-02-12
describes the mode- locking and dynamics of solitons . A characteristic of short pulse lasers is the carrier-envelope phase (CEP) slip which is the change in...and evolution of pulses in mode- locked lasers that are operating in the soliton regime. To describe our research in more detail, we fix typical...solutions with mode- locking evolution. Otherwise the solitons are found to be unstable; either dispersing to radiation or evolving into nonlocalized
NASA Astrophysics Data System (ADS)
Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.
2018-06-01
Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.
Self-injection locked blue laser
NASA Astrophysics Data System (ADS)
Donvalkar, Prathamesh S.; Savchenkov, Anatoliy; Matsko, Andrey
2018-04-01
We demonstrate a 446.5 nm GaN semiconductor laser with sub-MHz linewidth. The linewidth reduction is achieved by locking the laser to a magnesium fluoride whispering gallery mode resonator characterized with 109 quality factor. Self-injection locking ensures single longitudinal mode operation of the laser.
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)
2006-01-01
Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.
Locked modes in two reversed-field pinch devices of different size and shell system
NASA Astrophysics Data System (ADS)
Malmberg, J.-A.; Brunsell, P. R.; Yagi, Y.; Koguchi, H.
2000-10-01
The behavior of locked modes in two reversed-field pinch devices, the Toroidal Pinch Experiment (TPE-RX) [Y. Yagi et al., Plasma Phys. Control. Fusion 41, 2552 (1999)] and Extrap T2 [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996, Montreal (International Atomic Energy Agency, Vienna, 1996), Vol. 2, p. 193] is analyzed and compared. The main characteristics of the locked mode are qualitatively similar. The toroidal distribution of the mode locking shows that field errors play a role in both devices. The probability of phase locking is found to increase with increasing magnetic fluctuation levels in both machines. Furthermore, the probability of phase locking increases with plasma current in TPE-RX despite the fact that the magnetic fluctuation levels decrease. A comparison with computations using a theoretical model estimating the critical mode amplitude for locking [R. Fitzpatrick et al., Phys. Plasmas 6, 3878 (1999)] shows a good correlation with experimental results in TPE-RX. In Extrap T2, the magnetic fluctuations scale weakly with both plasma current and electron densities. This is also reflected in the weak scaling of the magnetic fluctuation levels with the Lundquist number (˜S-0.06). In TPE-RX, the corresponding scaling is ˜S-0.18.
Deterministic chaos in an ytterbium-doped mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Mélo, Lucas B. A.; Palacios, Guillermo F. R.; Carelli, Pedro V.; Acioli, Lúcio H.; Rios Leite, José R.; de Miranda, Marcio H. G.
2018-05-01
We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rossler map. A positive Lyapunov exponent $\\lambda = 0.14$ confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain.
Lee, Changhyun; Park, Changkun
2014-01-01
We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm(2).
2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain
2014-01-01
We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755
Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin
2018-06-01
We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krausz, F.; Turi, L.; Kuti, C.
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.
Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin
2017-10-16
A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.
Demonstration of a stable ultrafast laser based on a nonlinear microcavity
Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R.
2012-01-01
Ultrashort pulsed lasers, operating through the phenomenon of mode-locking, have had a significant role in many facets of our society for 50 years, for example, in the way we exchange information, measure and diagnose diseases, process materials, and in many other applications. Recently, high-quality resonators have been exploited to demonstrate optical combs. The ability to phase-lock their modes would allow mode-locked lasers to benefit from their high optical spectral quality, helping to realize novel sources such as precision optical clocks for applications in metrology, telecommunication, microchip-computing, and many other areas. Here we demonstrate the first mode-locked laser based on a microcavity resonator. It operates via a new mode-locking method, which we term filter-driven four-wave mixing, and is based on a CMOS-compatible high quality factor microring resonator. It achieves stable self-starting oscillation with negligible amplitude noise at ultrahigh repetition rates, and spectral linewidths well below 130 kHz. PMID:22473009
Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.
Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P
2016-06-01
We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.
Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun
2015-03-09
In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.
NASA Astrophysics Data System (ADS)
Huang, T. L.; Y Cho, C.; Liang, H. C.; Huang, K. F.; Chen, Y. F.
2017-08-01
The self-mode-locked output for cryogenic Nd:YLF laser at the temperature range of 90 K to 290 K is thoroughly investigated. Linearly polarized self-mode-locked lasing at 1047 nm (1053 nm) with a repetition rate up to 1.59 GHz and a pulse width as short as 52 ps can be realized at temperatures above 155 K (below 135 K). Orthogonally polarized self-mode-locked operation can be observed at temperatures near 145 K. During dual-polarization operation, it is found that the polarized component with higher output power is the fundamental transverse mode, whereas the other component with lower output power becomes the high-order transverse mode. The dominant polarized component can be either π- or σ-polarization, depending on the fine adjustment of the cavity.
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1993-01-01
Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs.
Inter-comb synchronization by mode-to-mode locking
NASA Astrophysics Data System (ADS)
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
Modeling of mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Shaulov, Gary
This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.
Theoretical study on phase-locking of a radial array CO2 laser
NASA Astrophysics Data System (ADS)
Xu, Yonggen
2014-11-01
The phase-locking of the radial array CO2 laser (RAL) is introduced based on the injection-locking principle. The characteristic parameters of laser beams used in the phase-locking are described, and the coupling coefficient c00 between the injected mode and the eigenmode of RAL is calculated. The laser modes from RAL are the low-order Hermite Gaussian modes due to the diffraction loss. The analytical formula for the output beam through an ABCD optical system is derived according Collins formula. The numerical examples are given to illustrate our analytical results.
Error field penetration and locking to the backward propagating wave
Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.
2015-12-30
In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies w r in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = w r/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including themore » effects of pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less
Femtosecond Optics: Advanced Devices and Ultrafast Phenomena
2007-05-31
repetition rate from a soliton fiber laser [6]. Because the mode- locking mechanism is passive, no external oscillator is required, leading to a more...nonlinearity, 1.8 m of LNL-SMF is included in the laser. Mode- locked operation of the laser was obtained through nonlinear polarization evolution [6]. For pump...Generation in Photonic Crystal Fibers for Optical Coherence Tomography H. Frequency Swept Lasers and Fourier Domain Mode Locking (FDML) I. Physics of
Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm
NASA Astrophysics Data System (ADS)
Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu
2017-11-01
We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.
Tetravalent Chromium (Cr(4+)) as Laser-Active Ion for Tunable Solid-State Lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1993-01-01
During 10/31/92 - 3/31/93, the following summarizes our major accomplishments: (1) the self-mode-locked operation of the Cr:forsterite laser was achieved; (2) synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking; and (3) the pulses generated had a FWHW of 105 fs and were tunable between 1230 - 1270 nm.
Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules
2017-02-07
AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of
High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate
NASA Astrophysics Data System (ADS)
Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin
2011-12-01
We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.
Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.
Thermal-noise-limited higher-order mode locking of a reference cavity
NASA Astrophysics Data System (ADS)
Zeng, X. Y.; Ye, Y. X.; Shi, X. H.; Wang, Z. Y.; Deng, K.; Zhang, J.; Lu, Z. H.
2018-04-01
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG02 mode of a 10-cm long all ULE cavity, and measure its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal noise limited performance of a fractional frequency instability of 4.9E-16. The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution
NASA Astrophysics Data System (ADS)
Guo, Bo; Yao, Yong
2016-08-01
We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.
NASA Astrophysics Data System (ADS)
Zhang, Gang; Wang, Yonggang; Chen, Zhendong; Jiao, Zhiyong
2018-05-01
A reflective graphene oxide saturable absorber is fabricated and used in a Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser. Stable Q-switched and mode-locked pulses with a repetition rate of 8 MHz can be obtained at a pump power of 9 W by using an X-type resonator. Pulses obtained in an X-type resonator possess higher stability, output power, and repetition rate, compared with those in a Z-type resonator. The pulse width and the repetition rate of the Q-switched envelop in an X-type resonator are superior to those in the reported Q-switched and mode-locked lasers with graphene oxide.
Xu, Tianhong; Cao, Juncheng; Montrosset, Ivo
2015-01-01
The dynamical regimes and performance optimization of quantum dot monolithic passively mode-locked lasers with extremely low repetition rate are investigated using the numerical method. A modified multisection delayed differential equation model is proposed to accomplish simulations of both two-section and three-section passively mode-locked lasers with long cavity. According to the numerical simulations, it is shown that fundamental and harmonic mode-locking regimes can be multistable over a wide current range. These dynamic regimes are studied, and the reasons for their existence are explained. In addition, we demonstrate that fundamental pulses with higher peak power can be achieved when the laser is designed to work in a region with smaller differential gain.
Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450 kW of peak power.
Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A
2016-08-15
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
Sung, C L; Cheng, H P; Lee, C Y; Cho, C Y; Liang, H C; Chen, Y F
2016-04-15
The simultaneous self-mode-locking of two orthogonally polarized states in a Nd:YAG laser is demonstrated by using a short linear cavity. A total output power of 3.8 W can be obtained at an incident pump power of 8.2 W. The beat frequency Δfc between two orthogonally polarized mode-locked components is observed and measured precisely. It is found that the beat frequency increases linearly with an increase in the absorbed pump power. The origin of the beat frequency can be utterly manifested by considering the thermally induced birefringence in the Nd:YAG crystal. The present result offers a promising approach to generate orthogonally polarized mode-locked lasers with tunable beat frequency.
Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength
NASA Astrophysics Data System (ADS)
Gao, Ziye; Zhu, Jiangfeng; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Xu, Xiaodong; Zheng, Lihe; Su, Liangbi; Xu, Jun
2016-01-01
We experimentally demonstrated a wavelength tunable Kerr-lens mode-locked femtosecond laser based on an Yb:CaGdAlO4 (Yb:CGA) crystal. The Kerr-lens mode-locked wavelength tuning range was from 1043.5 to 1076 nm, as broad as 32.5 nm, by slightly tilting the end mirror. Pulses as short as 60 fs were generated at the central wavelength of 1043.8 nm with an average output power of 66 mW. By using an output coupler with 1.5% transmittance, the Kerr-lens mode-locked average output power reached 127 mW with a pulse duration of 81 fs at a central wavelength of 1049.5 nm.
Ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser.
Kowalevicz, A M; Schibli, T R; Kärtner, F X; Fujimoto, J G
2002-11-15
An ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser achieved by use of an extended cavity design is demonstrated. Mode-locking thresholds as low as 156 mW are achieved. Pulses with durations as short as 14 fs and bandwidths of >100 nm with output powers of ~15 mW at 50-MHz repetition rates are generated by only 200 mW of pump power. Reducing the pump power requirements to a factor of 10x less than required by most conventional Kerr-lens mode-locked lasers permits inexpensive, low-power pump lasers to be used. This will facilitate the development of low-cost, high-performance femtosecond Ti:Al(2)O(3) laser technology.
Influences of misalignment of control mirror of axisymmetric-structural CO2 laser on phase locking.
Xu, Yonggen; Li, Yude; Qiu, Yi; Feng, Ting; Fu, Fuxing; Guo, Wei
2008-11-20
Based on the principle of phase locking of an axisymmetric-fold combination CO2 laser under the normal state condition, the mechanisms of phase locking are analyzed when the control mirror is misaligned. Then the overlapping rate (OR) of the mode volume is introduced: the main influences on phase locking are the OR, the average life of the light wave, the root mean square phase error, and the mode coupling coefficient; these influences on phase locking are studied. The distribution of the light intensity reflects the effect of phase locking. It is shown that the misaligned angle has little influence on the phase locking if it is within tolerance.
Numerical simulations of fast-axis instability of vector solitons in mode-locked fiber lasers.
Du, Yueqing; Shu, Xuewen; Cheng, Peiyun
2017-01-23
We demonstrate the fast-axis instability in mode-locked fiber lasers numerically for the first time. We find that the energy of the fast mode will be transferred to the slow mode when the strong pump strength makes the soliton period short. A nearly linearly polarized vector soliton along the slow-axis could be generated under certain cavity parameters. The final polarization of the vector soliton is related to the initial polarization of the seed pulse. Two regimes of energy exchanging between the slow mode and the fast mode are explored and the direction of the energy flow between two modes depends on the phase difference. The dip-type sidebands are found to be intrinsic characteristics of the mode-locked fiber lasers under high pulse energy.
Dark solitons in mode-locked lasers.
Ablowitz, Mark J; Horikis, Theodoros P; Nixon, Sean D; Frantzeskakis, Dimitri J
2011-03-15
Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model that incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve (mode-lock) into dark solitons under appropriate requirements also met in experimental observations. The resulting pulses are essentially dark solitons of the unperturbed nonlinear Schrödinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.
High performance mode locking characteristics of single section quantum dash lasers.
Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim
2012-04-09
Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.
Theory of active mode locking of a semiconductor laser in an external cavity
NASA Technical Reports Server (NTRS)
Yeung, J. A.
1981-01-01
An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.
Thermally controlled comb generation and soliton modelocking in microresonators.
Joshi, Chaitanya; Jang, Jae K; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L
2016-06-01
We report, to the best of our knowledge, the first demonstration of thermally controlled soliton mode-locked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton mode-locked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of mode-locked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.
NASA Astrophysics Data System (ADS)
Mohd Rusdi, Muhammad Farid; Latiff, Anas Abdul; Paul, Mukul Chandra; Das, Shyamal; Dhar, Anirban; Ahmad, Harith; Harun, Sulaiman Wadi
2017-03-01
We report the generation of mode-locked thulium-holmium doped fiber laser (THDFL) at 1979 nm. This is a first demonstration of mode-locked by using Titanium Dioxide (TiO2) film as a saturable absorber (SA). A piece of 1 mm×1 mm TiO2 film was sandwiched in between two fiber ferrule in the cavity. Fabrication process of TiO2 film incorporated a TiO2 and a polyvinyl alcohol (PVA). The stable 9 MHz repetition rate of mode-locked mode operation with 58 dB SNR was generated under pump power of 902-1062 mW. At maximum pump power, the mode-locked THDFL has output power and pulse energy of 15 mW and 1.66 nJ, respectively. Our results demonstrate the TiO2 can be used promisingly in ultrafast photonics applications.
Development of simplified external control techniques for broad area semiconductor lasers
NASA Technical Reports Server (NTRS)
Davis, Christopher C.
1993-01-01
The goal of this project was to injection lock a 500 mW broad area laser diode (BAL) with a single mode low power laser diode with injection beam delivery through a single mode optical fiber (SMF). This task was completed successfully with the following significant accomplishments: (1) injection locking of a BAL through a single-mode fiber using a master oscillator and integrated miniature optics; (2) generation of a single-lobed, high-power far-field pattern from the injection-locked BAL that steers with drive current; and (3) a comprehensive theoretical analysis of a model that describes the observed behavior of the injection locked oscillator.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
All fiber passively mode locked zirconium-based erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.
2012-04-01
All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.
All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu
2018-04-01
We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-05-23
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.
Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber
NASA Astrophysics Data System (ADS)
Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua
2018-03-01
We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-01-01
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072
Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie
2016-01-01
Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900
Gaudelli, Cinzia; Ménard, Jérémie; Mutch, Jennifer; Laflamme, G-Yves; Petit, Yvan; Rouleau, Dominique M
2014-11-01
This paper aims to determine the strongest fixation method for split type greater tuberosity fractures of the proximal humerus by testing and comparing three fixation methods: a tension band with No. 2 wire suture, a double-row suture bridge with suture anchors, and a manually contoured calcaneal locking plate. Each method was tested on eight porcine humeri. A osteotomy of the greater tuberosity was performed 50° to the humeral shaft and then fixed according to one of three methods. The humeri were then placed in a testing apparatus and tension was applied along the supraspinatus tendon using a thermoelectric cooling clamp. The load required to produce 3mm and 5mm of displacement, as well as complete failure, was recorded using an axial load cell. The average load required to produce 3mm and 5mm of displacement was 658N and 1112N for the locking plate, 199N and 247N for the double row, and 75N and 105N for the tension band. The difference between the three groups was significant (P<0.01). The average load to failure of the locking plate (810N) was significantly stronger than double row (456N) and tension band (279N) (P<0.05). The stiffness of the locking plate (404N/mm) was significantly greater than double row (71N/mm) and tension band (33N/mm) (P<0.01). Locking plate fixation provides the strongest and stiffest biomechanical fixation for split type greater tuberosity fractures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Ya; Zhao, Xin; Liu, Jiansheng; Hu, Guoqing; Gong, Zheng; Zheng, Zheng
2014-08-25
We demonstrate the generation of soliton pulses covering a nearly one order-of-magnitude pulsewidth range from a simple carbon nanotube (CNT) mode-locked fiber laser with birefringence. A polarization-maintaining-fiber-pigtailed, inline polarization beam splitter and its associated birefringence is leveraged to either enable additional nonlinear polarization evolution (NPE) mode-locking effect or result in a bandwidth-tunable Lyot filter, through adjusting the intracavity polarization settings. The large pulsewidth tuning range is achieved by exploiting both the nonlinear CNT-NPE hybrid mode-locking mechanism that narrows the pulses and the linear filtering effect that broadens them. Induced vector soliton pulses with pulsewidth from 360 fs to 3 ps can be generated, and their time-bandwidth products indicate they are close to transform-limited.
Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes
NASA Astrophysics Data System (ADS)
Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko
2018-05-01
We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.
Zhang, Z X; Xu, Z W; Zhang, L
2012-11-19
We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.
Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merghem, K.; Aubin, G.; Ramdane, A.
2015-09-14
We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-06-01
In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.
Injection locking of a two-mode electron oscillator with close frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodubova, E. N.; Usacheva, S. A.; Ryskin, N. M.
2015-03-15
Theory of injection locking is developed for a two-mode electron maser with close frequencies, when the driving signal affects both modes. There exist two regimes of phase locking in which either first or second mode dominates. Hard transitions between the two regimes are observed with variation of the driving frequency. The results of numerical simulations are presented for the case of driving by a signal with linear frequency chirp, as well as by a signal with sinusoidal frequency modulation. The effect of bifurcation delay is observed with the increase of chirp rate.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Thermal-noise-limited higher-order mode locking of a reference cavity.
Zeng, X Y; Ye, Y X; Shi, X H; Wang, Z Y; Deng, K; Zhang, J; Lu, Z H
2018-04-15
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG 02 mode of a 10-cm long all ultra-low expansion (ULE) cavity and measuring its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal-noise-limited performance of a fractional frequency instability of 4.9×10 -16 . The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
Vector solitons in harmonic mode-locked erbium-doped fiber lasers
NASA Astrophysics Data System (ADS)
Habruseva, Tatiana; Mkhitaryan, Mkhitar; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K.; Sergeyev, Sergey V.
2014-05-01
We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.
Spatiotemporal mode-locking in multimode fiber lasers
NASA Astrophysics Data System (ADS)
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2017-10-01
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.
2015-07-16
SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report
Mode-locking observation of a CO2 laser by intracavity plasma injection
NASA Astrophysics Data System (ADS)
John, P. K.; Dembinski, M.
1980-06-01
A TEA CO2 laser was simultaneously Q-switched and mode-locked when an underdense plasma was injected into the cavity. The plasma was produced in an electromagnetic shock tube. Plasma density and temperature were N sub e of approximately 10 to the 17th/cu cm and T sub e of approximately 2 eV, respectively. Phase perturbation of the cavity due to the time dependent plasma refractive index could account for the observed mode-locking.
Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.
Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis
2014-02-01
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.
Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass.
Denisov, Igor A; Skoptsov, Nikolai A; Gaponenko, Maxim S; Malyarevich, Alexander M; Yumashev, Konstantin V; Lipovskii, Andrei A
2009-11-01
Passive Q-switched mode locking of a 2.09 microm flashlamp-pumped Cr(3+),Tm(3+),Ho(3+):Y(3)Sc(2)Al(3)O(12) laser by use of a phosphate glass doped with PbS quantum dots of 5 nm in radius was demonstrated. Mode-locked pulses of 290 ps in duration and up to 0.5 mJ in energy were registered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M
2005-09-30
Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width ({approx}3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is {approx}3.7 THz. (control of laser radiation parameters)
Gee, S; Ozharar, S; Plant, J J; Juodawlkis, P W; Delfyett, P J
2009-02-01
We report the generation of optical pulse trains with 380 as of residual timing jitter (1 Hz-1 MHz) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.
Noise characterization of a pulse train generated by actively mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, D.; Salvatore, R.A.; Yariv, A.
1996-07-01
We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed as well. {copyright} {ital 1996 Optical Society of America.}
An analysis of the Hubble Space Telescope fine guidance sensor fine lock mode
NASA Technical Reports Server (NTRS)
Taff, L. G.
1991-01-01
There are two guiding modes of the Hubble Space Telescope (HST) used for the acquisition of astronomical data by one of its six scientific instruments. The more precise one is called Fine Lock. Command and control problems in the onboard electronics has limited Fine Lock to brighter stars, V less than 13.0 mag, instead of fulfilling its goal of V = 14.5 mag. Consequently, the less precise guiding mode of Coarse Track (approximately 40 milli-arc seconds) has to be used fairly frequently. Indeed, almost half of the scientific observations to have been made with the HST will be compromised. The only realistic or extensive simulations of the Fine Lock guidance mode are reported. The theoretical analysis underlying the Monte Carlo experiments and the numerical computations clearly show both that the control electronics are severely under-engineered and how to adjust the various control parameters to successfully extend Fine Lock guiding performance back to V = 14.0 mag and sometimes beyond.
Robust integer and fractional helical modes in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir
2018-04-01
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Bitauld, David; Osborne, Simon; O'Brien, Stephen
2010-07-01
We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.
Trade-off between linewidth and slip rate in a mode-locked laser model.
Moore, Richard O
2014-05-15
We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.
NASA Astrophysics Data System (ADS)
Peng, Junsong; Zhan, Li; Gu, Zhaochang; Qian, Kai; Luo, Shouyu; Shen, Qishun
2012-03-01
We have experimentally demonstrated the direct generation of 128-fs pulses in an all-anomalous-dispersion all-fiber mode-locked laser. The laser is free of dispersion compensation in the cavity based on standard single mode fiber (SMF). The time-bandwidth product is 0.536. The laser is achieved by using two mode-lockers, one is nonlinear polarization rotation (NPR), and the other is nonlinear amplifying loop mirror. The coexistence of dual mode-locking mechanisms can decrease the cavity length to 12-m, and also results in producing high-quality pulses with a Gaussian shape both on the pulse profile and spectrum, but without Kelly sidebands.
Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator.
Dai, Jian; Liu, Anni; Liu, Jingliang; Zhang, Tian; Zhou, Yue; Yin, Feifei; Dai, Yitang; Liu, Yuanan; Xu, Kun
2017-10-30
The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity. Owing to the mode matching and mutually injection locking effect, 9.999 GHz signal has been successfully obtained by the mutually injection-locked COEO with the phase noise about -117 dBc/Hz at 10 kHz offset frequency. Besides, the supermode noise can be significantly suppressed more than 50 dB to below -120 dBc.
Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.
Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark
2011-11-21
Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America
Injection locking of an electronic maser in the hard excitation mode
NASA Astrophysics Data System (ADS)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-01
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulations of a gyrotron with fixed Gaussian structure of the RF field.
Phase locking of a semiconductor double-quantum-dot single-atom maser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.
2017-11-01
We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.
Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.
Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M
2014-10-10
A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.
Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios
NASA Astrophysics Data System (ADS)
Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.
2017-10-01
Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.
NASA Astrophysics Data System (ADS)
Cunning, B. V.; Brown, C. L.; Kielpinski, D.
2011-12-01
Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here, we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicates that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).
Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi
2017-01-01
A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148
Cheng, Huihui; Wang, Wenlong; Zhou, Yi; Qiao, Tian; Lin, Wei; Xu, Shanhui; Yang, Zhongmin
2017-10-30
A passively mode-locked Yb 3+ -doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb 3+ -doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO 2 /Ta 2 O 5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.
Single-shot spectroscopy of broadband Yb fiber laser
NASA Astrophysics Data System (ADS)
Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto
2017-02-01
We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.
High-power diode lasers for optical communications applications
NASA Technical Reports Server (NTRS)
Carlin, D. B.; Goldstein, B.; Channin, D. J.
1985-01-01
High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.
2014-12-23
coupled for d = 2λ . Results are shown for the TE polarization , where the transverse electric field vector is pointing in the vertical direction in these...16, 42–44 (1991). 6. D. U. Noske, N. Pandit, and J. R. Taylor, “Subpicosecond soliton pulse formation from self-mode- locked erbium fibre laser using...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode- Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1
35 GHz mode-locking of 1.3 μm quantum dot lasers
NASA Astrophysics Data System (ADS)
Kuntz, M.; Fiol, G.; Lämmlin, M.; Bimberg, D.; Thompson, M. G.; Tan, K. T.; Marinelli, C.; Penty, R. V.; White, I. H.; Ustinov, V. M.; Zhukov, A. E.; Shernyakov, Yu. M.; Kovsh, A. R.
2004-08-01
35GHz passive mode-locking of 1.3μm (InGa)As/GaAs quantum dot lasers is reported. Hybrid mode-locking was achieved at frequencies up to 20GHz. The minimum pulse width of the Fourier-limited pulses was 7ps with a peak power of 6mW. Low uncorrelated timing jitter below 1ps was found in cross correlation experiments. High-frequency operation of the lasers was eased by a ridge waveguide design that includes etching through the active layer.
Carbon nanotube mode-locked vertical external-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Seger, K.; Meiser, N.; Choi, S. Y.; Jung, B. H.; Yeom, D.-I.; Rotermund, F.; Okhotnikov, O.; Laurell, F.; Pasiskevicius, V.
2014-03-01
Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.
Orthogonal control of the frequency comb dynamics of a mode-locked laser diode.
Holman, Kevin W; Jones, David J; Ye, Jun; Ippen, Erich P
2003-12-01
We have performed detailed studies on the dynamics of a frequency comb produced by a mode-locked laser diode (MLLD). Orthogonal control of the pulse repetition rate and the pulse-to-pulse carrier-envelope phase slippage is achieved by appropriate combinations of the respective error signals to actuate the diode injection current and the saturable absorber bias voltage. Phase coherence is established between the MLLD at 1550 nm and a 775-nm mode-locked Ti:sapphire laser working as part of an optical atomic clock.
Self-mode-locked AlGaInP-VECSEL
NASA Astrophysics Data System (ADS)
Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.
2017-10-01
We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.
Magnetic Control of Locked Modes in Present Devices and ITER
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Sabbagh, S.; Sweeney, R.; Hender, T.; Kirk, A.; La Haye, R. J.; Strait, E. J.; Ding, Y. H.; Rao, B.; Fietz, S.; Maraschek, M.; Frassinetti, L.; in, Y.; Jeon, Y.; Sakakihara, S.
2014-10-01
The toroidal phase of non-rotating (``locked'') neoclassical tearing modes was controlled in several devices by means of applied magnetic perturbations. Evidence is presented from various tokamaks (ASDEX Upgrade, DIII-D, JET, J-TEXT, KSTAR), spherical tori (MAST, NSTX) and a reversed field pinch (EXTRAP-T2R). Furthermore, the phase of interchange modes was controlled in the LHD helical device. These results share a common interpretation in terms of torques acting on the mode. Based on this interpretation, it is predicted that control-coil currents will be sufficient to control the phase of locking in ITER. This will be possible both with the internal coils and with the external error-field-correction coils, and might have promising consequences for disruption avoidance (by aiding the electron cyclotron current drive stabilization of locked modes), as well as for spatially distributing heat loads during disruptions. This work was supported in part by the US Department of Energy under DE-SC0008520, DE-FC-02-04ER54698 and DE-AC02-09CH11466.
All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber
NASA Astrophysics Data System (ADS)
Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian
2017-01-01
A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.
Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung
2005-02-07
Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.
Beirow, Frieder; Eckerle, Michael; Dannecker, Benjamin; Dietrich, Tom; Ahmed, Marwan Abdou; Graf, Thomas
2018-02-19
We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial polarization of the LG* 01 mode was obtained by means of a circular Grating Waveguide Output Coupler. The repetition rate was 78 MHz. A pulse duration of 0.97 ps and a spectral bandwidth of 1.4 nm (FWHM) were measured at the maximum output power. This corresponds to a pulse energy of 1.6 µJ and a pulse peak power of 1.45 MW. A high degree of radial polarization of 97.3 ± 1% and an M 2 -value of 2.16 which is close to the theoretical value for the LG* 01 doughnut mode were measured.
Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich
2008-08-01
Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio-Corkscrew FT anchors (5.9 +/- 0.9 mm; P = .008), and corkscrews with modified Mason-Allen sutures (6.4 +/- 1.3 mm; P = .001). Double-row double-corkscrew anchor rotator cuff repair offered the highest failure load and smallest gap formation and provided the most secure fixation of all tested configurations. Double-loaded suture anchors using modified suture configurations achieved superior results in failure load and gap formation compared to simple suture repair and showed similar loads and gap formation with double-row repair using PushLock and Bio-Corkscrew FT anchors. Single-row repair with modified suture configurations may lead to results comparable to several double-row fixations. If double-row repair is used, modified stitches might further minimize gap formation and increase failure load.
Bamberg, Christian; Hinkson, Larry; Dudenhausen, Joachim W; Bujak, Verena; Kalache, Karim D; Henrich, Wolfgang
2017-12-01
Cesarean deliveries are the most common abdominal surgery procedure globally, and the optimal way to suture the hysterotomy remains a matter of debate. The aim of this study was to assess the incidence of cesarean scar niches and the depth after single- or double-layer uterine closure. We performed a randomized controlled trial in which women were allocated to three uterotomy suture techniques: continuous single-layer unlocked, continuous locked single-layer, or double-layer sutures. Transvaginal ultrasound was performed six weeks and 6-24 months after cesarean delivery [Clinicaltrials.gov (NCT02338388)]. The study included 435 women. Six weeks after delivery, the incidence of niche was not significantly different between the groups (p = 0.52): 40% for single-layer unlocked, 32% for single-layer locked and 43% for double-layer sutures. The mean ± SD niche depths were 3.0 ± 1.4 mm for single-layer unlocked, 3.6 ± 1.7 mm for single-layer locked and 3.3 ± 1.3 mm for double-layer sutures (p = 1.0). There were no significant differences (p = 0.58) in niche incidence between the three groups at the second ultrasound follow up: 30% for single-layer unlocked, 23% for single-layer locked and 29% for double-layer sutures. The mean ± SD niche depth was 3.1 ± 1.5 mm after single-layer unlocked, 2.8 ± 1.5 mm after single-layer locked and 2.5 ± 1.2 mm after double-layer sutures (p = 0.61). There was a trend (p = 0.06) for the residual myometrium thickness to be thicker after double-layer repair at the long-term follow up. The incidence of cesarean scar niche formation and the niche depth was independent of the hysterotomy closure technique. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharyash, V F; Kashirsky, A V; Klementyev, V M
We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
Injection locking of an electronic maser in the hard excitation mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-15
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulationsmore » of a gyrotron with fixed Gaussian structure of the RF field.« less
Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.
2018-05-01
It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.
Characteristics and instabilities of mode-locked quantum-dot diode lasers.
Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J
2013-04-08
Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.
Deep learning and model predictive control for self-tuning mode-locked lasers
NASA Astrophysics Data System (ADS)
Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.
2018-03-01
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.
2011-09-01
We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.
Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser
NASA Astrophysics Data System (ADS)
Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.
2018-02-01
Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.
NASA Astrophysics Data System (ADS)
Hou, L. P.; Haji, M.; Li, C.; Qiu, B. C.; Bryce, A. C.
2011-07-01
We present an 80-GHz λ ~ 1.55 μm passively colliding-pulse mode-locked laser based on a novel AlGaInAs/InP epitaxial structure, which consists of a strained 3-quantum-well active layer incorporated with a passive far-field reduction layer. The device generated 910 fs pulses with a state-of-art timing jitter value of 190 fs (4 - 80 MHz), while demonstrating a low divergence angle (12.7°×26.3°) with two fold butt coupling efficiency to a flat cleaved single mode fiber when compared with the conventional mode-locked laser.
Group velocity locked vector dissipative solitons in a high repetition rate fiber laser
NASA Astrophysics Data System (ADS)
Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming
2016-08-01
Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.
Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z
A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)
1.34 µm picosecond self-mode-locked Nd:GdVO4 watt-level laser
NASA Astrophysics Data System (ADS)
Han, Ming; Peng, Jiying; Li, Zuohan; Cao, Qiuyuan; Yuan, Ruixia
2017-01-01
With a simple linear configuration, a diode-pumped, self-mode-locked Nd:GdVO4 laser at 1.34 µm is experimentally demonstrated for the first time. Based on the aberrationless theory of self-focusing and thermal lensing effect, through designing and optimizing the resonator, a pulse width as short as 9.1 ps is generated at a repetition rate of 2.0 GHz and the average output power is 2.51 W. The optical conversion efficiency and the slope efficiency for the stable mode-locked operation are approximately 16.7% and 19.2%, respectively.
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok
2011-07-01
The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.
Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ping; Huang, Wenlong; Yan, Xingting
2016-10-01
It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.
Wang, Yongrui; Belyanin, Alexey
2015-02-23
We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.
Vector dissipative solitons in graphene mode locked fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Dingyuan; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping
2010-09-01
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.
Zheng, Chuantao; Wang, Yiding
2017-01-01
A Pound-Drever-Hall (PDH)-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT) and proportional-integral-derivative (PID) feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line. PMID:29207470
Neogi, Devdatta Suhas; Trikha, Vivek; Mishra, Kaushal Kant; Bandekar, Shivanand M; Yadav, Chandra Shekhar
2015-01-01
Bicondylar tibial plateau fractures are complex injuries and treatment is challenging. Ideal method is still controversial with risk of unsatisfactory results if not treated properly. Many different techniques of internal and external fixation are used. This study compares the clinical results in single locked plating versus dual plating (DP) using two incision approaches. Our hypothesis was that DP leads to less collapse and change in alignment at final followup compared with single plating. 61 cases of Type C tibial plateau fractures operated between January 2007 and June 2011 were included in this prospective study. All cases were operated either by single lateral locked plate by anterolateral approach or double plating through double incision. All cases were followed for a minimum of 24 months radiologically and clinically. The statistical analysis was performed using software SPSS 10.0 to analyze the data. Twenty nine patients in a single lateral locked plate and 32 patients in a double plating group were followed for minimum 2 years. All fractures healed, however there was a significant incidence of malalignment in the single lateral plating group. Though there was a significant increase in soft tissue issues with the double plating group; however, there was only 3.12% incidence of deep infection. There was no significant difference in Hospital for special surgery score at 2 years followup. Double plating through two incisions resulted in a better limb alignment and joint reduction with an acceptable soft tissue complication rate.
Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru
2013-07-15
A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2005-11-01
Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.
Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers
NASA Astrophysics Data System (ADS)
Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.
2016-05-01
A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.
Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan
2016-12-01
We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02 K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.
Modeling of ultrashort pulse generation in mode-locked VECSELs
NASA Astrophysics Data System (ADS)
Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.
2016-03-01
We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.
General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.
Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng
2017-05-02
As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.
Multi-operational tuneable Q-switched mode-locking Er fibre laser
NASA Astrophysics Data System (ADS)
Qamar, F. Z.
2018-01-01
A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.
Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.
Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy
2017-10-24
We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.
Evaluating the impacts of the Panama Canal Expansion on Texas gulf ports.
DOT National Transportation Integrated Search
2013-03-01
This report covers a four-year period after contractors started work on the third set of locks, which in 2015 will effectively double the size of the ship using the Panama Canal. Many of the impacts linked to the new locks remain unknown (like lock f...
Polarization rotation vector solitons in a graphene mode-locked fiber laser.
Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan
2012-11-19
Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.
Jones; Diddams; Ranka; Stentz; Windeler; Hall; Cundiff
2000-04-28
We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Vector solitons with locked and precessing states of polarization.
Sergeyev, Sergey V; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K
2012-11-19
We demonstrate experimentally new families of vector solitons with locked and precessing states of polarization for fundamental and multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity.
Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D
Haye, R. J. La; Paz-Soldan, C.; Strait, E. J.
2015-01-23
DIII-D experiments show that fully penetrated resonant n=1 error field locked modes in Ohmic plasmas with safety factor q 95≳3 grow to similar large disruptive size, independent of resonant error field correction. Relatively small resonant (m/n=2/1) static error fields are shielded in Ohmic plasmas by the natural rotation at the electron diamagnetic drift frequency. However, the drag from error fields can lower rotation such that a bifurcation results, from nearly complete shielding to full penetration, i.e., to a driven locked mode island that can induce disruption.
High-Energy Passive Mode-Locking of Fiber Lasers
Ding, Edwin; Renninger, William H.; Wise, Frank W.; Grelu, Philippe; Shlizerman, Eli; Kutz, J. Nathan
2012-01-01
Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings. PMID:22866059
Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm
NASA Astrophysics Data System (ADS)
Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady
2018-01-01
We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.
Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.
Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim
2009-09-28
For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.
Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM
NASA Astrophysics Data System (ADS)
Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.
2018-04-01
We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.
Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength.
Kim, Chur; Bae, Sangho; Kieu, Khanh; Kim, Jungwon
2013-11-04
We demonstrate a 490-attosecond timing jitter (integration bandwidth: 10 kHz - 39.4 MHz) optical pulse train from a 78.7-MHz repetition rate, all-fiber soliton Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (ft-CNT-SA). To achieve this jitter performance, we searched for a net cavity dispersion condition where the Gordon-Haus jitter is minimized while maintaining stable soliton mode-locking. Our result shows that optical pulse trains with well below a femtosecond timing jitter can be generated from a self-starting and robust all-fiber laser operating at telecom wavelength.
A 12.1-W SESAM mode-locked Yb:YAG thin disk laser
NASA Astrophysics Data System (ADS)
Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei
2016-05-01
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).
Stud hardware with self-contained stud anti-rotation feature and method of installing studs
Kartik, John S.; Richardson, William M.
1986-03-04
Disclosed herein is a method and apparatus for preventing the rotation of a stud member during preloading. The apparatus comprises a stud member having a shaft portion extending into the member to be clamped and a hex or double hex portion carrying a locking nut. Extending outward from the hex or double hex portion of the stud there is a threaded portion carrying a nut which is torqued to preload the stud. Between the locking nut and the member to be clamped is a locking ring which engages the locking nut to prevent the stud from rotating during preloading. Also disclosed is a method of preloading a stud without the use of an external restraint to prevent the stud from rotating when a torque is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Wang; Yunjun Zhang; Aotuo Dong
2014-04-28
The active Q-switched and passive mode-locked Er{sup 3+}-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energymore » is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64–68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses. (lasers)« less
Lin, Gong-Ru; Lee, Chao-Kuei; Kang, Jung-Jui
2008-06-09
We study the rational harmonic mode-locking (RHML) order dependent pulse shortening force and dynamic chirp characteristics of a gain-saturated semiconductor optical amplifier fiber laser (SOAFL) under dark-optical-comb injection, and discuss the competition between mode-locking mechanisms in the SOAFL at high-gain and strong optical injection condition at higher RHML orders. The evolutions of spectra, mode-locking and continuous lasing powers by measuring the ratio of DC/pulse amplitude and the pulse shortening force (I(pulse)/P(avg)(2) ) are performed to determine the RHML capability of SOAFL. As the rational harmonic order increases up to 20, the spectral linewidth shrinks from 12 to 3 nm, the ratio of DC/pulse amplitude enlarges from 0.025 to 2.4, and the pulse-shortening force reduces from 0.9 to 0.05. At fundamental and highest RHML condition, we characterize the frequency detuning range to realize the mode-locking quality, and measure the dynamic frequency chirp of the RHML-SOAFL to distinguish the linear and nonlinear chirp after dispersion compensation. With increasing RHML order, the pulsewidth is broadened from 4.2 to 26.4 ps with corresponding chirp reducing from 0.7 to 0.2 GHz and linear/nonlinear chirp ratio changes from 4.3 to 1.3, which interprets the high-order chirp becomes dominates at higher RHML orders.
Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Richard
2015-04-15
The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase lockingmore » of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.« less
Phase-locking of annular-combination CO2 laser
NASA Astrophysics Data System (ADS)
Qi, Tingxiang; Chen, Mei; Zhang, Rongzhu; Xiao, Qianyi
2015-07-01
A new annular-combination resonator structure adopting the external-injection phase-locking technology is presented theoretically for that the beam quality of stable annular resonator is not satisfying. The phase-locking principle and feasibility are characterized by energy density of injection beam and coupling coefficient. Based on the diffraction theory, output mode of the resonator with phase-locking is deduced and simulated. Results also confirm that injection beam have a good control effect on output mode. The intensity distributions of output beam are studied briefly and indicate that this new resonator which is adaptable to annular gain media can produce high-power laser beam with high quality.
Programmable controlled mode-locked fiber laser using a digital micromirror device.
Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie
2017-05-15
A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.
Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications
NASA Technical Reports Server (NTRS)
Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.
1998-01-01
Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeeva, V I; Shapiro, Boris I; Kuch'yanov, Aleksandr S
2003-06-30
Ultrashort pulses of duration {approx}13 ps are first obtained in a passively mode-locked Nd:YAG laser with a negative feedback using a thin gelatine-film saturable absorber containing organic-dye J-aggregates. (control of laser radiation parameters)
Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers
NASA Astrophysics Data System (ADS)
Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory
2018-02-01
Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.
Locked-mode avoidance and recovery without momentum input
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.
2015-11-01
Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.
NASA Astrophysics Data System (ADS)
Peng, ZhiGang; Chen, Meng; Yang, Chao; Chang, Liang; Li, Gang
2015-02-01
We report a high-energy, high-repetition CW pumped Nd:YVO4 amplifier system, that produces 10.5 W, 14.2 ps pulses at 1064 nm wavelength and 5 W pulses at 532 nm wavelength with a repetition rate of 10 kHz. Pulses from a passively mode-locked Nd:YVO4 oscillator are first generated by cavity dumping, and then further amplified in a regenerative amplifier from 545 nJ to 1 mJ with a CW diode-pumped Nd:YVO4. After frequency doubling, 0.5 mJ pulses are obtained with a wavelength of 532 nm.
Neogi, Devdatta Suhas; Trikha, Vivek; Mishra, Kaushal Kant; Bandekar, Shivanand M.; Yadav, Chandra Shekhar
2015-01-01
Background: Bicondylar tibial plateau fractures are complex injuries and treatment is challenging. Ideal method is still controversial with risk of unsatisfactory results if not treated properly. Many different techniques of internal and external fixation are used. This study compares the clinical results in single locked plating versus dual plating (DP) using two incision approaches. Our hypothesis was that DP leads to less collapse and change in alignment at final followup compared with single plating. Materials and Methods: 61 cases of Type C tibial plateau fractures operated between January 2007 and June 2011 were included in this prospective study. All cases were operated either by single lateral locked plate by anterolateral approach or double plating through double incision. All cases were followed for a minimum of 24 months radiologically and clinically. The statistical analysis was performed using software SPSS 10.0 to analyze the data. Results: Twenty nine patients in a single lateral locked plate and 32 patients in a double plating group were followed for minimum 2 years. All fractures healed, however there was a significant incidence of malalignment in the single lateral plating group. Though there was a significant increase in soft tissue issues with the double plating group; however, there was only 3.12% incidence of deep infection. There was no significant difference in Hospital for special surgery score at 2 years followup. Conclusion: Double plating through two incisions resulted in a better limb alignment and joint reduction with an acceptable soft tissue complication rate. PMID:26015609
Zhang, Yanzeng; Krasheninnikov, S. I.
2017-09-29
The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor)
1988-01-01
The space station configuration currently studied utilizes structures which require struts to be hinged in the middle in the stowed mode and locked into place in the deployed mode. Since there are hundreds of hinges involved, it is necessary that they have simple, positive locking features with a minimum of joint looseness or slack. This invention comprises two similar housings hinged together with a spring loaded locking member which assists in making as well as breaking the lock. This invention comprises a bracket hinge and bracket members with a spring biased and movable locking member. The locking or latch member has ear parts received in locking openings where wedging surfaces on the ear parts cooperate with complimentary surfaces on the bracket members for bringing the bracket members into a tight end-to-end alignment when the bracket members are in an extended position. When the locking member is moved to an unlocking position, pivoting of the hinge about a pivot pin automatically places the locking member to retain the locking member in an unlocked position. In pivoting the hinge from an extended position to a folded position, longitudinal spring members are placed under tension over annular rollers so that the spring tension in a folded position assists in return of the hinge from a folded to an extended position. Novelty lies in the creation of a locking hinge which allows compact storage and easy assembly of structural members having a minimal number of parts.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
NASA Astrophysics Data System (ADS)
Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.
2017-11-01
In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.
Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.
Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming
2016-08-08
We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.
Okhrimchuk, Andrey G; Obraztsov, Petr A
2015-06-08
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.
NASA Astrophysics Data System (ADS)
Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan
2014-03-01
By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.
Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm
NASA Astrophysics Data System (ADS)
Waritanant, Tanant; Major, Arkady
2018-02-01
A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.
NASA Astrophysics Data System (ADS)
Lee, Eunjoo; Kim, Byoung Yoon
2017-12-01
We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.
Adaptation to the edge of chaos in a self-starting Kerr-lens mode-locked laser
NASA Astrophysics Data System (ADS)
Hsu, C. C.; Lin, J. H.; Hsieh, W. F.
2009-08-01
We experimentally and numerically demonstrated that self-focusing acts as a slow-varying control parameter that suppresses the transient chaos to reach a stable mode-locking (ML) state in a self-starting Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback control. Based on Fox-Li’s approach, including the self-focusing effect, the theoretical simulation reveals that the self-focusing effect is responsible for the self-adaptation. The self-adaptation occurs at the boundary between the chaotic and continuous output regions in which the laser system begins with a transient chaotic state with fractal correlation dimension, and then evolves with reducing dimension into the stable ML state.
Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers
NASA Astrophysics Data System (ADS)
Kang, Zhe; Xu, Yang; Zhang, Lei; Jia, Zhixu; Liu, Lai; Zhao, Dan; Feng, Yan; Qin, Guanshi; Qin, Weiping
2013-07-01
We demonstrated a passively mode-locked erbium-doped fiber laser by using gold nanorods as a saturable absorber. The gold nanorods (GNRs) were mixed with sodium carboxymethylcellulose (NaCMC) to form GNRs-NaCMC films. By inserting one of the GNRs-NaCMC films into an EDFL cavity pumped by a 980 nm laser diode, stable passively mode-locking was achieved with a threshold pump power of ˜54 mW, and 12 ps pulses at 1561 nm with a repetition rate of 34.7 MHz and a maximum average power of ˜2.05 mW were obtained for a pump power of ˜62 mW.
11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene
Okhrimchuk, Andrey G.; Obraztsov, Petr A.
2015-01-01
We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678
Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping
2012-05-01
We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7 W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5 MHz with a relative linewidth of ∼1.4 MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.
Mode-locked solid state lasers using diode laser excitation
Holtom, Gary R [Boston, MA
2012-03-06
A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.
Self locking drive system for rotating plug of a nuclear reactor
Brubaker, James E.
1979-01-01
This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.
High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers
NASA Technical Reports Server (NTRS)
Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.
1991-01-01
The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.
Polarization domain wall pulses in a microfiber-based topological insulator fiber laser
Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun
2016-01-01
Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states. PMID:27381942
Polarization domain wall pulses in a microfiber-based topological insulator fiber laser
NASA Astrophysics Data System (ADS)
Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun
2016-07-01
Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states.
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
Femtosecond diode-pumped mode-locked neodymium lasers
NASA Astrophysics Data System (ADS)
Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun
2016-12-01
Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.
Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.
Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui
2014-10-06
We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.
High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.
Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-11-16
Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.
Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.
Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin
2018-03-16
Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.
Torque control for electric motors
NASA Technical Reports Server (NTRS)
Bernard, C. A.
1980-01-01
Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.
Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps
NASA Astrophysics Data System (ADS)
Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav
2016-12-01
In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.
Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donin, V I; Yakovin, D V; Gribanov, A V
2015-12-31
The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the lasermore » field while the train contains single picosecond pulses. (control of laser radiation parameters)« less
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser
Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling
2012-01-01
We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
Bamberg, Christian; Dudenhausen, Joachim W; Bujak, Verena; Rodekamp, Elke; Brauer, Martin; Hinkson, Larry; Kalache, Karim; Henrich, Wolfgang
2018-06-01
We undertook a randomized clinical trial to examine the outcome of a single vs. a double layer uterine closure using ultrasound to assess uterine scar thickness. Participating women were allocated to one of three uterotomy suture techniques: continuous single layer unlocked suturing, continuous locked single layer suturing, or double layer suturing. Transvaginal ultrasound of uterine scar thickness was performed 6 weeks and 6 - 24 months after Cesarean delivery. Sonographers were blinded to the closure technique. An "intent-to-treat" and "as treated" ANOVA analysis included 435 patients (n = 149 single layer unlocked suturing, n = 157 single layer locked suturing, and n = 129 double layer suturing). 6 weeks postpartum, the median scar thickness did not differ among the three groups: 10.0 (8.5 - 12.3 mm) single layer unlocked vs. 10.1 (8.2 - 12.7 mm) single layer locked vs. 10.8 (8.1 - 12.8 mm) double layer; (p = 0.84). At the time of the second follow-up, the uterine scar was not significantly (p = 0.06) thicker if the uterus had been closed with a double layer closure 7.3 (5.7 - 9.1 mm), compared to single layer unlocked 6.4 (5.0 - 8.8 mm) or locked suturing techniques 6.8 (5.2 - 8.7 mm). Women who underwent primary or elective Cesarean delivery showed a significantly (p = 0.03, p = 0.02, "as treated") increased median scar thickness after double layer closure vs. single layer unlocked suture. A double layer closure of the hysterotomy is associated with a thicker myometrium scar only in primary or elective Cesarean delivery patients. © Georg Thieme Verlag KG Stuttgart · New York.
Preliminary results toward injection locking of an incoherent laser array
NASA Technical Reports Server (NTRS)
Daher, J.
1986-01-01
The preliminary results of phase locking an incoherent laser array to a master source in an attempt to achieve coherent operation are presented. The techniques necessary to demonstrate phase locking are described along with some topics for future consideration. As expected, the results obtained suggest that injection locking of an array, where the spacing between adjacent longitudinal modes of its elements is significantly larger than the locking bandwidth, may not be feasible.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
The tearing mode locking-unlocking mechanism to an external resonant field in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Fridström, R.; Menmuir, S.; Brunsell, P. R.
2014-10-01
The tearing mode (TM) locking and unlocking process due to an external resonant magnetic perturbation (RMP) is experimentally studied in EXTRAP T2R. The RMP produces a reduction of the natural TM velocity and ultimately the TM locking if a threshold in the RMP amplitude is exceeded. During the braking process, the TM slows down via a mechanism composed of deceleration and acceleration phases. During the acceleration phases, the TM can reach velocities higher than the natural velocity. Once the TM locking occurs, the RMP must be reduced to a small amplitude to obtain the TM unlocking, showing that the unlocking threshold is significantly smaller than the locking threshold and that the process is characterized by hysteresis. Experimental results are in qualitative agreement with a model that describes the locking-unlocking process via the balance of the electromagnetic torque produced by the RMP that acts to brake the TM and the viscous torque that tends to re-establish the unperturbed velocity.
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser
NASA Astrophysics Data System (ADS)
Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2017-01-01
We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey
2018-02-01
The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.
Active/passive mode-locked laser oscillator
Fountain, William D.; Johnson, Bertram C.
1977-01-01
A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.
NASA Astrophysics Data System (ADS)
Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo
2017-10-01
We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.
256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang
2017-12-01
We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.
Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes
NASA Astrophysics Data System (ADS)
Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.
2011-06-01
We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.
Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser
NASA Astrophysics Data System (ADS)
Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi
2015-03-01
A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Saha, Sourabh K.
2017-01-11
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana
2010-06-01
We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.
Vertical-angle control system in the LLMC
NASA Astrophysics Data System (ADS)
Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei
2000-10-01
A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
Measurements of the toroidal torque balance of error field penetration locked modes
Shiraki, Daisuke; Paz-Soldan, Carlos; Hanson, Jeremy M.; ...
2015-01-05
Here, detailed measurements from the DIII-D tokamak of the toroidal dynamics of error field penetration locked modes under the influence of slowly evolving external fields, enable study of the toroidal torques on the mode, including interaction with the intrinsic error field. The error field in these low density Ohmic discharges is well known based on the mode penetration threshold, allowing resonant and non-resonant torque effects to be distinguished. These m/n = 2/1 locked modes are found to be well described by a toroidal torque balance between the resonant interaction with n = 1 error fields, and a viscous torque inmore » the electron diamagnetic drift direction which is observed to scale as the square of the perturbed field due to the island. Fitting to this empirical torque balance allows a time-resolved measurement of the intrinsic error field of the device, providing evidence for a time-dependent error field in DIII-D due to ramping of the Ohmic coil current.« less
Heck, Martijn J R; Bente, Erwin A J M; Smalbrugge, Barry; Oei, Yok-Siang; Smit, Meint K; Anantathanasarn, Sanguan; Nötzel, Richard
2007-12-10
First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 mum is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.
1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.
Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul
2017-10-06
This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
NASA Astrophysics Data System (ADS)
Shemis, M. A.; Khan, M. T. A.; Alkhazraji, E.; Ragheb, A. M.; Esmail, M. A.; Fathallah, H.; Qureshi, K. K.; Alshebeili, S.; Khan, M. Z. M.
2018-03-01
The next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.
Observation of Polarization-Locked Vector Solitons in an Optical Fiber
NASA Astrophysics Data System (ADS)
Cundiff, S. T.; Collings, B. C.; Akhmediev, N. N.; Soto-Crespo, J. M.; Bergman, K.; Knox, W. H.
1999-05-01
We observe polarization-locked vector solitons in a mode-locked fiber laser. Temporal vector solitons have components along both birefringent axes. Despite different phase velocities due to linear birefringence, the relative phase of the components is locked at +/-π/2. The value of +/-π/2 and component magnitudes agree with a simple analysis of the Kerr nonlinearity. These fragile phase-locked vector solitons have been the subject of much theoretical conjecture, but have previously eluded experimental observation.
Fleyer, Michael; Sherman, Alexander; Horowitz, Moshe; Namer, Moshe
2016-05-01
We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal. The phase noise that is obtained in the injection-locked OEO is similar to that obtained in a long-cavity self-sustained OEO. Although the cavity length of the OEO was long, the spurious modes were suppressed due to the injection locking without the need to use a narrowband filter. The spurious level was significantly below that obtained in a self-sustained OEO after inserting a narrowband electronic filter with a Q-factor of 720 into the cavity.
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
NASA Astrophysics Data System (ADS)
Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa
2016-06-01
Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.
Short pulse fiber lasers mode-locked by carbon nanotubes and graphene
NASA Astrophysics Data System (ADS)
Yamashita, Shinji; Martinez, Amos; Xu, Bo
2014-12-01
One and two dimensional forms of carbon, carbon nanotubes and graphene, have interesting and useful, not only electronic but also photonic, properties. For fiber lasers, they are very attractive passive mode lockers for ultra-short pulse generation, since they have saturable absorption with inherently fast recovery time (<1 ps). In this paper, we review the photonic properties of graphene and CNT and our recent works on fabrication of fiber devices and applications to ultra-short pulse mode-locked fiber lasers.
Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2010-01-01
Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.
Mückley, Thomas; Eichorn, Stephan; Hoffmeier, Konrad; von Oldenburg, Geert; Speitling, Andreas; Hoffmann, Gunther O; Bühren, Volker
2007-02-01
Intramedullary implants are being used with increasing frequency for tibiotalocalcaneal fusion (TTCF). Clinically, the question arises whether intramedullary (IM) nails should have a compression mode to enhance biomechanical stiffness and fusion-site compression. This biomechanical study compared the primary stability of TTCF constructs using compressed and uncompressed retrograde IM nails and a screw technique in a bone model. For each technique, three composite bone models were used. The implants were a Biomet nail (static locking mode and compressed mode), a T2 femoral nail (compressed mode); a prototype IM nail 1 (PT1, compressed mode), a prototype IM nail 2 (PT2, dynamic locking mode and compressed mode), and a three-screw construct. The compressed contact surface of each construct was measured with pressure-sensitive film and expressed as percent of the available fusion-site area. Stiffness was tested in dorsiflexion and plantarflexion (D/P), varus and valgus (V/V), and internal rotation and external rotation (I/E) (20 load cycles per loading mode). Mean contact surfaces were 84.0 +/- 6.0% for the Biomet nail, 84.0 +/- 13.0% for the T2 nail, 70.0 +/- 7.2% for the PTI nail, and 83.5 +/- 5.5% for the compressed PT2 nail. The greatest primary stiffness in D/P was obtained with the compressed PT2, followed by the compressed Biomet nail. The dynamically locked PT2 produced the least primary stiffness. In V/V, PT1 had the (significantly) greatest primary stiffness, followed by the compressed PT2. The statically locked Biomet nail and the dynamically locked PT2 had the least primary stiffness in V/V. In I/E, the compressed PT2 had the greatest primary stiffness, followed by the PT1 and the T2 nails, which did not differ significantly from each other. The dynamically locked PT2 produced the least primary stiffness. The screw construct's contact surface and stiffness were intermediate. The IM nails with compression used for TTCF produced good contact surfaces and primary stiffness. They were significantly superior in these respects to the uncompressed nails and the screw construct. The large contact surfaces and great primary stiffness provided by the IM nails in a bone model may translate into improved union rates in patients who have TTCF.
Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas
2012-04-23
We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America
High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction
Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2015-01-01
Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21th harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536
Schmeckebier, H; Fiol, G; Meuer, C; Arsenijević, D; Bimberg, D
2010-02-15
A complete characterization of pulse shape and phase of a 1.3 microm, monolithic-two-section, quantum-dot mode-locked laser (QD-MLL) at a repetition rate of 40 GHz is presented, based on frequency resolved optical gating. We show that the pulse broadening of the QD-MLL is caused by linear chirp for all values of current and voltage investigated here. The chirp increases with the current at the gain section, whereas larger bias at the absorber section leads to less chirp and therefore to shorter pulses. Pulse broadening is observed at very high bias, likely due to the quantum confined stark effect. Passive- and hybrid-QD-MLL pulses are directly compared. Improved pulse intensity profiles are found for hybrid mode locking. Via linear chirp compensation pulse widths down to 700 fs can be achieved independent of current and bias, resulting in a significantly increased overall mode-locking range of 101 MHz. The suitability of QD-MLL chirp compensated pulse combs for optical communication up to 160 Gbit/s using optical-time-division multiplexing are demonstrated by eye diagrams and autocorrelation measurements.
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun
2016-11-01
The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.
Mode locking of a ring cavity semiconductor diode laser
NASA Astrophysics Data System (ADS)
Desbiens, Louis; Yesayan, Ararat; Piche, Michel
2000-12-01
We report new results on the generation and characterization of picosecond pulses from a self-mode-locked semiconductor diode laser. The active medium (InGaAs, 830-870 nm) is a semiconductor optical amplifier whose facets are cut at angle and AR coated. The amplifier is inserted in a three-minor ring cavity. Mode locking is purely passive; it takes place for specific alignment conditions. Trains of counterpropagating pulses are produced, with pulse duration varying from 1 .2 to 2 ps. The spectra of the counterpropagatmg pulses do not fully overlap; their central wavelengths differ by a few nm. The pulse repetition rate has been varied from 0.3 to 3 GHz. The pulses have been compressed to less than 500-fs duration with a grating pair. We discuss some of the potential physical mechanisms that could be involved in the dynamics of the mode-locked regime. Hysteresis in the LI curve has been observed. To characterize the pulses, we introduce the idea of a Pulse Quality Factor, where the pulse duration and spectral width are calculated from the second-order moments of the measured intensity autocorrelation and power spectral density.
Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Song, Yu Feng; Li, Lei; Tang, Ding Yuan; Shen, De Yuan
2013-12-01
We report on the experimental observation of quasi-periodic dynamics of vector solitons in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Apart from the stable polarization-locked vector soliton emission, it was found that under certain conditions the fiber laser could also emit vector solitons with quasi-periodic pulse energy variation and polarization rotation during the cavity roundtrips. We show that the physical mechanism for the quasi-periodic vector soliton evolution is cavity-induced soliton modulation instability. Quasi-periodic evolution of multiple vector solitons was also observed in the same laser.
Yamazoe, Shogo; Katou, Masaki; Adachi, Takashi; Kasamatsu, Tadashi
2010-03-01
We report a palm-top-size femtosecond diode-pumped mode-locked Yb(+3):KY(WO(4))(2) solid-state laser with a semiconductor saturable absorber mirror utilizing soliton mode locking for shortening the cavity to 50 mm. An average output power of 680 mW and a pulse width of 162 fs were obtained at 1045 nm with a repetition rate of 2.8 GHz, which led to a peak power of 1.5 kW. Average power fluctuations of a modularized laser source were found to be +/-10% for the free-running 3000 h operation and +/-1% for the power-controlled 2000 h operation.
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Precise fiber length measurement using harmonic detection of phase-locked cavity modes
NASA Astrophysics Data System (ADS)
Terra, Osama
2018-06-01
In this paper, precise length measurements of optical fibers are performed by employing harmonic detection of the pulse-train frequency of a passively mode-locked fiber laser. This frequency is proportional to the length of the laser cavity in which the measured fiber is installed. Our proposed technique enables length measurement of long fibers from 1 to 40 km with precision from 0.4 to 8 mm and short fibers of few meters with precision as low as 26 μm. Such superior precision is achieved not only by the selection of higher harmonics of up to 1410, but also by the careful control of the wavelength at which the passive mode-locking occur, because of the broadband nature of the used gain medium.
Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser
NASA Astrophysics Data System (ADS)
Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei
2016-02-01
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
ERIC Educational Resources Information Center
Kangas, Jon Alan
When a discipline enters the lock-out mode in the San Jose/Evergreen Community College District, the computer prevents a student from registering in any course in that discipline unless he/she has completed all prerequisites for that course. To determine how this registration process affected enrollments, average daily attendance (ADA) figures…
Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections
NASA Astrophysics Data System (ADS)
Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
Lin, Gong-Ru; Chiu, I-Hsiang
2005-10-31
Femtosecond nonlinear pulse compression of a wavelength-tunable, backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated for the first time. Shortest mode-locked SOAFL pulsewidth of 15 ps at 1 GHz is generated, which can further be compressed to 180 fs after linear chirp compensation, nonlinear soliton compression, and birefringent filtering. A maximum pulsewidth compression ratio for the compressed eighth-order SOAFL soliton of up to 80 is reported. The pedestal-free eighth-order soliton can be obtained by injecting the amplified pulse with peak power of 51 W into a 107.5m-long single-mode fiber (SMF), providing a linewidth and time-bandwidth product of 13.8 nm and 0.31, respectively. The tolerance in SMF length is relatively large (100-300 m) for obtaining <200fs SOAFL pulsewidth at wavelength tuning range of 1530-1560 nm. By extending the repetition frequency of dark-optical-comb up to 10 GHz, the mode-locked SOAFL pulsewidth can be slightly shortened from 5.4 ps to 3.9 ps after dispersion compensating, and further to 560 fs after second-order soliton compression. The lasing linewidth, time-bandwidth product and pulsewidth suppressing ratio of the SOAFL soliton become 4.5 nm, 0.33, and 10, respectively.
Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O
2008-03-01
Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model, the nails with angle-stable or compressed angle-stable locking had better initial stability and better stability following cycling than did the nails with static locking.
Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons.
Tiesinga, P H E
2002-04-01
Neurons in the brain communicate via trains of all-or-none electric events known as spikes. How the brain encodes information using spikes-the neural code-remains elusive. Here the robustness against noise of stimulus-induced neural spike trains is studied in terms of attractors and bifurcations. The dynamics of model neurons converges after a transient onto an attractor yielding a reproducible sequence of spike times. At a bifurcation point the spike times on the attractor change discontinuously when a parameter is varied. Reliability, the stability of the attractor against noise, is reduced when the neuron operates close to a bifurcation point. We determined using analytical spike-time maps the attractor and bifurcation structure of an integrate-and-fire model neuron driven by a periodic or a quasiperiodic piecewise constant current and investigated the stability of attractors against noise. The integrate-and-fire model neuron became mode locked to the periodic current with a rational winding number p/q and produced p spikes per q cycles. There were q attractors. p:q mode-locking regions formed Arnold tongues. In the model, reliability was the highest during 1:1 mode locking when there was only one attractor, as was also observed in recent experiments. The quasiperiodically driven neuron mode locked to either one of the two drive periods, or to a linear combination of both of them. Mode-locking regions were organized in Arnold tongues and reliability was again highest when there was only one attractor. These results show that neuronal reliability in response to the rhythmic drive generated by synchronized networks of neurons is profoundly influenced by the location of the Arnold tongues in parameter space.
Error field detection in DIII-D by magnetic steering of locked modes
Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...
2014-02-20
Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less
Phase-locking of magnetic islands diagnosed by ECE-imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, Benjamin; Grierson, Brian A.; Muscatello, Christopher M.
2014-08-13
Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria amongst multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, k pol). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Here, nonlinear coupling amongst neoclassical tearing modes (NTMs) of different n-number, with islands not satisfying the poloidal mode number selection criterion {m, m ', m - m ' }, contributes to a reduction in core rotation and flow shear in the vicinity of the modes.
Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers
NASA Astrophysics Data System (ADS)
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2012-11-01
We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-01-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327
New methods of generation of ultrashort laser pulses for ranging
NASA Technical Reports Server (NTRS)
Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan
1993-01-01
To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.
How short are ultra short light pulses? (looking back to the mid sixties)
NASA Astrophysics Data System (ADS)
Weber, H. P.; Dändliker, R.
2010-09-01
With the arrival of mode locking for Q-switched lasers to generate ultra short light pulses, a method to measure their expected time duration in the psec range was needed. A novel method, based on an intensity correlation measurement using optical second harmonic generation, was developed. Other reported approaches for the same purpose were critically analysed. Theoretical and subsequent experimental studies lead to surprising new insight into the ultra fast temporal behaviour of broadband laser radiation: Any non mode locked multimode emission of a laser consists of random intensity fluctuations with duration of the total inverse band width of emitted radiation. However, it was shown, that with mode locking isolated ultra short pulses of psec duration can be generated. This article summarizes activities performed in the mid sixties at the University of Berne, Switzerland.
NASA Astrophysics Data System (ADS)
Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert
2018-01-01
The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.
Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule.
Shi, Haosen; Song, Youjian; Wang, Chingyue; Zhao, Luming; Hu, Minglie
2018-04-01
In this work, we study the timing instability of a scalar twin-pulse soliton molecule generated by a passively mode-locked Er-fiber laser. Subfemtosecond precision relative timing jitter characterization between the two solitons composing the molecule is enabled by the balanced optical cross-correlation (BOC) method. Jitter spectral density reveals a short-term (on the microsecond to millisecond timescale) random fluctuation of the pulse separation even in the robust stationary soliton molecules. The root-mean-square (rms) timing jitter is on the order of femtoseconds depending on the pulse separation and the mode-locking regime. The lowest rms timing jitter is 0.83 fs, which is observed in the dispersion managed mode-locking regime. Moreover, the BOC method has proved to be capable of resolving the soliton interaction dynamics in various vibrating soliton molecules.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
NASA Astrophysics Data System (ADS)
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-03-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.
Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser
NASA Astrophysics Data System (ADS)
Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.
1982-04-01
Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.
Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing
2018-04-16
We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.
Overview of recent HL-2A experiments
NASA Astrophysics Data System (ADS)
Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team
2017-10-01
Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.
Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars.
Mannarelli, Massimo; Manuel, Cristina; Sa'd, Basil A
2008-12-12
Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r modes of a hypothetical compact quark star made up by color-flavor-locked quark matter at a temperature T < or approximately 0.01 MeV. The dissipation that we consider is due to the mutual friction force between the normal and the superfluid component arising from the elastic scattering of phonons with quantized vortices. This process is the dominant one for temperatures T < or approximately 0.01 MeV, where the mean free path of phonons due to their self-interactions is larger than the radius of the star. We find that r-mode oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color-flavor-locked quark matter.
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Signal Processing, Pattern Formation and Adaptation in Neural Oscillators
2016-11-29
nonlinear oscillations of outer hair cells. We obtained analytical forms for auditory tuning curves of both unidirectionally and bidirectionally coupled...oscillations of outer hair cells in the cochlea, mode-locking of chopper cells to sound in the cochlear nucleus, and entrainment of cortical...oscillations of outer hair cells (e.g., Fredrickson-Hemsing, Ji, Bruinsma, & Bozovic, 2012), mode-locking of choppers in the cochlear nucleus (e.g., Laudanski
Mode Locking of Quantum Cascade Lasers
2007-11-09
E. Siegman , Lasers , University Science Books, Mill Valley, CA (1986). [2] A. Yariv, Quantum Electronics, 3rd edition, John Wiley and Sons, New...REPORT Mode Locking of Quantum Cascade Lasers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A theoretical and experimental study of multimode operation...regimes in quantum cascade lasers (QCLs) is presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes in QCLs: One is
Structural dissipative solitons in passive mode-locked fiber lasers.
Komarov, Andrey; Sanchez, François
2008-06-01
On the basis of numerical simulation of fiber laser passive mode locking with anomalous dispersion we have found the dissipative solitons with powerful pedestals having oscillating structure. The pedestal structure causes a complex structural spectrum. These solitons can be multistable: with the same laser parameters the pedestals can have different structures. For some nonlinear-dispersion parameters there exist solitons with asymmetric structural pedestals moving relatively solitons with symmetric ones.
NASA Technical Reports Server (NTRS)
Yariv, A.
1972-01-01
A theoretical investigation revealed that a steady state mode-locked solution appropriate to ultrashort pulses is induced by Kerr liquids. An experimental investigation using a Q-switched ruby laser passively mode-locked by the insertion of a Kerr liquid verified the theory. Pulses of about 10 to the -11th power sec were generated when the relaxation time of the liquid was temperature tuned to approximately 10 to the -11th power sec.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Nakagawa, T.; Torizuka, K.; Sugaya, T.; Kobayashi, K.
We developed a gold reflector based semiconductor saturable absorber mirror that has a sufficiently high reflectivity and a broad bandwidth and has been used to initiate the mode locking in a Cr4+:YAG laser. The laser achieved a similar efficiency to the lasers with Bragg-reflector-based semiconductor saturable absorber mirrors, but delivered a much broader spectrum and a shorter pulse.
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands
NASA Astrophysics Data System (ADS)
Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.
2012-10-01
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S
2016-03-15
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.
2016-01-01
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199
Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon
2017-01-01
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352
Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks
NASA Astrophysics Data System (ADS)
Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.
2017-10-01
Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle
2018-01-01
We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B.; Grierson, B. A.; Okabayashi, M.
2016-05-15
The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less
NASA Astrophysics Data System (ADS)
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Optical double-locked semiconductor lasers
NASA Astrophysics Data System (ADS)
AlMulla, Mohammad
2018-06-01
Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system
(DCT) A Reconfigurable RF Photonics Unit Cell For Integrated Circuits
2012-08-10
Public Release In this work, the integration of a Quantum Dot Mode Locked Laser , that acts as a microwave and millimeter wave source, with a wideband...antenna is presented. Two aspects of research are discussed. The first aspect deals with a Mode Locked Laser (MLL) based on quantum dot (QD...designed antennas were integrated with laser chips using the lithographic method. The challenges of designing this wideband antenna that can operate
Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback
NASA Astrophysics Data System (ADS)
Rodwell, M. J. W.; Weingarten, K. J.; Bloom, D. M.; Baer, T.; Kolner, B. H.
1986-10-01
The timing fluctuations of a mode-locked Nd:YAG laser are reduced by electronic feedback. Timing fluctuations at rates of 50 to 250 Hz are reduced by more than 20 dB, the total timing fluctuations are reduced from 2.9 to 0.9 psec rms, and long-term drift is reduced to 0.5 psec/min. Applications include time-resolved probing experiments and synchronization of lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.
We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PMmore » fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.« less
NASA Astrophysics Data System (ADS)
Ibarra Villalón, H. E.; Pottiez, O.; Bracamontes Rodriguez, Y. E.; Lauterio-Cruz, J. P.; Gomez Vieyra, A.
2018-06-01
In this paper, we report an experimental study of different dynamics taking place in a 20 m long passively mode-locked fibre ring laser in dual-wavelength operation, at 1531 nm and 1558 nm. For different polarization adjustments, self-starting mode locking is obtained, yielding different types of emission: bunches of solitons in quasi-stationary regime, a compact bunch of solitons coexisting with loose bunches of solitons, a noise-like pulse coexisting with bunches of solitons and a noise-like pulse displaying quasi-periodic fluctuations. In each regime, we extract information on the pulse dynamics from measurements of the temporal profile evolution using a 16 GHz real-time oscilloscope and, at the same time, we propose a phase-space diagram representation of the intensity versus the energy of the temporal profile of the pulses; the latter allows evidencing patterns that could not be identified using conventional measurement techniques.
Sobon, Grzegorz; Sotor, Jaroslaw; Jagiello, Joanna; Kozinski, Rafal; Zdrojek, Mariusz; Holdynski, Marcin; Paletko, Piotr; Boguslawski, Jakub; Lipinska, Ludwika; Abramski, Krzysztof M
2012-08-13
In this work we demonstrate comprehensive studies on graphene oxide (GO) and reduced graphene oxide (rGO) based saturable absorbers (SA) for mode-locking of Er-doped fiber lasers. The paper describes the fabrication process of both saturable absorbers and detailed comparison of their parameters. Our results show, that there is no significant difference in the laser performance between the investigated SA. Both provided stable, mode-locked operation with sub-400 fs soliton pulses and more than 9 nm optical bandwidth at 1560 nm center wavelength. It has been shown that GO might be successfully used as an efficient SA without the need of its reduction to rGO. Taking into account simpler manufacturing technology and the possibility of mass production, GO seems to be a good candidate as a cost-effective material for saturable absorbers for Er-doped fiber lasers.
Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration
NASA Astrophysics Data System (ADS)
Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi
2018-04-01
In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.
Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.
Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J
2014-04-01
We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.
Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.
Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan
2014-09-20
Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.
Portuondo-Campa, E; Paschotta, R; Lecomte, S
2013-08-01
We report on the ultralow timing jitter of the 100 MHz pulse trains generated by two identical passively mode-locked diode-pumped solid-state lasers (DPSSLs) emitting at 1556 nm. Ultralow timing jitter of 83 as (integrated from 10 kHz to 50 MHz) for one laser has been measured with a balanced optical cross-correlator as timing discriminator. Extremely low intensity noise has been measured as well. Several measurement techniques have been used and show similar jitter results. Different possible noise sources have been theoretically investigated and compared to the measured jitter power spectral density. It is found that although the measured integrated jitter is quite low, it is still significantly above the quantum limit in the considered frequency span. Therefore, there is a substantial potential for technical improvements that could make passively mode-locked DPSSL outperform fiber lasers as source of microwaves with low phase noise.
Dispersion engineering of mode-locked fibre lasers
NASA Astrophysics Data System (ADS)
Woodward, R. I.
2018-03-01
Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.
Mode-locking via dissipative Faraday instability
Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.
2016-01-01
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708
Mode-locking via dissipative Faraday instability.
Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K
2016-08-09
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.
Zhu, S N; Wu, Z C; Fu, S N; Zhao, L M
2018-03-20
Details of various composites of the projections originated from a fundamental group-velocity-locked vector dissipative soliton (GVLVDS) are both experimentally and numerically explored. By combining the projections from the orthogonal polarization components of the GVLVDS, a high-order vector soliton structure with a double-humped pulse profile along one polarization and a single-humped pulse profile along the orthogonal polarization can be observed. Moreover, by de-chirping the composite double-humped pulse, the time separation between the two humps is reduced from 15.36 ps to 1.28 ps, indicating that the frequency chirp of the GVLVDS contributes significantly to the shaping of the double-humped pulse profile.
A comparison of lateral ankle ligament suture anchor strength.
Barber, F Alan; Herbert, Morley A; Crates, John M
2013-06-01
Lateral ankle ligament repairs increasingly use suture anchors instead of bone tunnels. Our purpose was to compare the biomechanical properties of a knotted and knotless suture anchor appropriate for a lateral ankle ligament reconstruction. In porcine distal fibulae, 10 samples of 2 different PEEK anchors were inserted. The attached sutures were cyclically loaded between 10N and 60N for 200 cycles. A destructive pull was performed and failure loads, cyclic displacement, stiffness, and failure mode recorded. PushLock 2.5 anchors failed before 200 cycles. PushLock 100 cycle displacement was less than Morphix 2.5 displacement (p<0.001). Ultimate failure load for anchors completing 200 cycles was 86.5N (PushLock) and 252.1N (Morphix) (p<0.05). The failure mode was suture breaking for all PushLocks while the Morphix failed equally by anchor breaking and suture breakage. The knotted Morphix demonstrated more displacement and greater failure strength than the knotless PushLock. The PushLock failed consistently with suture breaking. The Morphix anchor failed both by anchor breaking and by suture breaking. Copyright © 2012 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
240 GHz pedestal-free colliding-pulse mode-locked laser with a wide operation range
NASA Astrophysics Data System (ADS)
Hou, L.; Haji, M.; Marsh, J. H.
2014-11-01
A 240 GHz, sixth-harmonic monolithic ~1.55 μm colliding-pulse mode-locked laser is reported using a three-quantum-well active layer design and a passive far-field reduction layer. The device emits 0.88 ps pulses with a peak power of 65 mW and intermediate longitudinal modes suppressed by >30 dB. The device demonstrates a wide operation range compared to the conventional five-quantum-well design as well as having a low divergence angle (12.7° × 26.3°), granting a twofold improvement in butt-coupling efficiency into a flat cleaved single-mode fibre.
Research on polarization vector characteristics in a microfiber-based graphene fiber laser
NASA Astrophysics Data System (ADS)
Han, Mengmeng; Zhang, Shumin; Li, Xingliang; Han, Huiyun; Liu, Jingmin; Yan, Dan
2016-11-01
We experimentally investigated the polarization vector characteristics in an Er-doped fiber laser based on graphene that was deposited on microfiber. A variety of dynamic states, including polarization locked fundamental soliton, and polarization domain wall square pulses and their harmonic mode locked counterparts have all been observed with different pump powers and polarization states. These results indicated that the microfiber-based graphene not only could act as a saturable absorber but also could provide high nonlinearity, which is favorable for the cross coupling between the two orthogonal polarization components. It was worth to mention that it is the first time to obtain the polarization domain wall solitons in a mode locked fiber laser.
Ultra-long-period grating as a novel tool for multi-wavelength ultrafast photonics
NASA Astrophysics Data System (ADS)
Guo, Bo; Yang, Wen-Lei
2017-10-01
Here, we demonstrate the six-wavelength mode-locking and hybrid mode-locking operation in an erbium-doped fiber laser (EDFL) with an ultra-long-period grating (ULPG) by properly adjusting the pump power and the cavity parameters. The ULPG is fabricated by using the fused biconical method with a GPX-3000 glass processing system. Study found that, the ULPG exhibits dual-function, that is, mode-locker and multiwavelength filter. Our finding implies that apart from its fantastic sensing application, the ULPG may also possess attractive nonlinear optical property for ultrafast photonics.
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.
Effect of electrode biasing on m/n = 2/1 tearing modes in J-TEXT experiments
NASA Astrophysics Data System (ADS)
Liu, Hai; Hu, Qiming; Chen, Zhipeng; Yu, Q.; Zhu, Lizhi; Cheng, Zhifeng; Zhuang, Ge; Chen, Zhongyong
2017-01-01
The effects of electrode biasing (EB) on the m/n = 2/1 tearing mode have been experimentally studied in J-TEXT tokamak discharges, where m and n are the poloidal and toroidal mode numbers. It is found that for a negative bias voltage, the mode amplitude is reduced, and the mode frequency is increased accompanied by the increased toroidal plasma rotation speed in the counter-I p direction. For a positive bias voltage, the mode frequency is decreased together with the change of the rotation velocity towards the co-I p direction, and the mode amplitude is increased. Statistic results show that the variations in the toroidal rotation speed, the 2/1 mode frequency and its amplitude linearly depend on the bias voltage. The threshold voltages for complete suppression and locking of the mode are found. The experimental results suggest that applied electrode biasing is a possible method for the avoidance of mode locking and disruption.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Automated Characterization of Rotating MHD Modes and Subsequent Locking in a Tokamak
NASA Astrophysics Data System (ADS)
Riquezes, Juan; Sabbagh, Steven; Berkery, Jack
2016-10-01
Disruption avoidance in tokamaks is highly desired to maintain steady plasma operation, and is critical for future reactor-scale devices, such as ITER, to avoid potential damage to device components. This high priority research is being conducted at PPPL by analyzing data from NSTX and its upgrade, NSTX-U. A key cause of disruptions is the physical event chain that comprises the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their subsequent locking. The present research aims to define algorithms to automatically find and characterize such physical event chains in the machine database. Characteristics such as identification of a mode locking time based on a loss of torque balance and bifurcation of the mode rotation frequency are examined to determine the reliability of such events in predicting disruptions. A goal is to detect such behavior as early as possible during a plasma discharge, and to further examine potential ways to forecast it. This capability could be used to provide a warning to use active mode control as a disruption avoidance mechanism, or to trigger a controlled plasma shutdown if desired. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
Highly coherent free-running dual-comb chip platform.
Hébert, Nicolas Bourbeau; Lancaster, David G; Michaud-Belleau, Vincent; Chen, George Y; Genest, Jérôme
2018-04-15
We characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities. Furthermore, it displays a remarkably low mutual frequency noise floor around 10 Hz 2 /Hz, which is enabled by its large-mode-area waveguides and low Kerr nonlinearity. As a result, it reaches a free-running mutual coherence time of 1 s since mode-resolved dual-comb spectra are generated even on this time scale. This design greatly simplifies dual-comb interferometers by enabling mode-resolved measurements without any phase lock.
Modal identities for multibody elastic spacecraft: An aid to selecting modes for simulation
NASA Technical Reports Server (NTRS)
Hablani, Hari B.
1989-01-01
The question: Which set of modes furnishes a higher fidelity math model of dynamics of a multibody, deformable spacecraft (hinges-free or hinges-locked vehicle modes) is answered. Two sets of general, discretized, linear equations of motion of a spacecraft with an arbitrary number of deformable appendages, each articulated directly to the core body, are obtained using the above two families of modes. By a comparison of these equations, ten sets of modal identities are constructed which involve modal momenta coefficients and frequencies associated with both classes of modes. The sums of infinite series that appear in the identities are obtained in terms of mass, and first and second moments of inertia of the appendages, core body, and vehicle by using certain basic identities concerning appendage modes. Applying the above identities to a four-body spacecraft, the hinges-locked vehicle modes are found to yield a higher fidelity model than hinges-free modes, because the latter modes have nonconverging modal coefficients; a characteristic proved and illustrated.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Terahertz Sideband-tuned Quantum Cascade Laser Radiation
2008-03-31
resolution of 2 MHz in CW regime was observed. ©2008 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers , quantum cascade...diode,” Opt. Lett. 29, 1632 (2004). 6. A. Baryshev, et.al., “ Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser ,” Appl... optically pumped gas laser . With further improvements in power and spatial mode quality, it should be possible to lock a TQCL to the harmonic of an ultra
USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 34
1977-04-27
Russian abstract provided by the source] [Text] The relationship of duration and intensity of ultrashort pulses in a mode-locked ruby laser with Q...Excess charge carriers have been found to appear in pure Ge and Si crystals irradiated with short pulses from a C02 laser . The high purity and perfection...Illustrations 2; References 15: 8 Russian, 7 Western. USSR UDC 621.378.325 CONTROL OF DURATION OF ULTRASHORT PULSES IN MODE-LOCKED LASERS ZHURNAL
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.
Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T
2015-11-16
We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
2016-11-03
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress
Chong, Andy; Wright, Logan G; Wise, Frank W
2016-01-01
Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally. PMID:26496377
Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress.
Chong, Andy; Wright, Logan G; Wise, Frank W
2015-11-01
Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally.
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang
2006-03-15
A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.
1.6 μm dissipative soliton fiber laser mode-locked by cesium lead halide perovskite quantum dots.
Liu, Bang; Gao, Lei; Cheng, Wei Wei; Tang, Xiao Sheng; Gao, Chao; Cao, Yu Long; Li, Yu Jia; Zhu, Tao
2018-03-19
We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr 3 -QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows that it has a modulation depth of 2.5% and a saturation power of 17.29 MW/cm 2 . After incorporating the fabricated device into an Er 3+ -doped fiber ring cavity with a net normal dispersion of 0.238 ps 2 , we obtain stable dissipative soliton with a pulse duration of 14.4 ps and a center wavelength at 1600 nm together with an edge-to-dege bandwidth of 4.5 nm. The linear chirped phase can be compensated by 25 m single mode fiber, resulting into a compressed pulse duration of 1.046 ps. This experimental works proves that such CsPbBr3-QDs materials are effective choice for ultrafast laser operating with devious mode-locking states.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan
2003-09-01
We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.
Wu, Kan; Zhang, Xiaoyan; Wang, Jun; Li, Xing; Chen, Jianping
2015-05-04
Two-dimensional (2D) nanomaterials, especially the transition metal sulfide semiconductors, have drawn great interests due to their potential applications in viable photonic and optoelectronic devices. In this work, 2D tungsten disulfide (WS2) based saturable absorber (SA) for ultrafast photonic applications was demonstrated. WS2 nanosheets were prepared using liquid-phase exfoliation method and embedded in polyvinyl alcohol (PVA) thin film for the practical usage. Saturable absorption was discovered in the WS2-PVA SA at the telecommunication wavelength near 1550 nm. By incorporating WS2-PVA SA into a fiber laser cavity, both stable mode locking operation and Q-switching operation were achieved. In the mode locking operation, the laser obtained femtosecond output pulse width and high spectral purity in the radio frequency spectrum. In the Q-switching operation, the laser had tunable repetition rate and output pulse energy of a few tens of nano joule. Our findings suggest that few-layer WS2 nanosheets embedded in PVA thin film are promising nonlinear optical materials for ultrafast photonic applications as a mode locker or Q-switcher.
Locked-mode avoidance and recovery without external momentum input
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Gates, D. A.; Wolfe, S.; Rice, J. E.; Gao, C.; Wukitch, S.; Greenwald, M.; Hughes, J.; Marmar, E.; Scott, S.
2014-10-01
Error-field-induced locked-modes (LMs) have been studied in C-Mod at ITER toroidal fields without NBI fueling and momentum input. The use of ICRH heating in synch with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW and a transition into H-mode when PICRH > 2 MW. The recovery experiments consisted in applying ICRH power during the LM non-rotating phase successfully unlocking the core plasma. The ``induced'' toroidal rotation was in the counter-current direction, restoring the direction and magnitude of the toroidal flow before the LM formation, but contrary to the expected Rice-scaling in the co-current direction. However, the LM occurs near the LOC/SOC transition where rotation reversals are commonly observed. Once PICRH is turned off, the core plasma ``locks'' at later times depending on the evolution of ne and Vt. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT and DE-AC02-09CH11466 at PPPL.
True Low-Power Self-Locking Soft Actuators.
Kim, Seung Jae; Kim, Onnuri; Park, Moon Jeong
2018-03-01
Natural double-layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self-organized bending behavior in response to environmental stimuli. Herein, light- and electro-active polymer (LEAP) based actuators with a double-layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro-active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self-locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm -2 of energy to hold an object for 15 min at an operating voltage of 3 V. These novel self-locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydraulic Evaluation of Culvert Valves at Eisenhower and Snell Locks, St. Lawrence Seaway
2015-06-01
ER D C/ CH L TR -1 5- 7 Hydraulic Evaluation of Culvert Valves at Eisenhower and Snell Locks, St. Lawrence Seaway Co as ta l a nd H...client/default. ERDC/CHL TR-15-7 June 2015 Hydraulic Evaluation of Culvert Valves at Eisenhower and Snell Locks, St. Lawrence Seaway...filling valve well of the Snell Lock’s south-wall culvert . The new vertical-frame valve operated at a slower rate than the double-skin-plate valve
Power Scaling and Frequency Stabilization of an Injection-Locked Laser
2000-05-01
In Chapter 4,1 alter the well -documented theory of locking a laser to a Fabry- Perot by performing the PDH error signal derivation in a new manner...the well -documented modulation transfer scheme to lock the frequency-doubled NPRO to a hyperfine component of an electronic transition in I2. 33 I...generally true at very low noise frequencies, well within the feedback loop bandwidth. However, when G0L(V„) « 1 and thus GCL(vn) « 1, Equation 3.9
Mode- and plasma rotation in a resistive shell reversed-field pinch
NASA Astrophysics Data System (ADS)
Malmberg, J.-A.; Brzozowski, J.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.
2004-02-01
Mode rotation studies in a resistive shell reversed-field pinch, EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1 (2001)] are presented. The phase relations and nonlinear coupling of the resonant modes are characterized and compared with that expected from modeling based on the hypothesis that mode dynamics can be described by a quasi stationary force balance including electromagnetic and viscous forces. Both m=0 and m=1 resonant modes are studied. The m=1 modes have rotation velocities corresponding to the plasma flow velocity (20-60 km/s) in the core region. The rotation velocity decreases towards the end of the discharge, although the plasma flow velocity does not decrease. A rotating phase locked m=1 structure is observed with a velocity of about 60 km/s. The m=0 modes accelerate throughout the discharges and reach velocities as high as 150-250 km/s. The observed m=0 phase locking is consistent with theory for certain conditions, but there are several conditions when the dynamics are not described. This is not unexpected because the assumption of quasi stationarity for the mode spectra is not fulfilled for many conditions. Localized m=0 perturbations are formed in correlation with highly transient discrete dynamo events. These perturbations form at the location of the m=1 phase locked structure, but rotate with a different velocity as they spread out in the toroidal direction.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.
2007-01-01
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y
2007-01-15
We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.
Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas
NASA Astrophysics Data System (ADS)
Finn, J. M.; Chacon, L.
2002-11-01
We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).
Self-locking double retention redundant pull pin release
NASA Technical Reports Server (NTRS)
Killgrove, Thomas O. (Inventor)
1987-01-01
A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.
NASA Astrophysics Data System (ADS)
Kim, Dong Hwan; Kim, Sang Hyuck; Jo, Jae Cheol; Choi, Sang Sam
2000-08-01
A new phase lock loop (PLL) is proposed and demonstrated for clock recovery from 40 Gbps time-division-multiplexed (TDM) optical signal using simple optical phase lock loop circuit. The proposed clock recovery scheme improves the jitter effect in PLL circuit from the clock pulse laser of harmonically-mode locked fiber laser. The cross-correlation component between the optical signal and an optical clock pulse train is detected as a four-wave-mixing (FWM) signal generated in SOA. The lock-in frequency range of the clock recovery is found to be within 10 KHz.
NASA Astrophysics Data System (ADS)
Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.
2017-11-01
The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.
Class-A mode-locked lasers: Fundamental solutions
NASA Astrophysics Data System (ADS)
Kovalev, Anton V.; Viktorov, Evgeny A.
2017-11-01
We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.
1975-01-01
The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.
2013-03-21
be modified to create a non -inverting output as well. The probe beam is initially injected at a slightly higher frequency than the slave mode so...input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non -injected Fabry–Perot modes, is induced, yielding a...laser diode), SLD (slave laser diode), EOM (electro-optic modulator), P (polarizer), OI (optical isolator), G (grating), L (lens), BE ( beam expander
Sub-100-ps amplitude-modulation mode-locked Tm-Ho:BaY2F8 laser at 2.06 μm
NASA Astrophysics Data System (ADS)
Galzerano, G.; Marano, M.; Longhi, S.; Sani, E.; Toncelli, A.; Tonelli, M.; Laporta, P.
2003-11-01
We report the generation of sub-100-ps pulse trains near the 2.06-μm wavelength in an actively mode-locked diode-pumped Tm-Ho:BaYF laser operating at room temperature. Transform-limited, 97-ps Gaussian pulses at a 100-MHz repetition rate with an average power in excess of 20 mW and with a carrier wavelength tunable by ~50 nm near 2.066 μm are demonstrated.
Diode-pumped passively mode-locked and passively stabilized Nd3+:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Tomaselli, Alessandra; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-07-01
Continuous-wave mode locking (CW-ML) of a diode-pumped Nd3+:BaY2F8 laser is reported for the first time to our knowledge. Pulses as short as 4.8 ps were measured with a total output power of almost equal to 1 W at 1049 nm, corresponding to 3.4 W of absorbed power from the pump diode at 806 nm. A novel technique for passive stabilization of CW-ML has been demonstrated.
Chen, Hsiang-Yu; Chi, Yu-Chieh; Lin, Gong-Ru
2015-08-24
A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10(-3), respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10(-3), respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10(-3), respectively.
Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second
NASA Astrophysics Data System (ADS)
Klein, Thomas; Wieser, Wolfgang; André, Raphael; Pfeiffer, Tom; Eigenwillig, Christoph M.; Huber, Robert
2012-01-01
We demonstrate the acquisition of densely sampled wide-field 3D OCT datasets of the human retina in 0.3s. This performance is achieved with a multi-MHz Fourier domain mode-locked (FDML) laser source operating at 1050nm. A two-beam setup doubles the 3.35MHz laser sweep rate to 6.7MHz, which is 16x faster than results achieved with any non-FDML source used for retinal OCT. We discuss two main benefits of these high line rates: First, large datasets over an ultra-wide field of view can be acquired with a low probability of distortions. Second, even if eye movements occur, now the scan rate is high enough to directly correct even the fastest saccades without loss of information.
5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode
NASA Astrophysics Data System (ADS)
Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan
2018-05-01
We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.
Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity.
St-Jean, M Renaudat; Amanti, M I; Bismuto, A; Beck, M; Faist, J; Sirtori, C
2017-02-06
We present self-stabilization of the inter-mode separation of a quantum cascade laser (QCL) emitting at 9 μm via cascaded second order nonlinearity. This effect has been observed in lasers that have the optical cavity embedded into a microwave strip-line. The intermodal beat note spectra narrow with increasing laser output power, up to less than 100 kHz. A flat frequency response to direct modulation up to 14 GHz is reported for these microstrip QCLs. The laser inter-mode spacing can be locked to an external RF signal and tuned by more than 1 MHz from the free-running spacing. A parallel study on the same laser material in a non-microstrip line waveguide shows superior performances of the microstrip QCL in terms of the intermodal spectral locking and stability. Finally by analyzing our results with the theory of the injection locking of coupled oscillators, we deduce that the microwave power injected in the microstrip QCL is 2 orders of magnitude higher than in the reference laser.
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
NASA Astrophysics Data System (ADS)
Simpson, D. J. W.
2018-05-01
In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.
Experimental examination of frequency locking effect in acousto-optic system
NASA Astrophysics Data System (ADS)
Mantsevich, S. N.; Balakshy, V. I.
2018-04-01
The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.
Optimizing the fine lock performance of the Hubble Space Telescope fine guidance sensors
NASA Technical Reports Server (NTRS)
Eaton, David J.; Whittlesey, Richard; Abramowicz-Reed, Linda; Zarba, Robert
1993-01-01
This paper summarizes the on-orbit performance to date of the three Hubble Space Telescope Fine Guidance Sensors (FGS's) in Fine Lock mode, with respect to acquisition success rate, ability to maintain lock, and star brightness range. The process of optimizing Fine Lock performance, including the reasoning underlying the adjustment of uplink parameters, and the effects of optimization are described. The Fine Lock optimization process has combined theoretical and experimental approaches. Computer models of the FGS have improved understanding of the effects of uplink parameters and fine error averaging on the ability of the FGS to acquire stars and maintain lock. Empirical data have determined the variation of the interferometric error characteristics (so-called 's-curves') between FGS's and over each FGS field of view, identified binary stars, and quantified the systematic error in Coarse Track (the mode preceding Fine Lock). On the basis of these empirical data, the values of the uplink parameters can be selected more precisely. Since launch, optimization efforts have improved FGS Fine Lock performance, particularly acquisition, which now enjoys a nearly 100 percent success rate. More recent work has been directed towards improving FGS tolerance of two conditions that exceed its original design requirements. First, large amplitude spacecraft jitter is induced by solar panel vibrations following day/night transitions. This jitter is generally much greater than the FGS's were designed to track, and while the tracking ability of the FGS's has been shown to exceed design requirements, losses of Fine Lock after day/night transitions are frequent. Computer simulations have demonstrated a potential improvement in Fine Lock tracking of vehicle jitter near terminator crossings. Second, telescope spherical aberration degrades the interferometric error signal in Fine Lock, but use of the FGS two-thirds aperture stop restores the transfer function with a corresponding loss of throughput. This loss requires the minimum brightness of acquired stars to be about one magnitude brighter than originally planned.
NASA Astrophysics Data System (ADS)
Friedland, Lazar; Fajans, Joel; Bertsche, Will; Wurtele, Jonathan
2003-10-01
We study excitation and control of BGK modes in pure electron plasmas in a Penning trap. We apply an oscillating external potential with a negatively chirped frequency. This drive resonates with, and phase-locks to, a group of axially bouncing electrons in the trap. All initially phase-locked electrons remain phase-locked during the chirp (the autoresonance phenomenon), while some new particles are added to the resonant group, as the bucket moves through the phase space. This creates an oscillating in space and slowly evolving in energy hole in the phase space distribution of the electrons. The electron density perturbation associated with this evolving hole yields a BGK mode synchronized with the drive. The local depth of the hole in phase space, and, thus, the amplitude of the mode are controlled by the external parameter (the driving frequency). The process is reversible, so that the BGK mode can be returned to its nearly initial state, by reversing the direction of variation of the driving frequency. A kinetic theory of this excitation process is developed. The theory uses results on passage through, and capture into, bounce resonance in the system from Monte Carlo simulations of resonant bucket dynamics. We discuss the dependence of the excited BGK mode on the drive frequency chirp rate and other plasma parameters and compare these predictions with experiments.
Passive Optical Locking Techniques for Diode Lasers
NASA Astrophysics Data System (ADS)
Zhang, Quan
1995-01-01
Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.
Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition
NASA Astrophysics Data System (ADS)
Siegel, Stefan G.; Seidel, J.?Rgen; Fagley, Casey; Luchtenburg, D. M.; Cohen, Kelly; McLaughlin, Thomas
For the systematic development of feedback flow controllers, a numerical model that captures the dynamic behaviour of the flow field to be controlled is required. This poses a particular challenge for flow fields where the dynamic behaviour is nonlinear, and the governing equations cannot easily be solved in closed form. This has led to many versions of low-dimensional modelling techniques, which we extend in this work to represent better the impact of actuation on the flow. For the benchmark problem of a circular cylinder wake in the laminar regime, we introduce a novel extension to the proper orthogonal decomposition (POD) procedure that facilitates mode construction from transient data sets. We demonstrate the performance of this new decomposition by applying it to a data set from the development of the limit cycle oscillation of a circular cylinder wake simulation as well as an ensemble of transient forced simulation results. The modes obtained from this decomposition, which we refer to as the double POD (DPOD) method, correctly track the changes of the spatial modes both during the evolution of the limit cycle and when forcing is applied by transverse translation of the cylinder. The mode amplitudes, which are obtained by projecting the original data sets onto the truncated DPOD modes, can be used to construct a dynamic mathematical model of the wake that accurately predicts the wake flow dynamics within the lock-in region at low forcing amplitudes. This low-dimensional model, derived using nonlinear artificial neural network based system identification methods, is robust and accurate and can be used to simulate the dynamic behaviour of the wake flow. We demonstrate this ability not just for unforced and open-loop forced data, but also for a feedback-controlled simulation that leads to a 90% reduction in lift fluctuations. This indicates the possibility of constructing accurate dynamic low-dimensional models for feedback control by using unforced and transient forced data only.
Optical-microwave interactions in semiconductor devices
NASA Astrophysics Data System (ADS)
Figueroa, L.; Slayman, C. W.; Yen, H. W.
1981-03-01
The results of an extensive characterization of microwave-optical devices is presented. The study has concentrated in the optical injection locking of IMPATT oscillators, high-speed analog modulation of (GaAl)As injection laser, mode-locking of (GaAl)As injection laser, and high-speed optical detectors.
Environmental stability of actively mode locked fibre lasers
NASA Astrophysics Data System (ADS)
Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John
2016-10-01
Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).
NASA Astrophysics Data System (ADS)
Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.
2015-06-01
The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.
Experimental AMO physics in undergraduate optics and lasers courses
NASA Astrophysics Data System (ADS)
Hoyt, Chad
2017-04-01
This talk will describe experimental AMO research projects in undergraduate Lasers and Optics courses at Bethel University. The courses, which include a comprehensive lecture portion, are built on open-ended projects that have a novel aspect. Classes begin with four weeks of small student groups rotating between several standard laser and optics laboratory exercises. These may include, for example, alignment and characterization of a helium neon laser and measurements with a Michelson interferometer or a scanning Fabry-Pérot optical cavity. During the following seven weeks of the course, student groups (2-4 people) choose and pursue research questions in the lab. Their work culminates in a group manuscript and a twenty-minute presentation to the class. Projects in the spring, 2016 Optics course included experiments with ultracold lithium atoms in a magneto-optical trap, a prototype, portable, mode-locked erbium fiber laser, a home-built fiber laser frequency comb, double-slit imaging with single photons, and digital holographic tweezers (led by Nathan Lindquist). Projects in the spring, 2015 Lasers course included ultrafast optics with a mode-locked erbium fiber laser, quantum optics, surface plasmon lasers (led by Nathan Lindquist) and a low-cost, near-infrared spectrometer. Several of these projects are related to larger scale, funded research in the physics department. The format and experience in Lasers and Optics is representative of other upper-level courses at Bethel, including Fluid Mechanics and Computer Methods. A physics education research group from the University of Colorado evaluated the spring, 2015 Lasers and 2016 Optics courses. They focused on student experimental attitudes and measurements of student project ownership.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.
NASA Astrophysics Data System (ADS)
Krakowski, M.; Resneau, P.; Garcia, M.; Vinet, E.; Robert, Y.; Lecomte, M.; Parillaud, O.; Gerard, B.; Kundermann, S.; Torcheboeuf, N.; Boiko, D. L.
2018-02-01
We report on multi-section inverse bow-tie laser producing mode-locked pulses of 90 pJ energy and 6.5 ps width (895 fs after compression) at 1.3 GHz pulse repetition frequency (PRF) and consuming 2.9 W of electric power. The laser operates in an 80 mm long external cavity. By translation of the output coupling mirror, the PRF was continuously tuned over 37 MHz range without additional adjustments. Active stabilization with a phase lock loop actuating on the driving current has allowed us to reach the PRF relative stability at a 2·10-10 level on 10 s intervals, as required by the European Space Agency (ESA) for inter-satellite long distance measurements.
Multi-Frequency Recirculating Planar Magnetrons
NASA Astrophysics Data System (ADS)
Greening, Geoffrey Bruce
The cavity magnetron is generally accepted as the standard for compactness and high microwave power with applications in industry, science, and defense, with the latter including counter-electronics. In this application, magnetrons are limited because they are narrowband devices. To expand the range of frequencies that can be produced using a single magnetron, a novel multi-frequency variant of the Recirculating Planar Magnetron (RPM) was designed, fabricated, and experimentally demonstrated. This multi-frequency RPM (MFRPM) was the first high-power magnetron capable of generating multiple microwave frequencies simultaneously and demonstrated the first known instance of harmonic frequency-locking in a magnetron. The MFRPM design consisted of two planar cavity arrays coupled by cylindrical electron recirculation bends. The two arrays formed a 1 GHz L-Band Oscillator (LBO) and a 2 GHz S-Band Oscillator (SBO). Experiments were conducted using a 0.1-0.3 T axial magnetic field produced using a pulsed pair of Helmholtz coils and a -300 kV, 200-400 ns, 1-5 kA pulse applied to a Mode-Control Cathode (MCC) using the MELBA-C Marx generator. Six experimental configurations were tested using three anodes (the isolated LBO, the isolated SBO, and the MFRPM), two microwave loads (a standard, matched load, and a waveguide taper load used to characterize the LBO frequency harmonics), and two axial magnetic fields (uniform and nonuniform). Using these configurations, an in-depth characterization of MFRPM operation determined 1) the identity of the observed electromagnetic modes, and the degree of mode competition, 2) the frequencies, powers, and other electrical characteristics associated with those modes and the LBO frequency harmonics, 3) the magnetic fields corresponding to optimal operation, 4) the operational impact of a nonuniform axial magnetic field, and 5) the origin and performance characteristics of a novel harmonic frequency-locked state observed in the MFRPM. The uniform magnetic field consistently yielded better performance relative to the nonuniform magnetic field. In the harmonic frequency-locked state at 0.17 T with the uniform magnetic field, the MFRPM LBO produced 32 +/- 3 MW at 0.984 +/- 0.001 GHz, and the SBO produced 13 +/- 2 MW at 1.970 +/- 0.002 GHz. Relative to the other operating states, the locked state was remarkably consistent. In B = 0.16-0.17 T, the phase drift during a typical locked shot was 8 +/- 4°, and the lock duration was 14 +/- 3 ns. The average phase difference between the oscillators was 93+/-17°. The locking appeared to be Adler-like, where the LBO was the driving oscillator and the SBO was the driven oscillator. Changes in the relative phase difference between the oscillators correlated with changes in the magnetic field, suggesting the coupling occurred through the second harmonic content of the LBO-modulated electron beam as it propagated from the LBO to the SBO. A comparison of the experimental results for this locked state with a new theory for harmonic locking was inconclusive. Using the uniform magnetic field at 0.17 T, the LBO second harmonic power was 178 +/- 60 kW at 1.962 +/- 0.013 GHz. The LBO fourth harmonic power was 5 +/- 1 kW at 3.916 +/- 0.018 GHz. In general, LBO harmonic powers increased when the fundamental circuit modes were operating at reduced power with considerable mode competition. Harmonic powers were also as much as 150% higher using the nonuniform magnetic field relative to the uniform magnetic field.
Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers
NASA Astrophysics Data System (ADS)
Westberg, J.; Sterczewski, L. A.; Wysocki, G.
2017-04-01
Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.
Using phase locking for improving frequency stability and tunability of THz-band gyrotrons
NASA Astrophysics Data System (ADS)
Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.
2018-04-01
Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking.
Columbo, L L; Barbieri, S; Sirtori, C; Brambilla, M
2018-02-05
The dynamics of a multimode quantum cascade laser, are studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiation-medium interaction such as an asymmetric frequency dependent gain and refractive index as well as the phase-amplitude coupling provided by the linewidth enhancement factor. By considering its role and that of the free spectral range, we find the conditions in which the traveling wave emitted by the laser at the threshold can be destabilized by adjacent modes, thus leading the laser emission towards chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help in the understanding of the conditions for the generation of ultrashort pulses and comb operation in mid-IR and THz spectral regions.
How tides get dissipated in Saturn? A question probably answerable by Cassni
NASA Astrophysics Data System (ADS)
Luan, Jing
2017-06-01
Tidal dissipation inside a giant planet is important in understanding the orbital evolutions of its natural satellites and perhaps some of the extrasolar giant planets. The tidal dissipation is conventionally parameterized by the tidal quality factor, Q. The corresponding tidal torque declines rapidly with distance adopting constant Q. However, the current fast migration rates of some Saturnian satellites reported by Lainey et al. (2015) conflict this conventional conceptual belief. Alternatively, resonance lock between a satellite and an internal oscillation mode or wave of Saturn, proposed by Fuller et al. (2016), could naturally match the observational migration rates. However, the question still remains to be answered what type of mode or wave is locked with each satellite. There are two candidates for resonance lock, one is gravity mode, and the other is inertial wave attractor. They generate very different gravity acceleration anomaly near the surface of Saturn, which may be distinguishable by the data to be collected by Cassini during its proximal orbits between April and September, 2017. Indicative information about the interior of Saturn may be extracted since the existence of both gravity mode and inertial wave attractor depends on the internal structure of Saturn.
Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.
Anctil, G; McCarthy, N; Piché, M
2000-12-20
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis
NASA Astrophysics Data System (ADS)
Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel
2000-12-01
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
A novel approach for clock recovery without pattern effect from degraded signal
NASA Astrophysics Data System (ADS)
Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi
2003-04-01
A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.
Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey
2012-11-19
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.
Stability of the mode-locking regime in tapered quantum-dot lasers
NASA Astrophysics Data System (ADS)
Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.
2018-02-01
We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.
Mode locking with a compensated space--time astigmatism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christov, I.P.; Stoev, V.D.; Murnane, M.M.
1995-10-15
We present what is to our knowledge the first full spatial plus temporal model of a self-mode-locked titanium-doped sapphire laser. The self-consistent evolution of the pulse toward steady state imposes strong space--time focusing in the crystal, where both the space and time foci are located. This combined focusing significantly improves the discrimination properties of the nonlinear resonator for shorter pulses and reduces the transient stage of pulse formation. Our theoretical results are in very good agreement with experiment. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.
Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry
2016-09-19
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Passively mode-locked tunable fiber laser in a soliton regime
NASA Astrophysics Data System (ADS)
Endo, Michiyuki; Ghosh, Gorachand
1999-04-01
A stable, passively mode-locked erbium-doped fiber resonator is developed to generate tunable optical pulses with durations of 270 - 325 fs in the soliton regime. The lasing wavelength is tuned continuously over a wavelength range of 60 nm by rotating a bulk band-pass filter inserted in the resonator with a repetition frequency of 45.4 MHz. We reduced the timing jitter by minimizing the intensity fluctuation of the pump source using a feedback loop and by controlling the influence of airflow and temperature fluctuation of the resonator in a sealed box.
Actively mode-locked Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers
NASA Astrophysics Data System (ADS)
Gatti, D.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.
2007-01-01
We report on the generation of mode-locking pulse trains with high average output powers from diode-pumped Tm-Ho:LiYF4 and Tm-Ho:BaY2F8 lasers emitting at around 2 μm. The highest output power of 365 mW was obtained with the Tm-Ho:YLF4 laser, whereas the shortest pulse duration of 120 ps and the widest tunability range of 59 nm was achieved with the Tm-Ho:BaY2F8 laser.
NASA Astrophysics Data System (ADS)
Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.
1992-09-01
A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.
Remote distribution of a mode-locked pulse train with sub 40-as jitter
NASA Astrophysics Data System (ADS)
Chen, Yi-Fei; Jiang, Jie; Jones, David J.
2006-12-01
Remote transfer of an ultralow-jitter microwave frequency reference signal is demonstrated using the pulse trains generated by a mode-locked fiber laser. The timing jitter in a ~ 30-m fiber link is reduced to 38 attoseconds (as) integrated over a bandwidth from 1 Hz to 10 MHz via active stabilization which represents a significant improvement over previously reported jitter performance. Our approach uses an all-optical generation of the synchronization error signal and an accompanying out-of-loop optical detection technique to verify the jitter performance.
Physics Results from the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Kaye, S. M.
2000-10-01
The National Spherical Torus Experiment (NSTX) will produce plasmas with R/a=0.85/0.68 m 1.25, I_p= 1 MA, BT <=0.6 T, κ<=2.2, δ<=0.5, with 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-axial Helicity Injection (CHI) for non-inductive startup to establish the physics principles of low aspect ratio. Outboard passive conducting plates aid vertical stability and suppression of low-n modes. During the initial set of physics experiments, studies of poloidal flux consumption indicated an optimal current ramp rate of 5 MA/sec, with higher ramp rates limited by m=2 oscillations and Internal Reconnection Events possibly related to impurity accumulation and double tearing modes. Flux consumption optimization and real-time plasma control led to the achievement of ohmic discharges with 1 MA plasma current and stored energies up to 48 kJ and βT 9%. Inboard limited and single and double-null diverted plasmas over a wide range of κ and δ were produced. The density limit, so far, is consistent with the Hugill limit, which is about 60% of the Greenwald limit, and it was characterized by growing and locking m=1 oscillations, followed by a series of Reconnection Events. The q-limit was manifest as growing and locking 2/1 perturbations leading to severe kinking of the plasma surface and subsequent discharge termination as q_cyl decreased below 2. Initial observations of edge turbulence indicated filamentary structures with λ_perp 10 cm. Up to 2 MW of HHFW power was coupled to the plasma, with increases in stored energy observed for waves with k_parallel=14 m-1, but not at higher phase velocity. CHI experiments on NSTX produced up to 130 kA of toroidal current for up to 100 msec. NBI heating is planned for late September 2000. This work has been supported at PPPL by U.S. DOE Contract # DE-AC02-76CH03073.
All-fiber polarization locked vector soliton laser using carbon nanotubes.
Mou, C; Sergeyev, S; Rozhin, A; Turistyn, S
2011-10-01
We report an all-fiber mode-locked erbium-doped fiber laser (EDFL) employing carbon nanotube (CNT) polymer composite film. By using only standard telecom grade components, without any complex polarization control elements in the laser cavity, we have demonstrated polarization locked vector solitons generation with duration of ~583 fs, average power of ~3 mW (pulse energy of 118 pJ) at the repetition rate of ~25.7 MHz. © 2011 Optical Society of America
On the Role of Resonances in Nonradial Pulsators
NASA Technical Reports Server (NTRS)
Buchler, J. R.; Goupil, M. J.; Hansen, C. J.
1997-01-01
Resonances or near resonances are ubiquitous among the excited nonradial pulsation modes of variable stars and they must play an important role in determining their pulsational behavior. Here in a first step at nonlinear asteroseismology, we explore some of the consequences of resonances by means of the amplitude equation formalism. We show how parity and angular momentum constraints can be used to eliminate many of the possible nonlinear resonant couplings between modes (and multiplets of modes), and how the amplitude equations can thus be simplified. Even when we may not be able, nor wish, to make an ab initio computation of the values of the coupling coefficients, it is still possible to obtain constraints on the nature of the excited modes if a resonance between observed frequencies can be identified. Resonances can cause nonlinear frequency locking of modes. This means that the observed frequencies appear in exact resonance even though the linear frequencies are only approximately in resonance. The nonlinear frequency lock, when it occurs, it does so over a range of departures from linear resonance, and it is accompanied by constant pulsation amplitudes. The locked, nonlinear frequencies can differ noticeably from their nonresonant counterparts which are usually used in seismology. This is particularly true for multiplets of modes split by rotation. Beyond the regime of the frequency lock, amplitude and frequency modulations can appear in the pulsations. Far from the resonance condition one recovers the regime of steady pulsations with nonresonant frequencies for which the seismological studies, as they are presently carried out, are justified (provided furthermore, of course, that nonlinear frequency shifts are negligible). Success in identifying a resonance in an observed power spectrum depends on the quality of the data. While keeping this limitation in mind, ew discuss the possible existence of peculiar resonances the pulsations specific variable white dwarfs and delta Scuti stars.
Design and Implementation of an RTK-Based Vector Phase Locked Loop
Shafaati, Ahmad; Lin, Tao; Broumandan, Ali; Lachapelle, Gérard
2018-01-01
This paper introduces a novel double-differential vector phase-locked loop (DD-VPLL) for Global Navigation Satellite Systems (GNSS) that leverages carrier phase position solutions as well as base station measurements in the estimation of rover tracking loop parameters. The use of double differencing alleviates the need for estimating receiver clock dynamics and atmospheric delays; therefore, the navigation filter consists of the baseline dynamic states only. It is shown that using vector processing for carrier phase tracking leads to a significant enhancement in the receiver sensitivity compared to using the conventional scalar-based tracking loop (STL) and vector frequency locked loop (VFLL). The sensitivity improvement of 8 to 10 dB compared to STL, and 7 to 8 dB compared to VFLL, is obtained based on the test cases reported in the paper. Also, an increased probability of ambiguity resolution in the proposed method results in better availability for real time kinematic (RTK) applications. PMID:29533994
Yu, Tae Jun; Hong, Kyung-Han; Choi, Hyun-Gyug; Sung, Jae Hee; Choi, Il Woo; Ko, Do-Kyeong; Lee, Jongmin; Kim, Junwon; Kim, Dong Eon; Nam, Chang Hee
2007-06-25
We demonstrate a long-term operation with reduced phase noise in the carrier-envelope-phase (CEP) stabilization process by employing a double feedback loop and an improved signal detection in the direct locking technique [Opt. Express 13, 2969 (2005)]. A homodyne balanced detection method is employed for efficiently suppressing the dc noise in the f-2f beat signal, which is converted into the CEP noise in the direct locking loop working at around zero carrier-envelope offset frequency (f(ceo)). In order to enhance the long-term stability, we have used the double feedback scheme that modulates both the oscillator pump power for a fast control and the intracavity-prism insertion depth for a slow and high-dynamic-range control. As a result, the in-loop phase jitter is reduced from 50 mrad of the previous result to 29 mrad, corresponding to 13 as in time scale, and the long-term stable operation is achieved for more than 12 hours.
Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.
1983-01-01
An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.
Programmable dispersion on a photonic integrated circuit for classical and quantum applications.
Notaros, Jelena; Mower, Jacob; Heuck, Mikkel; Lupo, Cosmo; Harris, Nicholas C; Steinbrecher, Gregory R; Bunandar, Darius; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk
2017-09-04
We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.
Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D
NASA Astrophysics Data System (ADS)
La Haye, R. J.; Paz-Soldan, C.; Strait, E. J.
2015-02-01
DIII-D experiments show that fully penetrated resonant n = 1 error field locked modes in ohmic plasmas with safety factor q95 ≳ 3 grow to similar large disruptive size, independent of resonant error field correction. Relatively small resonant (m/n = 2/1) static error fields are shielded in ohmic plasmas by the natural rotation at the electron diamagnetic drift frequency. However, the drag from error fields can lower rotation such that a bifurcation results, from nearly complete shielding to full penetration, i.e., to a driven locked mode island that can induce disruption. Error field correction (EFC) is performed on DIII-D (in ITER relevant shape and safety factor q95 ≳ 3) with either the n = 1 C-coil (no handedness) or the n = 1 I-coil (with ‘dominantly’ resonant field pitch). Despite EFC, which allows significantly lower plasma density (a ‘figure of merit’) before penetration occurs, the resulting saturated islands have similar large size; they differ only in the phase of the locked mode after typically being pulled (by up to 30° toroidally) in the electron diamagnetic drift direction as they grow to saturation. Island amplification and phase shift are explained by a second change-of-state in which the classical tearing index changes from stable to marginal by the presence of the island, which changes the current density profile. The eventual island size is thus governed by the inherent stability and saturation mechanism rather than the driving error field.
Knee arthrodesis using a short locked intramedullary nail. A new technique.
Cheng, S L; Gross, A E
1995-01-01
This article reports on the use of a new intramedullary nail designed specifically for fixation of knee fusions. The nail is a short locked stainless steel nail that is inserted through a single anterior knee incision and uses an outrigger targeting rod to guide the insertion of the locking screws. The successful use of this technique is illustrated in two cases. The advantages of this nail compared with previously reported techniques of fixation for knee fusions are that the short locked nail avoids the second incision required for the insertion of long knee fusion nails, the bulkiness of the double plating technique in the relatively subcutaneous anterior knee area, and the difficulties inherent with the prolonged use of pins for external fixation.
The Properties of Locke's Common-Wealth of Learning
ERIC Educational Resources Information Center
Willinksy, John
2006-01-01
This article reads the educational implications of "intellectual property" that are found in the double meaning of "property", as the word refers to an economic right and a quality of being. It briefly visits the seventeenth-century origins of this double concept of intellectual property (IP), with particular attention paid to…
Different polarization dynamic states in a vector Yb-doped fiber laser.
Li, Xingliang; Zhang, Shumin; Han, Huiyun; Han, Mengmeng; Zhang, Huaxing; Zhao, Luming; Wen, Fang; Yang, Zhenjun
2015-04-20
Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.
An all-digital phase-locked loop demodulator based on FPGA
NASA Astrophysics Data System (ADS)
Gong, X. F.; Cui, Z. D.
2017-09-01
This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.
Robust interferometric frequency lock between cw lasers and optical frequency combs.
Benkler, Erik; Rohde, Felix; Telle, Harald R
2013-02-15
A transfer interferometer is presented which establishes a versatile and robust optical frequency locking link between a tunable single frequency laser and an optical frequency comb. It enables agile and continuous tuning of the frequency difference between both lasers while fluctuations and drift effects of the transfer interferometer itself are widely eliminated via common mode rejection. Experimental results will be presented for a tunable extended-cavity 1.5 μm laser diode locked to an Er-fiber based frequency comb.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
Phase-locked bifrequency Raman lasing in a double-Λ system
NASA Astrophysics Data System (ADS)
Alaeian, Hadiseh; Shahriar, M. S.
2018-05-01
We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.
WS2 mode-locked ultrafast fiber laser
Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin
2015-01-01
Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729
Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon
2014-11-17
Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.
NASA Astrophysics Data System (ADS)
Viskontas, K.; Rusteika, N.
2016-09-01
Semiconductor saturable absorber mirror (SESAM) is the key component for many passively mode-locked ultrafast laser sources. Particular set of nonlinear parameters is required to achieve self-starting mode-locking or avoid undesirable q-switch mode-locking for the ultra-short pulse laser. In this paper, we introduce a novel all-fiber wavelength-tunable picosecond pulse duration setup for the measurement of nonlinear properties of saturable absorber mirrors at around 1 μm center wavelength. The main advantage of an all-fiber configuration is the simplicity of measuring the fiber-integrated or fiber-pigtailed saturable absorbers. A tunable picosecond fiber laser enables to investigate the nonlinear parameters at different wavelengths in ultrafast regime. To verify the capability of the setup, nonlinear parameters for different SESAMs with low and high modulation depth were measured. In the operating wavelength range 1020-1074 nm, <1% absolute nonlinear reflectivity accuracy was demonstrated. Achieved fluence range was from 100 nJ/cm2 to 2 mJ/cm2 with corresponding intensity from 10 kW/cm2 to 300 MW/cm2.
Effect of component design in retrieved bipolar hip hemiarthroplasty systems.
Hess, Matthew D; Baker, Erin A; Salisbury, Meagan R; Kaplan, Lige M; Greene, Ryan T; Greene, Perry W
2013-09-01
Primary articulation of bipolar hemiarthroplasty systems is at the femoral head-liner interface. The purpose of this study was to compare observed damage modes on 36 retrieved bipolar systems with implant, demographic, intraoperative, and radiographic data to elucidate the effects of component design, specifically locking mechanism, on clinical performance. Retrieved bipolar hip hemiarthroplasty systems of 3 different design types were obtained, disassembled, and evaluated macro- and microscopically for varying modes of wear, including abrasion, burnishing, embedding, scratching, and pitting. Clinical record review and radiographic analysis were performed by a senior orthopedic surgery resident. Average bipolar hip hemiarthroplasty system term of service was 46 months (range, 0.27-187 months). All devices contained wear debris captured within the articulating space between the femoral head and liner. In 31% of patients without infection, lucency was observed on immediate prerevision radiographs. The system with a leaf locking mechanism showed significantly increased radiographically observed osteolysis (P=.03) compared with a system with a stopper ring locking mechanism. In addition, implant design and observed damage modes, including pitting and third-body particle embedding, were significantly associated with radiographically observed osteolysis. Copyright 2013, SLACK Incorporated.
Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Cha, Yong-Ho; Jeong, Do-Young; Yeom, Dong-Il
2014-09-22
We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking
NASA Astrophysics Data System (ADS)
Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.
2018-02-01
The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions
980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier
NASA Astrophysics Data System (ADS)
Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju
2014-12-01
We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.