Layout decomposition of self-aligned double patterning for 2D random logic patterning
NASA Astrophysics Data System (ADS)
Ban, Yongchan; Miloslavsky, Alex; Lucas, Kevin; Choi, Soo-Han; Park, Chul-Hong; Pan, David Z.
2011-04-01
Self-aligned double pattering (SADP) has been adapted as a promising solution for sub-30nm technology nodes due to its lower overlay problem and better process tolerance. SADP is in production use for 1D dense patterns with good pitch control such as NAND Flash memory applications, but it is still challenging to apply SADP to 2D random logic patterns. The favored type of SADP for complex logic interconnects is a two mask approach using a core mask and a trim mask. In this paper, we first describe layout decomposition methods of spacer-type double patterning lithography, then report a type of SADP compliant layouts, and finally report SADP applications on Samsung 22nm SRAM layout. For SADP decomposition, we propose several SADP-aware layout coloring algorithms and a method of generating lithography-friendly core mask patterns. Experimental results on 22nm node designs show that our proposed layout decomposition for SADP effectively decomposes any given layouts.
NASA Astrophysics Data System (ADS)
Raley, Angélique; Lee, Joe; Smith, Jeffrey T.; Sun, Xinghua; Farrell, Richard A.; Shearer, Jeffrey; Xu, Yongan; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton; Arnold, John; Felix, Nelson
2018-04-01
We report a sub-30nm pitch self-aligned double patterning (SADP) integration scheme with EUV lithography coupled with self-aligned block technology (SAB) targeting the back end of line (BEOL) metal line patterning applications for logic nodes beyond 5nm. The integration demonstration is a validation of the scalability of a previously reported flow, which used 193nm immersion SADP targeting a 40nm pitch with the same material sets (Si3N4 mandrel, SiO2 spacer, Spin on carbon, spin on glass). The multi-color integration approach is successfully demonstrated and provides a valuable method to address overlay concerns and more generally edge placement error (EPE) as a whole for advanced process nodes. Unbiased LER/LWR analysis comparison between EUV SADP and 193nm immersion SADP shows that both integrations follow the same trend throughout the process steps. While EUV SADP shows increased LER after mandrel pull, metal hardmask open and dielectric etch compared to 193nm immersion SADP, the final process performance is matched in terms of LWR (1.08nm 3 sigma unbiased) and is only 6% higher than 193nm immersion SADP for average unbiased LER. Using EUV SADP enables almost doubling the line density while keeping most of the remaining processes and films unchanged, and provides a compelling alternative to other multipatterning integrations, which present their own sets of challenges.
NASA Astrophysics Data System (ADS)
Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram
2017-03-01
A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.
A new way of measuring wiggling pattern in SADP for 3D NAND technology
NASA Astrophysics Data System (ADS)
Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki
2018-03-01
A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.
Redundant via insertion in self-aligned double patterning
NASA Astrophysics Data System (ADS)
Song, Youngsoo; Jung, Jinwook; Shin, Youngsoo
2017-03-01
Redundant via (RV) insertion is employed to enhance via manufacturability, and has been extensively studied. Self-aligned double patterning (SADP) process, brings a new challenge to RV insertion since newly created cut for each RV insertion has to be taken care of. Specifically, when a cut for RV, which we simply call RV-cut, is formed, cut conflict may occur with nearby line-end cuts, which results in a decrease in RV candidates. We introduce cut merging to reduce the number of cut conflicts; merged cuts are processed with stitch using litho-etch-litho-etch (LELE) multi-patterning method. In this paper, we propose a new RV insertion method with cut merging in SADP for the first time. In our experiments, a simple RV insertion yields 55.3% vias to receives RVs; our proposed method that considers cut merging increases that number to 69.6% on average of test circuits.
In-die mask registration measurement on 28nm-node and beyond
NASA Astrophysics Data System (ADS)
Chen, Shen Hung; Cheng, Yung Feng; Chen, Ming Jui
2013-09-01
As semiconductor go to smaller node, the critical dimension (CD) of process become more and more small. For lithography, RET (Resolution Enhancement Technology) applications can be used for wafer printing of smaller CD/pitch on 28nm node and beyond. SMO (Source Mask Optimization), DPT (Double Patterning Technology) and SADP (Self-Align Double Patterning) can provide lower k1 value for lithography. In another way, image placement error and overlay control also become more and more important for smaller chip size (advanced node). Mask registration (image placement error) and mask overlay are important factors to affect wafer overlay control/performance especially for DPT or SADP. In traditional method, the designed registration marks (cross type, square type) with larger CD were put into scribe-line of mask frame for registration and overlay measurement. However, these patterns are far way from real patterns. It does not show the registration of real pattern directly and is not a convincing method. In this study, the in-die (in-chip) registration measurement is introduced. We extract the dummy patterns that are close to main pattern from post-OPC (Optical Proximity Correction) gds by our desired rule and choose the patterns that distribute over whole mask uniformly. The convergence test shows 100 points measurement has a reliable result.
A novel methodology for litho-to-etch pattern fidelity correction for SADP process
NASA Astrophysics Data System (ADS)
Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng
2017-03-01
For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.
Advanced hole patterning technology using soft spacer materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Jong Keun; Hustad, Phillip D.; Aqad, Emad; Valeri, David; Wagner, Mike D.; Li, Mingqi
2017-03-01
A continuing goal in integrated circuit industry is to increase density of features within patterned masks. One pathway being used by the device manufacturers for patterning beyond the 80nm pitch limitation of 193 immersion lithography is the self-aligned spacer double patterning (SADP). Two orthogonal line space patterns with subsequent SADP can be used for contact holes multiplication. However, a combination of two immersion exposures, two spacer deposition processes, and two etch processes to reach the desired dimensions makes this process expensive and complicated. One alternative technique for contact hole multiplication is the use of an array of pillar patterns. Pillars, imaged with 193 immersion photolithography, can be uniformly deposited with spacer materials until a hole is formed in the center of 4 pillars. Selective removal of the pillar core gives a reversal of phases, a contact hole where there was once a pillar. However, the highly conformal nature of conventional spacer materials causes a problem with this application. The new holes, formed between 4 pillars, by this method have a tendency to be imperfect and not circular. To improve the contact hole circularity, this paper presents the use of both conventional spacer material and soft spacer materials. Application of soft spacer materials can be achieved by an existing coating track without additional cost burden to the device manufacturers.
Technological innovations for a sustainable business model in the semiconductor industry
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2014-09-01
Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.
Expanding the printable design space for lithography processes utilizing a cut mask
NASA Astrophysics Data System (ADS)
Wandell, Jerome; Salama, Mohamed; Wilkinson, William; Curtice, Mark; Feng, Jui-Hsuan; Gao, Shao Wen; Asthana, Abhishek
2016-03-01
The utilization of a cut-mask in semiconductor patterning processes has been in practice for logic devices since the inception of 32nm-node devices, notably with unidirectional gate level printing. However, the microprocessor applications where cut-mask patterning methods are used are expanding as Self-Aligned Double Patterning (SADP) processes become mainstream for 22/14nm fin diffusion, and sub-14nm metal levels. One common weakness for these types of lithography processes is that the initial pattern requiring the follow-up cut-mask typically uses an extreme off-axis imaging source such as dipole to enhance the resolution and line-width roughness (LWR) for critical dense patterns. This source condition suffers from poor process margin in the semi-dense (forbidden pitch) realm and wrong-way directional design spaces. Common pattern failures in these limited design regions include bridging and extra-printing defects that are difficult to resolve with traditional mask improvement means. This forces the device maker to limit the allowable geometries that a designer may use on a device layer. This paper will demonstrate methods to expand the usable design space on dipole-like processes such as unidirectional gate and SADP processes by utilizing the follow-up cut mask to improve the process window. Traditional mask enhancement means for improving the process window in this design realm will be compared to this new cut-mask approach. The unique advantages and disadvantages of the cut-mask solution will be discussed in contrast to those customary methods.
Self-aligned blocking integration demonstration for critical sub-40nm pitch Mx level patterning
NASA Astrophysics Data System (ADS)
Raley, Angélique; Mohanty, Nihar; Sun, Xinghua; Farrell, Richard A.; Smith, Jeffrey T.; Ko, Akiteru; Metz, Andrew W.; Biolsi, Peter; Devilliers, Anton
2017-04-01
Multipatterning has enabled continued scaling of chip technology at the 28nm node and beyond. Selfaligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) as well as Litho- Etch/Litho-Etch (LELE) iterations are widely used in the semiconductor industry to enable patterning at sub 193 immersion lithography resolutions for layers such as FIN, Gate and critical Metal lines. Multipatterning requires the use of multiple masks which is costly and increases process complexity as well as edge placement error variation driven mostly by overlay. To mitigate the strict overlay requirements for advanced technology nodes (7nm and below), a self-aligned blocking integration is desirable. This integration trades off the overlay requirement for an etch selectivity requirement and enables the cut mask overlay tolerance to be relaxed from half pitch to three times half pitch. Selfalignement has become the latest trend to enable scaling and self-aligned integrations are being pursued and investigated for various critical layers such as contact, via, metal patterning. In this paper we propose and demonstrate a low cost flexible self-aligned blocking strategy for critical metal layer patterning for 7nm and beyond from mask assembly to low -K dielectric etch. The integration is based on a 40nm pitch SADP flow with 2 cut masks compatible with either cut or block integration and employs dielectric films widely used in the back end of the line. As a consequence this approach is compatible with traditional etch, deposition and cleans tools that are optimized for dielectric etches. We will review the critical steps and selectivities required to enable this integration along with bench-marking of each integration option (cut vs. block).
Ferrando, Maria Laura; Willemse, Niels; Zaccaria, Edoardo; Pannekoek, Yvonne; van der Ende, Arie; Schultsz, Constance
2017-01-01
Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT) is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP) to host-pathogen interaction at GIT level. SadP expression in presence of Intestinal Epithelial Cells (IEC) was compared with expression of other virulence factors by measuring transcript levels using quantitative Real Time PCR (qRT-PCR). SadP variants were identified by phylogenetic analysis of complete DNA sequences. The interaction of SadP knockout and complementation mutants with IEC was tested in vitro. Expression of sadP was significantly increased in presence of IEC. Sequence analysis of 116 invasive strains revealed five SadP sequence variants, correlating with genotype. SadP1, present in zoonotic isolates of clonal complex 1, contributed to binding to both human and porcine IEC and translocation across human IEC. Antibodies against the globotriaosylceramide Gb3/CD77 receptor significantly inhibited adhesion to human IEC. SadP is involved in the host-pathogen interaction in the GIT. Differences between SadP variants may determine different affinities to the Gb3/CD77 host-receptor, contributing to variation in adhesion capacity to host IEC and thus to S. suis zoonotic potential.
Quantifying electrical impacts on redundant wire insertion in 7nm unidirectional designs
NASA Astrophysics Data System (ADS)
Mohyeldin, Ahmed; Schroeder, Uwe Paul; Srinivasan, Ramya; Narisetty, Haritez; Malik, Shobhit; Madhavan, Sriram
2017-04-01
In nano-meter scale Integrated Circuits, via fails due to random defects is a well-known yield detractor, and via redundancy insertion is a common method to help enhance semiconductors yield. For the case of Self Aligned Double Patterning (SADP), which might require unidirectional design layers as in the case of some advanced technology nodes, the conventional methods of inserting redundant vias don't work any longer. This is because adding redundant vias conventionally requires adding metal shapes in the non-preferred direction, which will violate the SADP design constraints in that case. Therefore, such metal layers fabricated using unidirectional SADP require an alternative method for providing the needed redundancy. This paper proposes a post-layout Design for Manufacturability (DFM) redundancy insertion method tailored for the design requirements introduced by unidirectional metal layers. The proposed method adds redundant wires in the preferred direction - after searching for nearby vacant routing tracks - in order to provide redundant paths for electrical signals. This method opportunistically adds robustness against failures due to silicon defects without impacting area or incurring new design rule violations. Implementation details of this redundancy insertion method will be explained in this paper. One known challenge with similar DFM layout fixing methods is the possible introduction of undesired electrical impact, causing other unintentional failures in design functionality. In this paper, a study is presented to quantify the electrical impacts of such redundancy insertion scheme and to examine if that electrical impact can be tolerated. The paper will show results to evaluate DFM insertion rates and corresponding electrical impact for a given design utilization and maximum inserted wire length. Parasitic extraction and static timing analysis results will be presented. A typical digital design implemented using GLOBALFOUNDRIES 7nm technology is used for demonstration. The provided results can help evaluate such extensive DFM insertion method from an electrical standpoint. Furthermore, the results could provide guidance on how to implement the proposed method of adding electrical redundancy such that intolerable electrical impacts could be avoided.
Metal stack optimization for low-power and high-density for N7-N5
NASA Astrophysics Data System (ADS)
Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.
2016-03-01
One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.
Kangethe, Anne; Franic, Duska M; Huang, Ming-Yi; Huston, Sally; Williams, Chakita
2012-01-01
There is no consensus on the preferred approach to assess journal quality. Procedures previously used include journal acceptance or rejection policies, impact factors, number of subscribers, citation counts, whether the articles were refereed or not, and journals cited in books within the discipline. This study built on the work of previous authors by using a novel approach to assess journal quality in social and administrative pharmacy (SAdP). To determine U.S. SAdP faculty perceptions of prestigious journals for their research, SAdP faculty perceptions of prestigious journals by their promotion and tenure (P&T) committees, and current research trends in SAdP. A census of U.S. colleges and schools of pharmacy was conducted using an e-mailed survey and an open-ended approach requiring respondents to list their preferred journals. Seventy-nine SAdP faculty reported that the 5 most prestigious journals were JAMA, New England Journal of Medicine, Health Affairs, Health Services Research, and Medical Care. These journals were selected because respondents wished to seek broad readership. Results of this study can be used as a guide by U.S. SAdP faculty and P&T committees to assess the quality of publications by pharmacy administration faculty with the caveat being that pharmacy versus nonpharmacy journals will be chosen based on the fit of the article with the audience. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Systems Autonomy Demonstration Program - A step toward Space Station automation
NASA Technical Reports Server (NTRS)
Starks, S. A.; Rundus, D.; Erickson, W. K.; Healey, K. J.
1987-01-01
This paper addresses a multiyear NASA program, the Systems Autonomy Demonstration Program (SADP), whose main objectives include the development, integration, and demonstration of automation technology in Space Station flight and ground support systems. The role of automation in the Space Station is reviewed, and the main players in SADP and their roles are described. The core research and technology being promoted by SADP are discussed, and a planned 1988 milestone demonstration of the automated monitoring, operation, and control of a complete mission operations subsystem is addressed.
The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1988-01-01
The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.
Study of flowability effect on self-planarization performance at SOC materials
NASA Astrophysics Data System (ADS)
Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak
2017-03-01
For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.
Pattern optimizing verification of self-align quadruple patterning
NASA Astrophysics Data System (ADS)
Yamato, Masatoshi; Yamada, Kazuki; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shouhei; Koike, Kyohei; Yaegashi, Hidetami
2017-03-01
Lithographic scaling continues to advance by extending the life of 193nm immersion technology, and spacer-type multi-patterning is undeniably the driving force behind this trend. Multi-patterning techniques such as self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) have come to be used in memory devices, and they have also been adopted in logic devices to create constituent patterns in the formation of 1D layout designs. Multi-patterning has consequently become an indispensible technology in the fabrication of all advanced devices. In general, items that must be managed when using multi-patterning include critical dimension uniformity (CDU), line edge roughness (LER), and line width roughness (LWR). Recently, moreover, there has been increasing focus on judging and managing pattern resolution performance from a more detailed perspective and on making a right/wrong judgment from the perspective of edge placement error (EPE). To begin with, pattern resolution performance in spacer-type multi-patterning is affected by the process accuracy of the core (mandrel) pattern. Improving the controllability of CD and LER of the mandrel is most important, and to reduce LER, an appropriate smoothing technique should be carefully selected. In addition, the atomic layer deposition (ALD) technique is generally used to meet the need for high accuracy in forming the spacer film. Advances in scaling are accompanied by stricter requirements in the controllability of fine processing. In this paper, we first describe our efforts in improving controllability by selecting the most appropriate materials for the mandrel pattern and spacer film. Then, based on the materials selected, we present experimental results on a technique for improving etching selectivity.
Impact of materials engineering on edge placement error (Conference Presentation)
NASA Astrophysics Data System (ADS)
Freed, Regina; Mitra, Uday; Zhang, Ying
2017-04-01
Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.
Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons
NASA Technical Reports Server (NTRS)
Zheng, F.; Gallagher, J. P.
1992-01-01
We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.
Exploration of BEOL line-space patterning options at 12 nm half-pitch and below
NASA Astrophysics Data System (ADS)
Decoster, S.; Lazzarino, F.; Petersen Barbosa Lima, L.; Li, W.; Versluijs, J.; Halder, S.; Mallik, A.; Murdoch, G.
2018-03-01
While the semiconductor industry is almost ready for high-volume manufacturing of the 7 nm technology node, research centers are defining and troubleshooting the patterning options for the 5 nm technology node (N5) and below. The target dimension for imec's N5 BEOL applications is 20-24 nm Metal Pitch (MP), which requires Self-Aligned multiple (Double/Quadruple/Octuple) Patterning approaches (SAxP) in combination with EUV or immersion lithography at 193 nm. There are numerous technical challenges to enable gratings at the hard mask level such as good uniformity across wafer, low line edge/width roughness (LER/LWR), large process window, and all of this at low cost. An even greater challenge is to transfer these gratings into the dielectric material at such critical dimensions, where increased line edge roughness, line wiggling and even pattern collapse can be expected for materials with small mechanical stability such as highly porous low-k dielectrics. In this work we first compare three different patterning options for 12 nm half-pitch gratings at the hard mask level: EUV-based SADP and 193i-based SAQP and SAOP. This comparison will be based on process window, line edge/width roughness and cost. Next, the transfer of 12 nm line/space gratings in the dielectric material is discussed and presented. The LER of the dielectric lines is investigated as a function of the dielectric material, the trench depth, and the stress in the sacrificial hard mask. Finally, we elaborate on the different options to enable scaling down from 24 nm MP to 16 nm MP, and demonstrate 8 nm line/space gratings with 193i-based SAOP.
Integrated manufacturing flow for selective-etching SADP/SAQP
NASA Astrophysics Data System (ADS)
Ali, Rehab Kotb; Fatehy, Ahmed Hamed; Word, James
2018-03-01
Printing cut mask in SAMP (Self Aligned Multi Patterning) is very challenging at advanced nodes. One of the proposed solutions is to print the cut shapes selectively. Which means the design is decomposed into mandrel tracks, Mandrel cuts and non-Mandrel cuts. The mandrel and non-Mandrel cuts are mutually independent which results in relaxing spacing constrains and as a consequence more dense metal lines. In this paper, we proposed the manufacturing flow of selective etching process. The results are quantified in terms of measuring PVBand, EPE and the number of hard bridging and pinching across the layout.
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
Design optimization of highly asymmetrical layouts by 2D contour metrology
NASA Astrophysics Data System (ADS)
Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.
2018-03-01
As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.
Exploring EUV and SAQP pattering schemes at 5nm technology node
NASA Astrophysics Data System (ADS)
Hamed Fatehy, Ahmed; Kotb, Rehab; Lafferty, Neal; Jiang, Fan; Word, James
2018-03-01
For years, Moore's law keeps driving the semiconductors industry towards smaller dimensions and higher density chips with more devices. Earlier, the correlation between exposure source's wave length and the smallest resolvable dimension, mandated the usage of Deep Ultra-Violent (DUV) optical lithography system which has been used for decades to sustain Moore's law, especially when immersion lithography was introduced with 193nm ArF laser sources. As dimensions of devices get smaller beyond Deep Ultra-Violent (DUV) optical resolution limits, the need for Extremely Ultra-Violent (EUV) optical lithography systems was a must. However, EUV systems were still under development at that time for the mass-production in semiconductors industry. Theretofore, Multi-Patterning (MP) technologies was introduced to swirl about DUV optical lithography limitations in advanced nodes beyond minimum dimension (CD) of 20nm. MP can be classified into two main categories; the first one is to split the target itself across multiple masks that give the original target patterns when they are printed. This category includes Double, Triple and Quadruple patterning (DP, TP, and QP). The second category is the Self-Aligned Patterning (SAP) where the target is divided into Mandrel patterns and non-Mandrel patterns. The Mandrel patterns get printed first, then a self-aligned sidewalls are grown around these printed patterns drawing the other non-Mandrel targets, afterword, a cut mask(s) is used to define target's line-ends. This approach contains Self-Aligned-Double Pattering (SADP) and Self-Aligned- Quadruple-Pattering (SAQP). DUV and MP along together paved the way for the industry down to 7nm. However, with the start of development at the 5nm node and the readiness of EUV, the differentiation question is aroused again, which pattering approach should be selected, direct printing using EUV or DUV with MP, or a hybrid flow that contains both DUV-MP and EUV. In this work we are comparing two potential pattering techniques for Back End Of Line (BEOL) metal layers in the 5nm technology node, the first technique is Single Exposure EUV (SE-EUV) with a Direct Patterning EUV lithography process, and the second one is Self-Aligned Quadruple Patterning (SAQP) with a hybrid lithography processes, where the drawn metal target layer is decomposed into a Mandrel mask and Blocks/Cut mask, Mandrel mask is printed using DUV 193i lithography process, while Block/Cut Mask is printed using SE-EUV lithography process. The pros and cons of each technique are quantified based on Edge-Placement-Error (EPE) and Process Variation Band (PVBand) measured at 1D and 2D edges. The layout used in this comparison is a candidate layout for Foundries 5nm process node.
Connecting remote systems for demonstration of automation technologies
NASA Technical Reports Server (NTRS)
Brown, R. M.; Yee, R.
1988-01-01
An initial estimate of the communications requirements of the Systems Autonomy Demonstration Project (SADP) development and demonstration environments is presented. A proposed network paradigm is developed, and options for network topologies are explored.
Lithography-induced limits to scaling of design quality
NASA Astrophysics Data System (ADS)
Kahng, Andrew B.
2014-03-01
Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.
NASA Astrophysics Data System (ADS)
Miller, Cody A.
The effects of short-range order (SRO), long-range order (LRO), and plastic strain on the microstructure and stress corrosion cracking (SCC) susceptibility of Ni-Cr-Fe Alloy 690 have been investigated in detail. First, the presence of 1/3{422} and 1/2{311} diffuse intensities in B=[111] and B=[112] selected area diffraction patterns (SADPs), previously believed to indicate the presence of SRO, has been examined in Alloy 690, a Ni-Cr binary alloy, and a number of FCC materials in an effort to determine their source. It is shown that these intensities are not due to SRO, although their source remains somewhat unclear. However, an experiment was conducted that tracked the strong {111} reflections in a B=[112] SADP as the sample was tilted (19°) towards a B=[111] zone axis. Significantly, it was noted that the {111} intensities never fully disappear and that they fall in the 1/3{422} positions within the B=[111] SADP. This indicates that these diffuse intensities are related to reflections that lie in the first order Laue zone (FOLZ) when the zone is aligned along B=[111], although theoretical calculations indicate scattering from these planes into the zero order Laue zone used to form the SADP should not occur. Thus, while calculations are inconsistent with the behavior expected, the diffuse intensities observed in a number of high index zones are consistent with projections of higher order Laue zone reflections into the zero layer, suggesting that the theory is in need of reassessment. Second, the stability of the gamma'-Ni2Cr LRO phase present on the Ni-Cr phase diagram was examined in a Ni-55Cr binary alloy. The results indicate that the gamma'-Ni2Cr phase is indeed metastable, and that the two-phase gamma-Ni + alpha-Cr phase field extends all the way to room temperature. Likewise, the sluggish formation of the gamma'-Ni 2Cr phase appears to occur only over a narrow composition and temperature range. It is speculated that this important phase in more complex alloys is also metastable and its metastability should be considered in applications involving long-term, high temperature exposures. Third, the effects of thermomechanical processing and long-term aging on the microstructural evolution and SCC susceptibility of Alloy 690 were examined in detail. It is shown that cold working and subsequent aging have large impacts on the microstructures observed and on the mechanical properties, and it is these changes that are related to the differences in SCC behavior. Most importantly, it is shown that the very high work hardening in Alloy 690 leads to large increases in yield strength that appear to overshadow the more subtle variations in carbide distributions at grain boundaries and prior coherent twin boundaries, and that SCC initiation is difficult if not impossible under static loading conditions. Based on these observations, it is concluded that the long-term concerns by industry of SCC initiation in Alloy 690 in the thermally-treated condition can probably be ignored unless there are regions where the alloy has been significantly hardened mechanically and the material will undergo some type of dynamic loading.
The Affordable Care Act and health insurance exchanges: effects on the pediatric dental benefit.
Orynich, C Ashley; Casamassimo, Paul S; Seale, N Sue; Reggiardo, Paul; Litch, C Scott
2015-01-01
To examine the relationship between state health insurance Exchange selection and pediatric dental benefit design, regulation and cost. Medical and dental plans were analyzed across three types of state health insurance Exchanges: State-based (SB), State-partnered (SP), and Federally-facilitated (FF). Cost-analysis was completed for 10,427 insurance plans, and health policy expert interviews were conducted. One-way ANOVA compared the cost-sharing structure of stand-alone dental plans (SADP). T-test statistics compared differences in average total monthly pediatric premium costs. No causal relationships were identified between Exchange selection and the pediatric dental benefit's design, regulation or cost. Pediatric medical and dental coverage offered through the embedded plan design exhibited comparable average total monthly premium costs to aggregate cost estimates for the separately purchased SADP and traditional medical plan (P=0.11). Plan designs and regulatory policies demonstrated greater correlation between the SP and FF Exchanges, as compared to the SB Exchange. Parameters defining the pediatric dental benefit are complex and vary across states. Each state Exchange was subject to barriers in improving the quality of the pediatric dental benefit due to a lack of defined, standardized policy parameters and further legislative maturation is required.
Weng, Ju-Yun; Hsu, Tsan-Ting; Sun, Synthia H
2008-05-15
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes. Copyright 2007 Wiley-Liss, Inc.
The anatomy and physiology of the suspensory apparatus of the distal phalanx.
Pollitt, Christopher C
2010-04-01
The equine hoof capsule protects the softer, more sensitive, structures within. Failure of the connection between hoof and bone (suspensory apparatus of the distal phalanx or SADP) results in the crippling lameness of laminitis. Active basal cell proliferation occurs principally in tubular hoof and proximal and distal lamellae. The remaining lamellae are virtually non-proliferative and the hoof wall moves past the stationary distal phalanx, by controlled activation and inhibition of constituent proteases. The lamellar corium derives most of its blood supply from the branches of the terminal arch which perforate the distal phalanx. Valveless veins within the foot can be exploited clinically for retrograde venous therapy or contrast radiography (venography). The basement membrane (BM) forms the interface between the lamellar epidermis and the adjacent dermis and the plasma membrane of each lamellar basal cell is attached to the BM by numerous electron dense adhesion plaques or hemidesmosomes the ultimate attachment unit of the SADP. Laminitis destroys and dislocates the BM and its components and without an intact, functional BM, the structure and function of the lamellar epidermis is pathologically compromised. Transcription and activation of constituent proteases occurs in normal hoof lamellae but in increased amounts during laminitis. Copyright 2010 Elsevier Inc. All rights reserved.
Attitudes of Korean Dental Students Toward Individuals with Special Health Care Needs.
Lee, Hyo-Seol; Jung, Hoi In; Kim, Seon-Mi; Kim, Jiyoen; Doh, Re Mee; Lee, Jae-Ho
2015-09-01
The purposes of this study were to ascertain the attitudes of dental students toward individuals with special health care needs (SHCNs) in Korea and to elucidate the characteristics associated with these attitudes. The authors recruited students from four of the 11 dental schools in Korea to participate in a survey; these schools were selected for regional balance. The Scale of Attitudes toward Disabled Persons (SADP) was used as the primary survey instrument, and ten independent variables were included. Of the 1,100 possible participants, 1,057 responded to the survey, for a response rate of 96.1%. The results showed that although the students' attitudes did not differ significantly by gender, their attitudes did show statistically significant differences on nine other variables: age, year, religion, self-esteem, friends with a disability, volunteering, admission course, concern for individuals with SHCNs, and intention to treat individuals with SHCNs (all p<0.05). The attitudes of these Korean dental students toward individuals with SHCNs were relatively unfavorable, showing lower SADP scores than reported in Western countries and likely reflecting Eastern cultural values in general. Future efforts should place greater emphasis on special care dentistry education and encourage the development of more favorable attitudes regarding the treatment of individuals with SHCNs.
Nasseh, Kamyar; Vujicic, Marko
2017-04-01
Pediatric dental benefits must be offered in the health insurance marketplaces created under the Affordable Care Act. The authors analyzed trends over time in premiums and the number of dental insurers participating in the marketplaces. The authors collected dental benefit plan data from 35 states participating in the federally facilitated marketplaces in 2014, 2015, and 2016. For each county, they counted the number of issuers offering stand-alone dental plans (SADPs) and medical plans with embedded pediatric dental benefits. They also analyzed trends in premiums. From 2014 through 2016, the number of issuers of stand-alone dental plans and medical plans with embedded pediatric dental benefits either did not change or increased in most counties. Average premiums for low-actuarial-value SADPs declined from 2014 through 2016. The increase in the number of issuers of stand-alone dental plans and medical plans with embedded dental benefits may be associated with lower premiums. However, more research is needed to determine if this is the case. Affordable dental plans in the marketplaces could induce people with lower incomes to sign up for dental benefits. Newly insured people could have significant oral health needs and pent-up demand for dental care. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.
2014-03-19
This interim final rule requires issuers of qualified health plans (QHPs), including stand-alone dental plans (SADPs), to accept premium and cost-sharing payments made on behalf of enrollees by the Ryan White HIV/AIDS Program, other Federal and State government programs that provide premium and cost sharing support for specific individuals, and Indian tribes, tribal organizations, and urban Indian organizations.
Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.
Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J
2017-10-01
The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe 2 (Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-10-25
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO 4 ). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO 4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution
NASA Astrophysics Data System (ADS)
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-10-01
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.
Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution
Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon
2016-01-01
Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222
Intra-field on-product overlay improvement by application of RegC and TWINSCAN corrections
NASA Astrophysics Data System (ADS)
Sharoni, Ofir; Dmitriev, Vladimir; Graitzer, Erez; Perets, Yuval; Gorhad, Kujan; van Haren, Richard; Cekli, Hakki E.; Mulkens, Jan
2015-03-01
The on product overlay specification and Advanced Process Control (APC) is getting extremely challenging particularly after the introduction of multi-patterning applications like Spacer Assisted Double Patterning (SADP) and multipatterning techniques like N-repetitive Litho-Etch steps (LEN, N >= 2). When the latter is considered, most of the intrafield overlay contributors drop out of the overlay budget. This is a direct consequence of the fact that the scanner settings (like dose, illumination settings, etc.) as well as the subsequent processing steps can be made very similar for two consecutive Litho-Etch layers. The major overlay contributor that may require additional attention is the Image Placement Error (IPE). When the inter-layer overlay is considered, controlling the intra-field overlay contribution gets more complicated. In addition to the IPE contribution, the TWINSCANTM lens fingerprint in combination with the exposure settings is going to play a role as well. Generally speaking, two subsequent functional layers have different exposure settings. This results in a (non-reticle) additional overlay contribution. In this paper, we have studied the wafer overlay correction capability by RegC® in addition to the TWINSCANTM intrafield corrections to improve the on product overlay performance. RegC® is a reticle intra-volume laser writing technique that causes a predictable deformation element (RegC® deformation element) inside the quartz (Qz) material of a reticle. This technique enables to post-process an existing reticle to correct for instance for IPE. Alternatively, a pre-determined intra-field fingerprint can be added to the reticle such that it results in a straight field after exposure. This second application might be very powerful to correct for instance for (cold) lens fingerprints that cannot be corrected by the scanner itself. Another possible application is the intra-field processing fingerprint. One should realize that a RegC® treatment of a reticle generally results in global distortion of the reticle. This is not a problem as long as these global distortions can be corrected by the TWINSCANTM system (currently up to the third order). It is anticipated that the combination of the RegC® and the TWINSCANTM corrections act as complementary solutions. These solutions perfectly fit into the ASML Litho InSight (LIS) product in which feedforward and feedback corrections based on YieldStar overlay measurements are used to improve the on product overlay.
Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands
Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli
2013-01-01
Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053
Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong
2018-03-01
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
A novel double patterning approach for 30nm dense holes
NASA Astrophysics Data System (ADS)
Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven
2011-04-01
Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.
A methodology for double patterning compliant split and design
NASA Astrophysics Data System (ADS)
Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert
2008-11-01
Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.
Overlay metrology for double patterning processes
NASA Astrophysics Data System (ADS)
Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej
2009-03-01
The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double patterning processes.
Double exposure using 193nm negative tone photoresist
NASA Astrophysics Data System (ADS)
Kim, Ryoung-han; Wallow, Tom; Kye, Jongwook; Levinson, Harry J.; White, Dave
2007-03-01
Double exposure is one of the promising methods for extending lithographic patterning into the low k I regime. In this paper, we demonstrate double patterning of k 1-effective=0.25 with improved process window using a negative resist. Negative resist (TOK N- series) in combination with a bright field mask is proven to provide a large process window in generating 1:3 = trench:line resist features. By incorporating two etch transfer steps into the hard mask material, frequency doubled patterns could be obtained.
Time-resolved double-slit interference pattern measurement with entangled photons
Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas
2014-01-01
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360
Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning themore » film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
NASA Astrophysics Data System (ADS)
Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David
2010-04-01
In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces
NASA Astrophysics Data System (ADS)
Tang, Huiying; Dong, Huimin; Liu, Zhanwei
2017-11-01
Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.
Interactions of double patterning technology with wafer processing, OPC and design flows
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Cork, Chris; Miloslavsky, Alex; Luk-Pat, Gerry; Barnes, Levi; Hapli, John; Lewellen, John; Rollins, Greg; Wiaux, Vincent; Verhaegen, Staf
2008-03-01
Double patterning technology (DPT) is one of the main options for printing logic devices with half-pitch less than 45nm; and flash and DRAM memory devices with half-pitch less than 40nm. DPT methods decompose the original design intent into two individual masking layers which are each patterned using single exposures and existing 193nm lithography tools. The results of the individual patterning layers combine to re-create the design intent pattern on the wafer. In this paper we study interactions of DPT with lithography, masks synthesis and physical design flows. Double exposure and etch patterning steps create complexity for both process and design flows. DPT decomposition is a critical software step which will be performed in physical design and also in mask synthesis. Decomposition includes cutting (splitting) of original design intent polygons into multiple polygons where required; and coloring of the resulting polygons. We evaluate the ability to meet key physical design goals such as: reduce circuit area; minimize rework; ensure DPT compliance; guarantee patterning robustness on individual layer targets; ensure symmetric wafer results; and create uniform wafer density for the individual patterning layers.
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.
2016-01-01
The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
Diapycnal Transport and Pattern Formation in Double-Diffusive Convection
2015-12-01
of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual turbulent/double-diffusive systems and...is presented to remedy this dearth of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual...8 2. Double-Diffusion: The Constant Flux Ratio Model ..........................9 3. The Combined Effects of
Evaluating diffraction based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Saravanan, Chandra Saru; Liu, Yongdong; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Acheta, Alden; La Fontaine, Bruno
2008-03-01
Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in which registration errors are extracted from specially designed diffraction targets for double patterning. The results of overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.
Song, Youngjun; Takahashi, Tsukasa; Kim, Sejung; Heaney, Yvonne C; Warner, John; Chen, Shaochen; Heller, Michael J
2017-01-11
We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.
Diffraction-based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy
2009-03-01
The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.
NASA Astrophysics Data System (ADS)
Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David
2015-03-01
Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and color balanced layouts.
The lithographer's dilemma: shrinking without breaking the bank
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2013-10-01
It can no longer be assumed that the lithographic scaling which has previously driven Moore's Law will lead in the future to reduced cost per transistor. Until recently, higher prices for lithography tools were offset by improvements in scanner productivity. The necessity of using double patterning to extend scaling beyond the single exposure resolution limit of optical lithography has resulted in a sharp increase in the cost of patterning a critical construction layer that has not been offset by improvements in exposure tool productivity. Double patterning has also substantially increased the cost of mask sets. EUV lithography represents a single patterning option, but the combination of very high exposure tools prices, moderate throughput, high maintenance costs, and expensive mask blanks makes this a solution more expensive than optical double patterning but less expensive than triple patterning. Directed self-assembly (DSA) could potentially improve wafer costs, but this technology currently is immature. There are also design layout and process integration issues associated with DSA that need to be solved in order to obtain full benefit from tighter pitches. There are many approaches for improving the cost effectiveness of lithography. Innovative double patterning schemes lead to smaller die. EUV lithography productivity can be improved with higher power light sources and improved reliability. There are many technical and business challenges for extending EUV lithography to higher numerical apertures. Efficient contact hole and cut mask solutions are needed, as well as very tight overlay control, regardless of lithographic solution.
Physiological responses to single versus double stepping pattern of ascending the stairs.
Aziz, Abdul Rashid; Teh, Kong Chuan
2005-07-01
The aim of this study was to compare the physiological responses and energy cost between two ascending patterns, the single-step (SS) and the double-step (DS), in climbing a public staircase. In the SS pattern, a person climbs one step at a time whilst in the double-step (DS) pattern, the individual traverses two steps in a single stride. Advocates of each stepping pattern claimed that their type of ascent is physically more taxing and expends more calories. Thirty subjects (10 males and 20 females) climbed a typical 11-storey flat (each step height of 0.15 m, a total of 180 steps and a vertical displacement of 27.0 m). The subjects climbed using either the SS pattern at a tempo of 100 steps x min(-1) or the DS pattern at 50 steps x min(-1). The prescribed stepping frequencies ensured that an equal amount of total work was performed between the SS and DS patterns. The climbing patterns were performed in random order. Physiological measures during the last 30 s of the climbs were used in the comparative analysis. The results showed that ventilation, oxygen uptake and heart rate values were significantly higher (all p < 0.01) in the SS as compared to the DS pattern. However, the caloric expenditure during the SS pattern was calculated to be only marginally higher than the DS pattern. In conclusion, ascending with the SS pattern led to significantly higher physiological responses compared to the DS pattern. The higher calorie expended with the SS compared to the DS pattern was deemed to be of little practical significance.
Parameter estimation by decoherence in the double-slit experiment
NASA Astrophysics Data System (ADS)
Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo
2018-06-01
We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.
Sekiyama, Makiko; Jiang, Hong Wei; Gunawan, Budhi; Dewanti, Linda; Honda, Ryo; Shimizu-Furusawa, Hana; Abdoellah, Oekan S; Watanabe, Chiho
2015-10-02
Indonesia is facing household-level double burden malnutrition. This study aimed at examining (1) household-level double burden for the mother-child and father-child pairs; (2) risk of adiposity of double burden households; and (3) associated dietary factors. Subjects were 5th and 6th grade elementary school children (n = 242), their mothers (n = 242), and their fathers (n = 225) in five communities (1 = urban, 4 = rural) in the Bandung District. Questionnaires on socioeconomic factors, blood hemoglobin measurements, and anthropometric measurements were administered. For adults, body fat percentage (BF%) was estimated by bioelectrical impedance (BF%-BI) and by converting skinfold thickness (ST) data using Durnin and Womersley's (1974) formula (BF%-ST). Food frequency questionnaires were also completed. Double burden was defined as coexistence of maternal or paternal overweight (Body mass index (BMI) ≥ 23) and child stunting (height-for-age z-score <-2) within households. Maternal-child double burden occurred in 30.6% of total households, whereas paternal-child double burden was only in 8.4%. Mothers from double burden households showed high adiposity; 87.3% with BF%-BI and 66.2% with BF%-ST had BF% >35%, and 60.6% had waists >80 cm. The major dietary patterns identified were "Modern" and "High-animal products". After controlling for confounding factors, children in the highest quartile of the "High-animal products" dietary pattern had a lower risk of maternal-child double burden (Adjusted OR: 0.46, 95% CI: 0.21-1.04) than those in the lowest quartile. Given that the "High-animal products" dietary pattern was associated with the decreased risk of maternal-child double burden through a strong negative correlation with child stunting, improving child stunting through adequate intake of animal products is critical to solve the problem of maternal-child double burden in Indonesia.
Sekiyama, Makiko; Jiang, Hong Wei; Gunawan, Budhi; Dewanti, Linda; Honda, Ryo; Shimizu-Furusawa, Hana; Abdoellah, Oekan S.; Watanabe, Chiho
2015-01-01
Indonesia is facing household-level double burden malnutrition. This study aimed at examining (1) household-level double burden for the mother-child and father-child pairs; (2) risk of adiposity of double burden households; and (3) associated dietary factors. Subjects were 5th and 6th grade elementary school children (n = 242), their mothers (n = 242), and their fathers (n = 225) in five communities (1 = urban, 4 = rural) in the Bandung District. Questionnaires on socioeconomic factors, blood hemoglobin measurements, and anthropometric measurements were administered. For adults, body fat percentage (BF%) was estimated by bioelectrical impedance (BF%-BI) and by converting skinfold thickness (ST) data using Durnin and Womersley’s (1974) formula (BF%-ST). Food frequency questionnaires were also completed. Double burden was defined as coexistence of maternal or paternal overweight (Body mass index (BMI) ≥ 23) and child stunting (height-for-age z-score <−2) within households. Maternal-child double burden occurred in 30.6% of total households, whereas paternal-child double burden was only in 8.4%. Mothers from double burden households showed high adiposity; 87.3% with BF%-BI and 66.2% with BF%-ST had BF% >35%, and 60.6% had waists >80 cm. The major dietary patterns identified were “Modern” and “High-animal products”. After controlling for confounding factors, children in the highest quartile of the “High-animal products” dietary pattern had a lower risk of maternal-child double burden (Adjusted OR: 0.46, 95% CI: 0.21–1.04) than those in the lowest quartile. Given that the “High-animal products” dietary pattern was associated with the decreased risk of maternal-child double burden through a strong negative correlation with child stunting, improving child stunting through adequate intake of animal products is critical to solve the problem of maternal-child double burden in Indonesia. PMID:26445058
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview
NASA Technical Reports Server (NTRS)
Glass, B. J. (Editor)
1992-01-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Space Station power system autonomy demonstration
NASA Technical Reports Server (NTRS)
Kish, James A.; Dolce, James L.; Weeks, David J.
1988-01-01
The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.
Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results
NASA Astrophysics Data System (ADS)
Glass, B. J.
1992-10-01
The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.
Variability-aware double-patterning layout optimization for analog circuits
NASA Astrophysics Data System (ADS)
Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Lee, Zhao Chuan; Tseng, I.-Lun; Ong, Jonathan Yoong Seang
2018-03-01
The semiconductor industry has adopted multi-patterning techniques to manage the delay in the extreme ultraviolet lithography technology. During the design process of double-patterning lithography layout masks, two polygons are assigned to different masks if their spacing is less than the minimum printable spacing. With these additional design constraints, it is very difficult to find experienced layout-design engineers who have a good understanding of the circuit to manually optimize the mask layers in order to minimize color-induced circuit variations. In this work, we investigate the impact of double-patterning lithography on analog circuits and provide quantitative analysis for our designers to select the optimal mask to minimize the circuit's mismatch. To overcome the problem and improve the turn-around time, we proposed our smart "anchoring" placement technique to optimize mask decomposition for analog circuits. We have developed a software prototype that is capable of providing anchoring markers in the layout, allowing industry standard tools to perform automated color decomposition process.
ILT for double exposure lithography with conventional and novel materials
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman
2007-03-01
Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.
Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet
2009-03-01
As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.
NASA Astrophysics Data System (ADS)
Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre
2017-06-01
This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.
65-nm full-chip implementation using double dipole lithography
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Chen, J. Fung; Cororan, Noel; Knose, William T.; Van Den Broeke, Douglas J.; Laidig, Thomas L.; Wampler, Kurt E.; Shi, Xuelong; Hsu, Michael; Eurlings, Mark; Finders, Jo; Chiou, Tsann-Bim; Socha, Robert J.; Conley, Will; Hsieh, Yen W.; Tuan, Steve; Hsieh, Frank
2003-06-01
Double Dipole Lithography (DDL) has been demonstrated to be capable of patterning complex 2D patterns. Due to inherently high aerial imaging contrast, especially for dense features, we have found that it has a very good potential to meet manufacturing requirements for the 65nm node using ArF binary chrome masks. For patterning in the k1<0.35 regime without resorting to hard phase-shift masks (PSMs), DDL is one unique Resolution Enhancement Technique (RET) which can achieve an acceptable process window. To utilize DDL for printing actual IC devices, the original design data must be decomposed into "vertical (V)" and "horizontal (H)" masks for the respective X- and Y-dipole exposures. An improved two-pass, model-based, DDL mask data processing methodology has been established. It is capable of simultaneously converting complex logic and memory mask patterns into DDL compatible mask layout. To maximize the overlapped process window area, we have previously shown that the pattern-shielding algorithm must be intelligently applied together with both Scattering Bars (SBs) and model-based OPC (MOPC). Due to double exposures, stray light must be well-controlled to ensure uniform printing across the entire chip. One solution to minimize stray light is to apply large patches of solid chrome in open areas to reduce the background transmission during exposure. Unfortunately, this is not feasible for a typical clear-field poly gate masks to be patterned by a positive resist process. In this work, we report a production-worthy DDL mask pattern decomposition scheme for full-chip application. A new generation of DDL technology reticle set has been developed to verify the printing performance. Shielding is a critical part of the DDL. An innovative shielding scheme has been developed to protect the critical features and minimize the impact of stray light during double exposure.
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-12-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.
NASA Astrophysics Data System (ADS)
Desnijder, Karel; Hanselaer, Peter; Meuret, Youri
2016-04-01
A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-01-01
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443
Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon
2015-12-10
In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.
Characterization of geostationary particle signatures based on the 'injection boundary' model
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Meng, C.-I.
1983-01-01
A simplified analytical procedure is used to characterize the details of geostationary particle signatures, in order to lend support to the 'injection boundary' concept. The signatures are generated by the time-of-flight effects evolving from an initial sharply defined, double spiraled boundary configuration. Complex and highly variable dispersion patterns often observed by geostationary satellites are successfully reproduced through the exclusive use of the most fundamental convection configuration characteristics. Many of the details of the patterns have not been previously presented. It is concluded that most of the dynamical dispersion features can be mapped to the double spiral boundary without further ad hoc assumptions, and that predicted and observed dispersion patterns exhibit symmetries distinct from those associated with the quasi-stationary particle convection patterns.
Double-pulse digital speckle pattern interferometry for vibration analysis
NASA Astrophysics Data System (ADS)
Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing
2014-12-01
The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .
100-nm gate lithography for double-gate transistors
NASA Astrophysics Data System (ADS)
Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.
2001-09-01
The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.
Planting pattern and weed control method influence on yield production of corn (Zea mays L.)
NASA Astrophysics Data System (ADS)
Purba, E.; Nasution, D. P.
2018-02-01
Field experiment was carried out to evaluate the influence of planting patterns and weed control methods on the growth and yield of corn. The effect of the planting pattern and weed control method was studied in a split plot design. The main plots were that of planting pattern single row (25cm x 60cm), double row (25cm x 25cm x 60cm) and triangle row ( 25cm x 25cm x 25cm). Subplot was that of weed control method consisted five methods namely weed free throughout the growing season, hand weeding, sprayed with glyphosate, sprayed with paraquat, and no weeding.. Result showed that both planting pattern and weed control method did not affect the growth of corn. However, planting pattern and weed control method significantly affected yield production. Yield resulted from double row and triangle planting pattern was 14% and 41% higher, consecutively, than that of single row pattern. The triangle planting pattern combined with any weed control method produced the highest yield production of corn.
SOI layout decomposition for double patterning lithography on high-performance computer platforms
NASA Astrophysics Data System (ADS)
Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir
2014-12-01
In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.
NASA Astrophysics Data System (ADS)
Shao, Jinhai; Deng, Jianan; Lu, W.; Chen, Yifang
2017-07-01
A process to fabricate T-shaped gates with the footprint scaling down to 10 nm using a double patterning procedure is reported. One of the keys in this process is to separate the definition of the footprint from that for the gate-head so that the proximity effect originated from electron forward scattering in the resist is significantly minimized, enabling us to achieve as narrow as 10-nm foot width. Furthermore, in contrast to the reported technique for 10-nm T-shaped profile in resist, this process utilizes a metallic film with a nanoslit as an etch mask to form a well-defined 10-nm-wide foot in a SiNx layer by reactive ion etch. Such a double patterning process has demonstrated enhanced reliability. The detailed process is comprehensively described, and its advantages and limitations are discussed. Nanofabrication of InP-based high-electron-mobility transistors using the developed process for 10- to 20-nm T-shaped gates is currently under the way.
Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment
NASA Astrophysics Data System (ADS)
Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.
2018-02-01
Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.
NASA Astrophysics Data System (ADS)
Nagaoka, Yoshinori; Watanabe, Hidehiro
2007-10-01
As part of the technical program in Photomask Japan 2007, we held a panel discussion to discuss challenges and solutions for the double exposure and double patterning lithography technique for 32nm half-pitch design node. 4 panelists, Rik Jonckheere of IMEC, Belgium), Tsann-Binn Chiou of ASML Taiwan Ltd., Taiwan), Judy Huckabay of Cadence Design Systems Inc. (USA) and Yoshimitsu Okuda of Toppan Printing Co., Ltd., Japan) were invited to represent each key technical area. We also took a survey from the PMJ attendees prior to the panel discussion, to vote which key technical area they think the challenge exists for the 32nm half-pitch DE/DP lithography. The result of the survey was also presented during the panel discussion. One would intuitively think that by using a DE/DP technique you're relaxing the design rule by 2x, thus for 32nm node it's essentially the 65nm process- you're just repeating it 2 times. Well, not exactly, as identified by the panelists and the participants in the discussion. We recognized the difficulties in the LSI fabrication process steps, the lithography tool overlay, photomask CD and registration, and the issue of data splitting conflict. These difficulties are big challenge for both LSI and photomask manufactures; however, we have confirmed some solutions are already examined by the theoretical and experimental works of the people in research. Despite these difficulties, we are convinced that the immersion lithography with double exposure and double patterning techniques is one of the most promising candidates of the lithography for 32nm half pitch design node.
NOTE: Calculating diffraction patterns
NASA Astrophysics Data System (ADS)
Rioux, Frank
2003-05-01
Following Marcella's approach to the double-slit experiment (Marcella T V 2002 Eur. J. Phys. 23 615-21), diffraction patterns for two-dimensional masks are calculated by Fourier transform of the Mask geometry into momentum space.
NASA Astrophysics Data System (ADS)
Seifert, C.; Lobell, D. B.
2014-12-01
In adapting U.S. agriculture to the climate of the 21st century, multiple cropping presents a unique opportunity to help offset projected negative trends in agricultural production while moving critical crop yield formation periods outside of the hottest months of the year. Critical constraints on this practice include moisture availability, and, more importantly, growing season length. We review evidence that this last constraint has decreased in the previous quarter century, allowing for more winter wheat/soybean double cropping in previously phenologically constrained areas. We also carry this pattern forward to 2100, showing a 126% to 211% increase in the area phenologically suitable for double cropping under the RCP45 and RCP85 scenarios respectively. These results suggest that climate change will relieve phenological constraints on wheat-soy double cropping systems over much of the United States, changing production patterns and crop rotations as areas become suitable for the practice.
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.
1979-01-01
The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
Kamst, Miranda; van Hunen, Rianne; de Zwaan, Carolina Catherina; Mulder, Arnout; Supply, Philip; Anthony, Richard; van der Hoek, Wim; van Soolingen, Dick
2017-01-01
ABSTRACT Since 2004, variable-number tandem-repeat (VNTR) typing of Mycobacterium tuberculosis complex isolates has been applied on a structural basis in The Netherlands to study the epidemiology of tuberculosis (TB). Although this technique is faster and technically less demanding than the previously used restriction fragment length polymorphism (RFLP) typing, reproducibility remains a concern. In the period from 2004 to 2015, 8,532 isolates were subjected to VNTR typing in The Netherlands, with 186 (2.2%) of these exhibiting double alleles at one locus. Double alleles were most common in loci 4052 and 2163b. The variables significantly associated with double alleles were urban living (odds ratio [OR], 1.503; 95% confidence interval [CI], 1.084 to 2.084; P = 0.014) and pulmonary TB (OR, 1.703; 95% CI, 1.216 to 2.386; P = 0.002). Single-colony cultures of double-allele strains were produced and revealed single-allele profiles; a maximum of five single nucleotide polymorphisms (SNPs) was observed between the single- and double-allele isolates from the same patient when whole-genome sequencing (WGS) was applied. This indicates the presence of two bacterial populations with slightly different VNTR profiles in the parental population, related to genetic drift. This observation is confirmed by the fact that secondary cases from TB source cases with double-allele isolates sometimes display only one of the two alleles present in the source case. Double alleles occur at a frequency of 2.2% in VNTR patterns in The Netherlands. They are caused by biological variation rather than by technical aberrations and can be transmitted either as single- or double-allele variants. PMID:29142049
NASA Astrophysics Data System (ADS)
Ohnuma, Hidetoshi; Kawahira, Hiroichi
1998-09-01
An automatic alternative phase shift mask (PSM) pattern layout tool has been newly developed. This tool is dedicated for embedded DRAM in logic device to shrink gate line width with improving line width controllability in lithography process with a design rule below 0.18 micrometers by the KrF excimer laser exposure. The tool can crete Levenson type PSM used being coupled with a binary mask adopting a double exposure method for positive photo resist. By using graphs, this tool automatically creates alternative PSM patterns. Moreover, it does not give any phase conflicts. By adopting it to actual embedded DRAM in logic cells, we have provided 0.16 micrometers gate resist patterns at both random logic and DRAM areas. The patterns were fabricated using two masks with the double exposure method. Gate line width has been well controlled under a practical exposure-focus window.
Traceable Mueller polarimetry and scatterometry for shape reconstruction of grating structures
NASA Astrophysics Data System (ADS)
Hansen, Poul-Erik; Madsen, Morten H.; Lehtolahti, Joonas; Nielsen, Lars
2017-11-01
Dimensional measurements of multi-patterned transmission gratings with a mixture of long and small periods are great challenges for optical metrology today. It is a further challenge when the aspect ratio of the structures is high, that is, when the height of structures is larger than the pitch. Here we consider a double patterned transmission grating with pitches of 500 nm and 20 000 nm. For measuring the geometrical properties of double patterned transmission grating we use a combined spectroscopic Mueller polarimetry and scatterometry setup. For modelling the experimentally obtained data we rigorously compute the scattering signal by solving Maxwell's equations using the RCWA method on a supercell structure. We also present a new method for analyzing the Mueller polarimetry parameters that performs the analysis in the measured variables. This new inversion method for finding the best fit between measured and calculated values are tested on silicon gratings with periods from 300 to 600 nm. The method is shown to give results within the expanded uncertainty of reference AFM measurements. The application of the new inversion method and the supercell structure to the double patterned transmission grating gives best estimates of dimensional quantities that are in fair agreement with those derived from local AFM measurements
Is Long-Term Structural Priming Affected by Patterns of Experience with Individual Verbs?
ERIC Educational Resources Information Center
Kaschak, Michael P.; Borreggine, Kristin L.
2008-01-01
Several recent papers have reported long-term structural priming effects in experiments where previous patterns of experience with the double object and prepositional object constructions are shown to affect later patterns of language production for those constructions. The experiments reported in this paper address the extent to which these…
STT Doubles with Large Delta M - Part VII: Andromeda, Pisces, Auriga
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2017-01-01
The results of visual double star observing sessions suggested a pattern for STT doubles with large DM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Similar to the other objects covered so far several of the components show parameters quite different from the current WDS data.
Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June
2016-05-01
Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.
Generation of Crystal-Structure Transverse Patterns via a Self-Frequency-Doubling Laser
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V.
2013-01-01
Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories. PMID:23336067
Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V
2013-01-01
Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.
ERIC Educational Resources Information Center
Knobel, Mark; Caramazza, Alfonso
2007-01-01
Caramazza et al. [Caramazza, A., Chialant, D., Capasso, R., & Miceli, G. (2000). Separable processing of consonants and vowels. "Nature," 403(6768), 428-430.] report two patients who exhibit a double dissociation between consonants and vowels in speech production. The patterning of this double dissociation cannot be explained by appealing to…
NASA Astrophysics Data System (ADS)
Wierzchowski, W.; Moore, M.; Makepeace, A. P. W.; Yacoot, A.
1991-10-01
A 4 x 4 x 1.5 cu mm cuboctahedral diamond and two 0.7 mm thick slabs cut from a truncated octahedral diamond grown by the reconstitution technique were studied in different double-crystal arrangements with both conventional and synchrotron X-ray sources. The back-reflection double crystal topographs of large polished 001-plane-oriented faces intersecting different growth sectors, together with cathodoluminescence patterns, allowed identification of these sectors. A double-crystal arrangement, employing the -3 2 5 quartz reflection matching the symmetrical 004 diamond reflection in CuK(alpha 1) radiation, was used for measurement of lattice parameter differences with an accuracy of one and a half parts per million. The simultaneous investigation by means of Lang projection and section topography provided complementary information about the crystallographic defects and internal structures of growth sectors. Observation of the cuboctahedral diamond with a filter of peak transmittance at 430 nm revealed a 'Maltese cross' growth feature in the central (001) growth sector, which also affected the birefringence pattern. However, this feature only very slightly affected the double-crystal topographs.
USDA-ARS?s Scientific Manuscript database
The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J
2015-11-05
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 min. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η(2)=0.32)wrist;(P=0.05, η(2)=0.19)elbow;(P<0.05, η(2)=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η(2)=0.36)wrist;(P≤0.05, η(2)=0.30)elbow;(P≤0.05, η(2)=0.31)shoulder. Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J.
2015-01-01
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 minutes. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. Findings (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η2=0.32)wrist; (P=0.05, η2=0.19)elbow; (P<0.05, η2=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η2=0.36)wrist; (P≤0.05, η2=0.30)elbow; (P≤0.05, η2=0.31)shoulder. Conclusions Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. PMID:26472307
Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric
2017-08-01
We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.
Sleep patterns and match performance in elite Australian basketball athletes.
Staunton, Craig; Gordon, Brett; Custovic, Edhem; Stanger, Jonathan; Kingsley, Michael
2017-08-01
To assess sleep patterns and associations between sleep and match performance in elite Australian female basketball players. Prospective cohort study. Seventeen elite female basketball players were monitored across two consecutive in-season competitions (30 weeks). Total sleep time and sleep efficiency were determined using triaxial accelerometers for Baseline, Pre-match, Match-day and Post-match timings. Match performance was determined using the basketball efficiency statistic (EFF). The effects of match schedule (Regular versus Double-Header; Home versus Away) and sleep on EFF were assessed. The Double-Header condition changed the pattern of sleep when compared with the Regular condition (F (3,48) =3.763, P=0.017), where total sleep time Post-match was 11% less for Double-Header (mean±SD; 7.2±1.4h) compared with Regular (8.0±1.3h; P=0.007). Total sleep time for Double-Header was greater Pre-match (8.2±1.7h) compared with Baseline (7.1±1.6h; P=0.022) and Match-day (7.3±1.5h; P=0.007). Small correlations existed between sleep metrics at Pre-match and EFF for pooled data (r=-0.39 to -0.22; P≥0.238). Relationships between total sleep time and EFF ranged from moderate negative to large positive correlations for individual players (r=-0.37 to 0.62) and reached significance for one player (r=0.60; P=0.025). Match schedule can affect the sleep patterns of elite female basketball players. A large degree of inter-individual variability existed in the relationship between sleep and match performance; nevertheless, sleep monitoring might assist in the optimisation of performance for some athletes. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Cell force mapping using a double-sided micropillar array based on the moiré fringe method
NASA Astrophysics Data System (ADS)
Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.
2014-07-01
The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.
Mogul-Patterned Elastomeric Substrate for Stretchable Electronics.
Lee, Han-Byeol; Bae, Chan-Wool; Duy, Le Thai; Sohn, Il-Yung; Kim, Do-Il; Song, You-Joon; Kim, Youn-Jea; Lee, Nae-Eung
2016-04-01
A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nunez, Valerie; Shapley, Robert M; Gordon, James
2018-01-01
In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.
Shapley, Robert M.; Gordon, James
2018-01-01
In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753
Amorín, Manuel; Castedo, Luis; Granja, Juan R
2008-01-01
Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).
Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
Luo, W-J
2004-10-15
This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.
STT Doubles with Large Delta_M - Part VIII: Tau Per Ori Cam Mon Cnc Peg
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2017-04-01
The results of visual double star observing sessions suggested a pattern for STT doubles with large delta_M of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Again like for the other STT objects covered so far several of the components show parameters quite different from the current WDS data.
Quantifying Parkinson's disease progression by simulating gait patterns
NASA Astrophysics Data System (ADS)
Cárdenas, Luisa; Martínez, Fabio; Atehortúa, Angélica; Romero, Eduardo
2015-12-01
Modern rehabilitation protocols of most neurodegenerative diseases, in particular the Parkinson Disease, rely on a clinical analysis of gait patterns. Currently, such analysis is highly dependent on both the examiner expertise and the type of evaluation. Development of evaluation methods with objective measures is then crucial. Physical models arise as a powerful alternative to quantify movement patterns and to emulate the progression and performance of specific treatments. This work introduces a novel quantification of the Parkinson disease progression using a physical model that accurately represents the main gait biomarker, the body Center of Gravity (CoG). The model tracks the whole gait cycle by a coupled double inverted pendulum that emulates the leg swinging for the single support phase and by a damper-spring System (SDP) that recreates both legs in contact with the ground for the double phase. The patterns generated by the proposed model are compared with actual ones learned from 24 subjects in stages 2,3, and 4. The evaluation performed demonstrates a better performance of the proposed model when compared with a baseline model(SP) composed of a coupled double pendulum and a mass-spring system. The Frechet distance measured differences between model estimations and real trajectories, showing for stages 2, 3 and 4 distances of 0.137, 0.155, 0.38 for the baseline and 0.07, 0.09, 0.29 for the proposed method.
Preschoolers' Acquisition of Novel Verbs in the Double Object Dative
ERIC Educational Resources Information Center
Arunachalam, Sudha
2017-01-01
Children have difficulty comprehending novel verbs in the double object dative (e.g., "Fred blicked the dog a stick") as compared to the prepositional dative (e.g., "Fred blicked a stick to the dog"). We explored this pattern with 3 and 4 year olds (N = 60). In Experiment 1, we replicated the documented difficulty with the…
Wave-vector and polarization dependence of conical refraction.
Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2013-02-25
We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.
Wrinkling instabilities in soft bilayered systems
Budday, Silvia; Andres, Sebastian; Walter, Bastian
2017-01-01
Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385
NASA Astrophysics Data System (ADS)
Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang
2018-02-01
People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
NASA Astrophysics Data System (ADS)
Xu, Tianxiang; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2015-08-01
The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca0.28Ba0.72Nb2O6 (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found to be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.
Self-aligned quadruple patterning using spacer on spacer integration optimization for N5
NASA Astrophysics Data System (ADS)
Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter
2017-04-01
To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.
NASA Astrophysics Data System (ADS)
Zhu, Xiaomin; Cheng, Ping; Chen, Mingming; Ding, Guifu
2018-03-01
There have been significant efforts to boost the inductance value by adopting the sandwich structures using permalloy magnetic shielding layers. However, this structure will introduce high ac conductor losses and high eddy currents. In order to solve these problems, patterned permalloy can solve this problem effectively. According to the simulation results based on the application of finite element method in the frequency domain, the optimum permalloy pattern is which the blank of the permalloy are perpendicular to the coil inside. The double-layer planar inductor has a size of l5×1.5×0.1mm consisted of 13-turn spiral Cu coil for each layer and a 20μm-thick patterned permalloy magnetic shielding layer. The inductor shows a higher inductance than the traditional planar inductor. The patterned permalloy made the inductor more stable in high frequency than the none-patterned. And the inductor has an inductance of 1.3μH and quality factor of 2.8 at 1.5MHz, with an inductance per unit of 578nH/mm2, which is much higher than that in the reported literatures.
Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Rico, M L; Capmany, J
2008-05-01
We report a dual-wavelength continuous-wave laser at 542.4 and 546.8 nm based on an Nd(3+)-doped aperiodically poled lithium niobate crystal. Two fundamental infrared (IR) wavelengths at 1084.8 and 1093.6 nm are simultaneously oscillated and self-frequency-doubled to green. The aperiodic domain distribution patterned in the crystal allows for quasi-phase matched self-frequency-doubling of both IR fundamentals while avoiding their sum-frequency mixing.
Double-atomic layer of Tl on Si(111): Atomic arrangement and electronic properties
NASA Astrophysics Data System (ADS)
Mihalyuk, Alexey N.; Bondarenko, Leonid V.; Tupchaya, Alexandra Y.; Gruznev, Dimitry V.; Chou, Jyh-Pin; Hsing, Cheng-Rong; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.
2018-02-01
Metastable double-atomic layer of Tl on Si(111) has recently been found to display interesting electric properties, namely superconductivity below 0.96 K and magnetic-field-induced transition into an insulating phase intermediated by a quantum metal state. In the present work, using a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, in a combination with density-functional-theory calculations, we have characterized atomic and electronic properties of the Tl double layer on Si(111). The double Tl layer has been concluded to contain ∼ 2.4 monolayer of Tl. A top Tl layer has a '1 × 1' basic structure and displays 6 × 6 moiré pattern which originates from various residence sites of Tl atoms. Upon cooling below ∼ 140 K, the 6 × 6 moiré pattern changes to that having a 6√{ 3} × 6√{ 3} periodicity. However, the experimentally determined electron band dispersions show a 1 × 1 periodicity. The calculated band structure unfolded into the 1 × 1 surface Brillouin zone reproduces well the main features of the photoelectron spectra.
Single-row versus double-row rotator cuff repair: techniques and outcomes.
Dines, Joshua S; Bedi, Asheesh; ElAttrache, Neal S; Dines, David M
2010-02-01
Double-row rotator cuff repair techniques incorporate a medial and lateral row of suture anchors in the repair configuration. Biomechanical studies of double-row repair have shown increased load to failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis, findings that have provided impetus for clinical studies comparing single-row with double-row repair. Clinical studies, however, have not yet demonstrated a substantial improvement over single-row repair with regard to either the degree of structural healing or functional outcomes. Although double-row repair may provide an improved mechanical environment for the healing enthesis, several confounding variables have complicated attempts to establish a definitive relationship with improved rates of healing. Appropriately powered rigorous level I studies that directly compare single-row with double-row techniques in matched tear patterns are necessary to further address these questions. These studies are needed to justify the potentially increased implant costs and surgical times associated with double-row rotator cuff repair.
STT Doubles with Large DM - Part IV: Ophiuchus and Hercules
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2016-04-01
The results of visual double star observing sessions suggested a pattern for STT doubles with large DM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. We found that like in the other constellations covered so far (Gem, Leo, UMa, etc.) at least several of the selected objects in Ophiuchus and Hercules show parameters quite different from the current WDS data.
STT Doubles with Large DM - Part V: Aquila, Delphinus, Cygnus, Aquarius
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2016-07-01
The results of visual double star observing sessions suggested a pattern for STT doubles with large DM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. We found that, as in the other constellations covered so far (Gem, Leo, UMa etc.), at least several of the selected objects in Aql, Del, Cyg and Aqr show parameters quite different from the current WDS data
Young's double-slit interference with two-color biphotons.
Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2017-12-12
In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
Calibration and Use of B Dot Probes for Electromagnetic Measuring
1977-08-09
response. E. Time Domain Reflectometry Measurements Pulse impedance measurements for the 1.75-in. diameter double-gap probe design were first performed...Far Field (Radiation) Patterns of a B Dot Probe 1. Anechoic Chamber The facility utilized for the probe patterns was the NASA 120-ft chamber at
Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres
2005-11-01
Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.
Measurement potential of laser speckle velocimetry
NASA Technical Reports Server (NTRS)
Adrian, R. J.
1982-01-01
Laser speckle velocimetry, the measurement of fluid velocity by measuring the translation of speckle pattern or individual particles that are moving with the fluid, is described. The measurement is accomplished by illuminating the fluid with consecutive pulses of Laser Light and recording the images of the particles or the speckles on a double exposed photographic plate. The plate contains flow information throughout the image plane so that a single double exposure may provide data at hundreds or thousands of points in the illuminated region of the fluid. Conventional interrogation of the specklegram involves illuminating the plate to form Young's fringes, whose spacing is inversely proportional to the speckle separation. Subsequently the fringes are digitized and analyzed in a computer to determine their frequency and orientation, yielding the velocity magnitude and orientation. The Young's fringe technique is equivalent to performing a 2-D spatial correlation of the double exposed specklegram intensity pattern, and this observation suggests that correlation should be considered as an alternative processing method. The principle of the correlation technique is examined.
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Kosovichev, A. G.
2018-02-01
Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called Λ-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon can result from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.
Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures
NASA Technical Reports Server (NTRS)
Butler, J. K.; Botez, D.
1982-01-01
Mode behavior of nonplanar double-heterojunction (DH) and large-optical-cavity (LOC) lasers is investigated using the effective index method to model the lateral field distribution. The thickness variations of various layers for the devices discussed are correlated with the growth characteristics of liquid-phase epitaxy over topographical features (channels, mesas) etched into the substrate. The effective dielectric profiles of constricted double-heterojunction (CDH)-LOC lasers show a strong influence on transverse mode operation: the fundamental transverse mode (i.e., in the plane perpendicular to the junction) may be laterally index-guided, while the first (high)-order mode is laterally index-antiguided. The analytical model developed uses a smoothly varying hyperbolic cosine distribution to characterize lateral index variations. The waveguide model is applied to several lasers to illustrate conditions necessary to convert leaky modes to trapped ones via the active-region gain distribution. Theoretical radiation patterns are calculated using model parameters, and matched to an experimental far-field pattern.
Geometric prepatterning-based tuning of the period doubling onset strain during thin-film wrinkling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Wrinkling of thin films is an easy-to-implement and low-cost technique to fabricate stretch-tunable periodic micro and nanoscale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period-doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric prepatterning-based technique is introduced that can be implemented even with limited system knowledge to predictively delay period doubling. The technique comprises prepatterning the film/base bilayer with a sinusoidal pattern that has the same period as themore » natural period of the system. This technique has been verified via physical and computational experiments on the polydimethylsiloxane (PDMS)/glass bilayer system. It is observed that the onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest prepattern aspect ratio (2·amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain increases with increasing prepattern amplitude and (ii) the delaying effect can be captured entirely by the prepattern geometry. Therefore, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Furthermore, geometric prepatterning is a practical scheme to increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
Geometric prepatterning-based tuning of the period doubling onset strain during thin-film wrinkling
Saha, Sourabh K.
2017-04-05
Wrinkling of thin films is an easy-to-implement and low-cost technique to fabricate stretch-tunable periodic micro and nanoscale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period-doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric prepatterning-based technique is introduced that can be implemented even with limited system knowledge to predictively delay period doubling. The technique comprises prepatterning the film/base bilayer with a sinusoidal pattern that has the same period as themore » natural period of the system. This technique has been verified via physical and computational experiments on the polydimethylsiloxane (PDMS)/glass bilayer system. It is observed that the onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest prepattern aspect ratio (2·amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain increases with increasing prepattern amplitude and (ii) the delaying effect can be captured entirely by the prepattern geometry. Therefore, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Furthermore, geometric prepatterning is a practical scheme to increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko
2006-11-01
Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.
Regional expression patterns of taste receptors and gustducin in the mouse tongue.
Kim, Mi-Ryung; Kusakabe, Yuko; Miura, Hirohito; Shindo, Yoichiro; Ninomiya, Yuzo; Hino, Akihiro
2003-12-12
In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns. The most striking difference between fungiform and circumvallate papillae was observed in their co-expression patterns of T1r2, T1r3, and gustducin. T1r2-positive cells in fungiform papillae co-expressed T1r3 and gustducin, whereas T1r2 and T1r3 double-positive cells in circumvallate papillae merely expressed gustducin. These results suggested that in fungiform papillae, gustducin might play a role in the sweet taste signal transduction cascade mediated by a sweet receptor based on the T1r2 and T1r3 combination, in fungiform papillae.
Dermoscopy of Pigmented Actinic Keratosis of the Face: A Study of 232 Cases.
Kelati, A; Baybay, H; Moscarella, E; Argenziano, G; Gallouj, S; Mernissi, F Z
2017-11-01
The diagnosis of pigmented actinic keratosis (PAK) is often challenging because of overlapping features with lentigo maligna. To investigate dermoscopic patterns of PAK according to their different evolutionary stages, and to correlate the pattern with clinical characteristics of the patients. Descriptive and analytical study of 232 PAK. Dermoscopic patterns were divided into two categories: the follicule surroundings' abnormalities (FSA) and follicular keratosis' abnormalities (FKA). FSA and FKA dermoscopic patterns were related to male gender, except for star-like appearance, double white clods and dermoscopic horn (p≤0.04). Rhomboidal, annular granular pattern, gray halo, white circle and double clods were dermoscopic pattern significantly related to xeroderma pigmentosum's type of skin. Based on the evolutionary stages of PAK, the jelly sign was significantly related to thin patches of PAK. Central crusts and scales were related to thick plaques and the star-like appearance to hypertrophic PAK. The presence of 2 or more dermoscopic signs in both FSA and FKA was noticed in 99.1% of lesions. The dermoscopic diagnosis of PAK vary according to the evolutionary stages of the disease, this will increase the diagnosis accuracy, with therapeutic implications. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianxiang; Yu, Haohai, E-mail: haohaiyu@sdu.edu.cn; Zhang, Huaijin, E-mail: huaijinzhang@sdu.edu.cn
2015-08-07
The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found tomore » be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.« less
Double dipole antenna SIS receivers at 100 and 400 GHz
NASA Technical Reports Server (NTRS)
Skalare, A.; Vandestadt, H.; Degraauw, T.; Panhuyzen, R. A.; Dierichs, M. M. T. M.
1992-01-01
Antenna patterns were measured between 95 and 120 GHz for a double dipole antenna / ellipsoidal lens combination. The structure produces a non-astigmatic beam with low side lobe levels over that whole band. A heterodyne SIS receiver based on this concept gave a best noise temperature of 145 K DSB at 98 GHz. Measurements were also made with a 400 GHz heterodyne SIS receiver, using a double dipole antenna in conjunction with a hyperhemispherical lens. The best noise temperature was 220 K DSB at 402 GHz. On-chip stubs were used to tune out the SIS junction capacitance.
Retrocausation acting in the single-electron double-slit interference experiment
NASA Astrophysics Data System (ADS)
Hokkyo, Noboru
The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.
Babinet's principle in double-refraction systems
NASA Astrophysics Data System (ADS)
Ropars, Guy; Le Floch, Albert
2014-06-01
Babinet's principle applied to systems with double refraction is shown to involve spatial interchanges between the ordinary and extraordinary patterns observed through two complementary screens. As in the case of metamaterials, the extraordinary beam does not follow the Snell-Descartes refraction law, the superposition principle has to be applied simultaneously at two points. Surprisingly, by contrast to the intuitive impression, in the presence of the screen with an opaque region, we observe that the emerging extraordinary photon pattern, which however has undergone a deviation, remains fixed when a natural birefringent crystal is rotated while the ordinary one rotates with the crystal. The twofold application of Babinet's principle implies intensity and polarization interchanges but also spatial and dynamic interchanges which should occur in birefringent metamaterials.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.
2006-01-01
The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.
Numerical analysis of the effect of side holes of a double J stent on flow rate and pattern.
Kim, Kyung-Wuk; Choi, Young Ho; Lee, Seung Bae; Baba, Yasutaka; Kim, Hyoung-Ho; Suh, Sang-Ho
2015-01-01
A double J stent has been used widely these days for patients with a ureteral stenosis or with renal stones and lithotripsy. The stent has multiple side holes in the shaft, which supply detours for urine flow. Even though medical companies produce various forms of double J stents that have different numbers and positions of side holes in the stent, the function of side holes in fluid dynamics has not been studied well. Here, the flow rate and pattern around the side holes of a double J stent were evaluated in curved models of a stented ureter based on the human anatomy and straight models for comparison. The total flow rate was higher in the stent with a greater number of side holes. The inflow and outflow to the stent through the side holes in the curved ureter was more active than in the straight ureter, which means the flow through side holes exists even in the ureter without ureteral stenosis or occlusion and even in the straight ureter. When the diameter of the ureter changed, the in-stent flow rate in the ureter did not change and the extraluminal flow rate was higher in the ureter with a greater diameter.
Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.
Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T
2018-04-04
Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.
NASA Astrophysics Data System (ADS)
Shao, Yun; Yuan, Zongqiang; Ye, Difa; Fu, Libin; Liu, Ming-Ming; Sun, Xufei; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan
2017-12-01
We measure the wavelength-dependent correlated-electron momentum (CEM) spectra of strong-field double ionization of Xe atoms, and observe a significant change from a roughly nonstructured (uncorrelated) pattern at 795 nm to an elongated distribution with V-shaped structure (correlated) at higher wavelengths of 1320 and 1810 nm, pointing to the transition of the ionization dynamics imprinted in the momentum distributions. These observations are well reproduced by a semiclassical model using Green-Sellin-Zachor potential to take into account the screening effect. We show that the momentum distribution of Xe2+ undergoes a bifurcation structure emerging from single-hump to double-hump structure as the laser wavelength increases, which is dramatically different from that of He2+, indicating the complex multi-electron effect. By back analyzing the double ionization trajectories in the phase space (the initial transverse momentum and the laser phase at the tunneling exit) of the first tunneled electrons, we provide deep insight into the physical origin for electron correlation dynamics. We find that a random distribution in phase-space is responsible for a less distinct structured CEM spectrum at shorter wavelength. While increasing the laser wavelength, a topology-invariant pattern in phase-space appears, leading to the clearly visible V-shaped structures.
Double-well chimeras in 2D lattice of chaotic bistable elements
NASA Astrophysics Data System (ADS)
Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.
2018-01-01
We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.
Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning
2018-02-01
Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.
The City of Ada Oklahoma obtains water from the Simpson-Arbuckle aquifer located 19 km south of town. During winter the typical water demand is approximately 15,000 m3 per day, while during the drought of 2011 demand more than doubled. In order to understand water use patterns,...
Patterns and Trends of Canadian Social Work Doctoral Dissertations
ERIC Educational Resources Information Center
Rothwell, David W.; Lach, Lucyana; Blumenthal, Anne; Akesson, Bree
2015-01-01
The first social work doctoral program in Canada began in 1952. Relatively recently, the number of programs has grown rapidly, doubling in the past 10 years to 14 programs. Despite the expansion there is no systematic understanding of the patterns and trends in doctoral research. In this study we review 248 publicly available dissertations from…
Gartner, Agnès; El Ati, Jalila; Traissac, Pierre; Bour, Abdellatif; Berger, Jacques; Landais, Edwige; El Hsaïni, Houda; Ben Rayana, Chiheb; Delpeuch, Francis
2014-01-01
In North Africa, overnutrition has dramatically increased with the nutrition transition while micronutrient deficiencies persist, resulting in clustering of opposite types of malnutrition that can present a unique difficulty for public health interventions. We assessed the magnitude of the double burden of malnutrition among urban Moroccan and Tunisian women, as defined by the coexistence of overall or central adiposity and anemia or iron deficiency (ID), and explored the sociodemographic patterning of individual double burden. In cross-sectional surveys representative of the region around the capital city, we randomly selected 811 and 1689 nonpregnant women aged 20-49 y in Morocco and Tunisia, respectively. Four double burdens were analyzed: overweight (body mass index ≥25 kg/m(2)) or increased risk abdominal obesity (waist circumference ≥80 cm) and anemia (blood hemoglobin <120 g/L) or ID (C-reactive protein-corrected serum ferritin <15 μg/L). Adjusted associations with 9 sociodemographic factors were estimated by logistic regression. The prevalence of overweight and ID was 67.0% and 45.2% in Morocco, respectively, and 69.5% and 27.0% in Tunisia, respectively, illustrating the population-level double burden. The coexistence of overall or central adiposity with ID was found in 29.8% and 30.1% of women in Morocco, respectively, and in 18.2% and 18.3% of women in Tunisia, respectively, quite evenly distributed across age, economic, or education groups. Generally, the rare, associated sociodemographic factors varied across the 4 subject-level double burdens and the 2 countries and differed from those usually associated with adiposity, anemia, or ID. Any double burden combining adiposity and anemia or ID should therefore be taken into consideration in all women. This trial was registered at clinicaltrials.gov as NCT01844349.
‘Double cortex’ sign on FDG-PET/CT in diffuse band heterotopia
Tripathi, Madhavi; Tripathi, Manjari; Kumar, Ganesh; Malhotra, Arun; Bal, Chandra Sekhar
2013-01-01
F-18 Fluorodeoxyglucose (FDG) Positron emission tomography/Computed Tomography (PET/CT) has come to play an increasingly important role for the pre-surgical evaluation of drug resistant epilepsy and complements Magnetic Resonance Imaging (MRI) in the evaluation of grey matter heterotopias. This case illustrates the characteristic pattern of metabolic abnormality in diffuse band heterotopia (DBH) which is otherwise called double cortex syndrome. The presence of metabolic activity in the heterotopic inner cortical band and in the overlying true cortex gives rise to the ‘double cortex’ sign on FDG-PET, concurrent CT provides a good anato-metabolic coregistration. PMID:24379541
Some Dimensions of Intercultural Variation and Their Implication for Interpersonal Behavior
1981-05-01
chauvinist belief system in Euro-American cultures which is contrasted with a unisex ideology. Another form of it is found in Hispanic cultures: Machismo ...Latino emphasis on machismo , and the double standard of morality for men and women are well known. Marianismo is a pattern of female submission, self...appears that there is more differentiation by sex in high masculine countries. The Latin emphasis on machismo and marianismo, and the double standard
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes
2013-11-01
Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.
Parallel object-oriented data mining system
Kamath, Chandrika; Cantu-Paz, Erick
2004-01-06
A data mining system uncovers patterns, associations, anomalies and other statistically significant structures in data. Data files are read and displayed. Objects in the data files are identified. Relevant features for the objects are extracted. Patterns among the objects are recognized based upon the features. Data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) sky survey was used to search for bent doubles. This test was conducted on data from the Very Large Array in New Mexico which seeks to locate a special type of quasar (radio-emitting stellar object) called bent doubles. The FIRST survey has generated more than 32,000 images of the sky to date. Each image is 7.1 megabytes, yielding more than 100 gigabytes of image data in the entire data set.
Astigmatism correction of a non-imaging double spectrometer fitted with a 2D array detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaney, P.P.; Ernst, S.L.; Blackshire, J.
1992-12-01
A SPEX 1401 double spectrometer was adapted for a liquid nitrogen cooled CCD detector to permit both spectral and spatial analysis of ceramic specimens in a laser Raman microprobe system. The exit image of the spectrometer suffers from astigmatism due to off-axis spherical mirrors. A cylindrical lens was added before the CCD to correct for the astigmatism. The spectrometer and several lenses were modeled using an optical ray tracing program to characterize the astigmatism and to optimize the locations of the lens and the detector. The astigmatism and the spot pattern sizes determined by the model were in good agreementmore » with he observed performance of the modified spectrometer-detector system. Typical spot patterns fell within the 23 {mu}m square pixel size.« less
Formation of Twisted Elephant Trunks in the Rosette Nebula
NASA Astrophysics Data System (ADS)
Carlqvist, P.; Gahm, G. F.; Kristen, H.
New observations show that dark elephant trunks in the Rosette nebula are often built up by thin filaments. In several of the trunks the filaments seem to form a twisted pattern. This pattern is hard to reconcile with current theory. We propose a new model for the formation of twisted elephant trunks in which electromagnetic forces play an important role. The model considers the behaviour of a twisted magnetic filament in a molecular cloud, where a cluster of hot stars has been recently born. As a result of stellar winds, and radiation pressure, electromagnetic forces, and inertia forces part of the filament can develop into a double helix pointing towards the stars. The double helix represents the twisted elephant trunk. A simple analogy experiment visualizes and supports the trunk model.
NASA Astrophysics Data System (ADS)
Takeda, Masafumi; Nakano, Kazuya; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2012-09-01
It has been shown that biometric information can be used as a cipher key for binary data encryption by applying double random phase encoding. In such methods, binary data are encoded in a bit pattern image, and the decrypted image becomes a plain image when the key is genuine; otherwise, decrypted images become random images. In some cases, images decrypted by imposters may not be fully random, such that the blurred bit pattern can be partially observed. In this paper, we propose a novel bit coding method based on a Fourier transform hologram, which makes images decrypted by imposters more random. Computer experiments confirm that the method increases the randomness of images decrypted by imposters while keeping the false rejection rate as low as in the conventional method.
Sati, Leyla; Ovari, Laszlo; Bennett, David; Simon, Stephen D; Demir, Ramazan; Huszar, Gabor
2008-04-01
Individual spermatozoa were assessed with pairs of probes for persistent histones and cytoplasmic retention, persistent histones and DNA fragmentation, and persistent histones and apoptotic markers. The individual spermatozoa were treated sequentially with combinations of probes for these cytoplasmic and nuclear biochemical markers. Sperm fields were recorded with computer-assisted imaging, and staining patterns with the two probes in the same spermatozoa were examined and scored as light, intermediate or dark (mature to arrested-maturity spermatozoa). The effects of arrested sperm maturation were similar with respect to the cytoplasmic and nuclear characteristics of spermatozoa in 84% of cells, indicating that cytoplasmic and nuclear attributes of arrested sperm maturation are related. However, there were moderate (intermediate-dark or intermediate-light patterns, 14.5% of cells) or major (light-dark patterns, 1.6% of cells) discrepancies in the intensity of the double staining patterns. Thus, testing with single maturity markers may not be fully reliable. These findings are important with respect to: (i) arrested sperm maturation; (ii) potential efficacy of antioxidant and similar therapeutic strategies in subfertile men, as spermatozoa with infrastructure defects due to mismaturation or maturation arrest are unlikely to respond to interventions; and (iii) detection of adverse male environmental exposures.
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.
Double-slit interferometry with a Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.A.; Berman, G.P.; Bishop, A.R.
2005-03-01
A Bose-Einstein 'double-slit' interferometer has been recently realized experimentally by Y. Shin et al., Phys. Rev. Lett. 92 050405 (2004). We analyze the interferometric steps by solving numerically the time-dependent Gross-Pitaevskii equation in three-dimensional space. We focus on the adiabaticity time scales of the problem and on the creation of spurious collective excitations as a possible source of the strong degradation of the interference pattern observed experimentally. The role of quantum fluctuations is discussed.
Three-point functions in duality-invariant higher-derivative gravity
Naseer, Usman; Zwiebach, Barton
2016-03-21
Here, doubled α'-geometry is the simplest higher-derivative gravitational theory with exact global duality symmetry. We use the double metric formulation of this theory to compute on-shell three-point functions to all orders in α'. A simple pattern emerges when comparing with the analogous bosonic and heterotic three-point functions. As in these theories, the amplitudes factorize. The theory has no Gauss-Bonnet term, but contains a Riemann-cubed interaction to second order in α'.
Realization of a double-barrier resonant tunneling diode for cavity polaritons.
Nguyen, H S; Vishnevsky, D; Sturm, C; Tanese, D; Solnyshkov, D; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Malpuech, G; Bloch, J
2013-06-07
We report on the realization of a double-barrier resonant tunneling diode for cavity polaritons, by lateral patterning of a one-dimensional cavity. Sharp transmission resonances are demonstrated when sending a polariton flow onto the device. We show that a nonresonant beam can be used as an optical gate and can control the device transmission. Finally, we evidence distortion of the transmission profile when going to the high-density regime, signature of polariton-polariton interactions.
STT Doubles with Large δM - Part VI: Cygnus Multiples
NASA Astrophysics Data System (ADS)
Knapp, Wilfried; Nanson, John
2016-10-01
The results of visual double star observing sessions suggested a pattern for STT doubles with large delta_M of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Of these objects we found three rather complex multiples in Cygnus of special interest so we decided to write a separate report to have more room to include the non STT components as well. Again like for the other objects covered so far several of the components show parameters quite different from the current WDS data.
The treatment of idiopathic scoliosis in adolescents: rotation or in situ bending?
Gennari, J M; Tallet, J M; Hornung, H; Bergoin, M
1997-12-01
Rotation alone is not fully efficient in order to correct all types of scoliotic curvatures. We report a series of 30 cases instrumented with the EUROS spine system and analyse reductions obtained with in situ rotation or bending alone or with combined maneuvres. The average age of surgery is 17 years for this series composed of 24 female and 6 male patients. The average follow-up is 2.3 years. The curve patterns are displayed with 6 major thoracic, 5 genuine double major, 4 double major thoracic predominant, 6 double major lumbar predominant and 9 double thoracic curves. Combination of both reduction techniques is advisable and is to be made according to the type of curvature and its reducibility in situ bending is made easier with this system without lockers and by reduced diameter of the rod.
Johnson, Brett A; Ong, Joan; Lee, Kaman; Ho, Sabrina L; Arguello, Spart; Leon, Michael
2007-02-01
Many naturally occurring volatile chemicals that are detected through the sense of smell contain unsaturated (double or triple) carbon-carbon bonds. These bonds can affect odors perceived by humans, yet in a prior study of unsaturated hydrocarbons we found only very minor effects of unsaturated bonds. In the present study, we tested the possibility that unsaturated bonds affect the recognition of oxygen-containing functional groups, because humans perceive odor differences between such molecules. We therefore compared spatial activity patterns across the entire glomerular layer of the rat olfactory bulb evoked by oxygen-containing odorants differing systematically in the presence, position, number, and stereochemistry of unsaturated bonds. We quantified activity patterns by mapping [(14)C]2-deoxyglucose uptake into anatomically standardized data matrices, which we compared statistically. We found that the presence and number of unsaturated bonds consistently affected activity patterns, with the largest effect related to the presence of a triple bond. Effects of bond saturation included a loss of activity in glomeruli strongly activated by the corresponding saturated odorants and/or the presence of activity in areas not stimulated by the corresponding saturated compounds. The position of double bonds also affected patterns of activity, but cis vs. trans configuration had no measurable impact in all five sets of stereoisomers that we studied. These results simultaneously indicate the importance of interactions between carbon-carbon bond types and functional groups in the neural coding of odorant chemical information and highlight the emerging concept that the rat olfactory system is more sensitive to certain types of chemical differences than others. (c) 2006 Wiley-Liss, Inc.
Born’s rule as signature of a superclassical current algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fussy, S.; Mesa Pascasio, J.; Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operng. 9, 1040 Vienna
2014-04-15
We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with themore » application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns and exact reproduction of Talbot distance for N slits.« less
Double exposure technique for 45nm node and beyond
NASA Astrophysics Data System (ADS)
Hsu, Stephen; Park, Jungchul; Van Den Broeke, Douglas; Chen, J. Fung
2005-11-01
The technical challenges in using F2 lithography for the 45nm node, along with the insurmountable difficulties in EUV lithography, has driven the semiconductor chipmaker into the low k1 lithography era under the pressure of ever decreasing feature sizes. Extending lithography towards lower k1 puts heavy demand on the resolution enhancement technique (RET), exposure tool, and the need for litho friendly design. Hyper numerical aperture (NA) exposure tools, immersion, and double exposure techniques (DET's) are the promising methods to extend lithography manufacturing to the 45nm node at k1 factors below 0.3. Scattering bars (SB's) have become an integral part of the lithography process as chipmakers move to production at ever lower k1 factors. To achieve better critical dimension (CD) control, polarization is applied to enhance the image contrast in the preferential imaging orientation, which increases the risk of SB printability. The optimum SB width is approximately (0.20 ~ 0.25)*(λ/NA). When the SB width becomes less than the exposure wavelength on the 4X mask, Kirchhoff's scalar theory under predicts the SB intensity. The optical weighting factor of the SB increases (Figure 1b) and the SB's become more susceptible to printing. Meanwhile, under hyper NA conditions, the effectiveness of "subresolution" SB's is significantly diminished. A full-sized scattering bars (FSB) scheme becomes necessary. Double exposure methods, such as using ternary 6% attenuated PSM (attPSM) for DDL, are good imaging solutions that can reach and likely go beyond the 45nm node. Today DDL, using binary chrome masks, is capable of printing 65 nm device patterns. In this work, we investigate the use of DET with 6% attPSM masks to target 45nm node device. The SB scalability and printability issues can be taken cared of by using "mutual trimming", i.e., with the combined energy from the two exposures. In this study, we share our findings of using DET to pattern a 45nm node device design with polarization and immersion. We also explore other double patterning methods which in addition to having two exposures, incorporates double coat/developing/etch processing to break the 0.25 k1 barrier.
Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen
2017-04-15
We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.
Generation of tunable double Fano resonances by plasmon hybridization in graphene–metal metamaterial
NASA Astrophysics Data System (ADS)
Yan, Zhendong; Qian, Lina; Zhan, Peng; Wang, Zhenlin
2018-07-01
We proposed the excitation of double Fano resonances by the destructive interference between the narrow electric symmetric/antisymmetric resonant modes formed by plasmon hybridization and a broad magnetic dipole resonance in a novel hybrid metamaterial composed of periodically patterned stacked graphene–ribbon pairs and gold split-ring resonators. The double Fano transparency windows in this hybrid metamaterial can be actively controlled by tuning the Fermi energy of graphene through the use of electric gating and its electronic mobility. Our designed dual Fano resonances exhibit a large group index associated with the resonance response in the transparency windows, suggesting promising applications in nanophotonics, such as a slow light device.
Composite flexible blanket insulation
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.
Bifurcation and Firing Patterns of the Pancreatic β-Cell
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Shenquan; Liu, Xuanliang; Zeng, Yanjun
Using a model of individual isolated pancreatic β-cells, we investigated bifurcation diagrams of interspike intervals (ISIs) and largest Lyapunov exponents (LLE), which clearly demonstrated a wide range of transitions between different firing patterns. The numerical simulation results revealed the effect of different time constants and ion channels on the neuronal discharge rhythm. Furthermore, an individual cell exhibited tonic spiking, square-wave bursting, and tapered bursting. Additionally, several bifurcation phenomena can be observed in this paper, such as period-doubling, period-adding, inverse period-doubling and inverse period-adding scenarios. In addition, we researched the mechanisms underlying two kinds of bursting (tapered and square-wave bursting) by use of fast-slow dynamics analysis. Finally, we analyzed the codimension-two bifurcation of the fast subsystem and studied cusp bifurcation, generalized Hopf (or Bautin) bifurcation and Bogdanov-Takens bifurcation.
Double sided circuit board and a method for its manufacture
Lindenmeyer, Carl W.
1989-01-01
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths.
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.
1978-01-01
Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.
Mechanisms of heat and mass transfer across a double-diffusive interface
NASA Astrophysics Data System (ADS)
Ko, B. H.; Smith, K. A.
1984-06-01
Flux measurements in an aqueous two-layer double-diffusive system using heat and NaCl confirmed the existence of a regime in which the ratio of the buoyancy fluxes (BFR) of salt and heat is independent of the stability ratio (R = beta(delta C)/alpha(delta T)). Linear analysis showed that the quiescent system can become unstable to small perturbations even when the lower layer is denser than the upper. If R is large, the most unstable mode presents as an oscillatory, antisymmetric pattern.
Double sided circuit board and a method for its manufacture
Lindenmeyer, C.W.
1988-04-14
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths. 4 figs.
Double sided circuit board and a method for its manufacture
Lindenmeyer, Carl W.
1989-07-04
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Liu, D. H.
1981-01-01
The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.
Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte
NASA Astrophysics Data System (ADS)
Chen, Siyu; Chen, Ying; Li, Chengyuan; Ouyang, Huijun; Qin, Shuai; Song, Ye
2018-04-01
Normally, the well-ordered anodic TiO2 nanotubes (ATNTs) are obtained in NH4F electrolyte, after annealing, the double-walled structure of nanotubes will appear. Here, after adding H3PO4 into NHF4 electrolyte, we got the double-walled structure of nanotubes by anodizing without annealing, which means the direct existence of anion-contaminated layer in ATNTs. Influence of H3PO4 content on anodizing voltage and morphology of ATNTs were compared in detail. The XRD pattern illustrated that the crystallinity decreases with increasing H3PO4 concentration, and the anion-contaminated layer thickens with the increase of H3PO4 concentration. Meanwhile, the existence of the anion-contaminated layer also proved the limitations of the filed-assisted dissolution theory, while the double-walled structure can be explained by oxygen bubble model and plastic flow model.
Esquivel, Amanda O.; Duncan, Douglas D.; Dobrasevic, Nikola; Marsh, Stephanie M.; Lemos, Stephen E.
2015-01-01
Background: Rotator cuff tendinopathy is a frequent cause of shoulder pain that can lead to decreased strength and range of motion. Failures after using the single-row technique of rotator cuff repair have led to the development of the double-row technique, which is said to allow for more anatomical restoration of the footprint. Purpose: To compare 5 different types of suture patterns while maintaining equality in number of anchors. The hypothesis was that the Mason-Allen–crossed cruciform transosseous-equivalent technique is superior to other suture configurations while maintaining equality in suture limbs and anchors. Study Design: Controlled laboratory study. Methods: A total of 25 fresh-frozen cadaveric shoulders were randomized into 5 suture configuration groups: single-row repair with simple stitch technique; single-row repair with modified Mason-Allen technique; double-row Mason-Allen technique; double-row cross-bridge technique; and double-row suture bridge technique. Load and displacement were recorded at 100 Hz until failure. Stiffness and bone mineral density were also measured. Results: There was no significant difference in peak load at failure, stiffness, maximum displacement at failure, or mean bone mineral density among the 5 suture configuration groups (P < .05). Conclusion: According to study results, when choosing a repair technique, other factors such as number of sutures in the repair should be considered to judge the strength of the repair. Clinical Relevance: Previous in vitro studies have shown the double-row rotator cuff repair to be superior to the single-row repair; however, clinical research does not necessarily support this. This study found no difference when comparing 5 different repair methods, supporting research that suggests the number of sutures and not the pattern can affect biomechanical properties. PMID:26665053
Design technology co-optimization for 14/10nm metal1 double patterning layer
NASA Astrophysics Data System (ADS)
Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi
2016-03-01
Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.
Particle Swarm Optimization with Double Learning Patterns.
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.
NASA Astrophysics Data System (ADS)
Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong
2016-04-01
In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.
2004-04-15
H-1 Engine major components with callouts (chart 1): The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.
2004-04-15
H-1 engine major components with callouts (chart 1). The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.
Functional Neuroanatomical Evidence for the Double-Deficit Hypothesis of Developmental Dyslexia
Norton, Elizabeth S.; Black, Jessica M.; Stanley, Leanne M.; Tanaka, Hiroko; Gabrieli, John D. E.; Sawyer, Carolyn; Hoeft, Fumiko
2015-01-01
The double-deficit hypothesis of dyslexia posits that both rapid naming and phonological impairments can cause reading difficulties, and that individuals who have both of these deficits show greater reading impairments compared to those with a single deficit. Despite extensive behavioral research, the brain basis of poor reading with a double-deficit has never been investigated. The goal of the study was to evaluate the double-deficit hypothesis using functional MRI. Activation patterns during a printed word rhyme judgment task in 90 children with a wide range of reading abilities showed dissociation between brain regions that were sensitive to phonological awareness (left inferior frontal and inferior parietal regions) and rapid naming (right cerebellar lobule VI). More specifically, the double-deficit group showed less activation in the fronto-parietal reading network compared to children with only a deficit in phonological awareness, who in turn showed less activation than the typically-reading group. On the other hand, the double-deficit group showed less cerebellar activation compared to children with only a rapid naming deficit, who in turn showed less activation than the typically-reading children. Functional connectivity analyses revealed that bilateral prefrontal regions were key for linking brain regions associated with phonological awareness and rapid naming, with the double-deficit group being the most aberrant in their connectivity. Our study provides the first functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. PMID:24953957
Polarized Light Corridor Demonstrations.
ERIC Educational Resources Information Center
Davies, G. R.
1990-01-01
Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)
Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
Benammar Elgaaied, Amel; Cascio, Donato; Bruno, Salvatore; Ciaccio, Maria Cristina; Cipolla, Marco; Fauci, Alessandro; Morgante, Rossella; Taormina, Vincenzo; Gorgi, Yousr; Marrakchi Triki, Raja; Ben Ahmed, Melika; Louzir, Hechmi; Yalaoui, Sadok; Imene, Sfar; Issaoui, Yassine; Abidi, Ahmed; Ammar, Myriam; Bedhiafi, Walid; Ben Fraj, Oussama; Bouhaha, Rym; Hamdi, Khouloud; Soumaya, Koudhi; Neili, Bilel; Asma, Gati; Lucchese, Mariano; Catanzaro, Maria; Barbara, Vincenza; Brusca, Ignazio; Fregapane, Maria; Amato, Gaetano; Friscia, Giuseppe; Neila, Trai; Turkia, Souayeh; Youssra, Haouami; Rekik, Raja; Bouokez, Hayet; Vasile Simone, Maria; Fauci, Francesco; Raso, Giuseppe
2016-01-01
Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of a CAD (Computer Aided Detection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%). PMID:27042658
NASA Astrophysics Data System (ADS)
Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.
2017-02-01
Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.
Measurement-induced decoherence and information in double-slit interference.
Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael
2016-07-01
The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which "path" the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu
Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storagemore » applications.« less
NASA Astrophysics Data System (ADS)
Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-02-01
We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.
Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.
1995-01-01
1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228
Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal
2014-07-14
The combination of two drop makers such as flow focusing geometries or ┬ junctions is commonly used in microfluidics to fabricate monodisperse double emulsions and novel fluid-based materials. Here we investigate the physics of the encapsulation of small droplets inside large drops that is at the core of such processes. The number of droplets per drop studied over time for large sequences of consecutive drops reveals that the dynamics of these systems are complex: we find a succession of well-defined elementary patterns and defects. We present a simple model based on a discrete approach that predicts the nature of these patterns and their non-trivial scheme of arrangement in a sequence as a function of the ratio of the two timescales of the problem, the production times of droplets and drops. Experiments validate our model as they concur very well with predictions.
Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750
Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.
Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
Micromachined mold-type double-gated metal field emitters
NASA Astrophysics Data System (ADS)
Lee, Yongjae; Kang, Seokho; Chun, Kukjin
1997-12-01
Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.
Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh
2017-07-01
This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.
Kelley, Algernon T; Ngunjiri, Johnpeter N; Serem, Wilson K; Lawrence, Steve O; Yu, Jing-Jiang; Crowe, William E; Garno, Jayne C
2010-03-02
Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.
Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique
NASA Technical Reports Server (NTRS)
Wiedlocher, D. E.; Kinser, D. L.
1992-01-01
Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.
Anchoring in a novel bimanual coordination pattern.
Maslovat, Dana; Lam, Melanie Y; Brunke, Kirstin M; Chua, Romeo; Franks, Ian M
2009-02-01
Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.
Processes and mechanisms of persistent extreme precipitation events in East China
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Chen, Yang
2014-11-01
This study mainly presents recent progresses on persistent extreme precipitation events (PEPEs) in East China. A definition focusing both persistence and extremity of daily precipitation is firstly proposed. An identification method for quasi-stationary regional PEPEs is then designed. By utilizing the identified PEPEs in East China, typical circulation configurations from the lower to the upper troposphere are confirmed, followed by investigations of synoptic precursors for key components with lead time of 1-2 weeks. Two characteristic circulation patterns responsible for PEPEs in East China are identified: a double blocking high type and a single blocking high type. They may account for occurrence of nearly 80% PEPEs during last 60 years. For double blocking high type, about two weeks prior to PEPEs, two blockings developed and progressed towards the Ural Mountains and the Sea of Okhotsk, respectively. A northwestward progressive anomalous anticyclone conveying abundant moisture and eastward-extended South Asia High favoring divergence can be detected about one week in advance. A dominant summertime teleconnection over East Asia, East Asia/ Pacific (EAP) pattern, is deemed as another typical regime inducing PEPEs in the East China. Key elements of the EAP pattern initiated westward movement since one week prior to PEPEs. Eastward energy dispersion and poleward energy dispersion contributed to early development and subsequent maintenance of this teleconnection pattern, respectively. These typical circulation patterns and significant precursors may offer local forecasters some useful clues in identifying and predicting such high-impact precipitation events about 1-2 weeks in advance.
Dynamic states of a unidirectional ring of chen oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Ana; Pinto, Carla M.A.
2015-03-10
We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.
Measurement-induced decoherence and information in double-slit interference
Kincaid, Joshua; McLelland, Kyle; Zwolak, Michael
2016-01-01
The double slit experiment provides a classic example of both interference and the effect of observation in quantum physics. When particles are sent individually through a pair of slits, a wave-like interference pattern develops, but no such interference is found when one observes which “path” the particles take. We present a model of interference, dephasing, and measurement-induced decoherence in a one-dimensional version of the double-slit experiment. Using this model, we demonstrate how the loss of interference in the system is correlated with the information gain by the measuring apparatus/observer. In doing so, we give a modern account of measurement in this paradigmatic example of quantum physics that is accessible to students taking quantum mechanics at the graduate or senior undergraduate levels. PMID:27807373
Periodic and rational solutions of the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Wei, Jiao; Wang, Xin; Geng, Xianguo
2018-06-01
We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.
Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films.
Aissou, Karim; Mumtaz, Muhammad; Portale, Giuseppe; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges
2017-05-01
The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sung, Paul S; Zipple, J Tim; Danial, Pamela
2017-04-01
New insight regarding limb-dominance effects on temporal-spatial gait parameters is needed to further investigate subjects with recurrent low back pain (LBP). Although an asymmetrical gait pattern was found to reflect natural functional differences, there is a lack of information regarding gender differences on dominant limb support patterns in subjects with LBP. The purpose of this study was to investigate temporal-spatial gait parameters based on limb dominance and gender between subjects with and without LBP. One hundred and ten right limb dominant older adults (51 subjects with LBP and 59 control subjects) participated in the study. A three-dimensional motion capture system was utilized to measure temporal-spatial gait parameters, including initial double, single, and terminal double limb support times and walking speed. The gender differences between subjects with and without LBP were analyzed based on dominance for those parameters. Overall, limb dominance demonstrated significant differences on single and terminal double limb support times as well as walking speed. Limb dominance also demonstrated interactions on group x gender for single limb support time and walking speed. The male subjects with LBP demonstrated significantly increased single limb support times on the non-dominant limb. The significant gender and group interactions based on limb dominance account for a possible pain avoidance, asymmetrical limb support pattern. The causal pathway in dominance dependency gait by unweighted ambulation might be considered as an intervention for correcting these gait deviations in subjects with LBP. The specific modification recovery profiles of the subjects with LBP could shed light on variability of current LBP experiences of the subjects and reasons for gait deviations. Clinicians need to consider the mechanism of dominant limb dependency, which requires postural control strategies in male subjects with recurrent LBP. Copyright © 2017 Elsevier B.V. All rights reserved.
Expression analysis of genes encoding double B-box zinc finger proteins in maize.
Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong
2017-11-01
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.
Gecko-inspired bidirectional double-sided adhesives.
Wang, Zhengzhi; Gu, Ping; Wu, Xiaoping
2014-05-14
A new concept of gecko-inspired double-sided adhesives (DSAs) is presented. The DSAs, constructed by dual-angled (i.e. angled base and angled tip) micro-pillars on both sides of the backplane substrate, are fabricated by combinations of angled etching, mould replication, tip modification, and curing bonding. Two types of DSA, symmetric and antisymmetric (i.e. pillars are patterned symmetrically or antisymmetrically relative to the backplane), are fabricated and studied in comparison with the single-sided adhesive (SSA) counterparts through both non-conformal and conformal tests. Results indicate that the DSAs show controllable and bidirectional adhesion. Combination of the two pillar-layers can either amplify (for the antisymmetric DSA, providing a remarkable and durable adhesion capacity of 25.8 ± 2.8 N cm⁻² and a high anisotropy ratio of ∼8) or counteract (for the symmetric DSA, generating almost isotropic adhesion) the adhesion capacity and anisotropic level of one SSA (capacity of 16.2 ± 1.7 N cm⁻² and anisotropy ratio of ∼6). We demonstrate that these two DSAs can be utilized as a facile fastener for two individual objects and a small-scale delivery setup, respectively, complementing the functionality of the commonly studied SSA. As such, the double-sided patterning is believed to be a new branch in the further development of biomimetic dry adhesives.
NASA Astrophysics Data System (ADS)
Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi
2018-05-01
Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.
Particle Swarm Optimization with Double Learning Patterns
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747
Hayashi, Shogo; Naito, Munekazu; Hirai, Shuichi; Terayama, Hayato; Miyaki, Takayoshi; Itoh, Masahiro; Fukuzawa, Yoshitaka; Nakano, Takashi
2013-09-01
There are many reports on variations in the inferior vena cava (IVC), particularly double IVC (DIVC) and left IVC (LIVC). However, no systematic report has recorded iliac vein (IV) flow patterns in the DIVC and LIVC. In this study, we examined IV flow patterns in both DIVC and LIVC observed during gross anatomy courses conducted for medical students and in previously reported cases. During the gross anatomy courses, three cases of DIVC and one case of LIVC were found in 618 cadavers. The IV flow pattern from these four cases and all other previously reported cases can be classified into one of the following three types according to the vein into which the internal iliac vein drained: the ipsilateral external IV; confluence of the ipsilateral external IV and IVC; and the communicating vein, which connects the IVC and the contralateral IVC or its iliac branch. This classification, which is based on the internal IV course, is considered to be useful because IV variations have the potential to cause clinical problems during related retroperitoneal surgery, venous interventional radiology, and diagnostic procedures for pelvic cancer.
Oura, Hajimu; Iino, Masato; Nakazawa, Yosuke; Tajima, Masahiro; Ideta, Ritsuro; Nakaya, Yutaka; Arase, Seiji; Kishimoto, Jiro
2008-12-01
Adenosine upregulates the expression of vascular endothelial growth factor and fibroblast growth factor-7 in cultured dermal papilla cells. It has been shown that, in Japanese men, adenosine improves androgenetic alopecia due to the thickening of thin hair due to hair follicle miniaturization. To investigate the efficacy and safety of adenosine treatment to improve hair loss in women, 30 Japanese women with female pattern hair loss were recruited for this double-blind, randomized, placebo-controlled study. Volunteers used either 0.75% adenosine lotion or a placebo lotion topically twice daily for 12 months. Efficacy was evaluated by dermatologists and by investigators and in phototrichograms. As a result, adenosine was significantly superior to the placebo according to assessments by dermatologists and investigators and by self-assessments. Adenosine significantly increased the anagen hair growth rate and the thick hair rate. No side-effects were encountered during the trial. Adenosine improved hair loss in Japanese women by stimulating hair growth and by thickening hair shafts. Adenosine is useful for treating female pattern hair loss in women as well as androgenetic alopecia in men.
Commentary: Addressing Double Binds in Educating for an Ecologically Sustainable Future.
ERIC Educational Resources Information Center
Bowers, Chet A.
2001-01-01
Contrary to computer advocates' globalism = empowerment rhetoric, the dominant globalization pattern involves relentless commodification of knowledge, skills, and interdependent relationships. Few consider the ecological implications of commodifying (digitizing) leisure, education, health care, or communications. Posing community regeneration…
AEROSOL TRANSPORT AND DEPOSITION IN SEQUENTIALLY BIFURCATING AIRWAYS
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow wit...
Travel patterns of older Americans with disabilities
DOT National Transportation Integrated Search
2004-07-01
There are currently about 35 million adults aged 65 and older in the U.S. and this number : is projected to double by 2030 (U.S. Census Bureau). Medical and health impairments : associated with this population raise concern about the impaired person...
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
NASA Astrophysics Data System (ADS)
Zhou, Wenyu; Xie, Shang-Ping
2017-08-01
Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.
Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas
2006-09-01
A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro.
Nonlinear dynamics in cardiac conduction
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.
1988-01-01
Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.
Diffraction-based overlay for spacer patterning and double patterning technology
NASA Astrophysics Data System (ADS)
Lee, Byoung Hoon; Park, JeongSu; Lee, Jongsu; Park, Sarohan; Lim, ChangMoon; Yim, Dong-Gyu; Park, Sungki; Ryu, Chan-Ho; Morgan, Stephen; van de Schaar, Maurits; Fuchs, Andreas; Bhattacharyya, Kaustuve
2011-03-01
Overlay performance will be increasingly important for Spacer Patterning Technology (SPT) and Double Patterning Technology (DPT) as various Resolution Enhancement Techniques are employed to extend the resolution limits of lithography. Continuous shrinkage of devices makes overlay accuracy one of the most critical issues while overlay performance is completely dependent on exposure tool. Image Based Overlay (IBO) has been used as the mainstream metrology for overlay by the main memory IC companies, but IBO is not suitable for some critical layers due to the poor Tool Induced Shift (TIS) values. Hence new overlay metrology is required to improve the overlay measurement accuracy. Diffraction Based Overlay (DBO) is regarded to be an alternative metrology to IBO for more accurate measurements and reduction of reading errors. Good overlay performances of DBO have been reported in many articles. However applying DBO for SPT and DPT layers poses extra challenges for target design. New vernier designs are considered for different DPT and SPT schemes to meet overlay target in DBO system. In this paper, we optimize the design of the DBO target and the performance of DBO to meet the overlay specification of sub-3x nm devices which are using SPT and DPT processes. We show that the appropriate vernier design yields excellent overlay performance in residual and TIS. The paper also demonstrated the effects of vernier structure on overlay accuracy from SEM analysis.
Ueda, Atsushi; Wu, Chun-Fang
2012-03-01
Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.
Ueda, Atsushi; Wu, Chun-Fang
2012-01-01
Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cAMP synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrate that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29–30 °C) decreased synaptic transmission in rut, but did not alter dnc and WT. Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counter balancing interactions between dnc and rut mutations for phenotypic rescue. PMID:22380612
Double-layered cell transfer technology for bone regeneration
Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo
2016-01-01
For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174
NASA Astrophysics Data System (ADS)
Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.
2014-10-01
A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.
Tanaka, Makiko; Oguma, Kazuhiro; Saito, Yoshio; Saito, Isao
2012-06-15
5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, J.; Pu, Z. Y.; Fu, S. Y.; Wang, X. G.; Xiao, C. J.; Dunlop, M. W.; Wei, Y.; Bogdanova, Y. V.; Zong, Q. G.; Xie, L.
2011-05-01
Previous theoretical and simulation studies have suggested that the anti-parallel and component reconnection can occur simultaneously on the dayside magnetopause. Certain observations have also been reported to support global conjunct pattern of magnetic reconnection. Here, we show direct evidence for the conjunction of anti-parallel and component MR using coordinated observations of Double Star TC-1 and Cluster under the same IMF condition on 6 April, 2004. The global MR X-line configuration constructed is in good agreement with the “S-shape” model.
Double ionization of neon in elliptically polarized femtosecond laser fields
NASA Astrophysics Data System (ADS)
Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard
2018-06-01
We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.
O'Neil, William M; Welner, Sharon A; Lip, Gregory Y H
2013-03-01
Recent anticoagulants for stroke prevention in AF have been tested in active comparator controlled studies versus warfarin using two designs: double-blind, double-dummy and prospective randomised, open blinded endpoint (PROBE). The former requires elaborate procedures to maintain blinding, while PROBE does not. Outcomes of double-blind and PROBE designed studies of novel anticoagulants for AF, focusing on warfarin controls, were explored. Major, Phase III warfarin-controlled trials for stroke prevention in AF were identified. Odds ratios (ORs) of key outcomes for active comparators versus VKA and event rates for VKA arms were compared between designs, in context of baseline demographics and inclusion criteria. Identified trials studied five novel anticoagulants in three each of PROBE and double-blind design. For ORs of results across studies and outcomes, there was little pattern differentiating the two designs. Among VKA-control subjects, event rates for the primary outcome (stroke or systemic embolism) in PROBE trials at 1.74 %/year (95% confidence interval: 1.54-1.95) was not significantly different from that in double-blind trials, at 1.88 (1.73-2.03). Among other outcomes, VKA-treated subjects in both trial designs had similar event rates, apart from higher all-cause mortality in ROCKET AF, and lower myocardial infarction rates among the PROBE study patients. Although there are differences in outcome between PROBE and double blind trials, they do not appear to be design-related. The exacting requirements of double-blinding in AF trials may not be necessary.
Passive micromixers with dual helical channels
NASA Astrophysics Data System (ADS)
Liu, Keyin; Yang, Qing; Chen, Feng; Zhao, Yulong; Meng, Xiangwei; Shan, Chao; Li, Yanyang
2015-02-01
In this study, a three-dimensional (3D) micromixer with cross-linked double helical microchannels is studied to achieve rapid mixing of fluids at low Reynolds numbers (Re). The 3D micromixer takes full advantages of the chaotic advection model with helical microchannels; meanwhile, the proposed crossing structure of double helical microchannels enables two flow patterns of repelling flow and straight flow in the fluids to promote the agitation effect. The complex 3D micromixer is realized by an improved femtosecond laser wet etching (FLWE) technology embedded in fused silica. The mixing results show that cross-linked double helical microchannels can achieve excellent mixing within 3 cycles (300 μm) over a wide range of low Re (1.5×10-3~600), which compare well with the conventional passive micromixers. This highly-effective micromixer is hoped to contribute to the integration of microfluidic systems.
NASA Astrophysics Data System (ADS)
Singh, H. A.; Rasch, P. J.; Rose, B. E. J.
2017-10-01
We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high latitudes warm, while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar midtroposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.
Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results
NASA Astrophysics Data System (ADS)
Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono
2017-04-01
Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.
Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.
Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A
2016-03-18
A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.
Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao
2017-01-01
Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.
NEPP DDR Device Reliability FY13 Report
NASA Technical Reports Server (NTRS)
Guertin, Steven M.; Armbar, Mehran
2014-01-01
This document reports the status of the NEPP Double Data Rate (DDR) Device Reliability effort for FY2013. The task targeted general reliability of > 100 DDR2 devices from Hynix, Samsung, and Micron. Detailed characterization of some devices when stressed by several data storage patterns was studied, targeting ability of the data cells to store the different data patterns without refresh, highlighting the weakest bits. DDR2, Reliability, Data Retention, Temperature Stress, Test System Evaluation, General Reliability, IDD measurements, electronic parts, parts testing, microcircuits
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Wang, Haibin; Dong, Bin; Jiang, Jiafu; Fang, Weimin; Guan, Zhiyong; Liao, Yuan; Chen, Sumei; Chen, Fadi
2014-01-01
Chrysanthemum is one of important ornamental species in the world. Its highly heterozygous state complicates molecular analysis, so it is of interest to derive haploid forms. A total of 2579 non-fertilized chrysanthemum ovules pollinated by Argyranthemum frutescens were cultured in vitro to isolate haploid progeny. One single regenerant emerged from each of three of the 105 calli produced. Chromosome counts and microsatellite fingerprinting showed that only one of the regenerants was a true haploid. Nine doubled haploid derivatives were subsequently generated by colchicine treatment of 80 in vitro cultured haploid nodal segments. Morphological screening showed that the haploid plant was shorter than the doubled haploids, and developed smaller leaves, flowers, and stomata. An in vitro pollen germination test showed that few of the haploid's pollen were able to germinate and those which did so were abnormal. Both the haploid and the doubled haploids produced yellow flowers, whereas those of the maternal parental cultivar were mauve. Methylation-sensitive amplification polymorphism (MSAP) profiling was further used to detect alterations in cytosine methylation caused by the haploidization and/or the chromosome doubling processes. While 52.2% of the resulting amplified fragments were cytosine methylated in the maternal parent's genome, the corresponding proportions for the haploid's and doubled haploids' genomes were, respectively, 47.0 and 51.7%, demonstrating a reduction in global cytosine methylation caused by haploidization and a partial recovery following chromosome doubling. PMID:25566305
1960-01-01
A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
1960-01-01
A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. The H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. Each H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
Molecular Structure of a Helical ribbon in a Peptide Self-Assembly
NASA Astrophysics Data System (ADS)
Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang
2002-03-01
We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.
Hydrodynamics of insect spermatozoa
NASA Astrophysics Data System (ADS)
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
NASA Technical Reports Server (NTRS)
Wuerker, R. F.; Kobayashi, R. J.; Heflinger, L. O.; Ware, T. C.
1974-01-01
Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique.
NASA Astrophysics Data System (ADS)
Kasischke, Eric S.; Turetsky, Merritt R.
2006-05-01
We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.
Self-organized pattern on the surface of a metal anode in low-pressure DC discharge
NASA Astrophysics Data System (ADS)
Yaqi, YANG; Weiguo, LI
2018-03-01
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
NASA Technical Reports Server (NTRS)
Howard, E. Davis, III
1990-01-01
MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-01-01
A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197
Chen, Jianzhong; Green, Kari B; Nichols, Kelly K
2015-08-01
A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
Belcaro, G; Cesarone, M R; Ledda, A; Cornelli, U; Dugall, M; Di Renzo, A; Hosoi, M; Stuard, S; Vinciguerra, G; Pellegrini, L; Gizzi, G
2008-10-01
Fingerprints (FP), characteristic of humans, are impressions due to skin marks (ridges) on fingertips. Ridges are present on fingers/hands forming curved lines of different sizes/patterns. The point where a line stops or splits is defined typica' (their number/amount constitute identification patterns). FP are permanent and unique. This study compared FP patterns with cardiovascular risk factors: 7 main types of FP were used: 1. Arch: lines form waves from one site to the other side. 2. Tentarch: like arches but with a rising stick in the middle. 3. Loop: lines coming from one site returning in the middle to the same site. 4. Double loop: like loops but with two loops inside: one standing, one hanging. 5. Pocked loop: like the loop but with a small circle in the turning point. 6. Whorl: lines make circles. 7. Mixed figure: composed of different figures. There are two kinds of real typica: A. Ending line; B. Splitting lines (bifurcations). Several combinations may result. Ultrasound evaluation of carotid/femoral arteries in asymptomatic subjects. Arteries were evaluated with high-resolution ultrasound at the bifurcations. Four classes were defined: 1: normal intima-media (IMT) complex; 2: IMT thickening; 3: non-stenosing plaques (<50% stenosis); 4: stenosing plaque (>50%). Subjects in classes 1, 2, 3 were included into the analysis made comparing FP patterns and ultrasound. For each FP pattern: A. the main proportion of subjects with cardiovacular risk factors (91%) had arches (41.2%) and loops (either single, 38.2% or double 11.7% for a total of 49.9%). B. The remaining classes were statistically less important. C. The number of ridges per square mm was comparable in all pattern classes. D. The analysis of typica and other ridges characteristics requires a more elaborated system. Future research must define simple, low cost screening methods for preselection of subjects at higher cardiovascular risk or for exclusion of low risk subjects. The evaluation of fingerprint pattern may be useful to define risk groups.
"Quantum Interference with Slits" Revisited
ERIC Educational Resources Information Center
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
Bush, Sarah L.; Schul, Johannes
2010-01-01
Background Significance Communication signals that function to bring together the sexes are important for maintaining reproductive isolation in many taxa. Changes in male calls are often attributed to sexual selection, in which female preferences initiate signal divergence. Natural selection can also influence signal traits if calls attract predators or parasitoids, or if calling is energetically costly. Neutral evolution is often neglected in the context of acoustic communication. Methodology/Principal Findings We describe a signal trait that appears to have evolved in the absence of either sexual or natural selection. In the katydid genus Neoconocephalus, calls with a derived pattern in which pulses are grouped into pairs have evolved five times independently. We have previously shown that in three of these species, females require the double pulse pattern for call recognition, and hence the recognition system of the females is also in a derived state. Here we describe the remaining two species and find that although males produce the derived call pattern, females use the ancestral recognition mechanism in which no pulse pattern is required. Females respond equally well to the single and double pulse calls, indicating that the derived trait is selectively neutral in the context of mate recognition. Conclusions/Significance These results suggest that 1) neutral changes in signal traits could be important in the diversification of communication systems, and 2) males rather than females may be responsible for initiating signal divergence. PMID:20805980
Rondanelli, Mariangela; Opizzi, Annalisa; Faliva, Milena; Sala, Patrizio; Perna, Simone; Riva, Antonella; Morazzoni, Paolo; Bombardelli, Ezio; Giacosa, Attilio
2014-01-01
The aim of this study is to evaluate the efficacy of a dietary supplementation with an extract from Cynara scolymus (Cs) on the glucose pattern in a group of patients with naïve impaired fasting glycaemia (IFG). A randomized, double-blind, placebo-controlled trial has been performed in 55 overweight subjects with IFG (fasting blood glucose [FBG]: 6.11 ± 0.56 mmol/l). These subjects were randomly assigned to supplement their diet with either an extract from Cs (600 mg/d) (26 subjects) or placebo (29 matched subjects) for 8 weeks. The decrease of FBG was the primary endpoint. The assessment of Homeostatic Metabolic Assessment (HOMA), glycosylated haemoglobin, A1c-Derived Average Glucose (ADAG), lipidic pattern and anthropometric parameters were the secondary endpoints. The within groups and percent changes from baseline were analyzed by the signed rank test. The comparison between groups was performed by Wilcoxon's two sample test. The supplemented group had significant decreases of: FBG (-9.6%), HOMA (-11.7%), glycosylated haemoglobin (-2.3%), ADAG (-3.1%) and lipidic pattern. The placebo group did not show any significant difference. Compared with the placebo, the supplemented group showed a significant difference in FBG, HOMA and lipidic pattern. These data demonstrate the efficacy of Cs extract on the reduction of glycometabolic parameters in overweight subjects with IFG. Copyright © 2013 John Wiley & Sons, Ltd.
Adaptive changes in spatiotemporal gait characteristics in women during pregnancy.
Błaszczyk, Janusz W; Opala-Berdzik, Agnieszka; Plewa, Michał
2016-01-01
Spatiotemporal gait cycle characteristics were assessed at early (P1), and late (P2) pregnancy, as well as at 2 months (PP1) and 6 months (PP2) postpartum. A substantial decrease in walking speed was observed throughout the pregnancy, with the slowest speed (1±0.2m/s) being during the third trimester. Walking at slower velocity resulted in complex adaptive adjustments to their spatiotemporal gait pattern, including a shorter step length and an increased duration of both their stance and double-support phases. Duration of the swing phase remained the least susceptible to changes. Habitual walking velocity (1.13±0.2m/s) and the optimal gait pattern were fully recovered 6 months after childbirth. Documented here adaptive changes in the preferred gait pattern seem to result mainly from the altered body anthropometry leading to temporary balance impairments. All the observed changes within stride cycle aimed to improve gait safety by focusing on its dynamic stability. The pregnant women preferred to walk at a slower velocity which allowed them to spend more time in double-support compared with their habitual pattern. Such changes provided pregnant women with a safer and more tentative ambulation that reduced the single-support period and, hence, the possibility of instability. As pregnancy progressed a significant increase in stance width and a decrease in step length was observed. Both factors allow also for gait stability improvement. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun
2018-01-01
To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.
Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.
Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T
2018-02-01
Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.
Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald
2008-08-01
Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.
Chwała, Wiesław; Koziana, Agnieszka; Kasperczyk, Tadeusz; Płaszewski, Maciej
2014-01-01
Background. The question of how to correct and rehabilitate scoliosis remains one of the most difficult problems of orthopaedics. Controversies continue to arise regarding various types of both symmetric and asymmetric scoliosis-specific therapeutic exercises. Objective. The aim of the present paper was to conduct an electromyographic assessment of functional symmetry of paraspinal muscles during symmetric and asymmetric exercises in adolescents with idiopathic scoliosis. Materials and Methods. The study was conducted in a group of 82 girls, mean age 12.4 ± 2.3 years with single- or double-major-idiopathic scoliosis, Cobb angle 24 ± 9.4°. The functional biopotentials during isometric work of paraspinal muscles in “at rest” position and during two symmetric and four asymmetric exercises were measured with the use of the Muscle Tester ME 6000 electromyograph. Results. In general, asymmetric exercises were characterised by larger differences in bioelectrical activity of paraspinal muscles, in comparison with symmetric exercises, both in the groups of patients with single-curve and double-curve scoliosis. Conclusion. During symmetric and asymmetric exercises, muscle tension patterns differed significantly in both groups, in comparison with the examination at rest, in most cases generating positive corrective patterns. Asymmetric exercises generated divergent muscle tension patterns on the convex and concave sides of the deformity. PMID:25258713
Different magnesium release profiles from W/O/W emulsions based on crystallized oils.
Herzi, Sameh; Essafi, Wafa
2018-01-01
Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase. Copyright © 2017 Elsevier Inc. All rights reserved.
Spin measurement in an undoped Si/SiGe double quantum dot incorporating a micromagnet
NASA Astrophysics Data System (ADS)
Wu, Xian; Ward, Daniel; Prance, Jonathan; Kim, Dohun; Shi, Zhan; Mohr, Robert; Gamble, John; Savage, Donald; Lagally, Max; Friesen, Mark; Coppersmith, Susan; Eriksson, Mark
2014-03-01
We present measurements on a double dot formed in an accumulation-mode undoped Si/SiGe heterostructure. The double dot incorporates a proximal micromagnet to generate a stable magnetic field difference between the quantum dots. The gate design incorporates two layers of gates, and the upper layer of gates is split into five different sections to decrease crosstalk between different gates. A novel pattern of the lower layer gates enhances the tunability of tunnel rates. We will describe our attempts to create a singlet-triplet qubit in this device. This work was supported in part by ARO(W911NF-12-0607), NSF(DMR-1206915), and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. Now works at Lancaster University, UK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, H. A.; Rasch, P. J.; Rose, B. E. J.
We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at highmore » latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.« less
Seong-Jin Kim; Euisik Yoon
2012-06-01
We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.
Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature
Yunusa, Zainab; Hamidon, Mohd Nizar; Ismail, Alyani; Isa, Maryam Mohd; Yaacob, Mohd Hanif; Rahmanian, Saeed; Ibrahim, Siti Azlida; Shabaneh, Arafat A.A
2015-01-01
A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%. PMID:25730480
A cosmic double helix in the archetypical quasar 3C273.
Lobanov, A P; Zensus, J A
2001-10-05
Finding direct evidence for plasma instability in extragalactic jets is crucial for understanding the nature of relativistic outflows from active galactic nuclei. Our radio interferometric observations of the quasar 3C273 made with the orbiting radio telescope, HALCA, and an array of ground telescopes have yielded an image in which the emission across the jet is resolved, revealing two threadlike patterns that form a double helix inside the jet. This double helical structure is consistent with a Kelvin-Helmholtz instability, and at least five different instability modes can be identified and modeled by a light jet with a Lorentz factor of 2 and Mach number of 3.5. The model reproduces in detail the internal structure of the jet on scales of up to 30 milli-arc seconds ( approximately 300 parsecs) and is consistent with the general morphology of the jet on scales of up to 1 kiloparsec.
Stress-induced waveguides in Nd:YAG by simultaneous double-beam irradiation with femtosecond pulses
NASA Astrophysics Data System (ADS)
Castillo, Gabriel R.; Romero, Carolina; Lifante, Ginés; Jaque, Daniel; Chen, Feng; Varela, Óscar; García-García, Enrique; Méndez, Cruz; Camacho-López, Santiago; Vázquez de Aldana, Javier R.
2016-01-01
We report on the fabrication of stress-induced waveguides in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) by simultaneous double-beam irradiation with femtosecond laser pulses. An interferometer was used to generate two femtosecond laser beams that, focused with certain lateral separation inside the crystal, produced two parallel damage tracks with a single scan. The propagation of the mechanical waves simultaneously created in both focal spots produced a highly symmetrical stress field that is clearly revealed in micro-luminescence maps. The optical properties of the double-beam waveguides are studied and compared to those of single-beam irradiation, showing relevant differences. The creation of more symmetric stress patterns and a slight reduction of propagation losses are explained in terms of the fact that simultaneous inscription allows for a drastic reduction in the magnitude of "incubation" effects related to the existence of pre-damaged states.
Effect of ferroelastic domain pattern changes on the EPR spectra in TDM
NASA Astrophysics Data System (ADS)
Zapart, W.; Zapart, M. B.
2011-09-01
This article presents polarized light microscopy studies of the ferroelastic domain structure and the analysis of electron paramagnetic resonance spectra of Cr3+ admixture ions in trigonal double molybdates. The correlation has been found between abnormal EPR lineshape and domain structure in ferroelastic phases of these crystals.
USDA-ARS?s Scientific Manuscript database
We sought to determine the efficacy of psyllium fiber treatment on abdominal pain and stool patterns in children with irritable bowel syndrome (IBS). We evaluated effects on breath hydrogen and methane production, gut permeability, and microbiome composition. We also investigated whether psychologic...
Twelve Great Basketball Offenses.
ERIC Educational Resources Information Center
Healey, William A.; Hartley, Joseph W.
Features and merits of twelve offensive basketball patterns are presented in this volume. Plays described are: (1) single pivot-post offense; (2) double pivot-post offense; (3) weak-side cutter series (reverse action offense); (4) 1-3-1 offense (hi-lo offense); (5) Illinois continuity offense; (6) rotation offense; (7) shuffle offense; (8) pick…
Can we grow organic or conventional vegetables sustainably without cover crops?
USDA-ARS?s Scientific Manuscript database
Vegetable and fruit consumption patterns in the United States show that most people need to eat far more fruits and vegetables to meet the current nutritional guidelines for a healthy diet. Following these guidelines would require more than doubling the harvested acreage for fruits and vegetables a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
..., style, pattern, or weave construction, including but not limited to single-faced satin, double-faced... DEPARTMENT OF COMMERCE International Trade Administration [A-583-844] Narrow Woven Ribbons With Woven Selvedge From Taiwan: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import...
Academic Career Making and the Double-Edged Role of Academic Housework
ERIC Educational Resources Information Center
Heijstra, Thamar Melanie; Steinthorsdóttir, Finnborg Salome; Einarsdóttir, Thorgerdur
2017-01-01
Internationalisation, competition and performance orientation are nowadays essential in the managing and financing of universities. This pattern has intensified with the austerity measures and fiscal consolidation that followed the financial crisis in 2008. This article examines the academic labour process and career making of academics from a…
Two daily smoke maxima in eighteenth century London air
NASA Astrophysics Data System (ADS)
Harrison, R. Giles
Varied electrostatics experiments followed Benjamin Franklin's pioneering atmospheric investigations. In Knightsbridge, Central London, John Read (1726-1814) installed a sensing rod in the upper part of his house and, using a pith ball electrometer and Franklin chimes, monitored atmospheric electricity from 1789 to 1791. Atmospheric electricity is sensitive to weather and smoke pollution. In calm weather conditions, Read observed two daily electrification maxima in moderate weather, around 9 am and 7 pm. This is likely to represent a double diurnal cycle in urban smoke. Before the motor car and steam railways, one source of the double maximum smoke pattern was the daily routine of fire lighting for domestic heating.
Stirrup, James E; Cowburn, Peter J; Pousios, Dimitrios; Ohri, Sunil K; Shah, Benoy N
2016-09-01
Transesophageal echocardiography (TEE) is a powerful imaging tool for the comprehensive assessment of valvular structure and function. TEE may be of added benefit when anatomy is difficult to delineate accurately by transthoracic echocardiography. In this article, we present 2-, 3-dimensional, and color Doppler TEE images from a male patient with aortic stenosis. A highly unusual and complex pattern of valvular calcification created a functionally "double-orifice" valve. Such an abnormality may have implications for the accuracy of continuous-wave Doppler echocardiography, which assumes a single orifice valve in native aortic valves. © 2016, Wiley Periodicals, Inc.
Zone plate lenses for X-ray microscopy
NASA Astrophysics Data System (ADS)
Vladimirsky, Y.; Kern, D. P.; Chang, T. H. P.; Attwood, D. T.; Iskander, N.; Rothman, S.; McQuaide, K.; Kirz, J.; Ade, H.; McNulty, I.; Rarback, H.; Shu, D.
1988-04-01
Fresnel zone plate lenses with feature sizes as small as 50 nm have been constructed and used in the Stony Brook/NSLS scanning X-ray microscope with 3.1 nm radiation from Brookhaven's X-17 mini-undulator. The zone plates were fabricated at IBM using electron beam writing techniques, moiré pattern techniques to monitor ellipticity, and a double development/double plating technique to provide additional thickness in the central region. A spatial resolution down to 75 nm was measured in the microscope. Using these zone plates, biological images were obtained of unaltered subcellular components. The images highlight protein concentration in unsectioned, unfixed, and unstained enzymatic granules in an aqueous environment.
Bowd, Christopher; Weinreb, Robert N; Balasubramanian, Madhusudhanan; Lee, Intae; Jang, Giljin; Yousefi, Siamak; Zangwill, Linda M; Medeiros, Felipe A; Girkin, Christopher A; Liebmann, Jeffrey M; Goldbaum, Michael H
2014-01-01
The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. FDT mean deviation was -1.00 dB (S.D. = 2.80 dB) and -5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G1 and G2 combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G1 and G2 the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.
NASA Astrophysics Data System (ADS)
Sturtevant, John L.; Liubich, Vlad; Gupta, Rachit
2016-04-01
Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target for a single design layer. Strictly speaking, this quantity is not directly measurable in the fab. What is of vital importance is the relative edge placement errors between different design layers, and in the era of multipatterning, the different constituent mask sublayers for a single design layer. The critical dimensions (CD) and overlay between two layers can be measured in the fab, and there has always been a strong emphasis on control of overlay between design layers. The progress in this realm has been remarkable, accelerated in part at least by the proliferation of multipatterning, which reduces the available overlay budget by introducing a coupling of overlay and CD errors for the target layer. Computational lithography makes possible the full-chip assessment of two-layer edge to edge distances and two-layer contact overlap area. We will investigate examples of via-metal model-based analysis of CD and overlay errors. We will investigate both single patterning and double patterning. For single patterning, we show the advantage of contour-to-contour simulation over contour to target simulation, and how the addition of aberrations in the optical models can provide a more realistic CD-overlay process window (PW) for edge placement errors. For double patterning, the interaction of 4-layer CD and overlay errors is very complex, but we illustrate that not only can full-chip verification identify potential two-layer hotspots, the optical proximity correction engine can act to mitigate such hotspots and enlarge the joint CD-overlay PW.
Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram
2010-01-21
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
NASA Astrophysics Data System (ADS)
Kulkarni, S. P.; Garg, A. N.
Gamma ray induced decomposition of two series of double nitrates; 2M INO 3⋯Ln(NO 3) 3⋯ x H 2O (where MI = NH+4, Na+, K+, Rb+, Cs+; LnIII = La3+, Ce3+ and x = 2 or 4) and 3M II(NO 3) 2·2Ln III(NO 3) 3⋯24H 2O (where MII = Mg2+, Co2+, Zn2+; LnIII = La3+, Ce3+) has been studied in solid state over a wide absorbed dose range at room temperature. G(NO -2) values have been found to depend on the absorbed dose and the nature of cation in both the series of double salts. Radiation sensitivity of lanthanum double nitrates with monovalent cations at an absorbed dose of 158 kGy follows the order NH +4 < Rb + ≅ Cs + < Na + < K + and those of cerium NH +4 < Rb +
NASA Astrophysics Data System (ADS)
Mele Veedu, D.; Barbot, S.
2014-12-01
A never before recorded pattern of periodic, chaotic, and doubled, earthquake recurrence intervals was detected in the sequence of deep tectonic tremors of the Parkfield segment of the San Andreas Fault (Shelly, 2010). These observations may be the most puzzling seismological observations of the last decade: The pattern was regularly oscillating with a period doubling of 3 and 6 days from mid-2003 until it was disrupted by the 2004 Mw 6.0 Parkfield earthquake. But by the end of 2007, the previous pattern resumed. Here, we assume that the complex dynamics of the tremors is caused by slip on a single asperity on the San Andreas Fault with homogeneous friction properties. We developed a three-dimensional model based on the rate-and-state friction law with a single patch and simulated fault slip during all stages of the earthquake cycle using the boundary integral method of Lapusta & Liu (2009). We find that homogeneous penny-shaped asperities cannot induce the observed period doubling, and that the geometry itself of the velocity-weakening asperity is critical in enabling the characteristic behavior of the Parkfield tremors. We also find that the system is sensitive to perturbations in pore pressure, such that the ones induced by the 2004 Parkfield earthquake are sufficient to dramatically alter the dynamics of the tremors for two years, as observed by Shelly (2010). An important finding is that tremor magnitude is amplified more by macroscopic slip duration on the source asperity than by slip amplitude, indicative of a time-dependent process for the breakage of micro-asperities that leads to seismic emissions. Our simulated event duration is in the range of 25 to 150 seconds, closely comparable to the event duration of a typical Parkfield tectonic tremor. Our simulations reproduce the unique observations of the Parkfield tremor activity. This study vividly illustrates the critical role of geometry in shaping the dynamics of fault slip evolution on a seismogenic fault.
Lee, Mun-Yong; Choi, Yun-Sik; Choi, Jeong-Sun; Min, Do Sik; Chun, Myung-Hoon; Kim, Ok Nyu; Lee, Sang Bok; Kim, Seong Yun
2002-01-11
The cellular localization and spatiotemporal expression pattern of APG-2 protein, a member of the heat shock protein 110 family, were investigated in the rat hippocampus after transient forebrain ischemia. The spatiotemporal patterns of immunoreactivity of both APG-2 and glial fibrillary acidic protein were very similar, indicating that reactive astrocytes express APG-2, which was confirmed by double immunofluorescence histochemistry. Colocalization of APG-2 and a neuronal marker NeuN in the neurons of the CA2 and CA3 subfields was also confirmed.
Gerhardt, Christian; Hug, Konstantin; Pauly, Stephan; Marnitz, Tim; Scheibel, Markus
2012-12-01
Arthroscopic double-row fixation of supraspinatus tendon tears compared with single-row techniques is still a matter of debate. Arthroscopic double-row rotator cuff repair using the suture bridge technique provides better clinical results and lower retear rates than does single-row repair using a modified Mason-Allen stitch technique. Cohort study; Level of evidence 3. Forty patients underwent either an arthroscopic single-row modified Mason-Allen stitch (SR) (n = 20; mean age ± SD, 61.5 ± 7.4 y) or a modified suture bridge double-row repair (DR) (n = 20; age, 61.2 ± 7.5 y). The anteroposterior extension was classified as Bateman I in 10% and Bateman II in 90% of patients in the SR group and as Bateman II in 80% and Bateman III in 20% of patients in the DR group. Patients were matched for sex and age. The subjective shoulder value (SSV), Constant-Murley score (CS), and Western Ontario Rotator Cuff Index (WORC) were used for clinical follow-up. Furthermore, MRI scans were conducted for analysis of tendon integrity, muscle atrophy, and fatty infiltration via semiquantitative signal intensity analysis. In addition, re-defect patterns were evaluated. The mean follow-up time in the SR group was 16.8 ± 4.6 months. The mean SSV was 91.0% ± 8.8%, mean CS was 82.2 ± 8.1 (contralateral side, 88.8 ± 5.3), and mean WORC score was 96.5% ± 3.2%. The mean follow-up time in the DR group was 23.4 ± 2.9 months, with patients achieving scores of 92.9% ± 9.6% for the SSV, 77.0 ± 8.6 for the CS (contralateral side, 76.7 ± 17.1), and 90.7% ± 12.6% for the WORC (P > .05). No significant differences were detected in the clinical outcome between groups. Tendon integrity was as follows. Type 1, none in either group; type 2, 4 SR and 5 DR; type 3, 9 SR and 10 DR; type 4, 3 SR and 3 DR; and type 5, 3 SR and 2 DR. The failure rate was 31.6% (n = 6) in the SR group and 25% (n = 5) in the DR group (P > .05). No significant differences were obtained for muscular atrophy or fatty degeneration (SR group, 0.94 ± 0.16; DR group, 1.15 ± 0.5) (P > .05). Re-defects revealed lateral cuff failure in 83.3% of SR patients in contrast to patients treated with DR techniques. The re-defect pattern was medial cuff failure in 80% of the patients. The clinical results after modified Mason-Allen single-row versus double-mattress suture bridge technique did not demonstrate significant differences in a matched patient cohort. Concerning the failure mode, single- and double-row techniques seem to demonstrate different re-defect patterns.
Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin
2015-02-13
Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0.01). Deviations in muscular activity between injured and non-injured sides and between antagonistic muscular activity within injured as compared to non-injured sides indicated specific alterations in sensorimotor control of the lower limb in individuals with ACL rupture. Also, correlations between deviating muscular activity and specific altered movement patterns were suggested as indications of altered sensorimotor control. We therefore advocate that quantitative assessments of altered movement patterns should be considered in ACL-rehabilitation.
Lu, Tiegang; Zhang, Zhiguo
2017-01-01
Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level. PMID:28732011
Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films
NASA Astrophysics Data System (ADS)
Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun
2016-03-01
Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.
Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong
2017-07-01
To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Spang, Jeffrey T; Buchmann, Stefan; Brucker, Peter U; Kouloumentas, Panos; Obst, Tobias; Schröder, Manuel; Burgkart, Rainer; Imhoff, Andreas B
2009-08-01
A novel double-row configuration was compared with a traditional double-row configuration for rotator cuff repair. In 10 matched-pair sheep shoulders in vitro repair was performed with either a double-row technique with corkscrew suture anchors for the medial row and insertion anchors for the lateral row (group A) or a double-row technique with a new tape-like suture material with insertion anchors for both the medial and lateral rows (group B). Each specimen underwent cyclic loading from 10 to 150 N for 100 cycles, followed by unidirectional failure testing. Gap formation and strain within the repair area for the first and last cycles were analyzed with a video digitizing system, and stiffness and failure load were determined from the load-elongation curve. The results were similar for the 2 repair types. There was no significant difference between the ultimate failure loads of the 2 techniques (421 +/- 150 N in group A and 408 +/- 66 N in group B, P = .31) or the stiffness of the 2 techniques (84 +/- 26 N/mm in group A and 99 +/- 20 N/mm in group B, P = .07). In addition, gap formation was not different between the repair types. Strain over the repair area was also not different between the repair types. Both tested rotator cuff repair techniques had high failure loads, limited gap formation, and acceptable strain patterns. No significant difference was found between the novel and conventional double-row repair types. Two double-row techniques-one with corkscrew suture anchors for the medial row and insertion anchors for the lateral row and one with insertion anchors for both the medial and lateral rows-provided excellent biomechanical profiles at time 0 for double-row repairs in a sheep model. Although the sheep model may not directly correspond to in vivo conditions, all-insertion anchor double-row constructs are worthy of further investigation.
Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-04-29
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
Verification and extension of the MBL technique for photo resist pattern shape measurement
NASA Astrophysics Data System (ADS)
Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee
2011-03-01
In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.
Cognitive Load and Classroom Teaching: The Double-Edged Sword of Automaticity
ERIC Educational Resources Information Center
Feldon, David F.
2007-01-01
Research in the development of teacher cognition and teaching performance in K-12 classrooms has identified consistent challenges and patterns of behavior that are congruent with the predictions of dual-process models of cognition. However, cognitive models of information processing are not often used to synthesize these results. This article…
USDA-ARS?s Scientific Manuscript database
This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...
A climate-change scenario for the Columbia River Basin.
Sue A. Ferguson
1997-01-01
This work describes the method used to generate a climate-change scenario for the Columbia River basin. The scenario considers climate patterns that may change if the atmospheric concentration of carbon dioxide (C02), or its greenhouse gas equivalent, were to double over pre-Industrial Revolution values. Given the current rate of increase in...
Two-Dimensional Light Diffraction from an EPROM Chip
ERIC Educational Resources Information Center
Ekkens, Tom
2018-01-01
In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…
How Language Limits Our Understanding of Environmental Education.
ERIC Educational Resources Information Center
Bowers, Chet
2001-01-01
Develops a theory of metaphor that helps explain how environmental education contributes to the double bind of helping to address environmental problems while at the same time reinforcing the use of the language-thought patterns that underlie the digital phase of the Industrial Revolution that we are now entering on a global scale. (Author/SAH)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
..., style, pattern, or weave construction, including but not limited to single-faced satin, double-faced... DEPARTMENT OF COMMERCE International Trade Administration [A-583-844, A-570-952] Narrow Woven Ribbons With Woven Selvedge From Taiwan and the People's Republic of China: Antidumping Duty Orders AGENCY...
Electronics Devices and Materials
2008-03-17
Molecular -bea epitaxy MCNPX ............... Software code Misse6 ................. Satellite expected to carry ORMatE-I Misse7...patterning using electron beam lithography), spaces (class 1000 clean benches), and skills (appropriate mix of skilled technicians and professionals...34 Process samples for various projects such as Antimode Base High Electron Mobility Transistors ( HEMT ) and Double Heterojuction Bipolar Transistors
Irrigation and rain-out shelters were used to simulate precipitation patterns of wet and dry years in the northern Chihuahuan Desert. Irrigation provided approximately double the long-term average monthly precipitation. Rain was excluded during the wet season, July-October, to si...
Configurational entropy as a lifetime predictor and pattern discriminator for oscillons
NASA Astrophysics Data System (ADS)
Gleiser, Marcelo; Stephens, Michelle; Sowinski, Damian
2018-05-01
Oscillons are long-lived, spherically symmetric, attractor scalar field configurations that emerge as certain field configurations evolve in time. It has been known for many years that there is a direct correlation between the initial configuration's shape and the resulting oscillon lifetime: a shape memory. In this paper, we use an information-entropic measure of spatial complexity known as differential configurational entropy (DCE) to obtain estimates of oscillon lifetimes in scalar field theories with symmetric and asymmetric double-well potentials. The time-dependent DCE is built from the Fourier transform of the two-point correlation function of the energy density of the scalar field configuration. We obtain a scaling law correlating oscillon lifetimes and measures obtained from its evolving DCE. For the symmetric double well, for example, we show that we can apply DCE to predict an oscillon's lifetime with an average accuracy of 6% or better. We also show that the DCE acts as a pattern discriminator, able to distinguish initial configurations that evolve into long-lived oscillons from other nonperturbative short-lived fluctuations.
NASA Astrophysics Data System (ADS)
Zhou, Chen; Li, Guoqiang; Li, Chuanzong; Zhang, Zhen; Zhang, Yachao; Wu, Sizhu; Hu, Yanlei; Zhu, Wulin; Li, Jiawen; Chu, Jiaru; Hu, Zhijia; Wu, Dong; Yu, Liandong
2017-10-01
In this work, a kind of three-level cobblestone-like anatase TiO2 microcone array was fabricated on titanium sheets by femtosecond laser-induced self-assembly. This three level structure consisted of cobblestone-like features (15-25 μm in height and 20-35 μm in diameter), ˜460 nm ripple-like features, and smaller particles (10-500 nm). The formation of microcone arrays can be ascribed to the interaction of alternant laser beam ablation. TiO2 surfaces display dual-responsive water/oil reversible wetting via heat treatment and selective UV irradiation without fluorination. It is indicated that three-level scale surface roughness can amplify the wetting character of the Ti surface, and the mechanism for reversible switching between extreme wettabilities is caused by the conversion between Ti-OH and Ti-O. Moreover, the double-faced superhydrophobic and double-faced superhydrophilic Ti samples were constructed, which exhibited stable superhydrophobicity and underwater superoleophobicity in water-oil solution, respectively, even when strongly shaken. Finally, we present the hybrid-patterned TiO2 surface and realized reversible switching pattern wettability.
Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol
2017-05-17
To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.
Meiotic recombination hotspots - a comparative view.
Choi, Kyuha; Henderson, Ian R
2015-07-01
During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, G. G.; Ye, D. F.; Graduate School, China Academy of Engineering Physics, Beijing 100088
2010-12-15
In the present paper, we investigate the correlated electron emission of atoms irradiated by a few-cycle laser pulse, with emphasis on the correlated longitudinal momentum spectra. We find that the spectra show clear v-shaped structures, in analogy to what was observed recently in long-pulse experiments. Moreover, the patterns of the spectra depend sensitively on the carrier-envelope phase as well as the laser intensity. The v-shaped structure is more pronounced at lower and higher intensities and becomes obscure at medium intensity. At a lower intensity, upon change of the phase from 0 to {pi}/2, the v-shaped structure shifts from the firstmore » quadrant to the third quadrant and the ratios between the double ionization yields in the first and third quadrants are found to increase by a few orders of magnitude. The semiclassical rescattering model is exploited in the preceding calculations and the underlying mechanisms are uncovered by analyzing the subcycle dynamics of classical trajectories.« less
Evidence for degenerate tetraploidy in bdelloid rotifers.
Mark Welch, David B; Mark Welch, Jessica L; Meselson, Matthew
2008-04-01
Rotifers of class Bdelloidea have evolved for millions of years apparently without sexual reproduction. We have sequenced 45- to 70-kb regions surrounding the four copies of the hsp82 gene of the bdelloid rotifer Philodina roseola, each of which is on a separate chromosome. The four regions comprise two colinear gene-rich pairs with gene content, order, and orientation conserved within each pair. Only a minority of genes are common to both pairs, also in the same orientation and order, but separated by gene-rich segments present in only one or the other pair. The pattern is consistent with degenerate tetraploidy with numerous segmental deletions, some in one pair of colinear chromosomes and some in the other. Divergence in 1,000-bp windows varies along an alignment of a colinear pair, from zero to as much as 20% in a pattern consistent with gene conversion associated with recombinational repair of DNA double-strand breaks. Although pairs of colinear chromosomes are a characteristic of sexually reproducing diploids and polyploids, a quite different explanation for their presence in bdelloids is suggested by the recent finding that bdelloid rotifers can recover and resume reproduction after suffering hundreds of radiation-induced DNA double-strand breaks per oocyte nucleus. Because bdelloid primary oocytes are in G(1) and therefore lack sister chromatids, we propose that bdelloid colinear chromosome pairs are maintained as templates for the repair of DNA double-strand breaks caused by the frequent desiccation and rehydration characteristic of bdelloid habitats.
Colour vision and response bias in a coral reef fish.
Cheney, Karen L; Newport, Cait; McClure, Eva C; Marshall, N Justin
2013-08-01
Animals use coloured signals for a variety of communication purposes, including to attract potential mates, recognize individuals, defend territories and warn predators of secondary defences (aposematism). To understand the mechanisms that drive the evolution and design of such visual signals, it is important to understand the visual systems and potential response biases of signal receivers. Here, we provide raw data on the spectral capabilities of a coral reef fish, the Picasso triggerfish Rhinecanthus aculeatus, which is potentially trichromatic with three cone sensitivities of 413 nm (single cone), 480 nm (double cone, medium sensitivity) and 528 nm (double cone, long sensitivity), and a rod sensitivity of 498 nm. The ocular media have a 50% transmission cut off at 405 nm. Behavioural experiments confirmed colour vision over their spectral range; triggerfish were significantly more likely to choose coloured stimuli over grey distractors, irrespective of luminance. We then examined whether response biases existed towards coloured and patterned stimuli to provide insight into how visual signals - in particular, aposematic colouration - may evolve. Triggerfish showed a preferential foraging response bias to red and green stimuli, in contrast to blue and yellow, irrespective of pattern. There was no response bias to patterned over monochromatic non-patterned stimuli. A foraging response bias towards red in fish differs from that of avian predators, who often avoid red food items. Red is frequently associated with warning colouration in terrestrial environments (ladybirds, snakes, frogs), whilst blue is used in aquatic environments (blue-ringed octopus, nudibranchs); whether the design of warning (aposematic) displays is a cause or consequence of response biases is unclear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.
2010-06-25
Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are notmore » known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.« less
Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.
2015-03-01
During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.
Chen, Wen; Chen, Xudong; Sheppard, Colin J R
2011-10-10
In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America
CT arthrographic patterns in recurrent glenohumeral instability.
Singson, R D; Feldman, F; Bigliani, L
1987-10-01
CT double-contrast arthrograms were performed on 54 shoulders in 53 patients with recurrent dislocation or subluxation to detect responsible underlying bony or soft-tissue abnormalities. Lesions of the anterior labrum in 52 (96%) of 54 cases and of the capsuloligamentous complex in 42 (78%) of 54 cases were the two most common abnormalities. There was no difference in the degree or number of labral lesions between subluxations and dislocations. However, more severe capsular lesions, subscapularis tendon tears, and widened subscapularis bursae were consistently found among patients with dislocations. Subsequent clinical, arthroscopic, and surgical findings showed that the use of CT double-contrast arthrograms resulted in improved definition of the multiple lesions associated with glenohumeral dysfunction.
Gait consistency over a 7-day interval in people with Parkinson's disease.
Urquhart, D M; Morris, M E; Iansek, R
1999-06-01
To evaluate the consistency of temporal and spatial parameters of the walking pattern in subjects with idiopathic Parkinson's disease (PD) over a 7-day interval during the "on" phase of the levodopa medication cycle. Walking patterns were measured on a 12-meter walkway at the Kingston Gait Laboratory, Cheltenham, using a computerized stride analyzer. Sixteen subjects (7 women, 9 men) with PD recruited from the Movement Disorders Clinic at Kingston Centre. Speed of walking, stride length, cadence, and the percentage of the walking cycle spent in the double limb support phase of gait were measured, together with the level of disability as indexed by the modified Webster scale. Product-moment correlation coefficients and intraclass correlation coefficients (ICC 2,1) for repeat measures over a 7-day interval were high for speed (r = .90; ICC = .93), cadence (r = .90; ICC = .86), and stride length (r = 1.00; ICC = .97) and moderate for double limb support duration after removal of outliers (r = .75; ICC = .73); 95% confidence intervals for the change scores were within clinically acceptable limits for all variables. The mean modified Webster score was 11.4 on the first day and 10.1 7 days later. The gait pattern and level of disability in subjects with PD without severe motor fluctuations remained stable over a 1-week period when optimal medication prevailed.
Sado, Tetsuya; Hahn, Christoph; Byrkjedal, Ingvar; Miya, Masaki
2016-01-01
The family Opisthoproctidae (barreleyes) constitutes one of the most peculiar looking and unknown deep-sea fish groups in terms of taxonomy and specialized adaptations. All the species in the family are united by the possession of tubular eyes, with one distinct lineage exhibiting also drastic shortening of the body. Two new species of the mesopelagic opisthoproctid mirrorbelly genus Monacoa are described based on pigmentation patterns of the “sole”—a unique vertebrate structure used in the reflection and control of bioluminescence in most short-bodied forms. Different pigmentation patterns of the soles, previously noted as intraspecific variations based on preserved specimens, are here shown species-specific and likely used for communication in addition to counter-illumination of down-welling sunlight. The genus Monacoa is resurrected from Opisthoproctus based on extensive morphological synaphomorphies pertaining to the anal fin and snout. Doubling the species diversity within sole-bearing opisthoproctids, including recognition of two genera, is unambiguously supported by mitogenomic DNA sequence data. Regular fixation with formalin and alcohol preservation is shown problematic concerning the retention of species-specific pigmentation patterns. Examination or photos of fresh material before formalin fixation is shown paramount for correct species recognition of sole-bearing opisthoproctids—a relatively unknown issue concerning species diversity in the deep-sea pelagic realm. PMID:27508419
Xu, Kesheng; Maidana, Jean P.; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio
2017-01-01
In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons. PMID:28344550
NASA Astrophysics Data System (ADS)
Hoke, G. D.; McPhillips, D. F.; Giambiagi, L.; Garzione, C. N.; Mahoney, J. B.; Strecker, M. R.
2015-12-01
The major changes in the subduction angle of the Nazca plate are often hypothesized to have important consequences for the tectonic evolution of the Andes. Temporal and spatial patterns of topographic growth and exhumation are indicators that should help elucidate any linkages to subduction angle. Here, we combine observations from stable isotope paleoaltimetry with detrital zircon double dating between 30 and 35°S to demonstrate a consistent increase in surface and rock uplift in the Andes south of 32°S. The stable isotope data are from Miocene pedogenic carbonates collected from seven different basin sequences spanning different tectonic and topographic positions in the range. Paleoelevations between 1 km and 1.9 km are calculated using modern local isotope-elevation gradients along with carbonate-formation temperatures determined from clumped isotope studies in modern soils. Present day, low elevation foreland localities were at their present elevations during the Miocene, while three of the intermontane basins experienced up to 2 km of surface uplift between the end of deposition during the late Miocene and present. Detrital zircon (U-Th-Sm)/He and U-Pb double dating in three modern drainage basins (Tunuyán, Arroyo Grande and Río de los Patos) reveals clear Miocene exhumation signals south of the flat slab with no recent exhumation apparent at 32°S. The exhumation pattern is consistent with paleoaltimetry results. Interestingly, the maximum inferred surface uplift is greatest where the crust is thinnest, and the timing of the observed changes in elevation and exhumation has not been linked to any documented episodes of large-magnitude crustal shortening in the eastern half of the range. The spatial pattern of surface uplift and exhumation seems to mimic the Pampean flat slab's geometry, however, it could be equally well explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.
Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.
Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning
2013-01-01
Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur.
Mayhew, Terry M; Lucocq, John M
2011-03-01
Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.
Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease
Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning
2013-01-01
Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur. PMID:24278189
Lawrence, Peter; Brenna, J Thomas
2006-02-15
Covalent adduct chemical ionization (CACI) using a product of acetonitrile self-reaction, (1-methyleneimino)-1-ethenylium (MIE; CH2=C=N+=CH2), has been investigated as a method for localizing double bonds in a series of 16 non-methylene-interrupted fatty acid methyl esters (NMI-FAME) of polyenes with three and more double bonds. As with polyunsaturated homoallylic (methylene-interrupted) FAME and conjugated dienes, MIE (m/z 54) reacts across double bonds to yield molecular ions 54 mass units above the parent analyte. [M + 54]+ ions of several 20- and 22-carbon FAME that include one double bond in the C2-C3 position separated by two to five methylene units from a three, four, or five C homoallylic system dissociated according to rules for the homoallylic system, with an additional fragment corresponding to cleavage between the lone double bond and the carboxyl group and defining the position of the lone double bond. Triene FAME with both methylene and ethylene interruption yielded characteristic fragments distinguishable from homoallylic trienes. Fragmentation of fully conjugated trienes in the MS-1 spectra yields ratios of [M + 54]+/[M + 54 - 32]+ (loss of methanol) near unity, which distinguishes them from homoallylic FAME having a ratio of 8 or more; collisionally activated dissociation of [M + 54]+ yields a series of ions, including some rearrangement products, indicative of double bond position. Unlike conjugated dienes, fully conjugated triene diagnostic ion signal ratios did not follow any pattern based on double bond geometry. Partially conjugated trienes behave similarly to monoenes and conjugated dienes, yielding [M + 54]+/[M + 54 - 32]+ of 2-3 and, permitting them to be assigned as partially conjugated FAME using the MS-1 spectrum. They yield unique MS/MS spectra with weaker but assignable fragment ions, along with a diagnostic fragment that locates the lone double bond and permits 6,10,12-octatrienoate to be distinguished from 6,8,12-octatrienoate. The presence of a triple bond did not affect fragment formation in a methylene-interrupted yne-ene but did change fragments in a conjugated yne-ene. These data extend the principle of double bond localization by acetonitrile CACI-MS/MS to double bond structure in complex FAME found in nature.
Parallel processing for pitch splitting decomposition
NASA Astrophysics Data System (ADS)
Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris
2009-10-01
Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.
The Double Standard at Sexual Debut: Gender, Sexual Behavior and Adolescent Peer Acceptance
Kreager, Derek A.; Staff, Jeremy; Gauthier, Robin; Lefkowitz, Eva S.; Feinberg, Mark E.
2016-01-01
A sexual double standard in adolescence has important implications for sexual development and gender inequality. The present study uses longitudinal social network data (N = 914; 11–16 years of age) to test if gender moderates associations between adolescents’ sexual behaviors and peer acceptance. Consistent with a traditional sexual double standard, female adolescents who reported having sex had significant decreases in peer acceptance over time, whereas male adolescents reporting the same behavior had significant increases in peer acceptance. This pattern was observed net of respondents’ own perceived friendships, further suggesting that the social responses to sex vary by gender of the sexual actor. However, findings for “making out” showed a reverse double standard, such that female adolescents reporting this behavior had increases in peer acceptance and male adolescents reporting the same behavior had decreases in peer acceptance over time. Results thus suggest that peers enforce traditional sexual scripts for both “heavy” and “light” sexual behaviors during adolescence. These findings have important implications for sexual health education, encouraging educators to develop curricula that emphasize the gendered social construction of sexuality and to combat inequitable and stigmatizing peer responses to real or perceived deviations from traditional sexual scripts. PMID:27833252
The Double Standard at Sexual Debut: Gender, Sexual Behavior and Adolescent Peer Acceptance.
Kreager, Derek A; Staff, Jeremy; Gauthier, Robin; Lefkowitz, Eva S; Feinberg, Mark E
2016-10-01
A sexual double standard in adolescence has important implications for sexual development and gender inequality. The present study uses longitudinal social network data ( N = 914; 11-16 years of age) to test if gender moderates associations between adolescents' sexual behaviors and peer acceptance. Consistent with a traditional sexual double standard, female adolescents who reported having sex had significant decreases in peer acceptance over time, whereas male adolescents reporting the same behavior had significant increases in peer acceptance. This pattern was observed net of respondents' own perceived friendships, further suggesting that the social responses to sex vary by gender of the sexual actor. However, findings for "making out" showed a reverse double standard, such that female adolescents reporting this behavior had increases in peer acceptance and male adolescents reporting the same behavior had decreases in peer acceptance over time. Results thus suggest that peers enforce traditional sexual scripts for both "heavy" and "light" sexual behaviors during adolescence. These findings have important implications for sexual health education, encouraging educators to develop curricula that emphasize the gendered social construction of sexuality and to combat inequitable and stigmatizing peer responses to real or perceived deviations from traditional sexual scripts.
Wan, W J; Li, H; Cao, J C
2018-01-22
The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.
Strogatz, S
1983-08-21
An enormous length of DNA is packaged in the nuclei of eukaryotic cells. This is achieved through several intermediate levels of compaction, ranging from the double helix to the chromosome. The nucleosome is now firmly established as the first level of chromatin structure. Next it appears that the nucleosomes are themselves stacked in a two-track array, with a dinucleosome repeat. Several winding patterns of DNA are compatible with such a structure. It is shown here that, compared to other feasible DNA paths, the observed winding pattern has remarkable topological properties. The possible biological significance of this peculiarity is discussed.
Synthesis and properties of mecoprop-intercalated layered double hydroxide
NASA Astrophysics Data System (ADS)
Ahmed Khan, Modabber; Choi, Choong-Lyeal; Lee, Dong-Hoon; Park, Man; Lim, Bu-Kug; Lee, Jong-Yoon; Choi, Jyung
2007-08-01
This study carried out to elucidate the synthesis of MCPP LDH hybrid, release pattern of MCPP from MCPP LDH hybrid and their properties. MCPP LDH hybrid was synthesized from MCPP and Mg Al complex. Release pattern of MCPP from MCPP LDH hybrid was slower in distilled water and soil solution but it was slower in distilled water than soil solution. MCPP LDH hybrid has shown more stable condition than CO32- form of LDH in thermal and acidic condition. Therefore, MCPP LDH hybrid would lead as functional and benign pesticide to minimize the harmful effects on soil environment by bulk herbicides.
Bicycle ownership, use, and injury patterns among elementary schoolchildren
Waller, Julian A
1995-01-01
Patterns of bicycle ownership and injury were studied over a four month period among over 6000 schoolchildren. Two thirds of the bikes owned were standard style and one third high rise. Boys more often had high rise bikes. Slightly over 2% of bike owners are injured annually, but no differences were found according to bike style either in injury rate or severity. Bike borrowing and riding double were common factors in the injury events. Injury from spokes and loss of control because of loose handlebars were identified as problems resulting from product design. PMID:9346042
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
Double-parton scattering effects in associated production of charm mesons and dijets at the LHC
NASA Astrophysics Data System (ADS)
Maciuła, Rafał; Szczurek, Antoni
2017-10-01
We calculate several differential distributions for the production of charm and dijets. Both single-parton scattering (SPS) and double-parton scattering (DPS) contributions are calculated in the kT-factorization approach. The Kimber-Martin-Ryskin unintegrated parton distributions are used in our calculations. Relatively low cuts on jet transverse momenta are imposed to enhance the double-parton scattering mechanism contribution. We find dominance of the DPS contribution over the SPS one. We have found regions of the phase space where the SPS contribution is negligible compared to the DPS contribution. The distribution in transverse momentum of charm quark/antiquark or charmed mesons can be used to observe transition from the dominance of DPS at low transvsverse momenta to the dominance of SPS at large transverse momenta. Very distinct azimuthal correlation patterns (for c c ¯, c -jet , jet-jet, D0-jet , D0D0 ¯ ) are predicted as a result of the competition of the SPS and DPS mechanisms.
Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians.
Newmark, Phillip A; Reddien, Peter W; Cebrià, Francesc; Sánchez Alvarado, Alejandro
2003-09-30
Freshwater planarian flatworms are capable of regenerating complete organisms from tiny fragments of their bodies; the basis for this regenerative prowess is an experimentally accessible stem cell population that is present in the adult planarian. The study of these organisms, classic experimental models for investigating metazoan regeneration, has been revitalized by the application of modern molecular biological approaches. The identification of thousands of unique planarian ESTs, coupled with large-scale whole-mount in situ hybridization screens, and the ability to inhibit planarian gene expression through double-stranded RNA-mediated genetic interference, provide a wealth of tools for studying the molecular mechanisms that regulate tissue regeneration and stem cell biology in these organisms. Here we show that, as in Caenorhabditis elegans, ingestion of bacterially expressed double-stranded RNA can inhibit gene expression in planarians. This inhibition persists throughout the process of regeneration, allowing phenotypes with disrupted regenerative patterning to be identified. These results pave the way for large-scale screens for genes involved in regenerative processes.
Task-Based Variability in Children's Singing Accuracy
ERIC Educational Resources Information Center
Nichols, Bryan E.
2016-01-01
The purpose of this study was to explore the effect of task demands on children's singing accuracy. A 2 × 4 factorial design was used to examine the performance of fourth-grade children (N = 120) in solo and doubled response conditions. Each child sang four task types: single pitch, interval, pattern, and the song "Jingle Bells." The…
Historical Patterns of Change: The Lessons of the 1980s.
ERIC Educational Resources Information Center
Geiger, Roger L.
This paper seeks to assess the current state of academic research in light of long-term trends in the development of science. It presents three perspectives on the growth of scientific research: (1) Derek de Solla Price's (1963) hypothesis that science has exhibited exponential growth, roughly doubling every 15 years since the 17th century; (2)…
USDA-ARS?s Scientific Manuscript database
Recently, in a randomized, double-blind cross-over study, we reported that consumption of grape powder by obese human subjects increased the production of the pro-inflammatory cytokines interleukin-1' and interleukin-6 by ex vivo-derived peripheral blood monocytes after exposure to bacterial lipopol...
Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1974-01-01
Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
Marijuana: Facts Parents Need To Know.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHHS), Rockville, MD. Div. of Research.
Marijuana is the illegal drug most often used in the United States. In the early 1990s marijuana use doubled among 8th graders and significantly increased among 10th and 12th graders. Accompanying this pattern of use is a significant erosion in antidrug perceptions and knowledge among young people. While marijuana use among high school seniors…
WORKING WOMEN AND THE AMERICAN ECONOMY.
ERIC Educational Resources Information Center
KEYSERLING, MARY DUBLIN
AMERICAN WOMEN HAVE MADE A LARGE AND GROWING CONTRIBUTION TO FAMILY INCOME PROGRESS SINCE 1940. THE NUMBER OF WOMEN IN THE WORKING FORCE HAS DOUBLED. THIS INCREASE REFLECTS THE DRAMATIC CHANGE IN WOMEN'S WORK-LIFE PATTERNS. THERE HAS BEEN A MARKED INCREASE IN THE EMPLOYMENT OF WOMEN OVER 35. THE WOMAN MOST LIKELY TO BE A WAGE EARNER IN 1967 WAS…
Prevention of Unintentional Injury to People with Intellectual Disability: A Review of the Evidence
ERIC Educational Resources Information Center
Sherrard, J.; Ozanne-Smith, J.; Staines, C.
2004-01-01
Recent research evidence shows that people with intellectual disability (ID) have double the unintentional injury risk of the general population and the risk is further increased in the presence of psychopathology and epilepsy. The pattern of injury and the circumstances surrounding an injury event in those with ID have some similarity with that…
Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver
2016-09-01
Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002
Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof
2006-03-01
Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.
Graphene patterns supported terahertz tunable plasmon induced transparency.
He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou
2018-04-16
The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.
Pattern formation in three-dimensional reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Callahan, T. K.; Knobloch, E.
1999-08-01
Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses
NASA Astrophysics Data System (ADS)
Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai
2016-06-01
Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.
OLED emission zone measurement with high accuracy
NASA Astrophysics Data System (ADS)
Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.
2013-09-01
Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.
Assessment of Causes and Patterns of Recurrent Varicose Veins After Surgery
Gad, Mohammed A; Saber, Aly; Hokkam, Emad N
2012-01-01
Background: Varicose vein surgery is characterized by high recurrence rate of 60% after 5 years of follow-up observation, and this is a disappointing finding, both for the patient and surgeon. Aim: To identify the possible causes and patterns of recurrent varicose veins. Materials and Methods: 92 patients with recurrent varicose veins were enrolled in this study. Full detailed history, examination, and investigations were done. Results: 30 patients had recurrence after saphenofemoral disconnection, 22 patients with recurrence after saphenofemoral disconnection and stripping below knee, 28 patients recurrence after saphenofemoral disconnection with stripping above knee and 12 patients recurrence after sapheno-popliteal disconnection with stripping. The double great saphenous veins, neovascularization and deep venous thrombosis before and after surgery were the most observed patterns of recurrence. The anatomical patterns of recurrence were more in leg then both leg and thigh pattern. Conclusion: Saphenofemoral ligation with below knee stripping has the least frequency of recurrence, while Trendlenberg operation alone has the highest. PMID:22393548
En Face Optical Coherence Tomography for Visualization of the Choroid.
Savastano, Maria Cristina; Rispoli, Marco; Savastano, Alfonso; Lumbroso, Bruno
2015-05-01
To assess posterior pole choroid patterns in healthy eyes using en face optical coherence tomography (OCT). This observational study included 154 healthy eyes of 77 patients who underwent en face OCT. The mean age of the patients was 31.2 years (standard deviation: 13 years); 40 patients were women, and 37 patients were men. En face imaging of the choroidal vasculature was assessed using an OCT Optovue RTVue (Optovue, Fremont, CA). To generate an appropriate choroid image, the best detectable vessels in Haller's layer below the retinal pigment epithelium surface parallel plane were selected. Images of diverse choroidal vessel patterns at the posterior pole were observed and recorded with en face OCT. Five different patterns of Haller's layer with different occurrences were assessed. Pattern 1 (temporal herringbone) represented 49.2%, pattern 2 (branched from below) and pattern 3 (laterally diagonal) represented 14.2%, pattern 4 (doubled arcuate) was observed in 11.9%, and pattern 5 (reticular feature) was observed in 10.5% of the reference plane. In vivo assessment of human choroid microvasculature in healthy eyes using en face OCT demonstrated five different patterns. The choroid vasculature pattern may play a role in the origin and development of neuroretinal pathologies, with potential importance in chorioretinal diseases and circulatory abnormalities. Copyright 2015, SLACK Incorporated.
Experimental study on flame pattern formation and combustion completeness in a radial microchannel
NASA Astrophysics Data System (ADS)
Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru
2007-12-01
Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.
Taketa, S; Ando, H; Takeda, K; von Bothmer, R
2001-05-01
The physical locations of 5S and 18S-25S rDNA sequences in 15 diploid Hordeum species with the I genome were examined by double-target in situ hybridization with pTa71 (18S-25S rDNA) and pTa794 (5S rDNA) clones as probes. All the three Asian species had a species-specific rDNA pattern. In 12 American species studied, eight different rDNA types were found. The type reported previously in H. chilense (the 'chilense' type) was observed in eight American species. The chilense type had double 5S rDNA sites - two sites on one chromosome arm separated by a short distance - and two pairs of major 18S-25S rDNA sites on two pairs of satellite chromosomes. The other seven types found in American species were similar to the chilense type and could be derived from the chilense type through deletion, reduction or addition of a rDNA site. Intraspecific polymorphisms were observed in three American species. The overall similarity in rDNA patterns among American species indicates the close relationships between North and South American species and their derivation from a single ancestral source. The differences in the distribution patterns of 5S and 18S-25S rDNA between Asian and American species suggest differentiation between the I genomes of Asian and American species. The 5S and 18S-25S rDNA sites are useful chromosome markers for delimiting Asian species, but have limited value as a taxonomic character in American species. On the basis of rDNA patterns, karyotype evolution and phylogeny of the I-genome diploid species are discussed.
Brazilian Road Traffic Fatalities: A Spatial and Environmental Analysis
de Andrade, Luciano; Vissoci, João Ricardo Nickenig; Rodrigues, Clarissa Garcia; Finato, Karen; Carvalho, Elias; Pietrobon, Ricardo; de Souza, Eniuce Menezes; Nihei, Oscar Kenji; Lynch, Catherine; de Barros Carvalho, Maria Dalva
2014-01-01
Background Road traffic injuries (RTI) are a major public health epidemic killing thousands of people daily. Low and middle-income countries, such as Brazil, have the highest annual rates of road traffic fatalities. In order to improve road safety, this study mapped road traffic fatalities on a Brazilian highway to determine the main environmental factors affecting road traffic fatalities. Methods and Findings Four techniques were utilized to identify and analyze RTI hotspots. We used spatial analysis by points by applying kernel density estimator, and wavelet analysis to identify the main hot regions. Additionally, built environment analysis, and principal component analysis were conducted to verify patterns contributing to crash occurrence in the hotspots. Between 2007 and 2009, 379 crashes were notified, with 466 fatalities on BR277. Higher incidence of crashes occurred on sections of highway with double lanes (ratio 2∶1). The hotspot analysis demonstrated that both the eastern and western regions had higher incidences of crashes when compared to the central region. Through the built environment analysis, we have identified five different patterns, demonstrating that specific environmental characteristics are associated with different types of fatal crashes. Patterns 2 and 4 are constituted mainly by predominantly urban characteristics and have frequent fatal pedestrian crashes. Patterns 1, 3 and 5 display mainly rural characteristics and have higher prevalence of vehicular collisions. In the built environment analysis, the variables length of road in urban area, limited lighting, double lanes roadways, and less auxiliary lanes were associated with a higher incidence of fatal crashes. Conclusions By combining different techniques of analyses, we have identified numerous hotspots and environmental characteristics, which governmental or regulatory agencies could make use to plan strategies to reduce RTI and support life-saving policies. PMID:24498051
Fu, Xian-Jun; Song, Xu-Xia; Wei, Lin-Bo; Wang, Zhen-Guo
2013-08-01
To provide the distribution pattern and compatibility laws of the constituent herbs in prescriptions, for doctor's convenience to make decision in choosing correct herbs and prescriptions for treating respiratory disease. Classical prescriptions treating respiratory disease were selected from authoritative prescription books. Data mining methods (frequent itemsets and association rules) were used to analyze the regular patterns and compatibility laws of the constituent herbs in the selected prescriptions. A total of 562 prescriptions were selected to be studied. The result exhibited that, Radix glycyrrhizae was the most frequently used in 47.2% prescriptions, other frequently used were Semen armeniacae amarum, Fructus schisandrae Chinese, Herba ephedrae, and Radix ginseng. Herbal ephedrae was always coupled with Semen armeniacae amarum with the confidence of 73.3%, and many herbs were always accompanied by Radix glycyrrhizae with high confidence. More over, Fructus schisandrae Chinese, Herba ephedrae and Rhizoma pinelliae was most commonly used to treat cough, dyspnoea and associated sputum respectively besides Radix glycyrrhizae and Semen armeniacae amarum. The prescriptions treating dyspnoea often used double herb group of Herba ephedrae & Radix glycyrrhizae, while prescriptions treating sputum often used double herb group of Rhizoma pinelliae & Radix glycyrrhizae and Rhizoma pinelliae & Semen armeniacae amarum, triple herb groups of Rhizoma pinelliae & Semen armeniacae amarum & Radix glycyrrhizae and Pericarpium citri reticulatae & Rhizoma pinelliae & Radix glycyrrhizae. The prescriptions treating respiratory disease showed common compatibility laws in using herbs and special compatibility laws for treating different respiratory symptoms. These principle patterns and special compatibility laws reported here could be useful for doctors to choose correct herbs and prescriptions in treating respiratory disease.
Merz, M; Kroll, R; Lynen, R; Bangerter, K
2015-02-01
The aim of this study was to investigate the bleeding pattern and cycle control of a contraceptive patch containing 0.55 mg ethinyl estradiol (EE) and 2.1 mg gestodene (GSD) compared with a combined oral contraceptive (COC) containing 0.02 mg EE and 0.1 mg levonorgestrel (LNG). In this phase III, randomized, controlled, double-blind, double-dummy, multicenter trial, healthy women aged 18-45 years (smokers aged 18-35 years) received either the EE/GSD patch and a placebo tablet (n=171), or a placebo patch and the COC (n=175) for seven 28-day cycles. Bleeding control was assessed in two 90-day reference periods. Mean number of bleeding/spotting days was comparable across treatment groups in both reference periods (p>.05). Mean number of bleeding/spotting episodes was also comparable in reference period 1; however, there were fewer bleeding/spotting episodes for COC in reference period 2 (3.4 versus 3.1; p=.01). Mean length of bleeding/spotting episodes was comparable across treatment groups for both reference periods (p>.05). Withdrawal bleeding occurred consistently in both groups over the entire treatment period, but its absence was more common in the COC group in cycles 4 and 6 of reference period 2 (p<.01). Intracyclic bleeding was comparable between groups. Bleeding pattern and cycle control with the EE/GSD patch was comparable to an EE/LNG-containing COC. The findings suggest that bleeding patterns with the EE/GSD patch are similar to an EE/LNG-containing COC, except for absence of withdrawal bleeding, which was less common in patch users. The EE/GSD patch may constitute an additional contraceptive option for women. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe
2015-03-01
Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.
Advances in dual-tone development for pitch frequency doubling
NASA Astrophysics Data System (ADS)
Fonseca, Carlos; Somervell, Mark; Scheer, Steven; Kuwahara, Yuhei; Nafus, Kathleen; Gronheid, Roel; Tarutani, Shinji; Enomoto, Yuuichiro
2010-04-01
Dual-tone development (DTD) has been previously proposed as a potential cost-effective double patterning technique1. DTD was reported as early as in the late 1990's2. The basic principle of dual-tone imaging involves processing exposed resist latent images in both positive tone (aqueous base) and negative tone (organic solvent) developers. Conceptually, DTD has attractive cost benefits since it enables pitch doubling without the need for multiple etch steps of patterned resist layers. While the concept for DTD technique is simple to understand, there are many challenges that must be overcome and understood in order to make it a manufacturing solution. Previous work by the authors demonstrated feasibility of DTD imaging for 50nm half-pitch features at 0.80NA (k1 = 0.21) and discussed challenges lying ahead for printing sub-40nm half-pitch features with DTD. While previous experimental results suggested that clever processing on the wafer track can be used to enable DTD beyond 50nm halfpitch, it also suggest that identifying suitable resist materials or chemistries is essential for achieving successful imaging results with novel resist processing methods on the wafer track. In this work, we present recent advances in the search for resist materials that work in conjunction with novel resist processing methods on the wafer track to enable DTD. Recent experimental results with new resist chemistries, specifically designed for DTD, are presented in this work. We also present simulation studies that help and support identifying resist properties that could enable DTD imaging, which ultimately lead to producing viable DTD resist materials.
Born’s rule as signature of a superclassical current algebra
NASA Astrophysics Data System (ADS)
Fussy, S.; Mesa Pascasio, J.; Schwabl, H.; Grössing, G.
2014-04-01
We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie-Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool.
Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Ann C.; Solonenko, Sergei A.; Ignacio-Espinoza, J. Cesar
Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Here in this study we explore the role of recombination in both maintainingmore » and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Lastly, these findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.« less
Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer
Gregory, Ann C.; Solonenko, Sergei A.; Ignacio-Espinoza, J. Cesar; ...
2016-11-16
Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Here in this study we explore the role of recombination in both maintainingmore » and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Lastly, these findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes.« less
Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia
2011-01-01
In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066
A high-gain, low ion-backflow double micro-mesh gaseous structure for single electron detection
NASA Astrophysics Data System (ADS)
Zhang, Zhiyong; Qi, Binbin; Liu, Chengming; Feng, Jianxin; Liu, Jianbei; Shao, Ming; Zhou, Yi; Hong, Daojin; Lv, You; Song, Guofeng; Wang, Xu; You, Wenhao
2018-05-01
Application of micro-pattern gaseous detectors to gaseous photomultiplier tubes has been widely investigated over the past two decades. In this paper, we present a double micro-mesh gaseous structure that has been designed and fabricated for this application. Tests with X-rays and UV laser light indicate that this structure exhibits an excellent gas gain of > 7 × 104 and good energy resolution of 19% (full width at half maximum) for 5.9 keV X-rays. The gas gain can reach up to 106 for single electrons while maintaining a very low ion-backflow ratio down to 0.0005. This structure has good potential for other applications requiring a very low level of ion backflow.
Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites
NASA Astrophysics Data System (ADS)
Romhányi, Judit; Balents, Leon; Jackeli, George
2017-05-01
We formulate and study a spin-orbital model for a family of cubic double perovskites with d1 ions occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis reveal a rich variety of phases emerging from the interplay of Hund's rule and spin-orbit coupling. The phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical origin of the unusual amorphous valence bond state experimentally suggested for Ba2B Mo O6 (B =Y , Lu) and predicts possible ordered patterns in Ba2B Os O6 (B =Na , Li) compounds.
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan
2017-10-01
Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.
Control of the filamentation distance and pattern in long-range atmospheric propagation
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Louzon, Einat; Katzir, Yiftach; Palchan, Tala; Zigler, Arie; Sivan, Yonatan; Fibich, Gadi
2007-03-01
We use the double-lens setup [10, 11] to achieve a 20-fold delay of the filamentation distance of non-chirped 120 fs pulses propagating in air, from 16m to 330m. At 330m, the collapsing pulse is sufficiently powerful to create plasma filaments. We also show that the scatter of the filaments at 330m can be significantly reduced by tilting the second lens. To the best of our knowledge, this is the longest distance reported in the Literature at which plasma filaments were created and controlled. Finally, we show that the peak power at the onset of collapse is significantly higher with the double-lens setup, compared with the standard negative chirping approach.
A structural model of family empowerment for families of children with special needs.
Han, Kuem Sun; Yang, Yunkyung; Hong, Yeong Seon
2018-03-01
To explain and predict family empowerment in families of children with special needs. Family empowerment of families of children with special needs can be explained using the Double ABCX model. Although constant stressors such as parenting stress and family demands can have negative effects on family empowerment, family resources and parenting efficacy can mediate the negative effect through effective coping strategies. A cross-sectional research design was employed. A survey was conducted with 240 parents of children with special needs. Upon exclusion of four responses deemed inadequate to the statistics process, 236 responses were selected for the analysis. Based on the items used in the previous research, we used the scale of family demands 38, the scale of parenting stress 24, the scale of parenting efficacy 37, the scale of pattern of organisation 30, the scale of communication process 16 and the scale of family empowerment 32. In families of children with special needs, parenting stress had a negative effect on parenting efficacy and family resources, namely, pattern of organisation and communication process. Family needs had a positive effect on parenting efficacy. Parenting stress and family demands influenced family empowerment through parenting efficacy and family resources (pattern of organisation and communication process), while parenting efficacy contributed to family empowerment. This study empirically analysed the usefulness of the Double ABCX model in predicting family empowerment. Family resource factors (organisation pattern and communication process) and perception or judgement factors (such as parenting efficacy) were found to mediate the negative impact of various stressors experienced by families of children with special needs. The study findings suggest that clinical practice and management should focus on providing efficient intervention methods to lower stress in families of children with special needs. Reinforcing factors contributing to family empowerment, such as parenting efficacy, organisation pattern and communication process, will alleviate families' stress, resulting in a positive educational and developmental impact on children with special needs. © 2017 John Wiley & Sons Ltd.
Byun, Jun-Seop; Yang, Su-Young; Jeong, In-Cheol; Hong, Kwon-Eui; Kang, Weechang; Yeo, Yoon; Park, Yang-Chun
2011-01-27
So-cheong-ryong-tang (SCRT) and Yeon-gyo-pae-dok-san (YPS) extracts are widely used in treatment of the common cold. The purpose of this study is to evaluate the efficacy of SCRT and YPS on the common cold. Four hundred eighty participants with symptoms of the common cold within 48 h were recruited for this randomized, double-blind, placebo-controlled trial. SCRT extract and YPS extract were put in gelatin capsules and orally administered 3 times a day. The pattern of participants was determined according to the Questionnaire for Common Cold Pattern Identification (QCCPI), and the severity of illness was assessed by Wisconsin Upper Respiratory Symptom Survey-21 Korean version (WURSS-21-K) every 7 days. The test and control groups were not significantly different in gender, age, smoking history, and baseline score of WURSS-21-K at the time of enrollment. SCRT treatment significantly decreased the total WURSS-21-K score on the 6th and 7th day (p<0.05) of the enrollment compared with the placebo group. YPS treatment decreased the total WURSS-21-K score on the 5th and 6th day (p<0.05 vs. the placebo group) of the enrollment. In the patients with Wind-cold pattern cold, SCRT significantly decreased the total WURSS-21-K score from 4th to 8th day (p<0.05), and YPS significantly decreased the total WURSS-21-K score from 4th to 6th day (p<0.05). For the Wind-heat pattern cold, neither SCRT nor YPS group showed significant difference from the placebo group. SCRT and YPS did not significantly decrease the time to complete resolution of the cold symptoms. SCRT and YPS have beneficial, albeit limited, effects on common cold patients, especially those with the Wind-cold pattern cold. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Grizenko, Natalie; Kovacina, Bojan; Amor, Leila Ben; Schwartz, George; Ter-Stepanian, Marina; Joober, Ridha
2006-01-01
Objective: To compare the pattern of familial aggregation of psychopathology in children who are good responders (GR) to methylphenidate (MPH) versus those who are poor responders (PR). Method: A total of 118 clinically referred children ages 6 to 12 years, diagnosed with ADHD participated in a double-blind, placebo-controlled, randomized 2-week…
ERIC Educational Resources Information Center
Nicolson, Rob; Craven-Thuss, Beth; Smith, Judy; McKinlay, B. Duncan; Castellanos, F. Xavier
2005-01-01
Objective: The pattern of dopamine antagonism by metoclopramide suggests benefits in the treatment of tic disorders. The purpose of this study was to examine the efficacy and safety of metoclopramide in the treatment of children and adolescents with tic disorders. Method: Twenty-seven medication-free patients (age 11.9 [+ or -] 2.7 years) with…
ERIC Educational Resources Information Center
Jiang, Lin; Huang, Kang
2015-01-01
Structural priming refers to the tendency of speakers to reuse the same structural pattern as one that was previously encountered (Bock, 1986). The effectiveness of structural priming has been an issue of much discussion in the field of second language acquisition over decades. This study aims at investigating the role of structural priming in…
Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong
2013-12-01
To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, p<0.05) and average litter size (4.1 ± 2.3, 7 ± 3.6 vs. 2.5 ± 0.5). In vitro culture of reconstructed embryos for a longer time (40 h vs. 20 h) resulted in higher (p<0.05) pregnancy rate (44 ± 9 vs. 31 ± 3%) and delivery rate (44 ± 9 vs. 25 ± 9%). Furthermore, double oviductal transfer dramatically increased pregnancy rate (83 ± 6 vs. 27+8%, p<0.05), delivery rate (75 ± 2 vs. 27+8%, p<0.05) and average litter size (6.5 ± 2.8 vs. 2.6 ± 1.2) compared to single oviductal transfer. Our study demonstrated that an improvement in pig cloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.
Menashe-Grinberg, Atara; Atzaba-Poria, Naama
2017-11-01
Based on the premise that father-child play is an important context for children's development and that fathers "specialize" in play, similarities and differences in the role of playfulness in the father-child and mother-child relationship were examined. Participants in this study included 111 families (children's age: 1-3 years). Father-child and mother-child play interactions were videotaped and coded for parental playfulness, sensitivity, structuring, and nonintrusiveness as well as child negativity. Results indicated that mothers and fathers did not differ in playfulness and that mothers and fathers who were higher in playfulness had children with lower levels of negativity. However, playfulness differently moderated the links between parents' and children's behaviors for mothers and fathers. A double-risk pattern was found for mothers, such that the links between child negativity and maternal sensitivity, structuring, and nonintrusiveness were significant only for the subgroup of mothers with low levels of playfulness. When mothers had high levels of playfulness, these effects were negligible. For fathers, a double-buffer pattern was revealed, indicating that the links between child negativity and paternal sensitivity and structuring were significant only for fathers with high levels of playfulness. When fathers had low levels of playfulness, these effects were negligible. These findings demonstrate the important role that parental playfulness has on parent-child interaction as well as the need to examine moderation patterns separately for fathers and mothers. © 2017 Michigan Association for Infant Mental Health.
Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.
Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M
2016-09-12
The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Mandal, Shubhadeep; Chakraborty, Suman
2017-06-01
Here we attempt to solve the fully coupled Poisson-Nernst-Planck-Navier-Stokes equations, to ascertain the influence of finite electric double layer (EDL) thickness on coupled charge and fluid dynamics over patterned charged surfaces. We go beyond the well-studied "weak-field" limit and obtain numerical solutions for a wide range of EDL thicknesses, applied electric field strengths, and the surface potentials. Asymptotic solutions to the coupled system are also derived using a combination of singular and regular perturbation, for thin EDLs and low surface potential, and good agreement between the two solutions is observed. Counterintuitively to common arguments, our analysis reveals that finite EDL thickness may either increase or decrease the "free-stream velocity" (equivalent to net throughput), depending on the strength of the applied electric field. We also unveil a critical EDL thickness for which the effect of finite EDL thickness on the free-stream velocity is the most prominent. Finally, we demonstrate that increasing the surface potential and the applied field tends to influence the overall flow patterns in the contrasting manners. These results may be of profound importance in developing a comprehensive theoretical basis for designing electro-osmotically actuated microfluidic mixtures.
An Optimization of Inventory Demand Forecasting in University Healthcare Centre
NASA Astrophysics Data System (ADS)
Bon, A. T.; Ng, T. K.
2017-01-01
Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.
Early patterns of commercial activity in graphene
NASA Astrophysics Data System (ADS)
Shapira, Philip; Youtie, Jan; Arora, Sanjay
2012-03-01
Graphene, a novel nanomaterial consisting of a single layer of carbon atoms, has attracted significant attention due to its distinctive properties, including great strength, electrical and thermal conductivity, lightness, and potential benefits for diverse applications. The commercialization of scientific discoveries such as graphene is inherently uncertain, with the lag time between the scientific development of a new technology and its adoption by corporate actors revealing the extent to which firms are able to absorb knowledge and engage in learning to implement applications based on the new technology. From this perspective, we test for the existence of three different corporate learning and activity patterns: (1) a linear process where patenting follows scientific discovery; (2) a double-boom phenomenon where corporate (patenting) activity is first concentrated in technological improvements and then followed by a period of technology productization; and (3) a concurrent model where scientific discovery in publications occurs in parallel with patenting. By analyzing corporate publication and patent activity across country and application lines, we find that, while graphene as a whole is experiencing concurrent scientific development and patenting growth, country- and application-specific trends offer some evidence of the linear and double-boom models.
In vivo growth of 60 non-screening detected lung cancers: a computed tomography study.
Mets, Onno M; Chung, Kaman; Zanen, Pieter; Scholten, Ernst T; Veldhuis, Wouter B; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia M; de Jong, Pim A
2018-04-01
Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis. Copyright ©ERS 2018.
Double patterning from design enablement to verification
NASA Astrophysics Data System (ADS)
Abercrombie, David; Lacour, Pat; El-Sewefy, Omar; Volkov, Alex; Levine, Evgueni; Arb, Kellen; Reid, Chris; Li, Qiao; Ghosh, Pradiptya
2011-11-01
Litho-etch-litho-etch (LELE) is the double patterning (DP) technology of choice for 20 nm contact, via, and lower metal layers. We discuss the unique design and process characteristics of LELE DP, the challenges they present, and various solutions. ∘ We examine DP design methodologies, current DP conflict feedback mechanisms, and how they can help designers identify and resolve conflicts. ∘ In place and route (P&R), the placement engine must now be aware of the assumptions made during IP cell design, and use placement directives provide by the library designer. We examine the new effects DP introduces in detail routing, discuss how multiple choices of LELE and the cut allowances can lead to different solutions, and describe new capabilities required by detail routers and P&R engines. ∘ We discuss why LELE DP cuts and overlaps are critical to optical process correction (OPC), and how a hybrid mechanism of rule and model-based overlap generation can provide a fast and effective solution. ∘ With two litho-etch steps, mask misalignment and image rounding are now verification considerations. We present enhancements to the OPCVerify engine that check for pinching and bridging in the presence of DP overlay errors and acute angles.
One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanchetta, E.; Della Giustina, G.; Brusatin, G.
2014-09-14
A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO₂ micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tonemore » behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.« less
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Functional Connectivity and Genetic Profile of a “Double-Cortex”-Like Malformation
Sprugnoli, Giulia; Vatti, Giampaolo; Rossi, Simone; Cerase, Alfonso; Renieri, Alessandra; Mencarelli, Maria A.; Zara, Federico; Rossi, Alessandro; Santarnecchi, Emiliano
2018-01-01
Laminar heterotopia is a rare condition consisting in an extra layer of gray matter under properly migrated cortex; it configures an atypical presentation of periventricular nodular heterotopia (PNH) or a double cortex (DC) syndrome. We conducted an original functional MRI (fMRI) analysis in a drug-resistant epilepsy patient with “double-cortex”-like malformation to reveal her functional connectivity (FC) as well as a wide genetic analysis to identify possible genetic substrates. Heterotopias were segmented into region of interests (ROIs), whose voxel-wise FC was compared to that of (i) its normally migrated counterpart, (ii) its contralateral homologous, and (iii) those of 30 age-matched healthy controls. Extensive genetic analysis was conducted to screen cortical malformations-associated genes. Compared to healthy controls, both laminar heterotopias and the overlying cortex showed significant reduction of FC with the contralateral hemisphere. Two heterozygous variants of uncertain clinical significance were found, involving autosomal recessive disease-causing genes, FAT4 and COL18A1. This first FC analysis of a unique case of “double-cortex”-like malformation revealed a hemispheric connectivity segregation both in the laminar cortex as in the correctly migrated one, with a new pattern of genes’ mutations. Our study suggests the altered FC could have an electrophysiological and functional impact on large-scale brain networks, and the involvement of not yet identified genes in “double-cortex”-like malformation with a possible role of rare variants in recessive genes as pathogenic cofactors. PMID:29946244
In Vitro Product of a Ribonucleic Acid Polymerase Induced by Influenza Virus
Mahy, B. W. J.; Bromley, P. A.
1970-01-01
The ribonucleic acid (RNA)-dependent RNA polymerase induced in the microsomal fraction of cells infected with influenza virus synthesized a mixture of single-and double-stranded RNA in vitro. The single-stranded RNA sedimented mainly in the 8S region on sucrose density gradients, with a smaller proportion of the RNA sedimenting at 18S. This sedimentation pattern corresponds closely to that of incomplete influenza virus RNA. The double-stranded RNA formed in vitro sedimented at 11S, but molecules which may be replicative intermediate, sedimenting at 14 to 20S, were also detected in the in vitro reaction product. Similar species of RNA were detected in vivo by pulse-labeling infected cells at the time of polymerase harvest, but the proportion of each RNA species was different, most of the RNA being single-stranded and sedimenting in the 18S region. An 11S double-stranded RNA was also synthesized in vivo. Pulse chase analysis of the double-stranded RNA synthesized in vitro showed that most is stable, and only a small proportion turns over during the reaction. A proportion of the RNA formed in vitro could be annealed to RNA formed in infected cells and to RNA extracted from purified virus. PMID:5480408
Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen
2018-04-01
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Double cusp encounter by Cluster: double cusp or motion of the cusp?
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2012-12-01
Modeling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern allowed Wing et al. [2001] to model double cusp signatures that were observed by the DMSP spacecraft when the Interplanetary Magnetic Field (IMF) is southward but has a dominant By component (|IMF-By|>|IMF-Bz|). Under these conditions, reconnection between the IMF and the geomagnetic field is predicted to occur both at high latitudes and around the equatorial plane (or subsolar region). This multiple reconnection topology subsequently produces two different injections of plasma into the cusp, hence the observation of the so-called double cusp. However, the two cusps can be very close to each other and a detailed analysis of the dispersion of the precipitating ions is very often required to clearly identify them. We will present a cusp crossing where two cusps are observed, separated by 1° ILAT. Cluster 1 and 2 observed these two cusps within a few minute interval and about 10 and 50 min later, respectively, Cluster 4 and 3 observed a single cusp only. A peculiarity of this event was the fact that the second cusp seen on C1 and C2 was observed at the same time as the first cusp on C4. This would tend to suggest that the two dispersions are spatial features similar to the double cusp. However more detailed analysis of the characteristics of the cusps (ion dispersion, boundaries) and the IMF abrupt changes clearly showed that the double cusp was in fact a single cusp that had moved toward dawn and then back toward dusk following the changes in the IMF direction.
NASA Astrophysics Data System (ADS)
Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.
The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.
Toward microscale flow control using non-uniform electro-osmotic flow
NASA Astrophysics Data System (ADS)
Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran
2018-02-01
We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.
Kim, Yang-Soo; Lee, Hyo-Jin; Jin, Hong-Ki; Kim, Sung-Eun; Lee, Jin-Woo
2016-05-01
The rotator cuff tendon is known to exert a shear force between the superficial and deep layers. Owing to this characteristic, separate repair of delaminated rotator cuff tears has been introduced for the restoration of the physiological biomechanics of the rotator cuff. However, whether conventional en masse repair or separate repair is superior is controversial in terms of outcomes. To compare clinical outcomes between conventional en masse repair and separate double-layer double-row repair for the treatment of delaminated rotator cuff tears. Randomized controlled study; Level of evidence, 2. Between August 2007 and March 2014, a total of 82 patients who underwent arthroscopic rotator cuff repair of a delaminated tear were enrolled and randomized into 2 groups. In group 1 (n = 48), arthroscopic conventional en masse repair was performed. In group 2 (n = 34), separate double-layer double-row repair was performed. The American Shoulder and Elbow Surgeons score, Constant score, Simple Shoulder Test score, and visual analog scale (VAS) score for pain and range of motion (ROM) were assessed before surgery; at 3, 6, and 12 months after surgery; and at the last follow-up visit. Magnetic resonance imaging (MRI) was performed at 12 months postoperatively to examine the retear rate and pattern. There was no significant difference between groups in the preoperative demographic data, including patient age, sex, symptom duration, tear size, and functional scores (P > .05). The mean follow-up period was 25.9 ± 1.2 months. Significant improvements in functional and pain scores were observed in both groups at the last follow-up visit. However, no significant differences in functional scores and ROM were found between the 2 groups at each time point, except that group 2 had significantly lower VAS pain scores (P < .05) at 3, 6, and 12 months postoperatively. Eight (17%) of 48 patients in group 1 and 6 (18%) of 34 patients in group 2 showed retears on MRI at 12-month follow-up (P > .05). Both conventional en masse repair and separate double-layer double-row repair were effective in improving clinical outcomes in the treatment of delaminated rotator cuff tears. Lower pain scores were seen in patients who underwent separate double-layer double-row repair. © 2016 The Author(s).
N7 logic via patterning using templated DSA: implementation aspects
NASA Astrophysics Data System (ADS)
Bekaert, J.; Doise, J.; Gronheid, R.; Ryckaert, J.; Vandenberghe, G.; Fenger, G.; Her, Y. J.; Cao, Y.
2015-07-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern.
Mueller, Jutta L; Hirotani, Masako; Friederici, Angela D
2007-01-01
Background The present experiments were designed to test how the linguistic feature of case is processed in Japanese by native and non-native listeners. We used a miniature version of Japanese as a model to compare sentence comprehension mechanisms in native speakers and non-native learners who had received training until they had mastered the system. In the first experiment we auditorily presented native Japanese speakers with sentences containing incorrect double nominatives and incorrect double accusatives, and with correct sentences. In the second experiment we tested trained non-natives with the same material. Based on previous research in German we expected an N400-P600 biphasic ERP response with specific modulations depending on the violated case and whether the listeners were native or non-native. Results For native Japanese participants the general ERP response to the case violations was an N400-P600 pattern. Double accusatives led to an additional enhancement of the P600 amplitude. For the learners a native-like P600 was present for double accusatives and for double nominatives. The additional negativity, however, was present in learners only for double nominative violations, and it was characterized by a different topographical distribution. Conclusion The results indicate that native listeners use case markers for thematic as well as syntactic structure building during incremental sentence interpretation. The modulation of the P600 component for double accusatives possibly reflects case specific syntactic restrictions in Japanese. For adult language learners later processes, as reflected in the P600, seem to be more native-like compared to earlier processes. The anterior distribution of the negativity and its selective emergence for canonical sentences were taken to suggest that the non-native learners resorted to a rather formal processing strategy whereby they relied to a large degree on the phonologically salient nominative case marker. PMID:17331265
3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
NASA Astrophysics Data System (ADS)
Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.
2018-04-01
In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.
How bootstrap can help in forecasting time series with more than one seasonal pattern
NASA Astrophysics Data System (ADS)
Cordeiro, Clara; Neves, M. Manuela
2012-09-01
The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.
Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H
2010-03-01
To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P < .05). The addition of a rip-stop stitch made the repair more resistant to gap formation than a double row repair (P < .05). The crisscross double row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P < .05). Double-row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures. The triple-loaded anchors with ultrahigh-molecular weight polyethylene-containing sutures placed in a single row were more resistant to stretching than the double-row groups. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
A double standard for "Hooking Up": How far have we come toward gender equality?
Allison, Rachel; Risman, Barbara J
2013-09-01
While sexual attitudes have liberalized in the past half century, research is mixed as to whether attitudes have become less gendered over time. Recent studies on college students' sexual and romantic relationships suggest that a sexual double standard continues to organize sexuality on many campuses. Data from the Online College Social Life Survey shed light on students' evaluation of casual sex, or "hooking up." In addition to exploring gendered attitudinal patterns, we use gender structure theory to explore how individual characteristics and normative expectations of campus group affiliations shape attitudes. While three quarters of students do not hold different standards for men and women's hooking up, attitudes are more conservative than liberal, with almost half of students losing respect for men and women who hook up "a lot." However, men are more likely to hold a traditional double standard, while women are more likely to espouse egalitarian conservative attitudes. Individual characteristics, including age, religion, race, social class and sexual orientation are frequently related to sexual attitudes, as are number of hook ups, fraternity/sorority affiliation and varsity athletic participation. Published by Elsevier Inc.
Bolted joints in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1976-01-01
All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.
Schultz, Peter A.
2016-03-01
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
Buoyancy-induced flow studies in thermally stratified loop of a double-envelope building
NASA Astrophysics Data System (ADS)
Ghaffari, H. T.; Jones, R. F.
There is a wide interest in the flow studies of thermally stratified loops of double-envelope houses. These loops primarily serve to hold a moderate air temperature around the inner buildings, and to reduce thermal losses and air movements into the house by diminishing infiltration. Further, if the thermal mechanism of the buildng is well designed, it may be possible to cause a solar-assisted, buoyancy-induced cycling of the flow during the day and a probable reverse cycling during the night. The benefits of this flow pattern are a possible storage of heat in the ground level of the crawl space during the day, its retrieval at night, and a better mixing of warmed air in various zones of the loop. The double-envelope section of the buildng was monitored from October 1981 to October 1982. Data collected were debugged and the monitoring system was adjusted and calibrated. Results from this experiment concerning significant local flows are analyzed. Hence, a validation of the conceptual thermal mechanism is obtained, and empirical and analytical assessments are compared.
NASA Astrophysics Data System (ADS)
Kanemura, Shinya; Kaneta, Kunio; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo
2016-07-01
In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at the LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.
Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation
NASA Astrophysics Data System (ADS)
Sosnovtseva, O. V.; Pavlov, A. N.; Mosekilde, E.; Holstein-Rathlou, N.-H.; Marsh, D. J.
2004-09-01
Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations.
Fabrication and characterization of high-efficiency double-sided blazed x-ray optics.
Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Kewish, Cameron M; Somogyi, Andrea; David, Christian
2016-01-15
The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
Creating double negative index materials using the Babinet principle with one metasurface
NASA Astrophysics Data System (ADS)
Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.
2013-01-01
Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.
Dynamics, Stability, and Evolutionary Patterns of Mesoscale Intrathermocline Vortices
2016-12-01
physical oceanography, namely, the link between the basin-scale forcing of the ocean by air-sea fluxes and the dissipation of energy and thermal variance...at the microscale. 14. SUBJECT TERMS Meddy, intrathermocline, double diffusion, energy cascade, eddy, MITgcm, numerical simulation, interleaving...lateral intrusions, lateral diffusivity, heat flux 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18
Ionosphere-magnetosphere coupling and convection
NASA Technical Reports Server (NTRS)
Wolf, R. A.; Spiro, R. W.
1984-01-01
The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.
1996-05-15
Turner Y.-H. Zhang* 1996 Pittsburgh Conference, Chicago, Illinois, 3-8 March 1996 The Linearized Series Mach-Zehnder Interferometric Modulator for...examined using Nomarski contrast microscopy, is mirror and featureless, unlike AlGaSb layers that have exhibited a Crosshatch pattern [7]. Double...the surface under Nomarski optical imagery. Figure 3-2 shows linewidth data as the laser power is varied using a 4-^um laser spot size and 5-cm/s
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
Efficient hybrid metrology for focus, CD, and overlay
NASA Astrophysics Data System (ADS)
Tel, W. T.; Segers, B.; Anunciado, R.; Zhang, Y.; Wong, P.; Hasan, T.; Prentice, C.
2017-03-01
In the advent of multiple patterning techniques in semiconductor industry, metrology has progressively become a burden. With multiple patterning techniques such as Litho-Etch-Litho-Etch and Sidewall Assisted Double Patterning, the number of processing step have increased significantly and therefore, so as the amount of metrology steps needed for both control and yield monitoring. The amount of metrology needed is increasing in each and every node as more layers needed multiple patterning steps, and more patterning steps per layer. In addition to this, there is that need for guided defect inspection, which in itself requires substantially denser focus, overlay, and CD metrology as before. Metrology efficiency will therefore be cruicial to the next semiconductor nodes. ASML's emulated wafer concept offers a highly efficient method for hybrid metrology for focus, CD, and overlay. In this concept metrology is combined with scanner's sensor data in order to predict the on-product performance. The principle underlying the method is to isolate and estimate individual root-causes which are then combined to compute the on-product performance. The goal is to use all the information available to avoid ever increasing amounts of metrology.
Beneath the Surface: Understanding Patterns of Intra-Domain Orientational Order
NASA Astrophysics Data System (ADS)
Prasad, Ishan; Seo, Youngmi; Hall, Lisa; Grason, Gregory
Block copolymers (BCP) self assemble into a rich spectrum of ordered phases due to asymmetry in copolymer architecture. Despite extensive study of spatially-ordered composition patterns of BCP, knowledge of orientational order of chain segments that underlie these spatial patterns is evidently missing. We show using self consistent field (SCF) theory and coarse-grained molecular dynamics (MD) simulations that, even without explicit orientational interactions between segments, BCP exhibit generic patterns of intra-domain segment orientation, which vary both within a given morphology and from morphology to morphology. We find that segment alignment is usually both normal and parallel to the interface within different local regions of a BCP sub-domain. We describe principles that control relative strength and directionality of alignment in different morphologies and report a surprising yet generic emergence of biaxial segment order in morphologies with anisotropic curved interfaces, such as cylinders and gyroid phases. Finally, we focus our study on cholesteric textures that pervade mesochiral BCP morphologies, specifically alternating double gyroid (aDG) and helical cylinder (H*) phases, and analyze patterns of twisted (nematic and polar) segment order within these domains.
Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane
2014-01-01
Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837
Patterned media towards Nano-bit magnetic recording: fabrication and challenges.
Sbiaa, Rachid; Piramanayagam, Seidikkurippu N
2007-01-01
During the past decade, magnetic recording density of HDD has doubled almost every 18 months. To keep increasing the recording density, there is a need to make the small bits thermally stable. The most recent method using perpendicular recording media (PMR) will lose its fuel in a few years time and alternatives are sought. Patterned media, where the bits are magnetically separated from each other, offer the possibility to solve many issues encountered by PMR technology. However, implementation of patterned media would involve developing processing methods which offer high resolution (small bits), regular patterns, and high density. All these need to be achieved without sacrificing a high throughput and low cost. In this article, we review some of the ideas that have been proposed in this subject. However, the focus of the paper is on nano-imprint lithography (NIL) as it fulfills most of the needs of HDD as compared to conventional lithography using electron beam, EUV or X-Rays. The latest development of NIL and related technologies and their future prospects for patterned media are also discussed.
Dry etch challenges for CD shrinkage in memory process
NASA Astrophysics Data System (ADS)
Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji
2015-03-01
Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.
Gait parameter control timing with dynamic manual contact or visual cues
Shi, Peter; Werner, William
2016-01-01
We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms. PMID:26936979
NASA Astrophysics Data System (ADS)
Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan
2017-06-01
In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.
Pinçon, Gaelle; Chabannes, Matthieu; Lapierre, Catherine; Pollet, Brigitte; Ruel, Katia; Joseleau, Jean-Paul; Boudet, Alain M.; Legrand, Michel
2001-01-01
Inhibition of specific lignin biosynthetic steps by antisense strategy has previously been shown to alter lignin content and/or structure. In this work, homozygous tobacco (Nicotiana tabacum) lines transformed with cinnamoyl-coenzyme A reductase (CCR) or caffeic acid/5-hydroxy ferulic acid-O-methyltransferase I (COMT I) antisense sequences have been crossed and enzyme activities, lignin synthesis, and cell wall structure of the progeny have been analyzed. In single transformed parents, CCR inhibition did not affect COMT I expression, whereas marked increases in CCR activity were observed in COMT I antisense plants, suggesting potential cross talk between some genes of the pathway. In the progeny, both CCR and COMT I activities were shown to be markedly decreased due to the simultaneous repression of the two genes. In these double transformants, the lignin profiles were dependent on the relative extent of down-regulation of each individual enzyme. For the siblings issued from a strongly repressed antisense CCR parent, the lignin patterns mimicked the patterns obtained in single transformants with a reduced CCR activity. In contrast, the specific lignin profile of COMT I repression could not be detected in double transformed siblings. By transmission electron microscopy some cell wall loosening was detected in the antisense CCR parent but not in the antisense COMT I parent. In double transformants, immunolabeling of non-condensed guaiacyl-syringyl units was weaker and revealed changes in epitope distribution that specifically affected vessels. Our results more widely highlight the impact of culture conditions on phenotypes and gene expression of transformed plants. PMID:11351078
Selective investment promotes cooperation in public goods game
NASA Astrophysics Data System (ADS)
Li, Jing; Wu, Te; Zeng, Gang; Wang, Long
2012-08-01
Most previous investigations on spatial Public Goods Game assume that individuals treat neighbors equivalently, which is in sharp contrast with realistic situations, where bias is ubiquitous. We construct a model to study how a selective investment mechanism affects the evolution of cooperation. Cooperators selectively contribute to just a fraction among their neighbors. According to the interaction result, the investment network can be adapted. On selecting investees, three patterns are considered. In the random pattern, cooperators choose their investees among the neighbors equiprobably. In the social-preference pattern, cooperators tend to invest to individuals possessing large social ties. In the wealth-preference pattern, cooperators are more likely to invest to neighbors with higher payoffs. Our result shows robustness of selective investment mechanism that boosts emergence and maintenance of cooperation. Cooperation is more or less hampered under the latter two patterns, and we prove the anti-social-preference or anti-wealth-preference pattern of selecting investees can accelerate cooperation to some extent. Furthermore, the theoretical analysis of our mechanism on double-star networks coincides with simulation results. We hope our finding could shed light on better understanding of the emergence of cooperation among adaptive populations.
Sexual dimorphism in digital dermatoglyphic traits among Sinhalese people in Sri Lanka
2013-01-01
Background The purpose of this study was to evaluate gender-wise diversity of digital dermatoglyphic traits in a sample of Sinhalese people in Sri Lanka. Findings Four thousand and thirty-four digital prints of 434 Sinhalese individuals (217 males and 217 females) were examined for their digital dermatoglyphic pattern distribution. The mean age for the entire group was 23.66 years (standard deviation = 4.93 years). The loop pattern is observed more frequently (n = 2,592, 59.72%) compared to whorl (n = 1,542, 35.53%) and arch (n = 206, 4.75%) in the Sinhalese population. Females (n = 1,274, 58.71%) have a more ulnar loop pattern than males (n = 1,231, 56.73%). The plain whorl pattern is observed more frequently in males (n = 560, 25.81%) compared to females (n = 514, 23.69%).The double loop pattern is observed more frequently on the right and left thumb (digit 1) of both males and females. Pattern intensity index, Dankmeijer index and Furuhata index are higher in males. Conclusions Ulnar loop is the most frequently occurring digital dermatoglyphic pattern among the Sinhalese. All pattern indices are higher in males. To some extent, dermatoglyphic patterns of Sinhalese are similar to North Indians and other Caucasoid populations. Further studies with larger sample sizes are recommended to confirm our findings. PMID:24377367
SAR216471, an alternative to the use of currently available P2Y₁₂ receptor inhibitors?
Delesque-Touchard, N; Pflieger, A M; Bonnet-Lignon, S; Millet, L; Salel, V; Boldron, C; Lassalle, G; Herbert, J M; Savi, P; Bono, F
2014-09-01
P2Y12 antagonism is a key therapeutic strategy in the management and prevention of arterial thrombosis. The objective of this study was to characterize the pharmacodynamic (PD) and pharmacokinetic (PK) properties of SAR216471, a novel P2Y12 receptor antagonist. SAR216471 blocks the binding of 2MeSADP to P2Y12 receptors in vitro (IC50=17 nM). This inhibition was shown to be reversible. It potently antagonized ADP-induced platelet aggregation in human and rat platelet-rich plasma (IC50=108 and 62 nM, respectively). It also inhibited platelet aggregation when blood was exposed to collagen or thromboxane A2. Its high selectivity was demonstrated against a large panel of receptors, enzymes, and ion channels. Despite its moderate bioavailability in rats, oral administration of SAR216471 resulted in a fast, potent, and sustained inhibition of platelet aggregation where the extent and duration of platelet inhibition were directly proportional to its circulating plasma levels. Pre-clinical study of SAR216471 in a rat shunt thrombosis model demonstrated a dose-dependent antithrombotic activity after oral administration (ED50=6.7 mg/kg). By comparison, ED50 values for clopidogrel, prasugrel and ticagrelor were 6.3, 0.35 and 2.6 mg/kg, respectively. Finally, the anti-hemostatic effect of SAR216471 and its competitors was investigated in a rat tail bleeding model, revealing a favorable safety profile of SAR216471. Together, these findings have established a reliable antiplatelet profile of SAR216471, and support its potential use in clinical practice as an alternative to currently available P2Y12 receptor antagonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.
2009-01-01
GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828
Rupture rate and patterns of shell failure with the McGhan Style 153 double-lumen breast implant.
Neaman, Keith C; Albert, Mark; Hammond, Dennis C
2011-01-01
In 2005, the McGhan Style 153 double-lumen breast implant was removed from the market secondary to a higher rupture rate when contrasted with other implants in the Core Study group. The high rupture rate was attributed to the development of a posterior tear in the shell where the inner implant is bonded to the posterior wall of the device. The purpose of this study was to report the existing rupture rate and describe the apparent mechanism of failure in the Style 153 double-lumen breast implant. Ninety-seven patients (157 implants) who received the McGhan Style 153 double-lumen breast implant by the senior author were reviewed. Intraoperative observations and photographic images of ruptured implants were reviewed and characterized based on severity and location of implant rupture. With a mean length of follow-up of greater than 6 years (82 months), the rupture rate was 19.1 percent per implant. Physical examination (60 percent) was the most common method of rupture detection. Ruptures tended to occur in the marginal aspect (63 percent) of the implant. Only three ruptures occurred secondary to a disruption of the inner bladder from the posterior portion of the implant. The rupture rate of the Style 153 double-lumen breast implant is higher than previously thought, with a rate of 19.1 percent. A majority of ruptures occurred in the peripheral aspects of the implant. It is postulated that these ruptures were likely secondary to fold flaws that led to failure of the implant shell.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Waters, Brian M; Chu, Heng-Hsuan; Didonato, Raymond J; Roberts, Louis A; Eisley, Robynn B; Lahner, Brett; Salt, David E; Walker, Elsbeth L
2006-08-01
Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. Beta-glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.
The analysis method of the DRAM cell pattern hotspot
NASA Astrophysics Data System (ADS)
Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung
2015-03-01
It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.
Leitner, Lorenz; Sybesma, Wilbert; Chanishvili, Nina; Goderdzishvili, Marina; Chkhotua, Archil; Ujmajuridze, Aleksandre; Schneider, Marc P; Sartori, Andrea; Mehnert, Ulrich; Bachmann, Lucas M; Kessler, Thomas M
2017-09-26
Urinary tract infections (UTI) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming. Thus, well-tolerated, highly effective therapeutic alternatives are urgently needed. Although there is evidence indicating that bacteriophage therapy may be effective and safe for treating UTIs, the number of investigated patients is low and there is a lack of randomized controlled trials. This study is the first randomized, placebo-controlled, double-blind trial investigating bacteriophages in UTI treatment. Patients planned for transurethral resection of the prostate are screened for UTIs and enrolled if in urine culture eligible microorganisms ≥10 4 colony forming units/mL are found. Patients are randomized in a double-blind fashion to the 3 study treatment arms in a 1:1:1 ratio to receive either: a) bacteriophage (i.e. commercially available Pyo bacteriophage) solution, b) placebo solution, or c) antibiotic treatment according to the antibiotic sensitivity pattern. All treatments are intended for 7 days. No antibiotic prophylaxes will be given to the double-blinded treatment arms a) and b). As common practice, the Pyo bacteriophage cocktail is subjected to periodic adaptation cycles during the study. Urinalysis, urine culture, bladder and pain diary, and IPSS questionnaire will be completed prior to and at the end of treatment (i.e. after 7 days) or at withdrawal/drop out from the study. Patients with persistent UTIs will undergo antibiotic treatment according to antibiotic sensitivity pattern. Based on the high lytic activity and the potential of resistance optimization by direct adaptation of bacteriophages, and considering the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a very promising treatment option for UTIs. Thus, our randomized controlled trial investigating bacteriophages for treating UTIs will provide essential insights into this potentially revolutionizing treatment option. This study has been registered at clinicaltrials.gov ( www.clinicaltrials.gov/ct2/show/NCT03140085 ). April 27, 2017.
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Díaz, Eider; García, Lorena; Hernández, Michelle; Palacio, Lesly; Ruiz, Diana; Velandia, Nataly; Villavicencio, Judy; Moreno, Freddy
2014-01-01
To determine the frequency, variability, sexual dimorphism and bilateral symmetry of fourteen dental crown traits in the deciduous and permanent dentition of 60 dental models (35 women and 25 men) obtained from a native, indigenous group of Nasa school children of the Musse Ukue group in the municipality of Morales, Department of Cauca, Colombia. This is a quantitative, descriptive, cross-sectional study that characterizes dental morphology by means of the systems for temporary dentition from Dahlberg (winging), and ASUDAS (crowding, reduction of hypocone, metaconule and cusp 6), Hanihara (central and lateral incisors in shovel-shape and cusp 7), Sciulli (double bit, layered fold protostylid, cusp pattern and cusp number) and Grine (Carabelli trait); and in permanent dentition from ASUDAS (Winging, crowding, central and lateral incisors in shovel-shape and double shovel-shape, Carabelli trait, hypocone reduction, metaconule, cusp pattern, cusp number, layered fold protostylid, cusp 6 and cusp 7). The most frequent dental crown features were the shovel-shaped form, grooved and fossa forms of the Carabelli trait, metaconule, cusp pattern Y6, layered fold, protostylid (point P) and cusp 6. Sexual dimorphism was not observed and there was bilateral symmetry in the expression of these features. The sample studied presented a great affinity with ethnic groups belonging to the Mongoloid Dental Complex due to the frequency (expression) and variability (gradation) of the tooth crown traits, upper incisors, the Carabelli trait, the protostylid, cusp 6 and cusp 7. The influence of the Caucasoide Dental Complex associated with ethno-historical processes cannot be ruled out.
Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern
NASA Astrophysics Data System (ADS)
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike
2018-03-01
Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.
Effects of blur and repeated testing on sensitivity estimates with frequency doubling perimetry.
Artes, Paul H; Nicolela, Marcelo T; McCormick, Terry A; LeBlanc, Raymond P; Chauhan, Balwantray C
2003-02-01
To investigate the effect of blur and repeated testing on sensitivity with frequency doubling technology (FDT) perimetry. One eye of 12 patients with glaucoma (mean deviation [MD] mean, -2.5 dB, range +0.5 to -4.3 dB) and 11 normal control subjects underwent six consecutive tests with the FDT N30 threshold program in each of two sessions. In session 1, blur was induced by trial lenses (-6.00, -3.00, 0.00, +3.00, and +6.00 D, in random order). In session 2, only the effects of repeated testing were evaluated. The MD and pattern standard deviation (PSD) indices were evaluated as functions of blur and of test order. By correcting the data of session 1 for the reduction of sensitivity with repeated testing (session 2), the effect of blur on FDT sensitivities was established, and its clinical consequences evaluated on total- and pattern-deviation probability maps. FDT sensitivities decreased with blur (by <0.5 dB/D) and with repeated testing (by approximately 2 dB between the first and sixth tests). Blur and repeated testing independently led to larger numbers of locations with significant total and pattern deviation. Sensitivity reductions were similar in normal control subjects and patients with glaucoma, at central and peripheral test locations and at locations with high and low sensitivities. However, patients with glaucoma showed larger deterioration in the total-deviation-probability maps. To optimize the performance of the device, refractive errors should be corrected and immediate retesting avoided. Further research is needed to establish the cause of sensitivity loss with repeated FDT testing.
Espenshade, Gilbert H.; Broedel, Carl H.
1952-01-01
Since the end of World War II, the pattern of sulfur production and consumption in the United States and abroad has changed markedly from the pattern that existed before the war. Although production of sulfur in the United States in 1950 was more than double the average annual production for the 1935-39 period, consumption had increased at such a rate that current domestic and foreign demand for U. S. sulfur exceeds the productive capacity of the industry. Production of sulfur (including brimstone, pyrites, and all other forms) in the 1935-39 period and in 1950 are compared in the table below.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Graumann, B. W.
1973-01-01
Numerical codes were developed to calculate the two dimensional flow field which results when supersonic flow encounters double wedge configurations whose angles are such that a type 4 pattern occurs. The flow field model included the shock interaction phenomena for a delta wing orbiter. Two numerical codes were developed, one which used the perfect gas relations and a second which incorporated a Mollier table to define equilibrium air properties. The two codes were used to generate theoretical surface pressure and heat transfer distributions for velocities from 3,821 feet per second to an entry condition of 25,000 feet per second.
Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes.
Zheng, Chunfang; Zhu, Qian; Adam, Zaky; Sankoff, David
2008-07-01
Some present day species have incurred a whole genome doubling event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to 'halve' the genome, i.e. to reconstruct the ancestral genome at the moment of doubling, but the solution is often highly nonunique. To resolve this problem, we take account of outgroups, external reference genomes, to guide and narrow down the search. We improve on a previous, computationally costly, 'brute force' method by adapting the genome halving algorithm of El-Mabrouk and Sankoff so that it rapidly and accurately constructs an ancestor close the outgroups, prior to a local optimization heuristic. We apply this to reconstruct the predoubling ancestor of Saccharomyces cerevisiae and Candida glabrata, guided by the genomes of three other yeasts that diverged before the genome doubling event. We analyze the results in terms (1) of the minimum evolution criterion, (2) how close the genome halving result is to the final (local) minimum and (3) how close the final result is to an ancestor manually constructed by an expert with access to additional information. We also visualize the set of reconstructed ancestors using classic multidimensional scaling to see what aspects of the two doubled and three unduplicated genomes influence the differences among the reconstructions. The experimental software is available on request.
Lack of genetic interaction between Tbx20 and Tbx3 in early mouse heart development.
Gavrilov, Svetlana; Harvey, Richard P; Papaioannou, Virginia E
2013-01-01
Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay.
Biophysics of protein-DNA interactions and chromosome organization
Marko, John F.
2014-01-01
The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039
Relationships between solar activity and climate change
NASA Technical Reports Server (NTRS)
Roberts, W. O.
1975-01-01
The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.
The status of timber resources in the North Central United States
Neal H. Sullivan; Stephen R. Shifley
2003-01-01
Between 1953 and 1997 the volume of standing timber in the region (growing stock) more than doubled from 37 to 83 billion cubic feet. Forests in the North Central Region grow 2.3 billion cubic feet of new wood on growing-stock trees each year. Annual removals are about half that amount. The pattern is the same in each of the seven included states (Minnesota, Wisconsin...
Characterizing SRAM Single Event Upset in Terms of Single and Double Node Charge Collection
NASA Technical Reports Server (NTRS)
Black, J. D.; Ball, D. R., II; Robinson, W. H.; Fleetwood, D. M.; Schrimpf, R. D.; Reed, R. A.; Black, D. A.; Warren, K. M.; Tipton, A. D.; Dodd, P. E.;
2008-01-01
A well-collapse source-injection mode for SRAM SEU is demonstrated through TCAD modeling. The recovery of the SRAM s state is shown to be based upon the resistive path from the p+-sources in the SRAM to the well. Multiple cell upset patterns for direct charge collection and the well-collapse source-injection mechanisms are then predicted and compared to recent SRAM test data.
van der Meer, Jitse M
2018-01-01
The genetic regulation of anterior-posterior segment pattern development has been elucidated in detail for Drosophila, but it is not canonical for insects. A surprising diversity of regulatory mechanisms is being uncovered not only between insect orders, but also within the order of the Diptera. The question is whether the same diversity of regulatory mechanisms exists within other insect orders. I show that anterior puncture of the egg of the pea beetle Callosobruchus maculatus submerged in RNase can induce double abdomen development suggesting a role for maternal mRNA. In a double abdomen, anterior segments are replaced by posterior segments oriented in mirror image symmetry to the original posterior segments. This effect is specific for RNase activity, for treatment of the anterior egg pole and for cytoplasmic RNA. Yield depends on developmental stage, enzyme concentration, and temperature. A maximum of 30% of treated eggs reversed segment sequence after submersion and puncture in 10 μg/mL RNase S reconstituted from S-protein and S-peptide at 30°C. This result sets the stage for an analysis of the genetic regulation of segment pattern formation in the long germ embryo of the coleopteran Callosobruchus and for comparison with the short germ embryo of the coleopteran Tribolium. © 2018 Wiley Periodicals, Inc.
Singh, Yadwinder; Mandal, Kousik; Singh, Balwinder
2015-10-01
The present study was carried out to observe the dissipation pattern of triazophos on capsicum and risk assessment of its residues on human beings and to suggest a waiting period for the safety of consumers. Following two applications of triazophos (Truzo 40 EC) at 500 and 1000 g a.i. ha(-1), the average initial deposits were found to be 3.61 and 6.26 mg kg(-1), respectively. These residues dissipated below the limit of quantification (LOQ) of 0.05 mg kg(-1) in 10 and 15 days at the recommended and double the recommended dosages, respectively. The calculated values of half-life were 2.31 and 2.14 days at recommended and double the recommended dosages, respectively. Theoretical maximum residue contribution (TMRC) values were found to be 28.8 and 41.6 μg person(-1) day(-1) at 500 and 1000 g a.i. ha(-1), respectively, and found to be below the maximum permissible intake on capsicum fruit on the 7th day. Therefore, a waiting period of 7 days is suggested for consumption of capsicum sprayed with triazophos at the recommended dosages.
Dying or living?: The double bind.
Longhofer, J
1980-06-01
Describing the behaviors of terminally ill patients, their families and those charged with their care has received considerable attention during the past decade. This study of comprehensive cancer treatment and research facility indicates that the prevailing theory is limited to explanation at the intra-psychic level. In her work with hundreds of terminal cases, Dr. Elizabeth Kubler-Ross found that patients typically progress through five stages: 1) denial, 2) anger, 3) bargaining, 4) depression, and 5) acceptance. She concludes that the majority of her patients die in a stage of acceptance--a state of equanimity. Recently, scholars have claimed that this five stage scheme has limited applicability and may in fact contribute to the formalization of a dying person's behavior. This preliminary report proposes that the stage theory, if it has any descriptive validity, becomes meaningful only when used to describe behaviors occurring among patients, families, and medical practitioners. A plausible explanation of these behaviors is accomplished by examination of communication patterns containing the structure of paradox or double bind. Patients are forced to perceive realities about their physical conditions not as they appear to them, but as they are defined by those in their environment. This paper explores these communication patterns in relation to the structure of social relationships and the specific contents of messages being transmitted and received.
NASA Astrophysics Data System (ADS)
Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang
2017-11-01
A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.
Write-Read 3D Patterning with a Dual-Channel Nanopipette.
Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R
2016-09-27
Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.
Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow
Yeh, Syun-Ru; Seul, Michael; Shraiman, Boris I.
2017-01-01
Suspensions of colloidal particles form a variety of ordered planar structures at an interface in response to an a.c. or d.c. electric field applied normal to the interface1–3. This field-induced pattern formation can be useful, for example, in the processing of materials. Here we explore the origin of the ordering phenomenon. We present evidence suggesting that the long-ranged attraction between particles which causes aggregation is mediated by electric-field-induced fluid flow. We have imaged an axially symmetric flow field around individual particles on a uniform electrode surface. The flow is induced by distortions in the applied electric field owing to inhomogeneities in the ‘double layer’ of ions and counterions at the electrode surface. The beads themselves can create these inhomogeneities, or alternatively, we can modify the electrode surfaces by lithographic patterning so as to introduce specified patterns into the aggregated structures. PMID:28943661
NASA Astrophysics Data System (ADS)
Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny
2006-12-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
Onset of `stitching' in the fluid mechanical `sewing machine'
NASA Astrophysics Data System (ADS)
Ribe, Neil; Lister, John; Chiu-Webster, Sunny
2006-11-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
Reversible patterning of spherical shells through constrained buckling
NASA Astrophysics Data System (ADS)
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
1968-01-09
A cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), initially had a thrust of 188,000 pounds each for a combined thrust of over 1,500,000 pounds. Later, the H-1 engine was upgraded to 205,000 pounds of thrust and a combined total thrust of 1,650,000 pounds for the Saturn IB program. This photo depicts a single modified H-1 engine. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P
2012-02-01
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Mitra, S.
With precise conditions of digestion with single-strand-specific nucleases, namely, endonuclease S1 of Aspergillus oryzae and exonuclease I of Escherichia coli, nuclease-resistant DNA cores can be obtained reproducibly from single-stranded M13 DNA. The DNA cores are composed almost exclusively of two sizes (60 and 44 nucleotides long). These have high (G + C)-contents relative to that of intact M13 DNA, and arise from restricted regions of the M13 genome. The resistance of these fragments to single-strand-specific nucleases and their nondenaturability strongly suggest the presence of double-stranded segments in these core pieces. That the core pieces are only partially double-stranded is shownmore » by their lack of complete base complementarity and their pattern of elution from hydroxyapatite.« less
Gray, J R
2001-09-01
Emotional states might selectively modulate components of cognitive control. To test this hypothesis, the author randomly assigned 152 undergraduates (equal numbers of men and women) to watch short videos intended to induce emotional states (approach, neutral, or withdrawal). Each video was followed by a computerized 2-back working memory task (spatial or verbal, equated for difficulty and appearance). Spatial 2-back performance was enhanced by a withdrawal state and impaired by an approach state; the opposite pattern held for verbal performance. The double dissociation held more strongly for participants who made more errors than average across conditions. The results suggest that approach-withdrawal states can have selective influences on components of cognitive control, possibly on a hemispheric basis. They support and extend several frameworks for conceptualizing emotion-cognition interactions.
NASA Astrophysics Data System (ADS)
Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei
2015-05-01
A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
The methods to stabilize power sources, which are the measures against voltage drop, power loading fluctuation, regenerative power lapse and so on, have been important issues in DC railway feeding circuits. Therefore, an energy storage medium that uses power efficiently and reduces above-mentioned problems is much concerned about. Electric double-layer capacitors (EDLC) can be charged and discharged rapidly in a short time with large power. On the other hand, a battery has a high energy density so that it is proper to be charged and discharged for a long time. Therefore, from a viewpoint of load pattern for electric railway, hybrid energy storage system combining both energy storage media may be effective. This paper introduces two methods for hybrid energy system theoretically, and describes the results of the fundamental tests.
MAPPER: high-throughput maskless lithography
NASA Astrophysics Data System (ADS)
Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.
2009-03-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better than 2.8 nm.
Anjum, B; Verma, N S; Tiwari, S; Singh, R; Mahdi, A A; Singh, R B; Singh, R K
2011-08-01
Recent studies indicate a circadian rhythm in blood pressure and heart rate and its association with various neurotransmitters. In the present study, we examine the circadian nature of blood pressure/heart rate and salivary cortisol in night shift workers and whether these circadian changes produced by night shifts are reversible. Sixteen healthy nurses of both genders, aged 20-40 years, performing day and night shift duties, were randomly selected out of 22 who volunteered for this study. Ambulatory blood pressure monitoring was done in all the subjects and salivary cortisol levels were analyzed during both day and night shift duties. There were clinically significant changes in the Acrophase of blood pressure and cortisol levels, indicating ecphasia (odd timing of systolic blood pressure) individually during night as well as day shifts. However, this pattern was statistically not significant. A reverse pattern of Acrophase was observed in 8 out of 16 subjects when they were posted on day shift. No significant change was found in midline estimating statistics of rhythm (MESOR) of blood pressure values. Changes in Double amplitude (Predictable change) were observed in 8 subjects during night shifts as well as in 7 subjects during day shifts. However, the pattern was not similar and night workers had an altered circadian pattern in the night as well as during day shifts. Changes in Double amplitude, Acrophase and Salivary cortisol were found during night as well as day shifts but these changes were not statistically significant (p > 0.05) due to incomplete recovery during day shifts (changes again seen when they came back to day shifts). Salivary cortisol levels were lowest in early morning, increased at midnight and further increased in the afternoon during night shifts along with ecphasia. It is possible that nurses working the night shift felt more tired due to the altered circadian cycle.
Park, Sehee; Lee, Ilseob; Kim, Jin Il; Bae, Joon-Yong; Yoo, Kirim; Kim, Juwon; Nam, Misun; Park, Miso; Yun, Soo-Hyeon; Cho, Woo In; Kim, Yeong-Su; Ko, Yun Young; Park, Man-Seong
2016-10-14
Avian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Park, Dae-Myung; Kim, Seok-Hwan; Park, Yang-Chun; Kang, Wee-Chang; Lee, Sang-Ryong; Jung, In-Chul
2014-12-02
Gamisoyo-San (GSS) is a well-known Traditional Korean Medicine shown to be effective on mood disorders. The purpose of this research is to examine the effect of Gamisoyo-San on generalized anxiety disorder by its differently manufactured preparations. Multicenter, randomized, double-blinded, placebo-controlled study was set for 147 patients with generalized anxiety disorder recruited from November 1st 2009 to December 16th 2010. They were given Gamisoyo-San individual extract mixture (extraction done for each crude materia medica separately) or Gamisoyo-San multi-compound extract (extraction done for whole materia medica at once) or controlled medication. Hamilton Rating Scale for Anxiety (HAM-A), Korean State-Trait Anxiety Inventory (K-STAI), Penn State Worry Questionnaire (PSWQ), Korean Beck Depression Inventroy (K-BDI), Symptom Checklist-90-Revised (SCL-90-R), and Korean WHO Quality of Life Scale Abbreviated Version (WHOQOL-BREF) were evaluated. We also applied Pattern Identification tool for 'JingJi and ZhengChong (, Traditional Korean Medicine term which correlates with generalized anxiety disorder)' to patients to evaluate different responses among 9 patterns. HAM-A scores of Gamisoyo-San multi-compound extract group showed greater decrease compared to Gamisoyo-San individual extract mixture group and placebo group, but the difference was insignificant. WHOQOL-BREF scores of Gamisoyo-San multi-compound extract group showed significant increase compared to Gamisoyo-San individual extract mixture group and placebo group. In Heart blood deficiency pattern, the Gamisoyo-San multi-compound extract group showed significant decrease in K-BDI compared to the Gamisoyo-San individual extract mixture group. Gamisoyo-San did not improve anxiety level of GAD patients. However, it can be useful to improve quality of life, and reduce depressive, obsessive-compulsive, somatic symptoms of generalized anxiety disorder. Gamisoyo-San multi-compound seemed more effective than Gamisoyo-San individual extract mixture, especially in Heart blood deficiency pattern. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li
2014-11-01
The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.
Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav
2016-04-25
The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. Copyright © 2016 Elsevier B.V. All rights reserved.
Toledo, Rodrigo A; Wagner, Simona M; Coutinho, Flavia L; Lourenço, Delmar M; Azevedo, Juliana A; Longuini, Viviane C; Reis, Mariana T A; Siqueira, Sheila A C; Lucon, Antonio M; Tavares, Marcos R; Fragoso, Maria C B V; Pereira, Adelaide A; Dahia, Patricia L M; Mulligan, Lois M; Toledo, Sergio P A
2010-03-01
Previous studies have shown that double RET mutations may be associated with unusual multiple endocrine neoplasia type 2 (MEN 2) phenotypes. Our objective was to report the clinical features of patients harboring a previously unreported double mutation of the RET gene and to characterize this mutation in vitro. Sixteen patients from four unrelated families and harboring the C634Y/Y791F double RET germline mutation were included in the study. Large pheochromocytomas measuring 6.0-14 cm and weighing up to 640 g were identified in the four index cases. Three of the four tumors were bilateral. High penetrance of pheochromocytoma was also seen in the C634Y/Y791F-mutation-positive relatives (seven of nine, 77.7%). Of these, two cases had bilateral tumors, one presented with multifocal tumors, two cases had large tumors (>5 cm), and one case, which was diagnosed with a large (5.5 x 4.5 x 4.0 cm) pheochromocytoma, reported early onset of symptoms of the disease (14 yr old). The overall penetrance of pheochromocytoma was 84.6% (11 of 13). Development of medullary thyroid carcinoma in our patients seemed similar to that observed in patients with codon 634 mutations. Haplotype analysis demonstrated that the mutation did not arise from a common ancestor. In vitro studies showed the double C634Y/Y791F RET receptor was significantly more phosphorylated than either activated wild-type receptor or single C634Y and Y791F RET mutants. Our data suggest that the natural history of the novel C634Y/Y791F double mutation carries a codon 634-like pattern of medullary thyroid carcinoma development, is associated with increased susceptibility to unusually large bilateral pheochromocytomas, and is likely more biologically active than each individual mutation.
Das, Payel; Li, Jingyuan; Royyuru, Ajay K; Zhou, Ruhong
2009-08-01
Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human-like (alpha-2,6-linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances alpha-2,6-linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to alpha-2,6-linked sialic acid receptors by 2.6 +/- 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen-bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus. 2009 Wiley Periodicals, Inc.
Waters, Brian M.; Chu, Heng-Hsuan; DiDonato, Raymond J.; Roberts, Louis A.; Eisley, Robynn B.; Lahner, Brett; Salt, David E.; Walker, Elsbeth L.
2006-01-01
Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. β-Glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues. PMID:16815956
Multi-band reflector antenna with double-ring element frequency selective subreflector
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Lee, S. W.
1993-01-01
Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.
Stoddard, Mary Caswell; Fayet, Annette L.; Kilner, Rebecca M.; Hinde, Camilla A.
2012-01-01
Many passerine birds lay white eggs with reddish brown speckles produced by protoporphyrin pigment. However, the function of these spots is contested. Recently, the sexually selected eggshell coloration (SSEC) hypothesis proposed that eggshell color is a sexually selected signal through which a female advertises her quality (and hence the potential quality of her future young) to her male partner, thereby encouraging him to contribute more to breeding attempts. We performed a test of the SSEC hypothesis in a common passerine, the great tit Parus major. We used a double cross-fostering design to determine whether males change their provisioning behavior based on eggshell patterns they observe at the nest. We also tested the assumption that egg patterning reflects female and/or offspring quality. Because birds differ from humans in their color and pattern perception, we used digital photography and models of bird vision to quantify egg patterns objectively. Neither male provisioning nor chick growth was related to the pattern of eggs males observed during incubation. Although heavy females laid paler, less speckled eggs, these eggs did not produce chicks that grew faster. Therefore, we conclude that the SSEC hypothesis is an unlikely explanation for the evolution of egg speckling in great tits. PMID:22815730
Wu, P; Zeng, Y Z; Wang, C M
2004-03-01
Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.
Wei, Yudong; Cai, Shufang; Ma, Fanglin; Zhang, Ying; Zhou, Zhe; Xu, Shuanshuan; Zhang, Mengfei; Peng, Sha; Hua, Jinlian
2018-03-01
The protein encoded by double sex and mab-3 related transcription factor 1 (Dmrt1) gene contains a double sex/mab-3 domain, which was considered as one of the most conservative structures in sex determination. However, its effect on spermatogenesis of dairy goat spermatogonial stem cells (SSCs) remains to be clarified. For the first time, the roles of Dmrt1 in spermatogenesis of livestock are highlighted. Here, we investigated the expression pattern of Dmrt1 in the testes of dairy goats. Dmrt1 primarily located in undifferentiated SSCs. Moreover, Dmrt1 enhanced differentiation and proliferation of mGSCs. On the contrary, the level of meiosis was down-regulated, as Dmrt1 determines whether SSCs undergo mitosis and spermatogonial differentiation or meiosis. In the busulfan-treated mice testes, Dmrt1 repair germ cell damage was emphasized as well. Our results exposed that Dmrt1 maintenance mGSCs in two ways: facilitating proliferation and self-renewal of SSCs; and reducing the inflammatory response caused by reproductive injury. These findings identify a central role for Dmrt1 in controlling population stability and injury restoring of SSCs. © 2017 Wiley Periodicals, Inc.
Ruini, Luca Fernando; Ciati, Roberto; Pratesi, Carlo Alberto; Marino, Massimo; Principato, Ludovica; Vannuzzi, Eleonora
2015-01-01
The Barilla Center for Food and Nutrition has produced an updated version of the traditional food pyramid based on the Mediterranean diet in order to assess the simultaneous impact that food has on human health and the environment. The Double Pyramid Model demonstrates how the foods recommended to be consumed most frequently are also those exerting less environmental impact, whereas the foods that should be consumed less frequently are those characterized by a higher environmental impact. The environmental impacts resulting from three different menus were compared. All menus were equally balanced and comparable in terms of nutrition, but they differed in relation to the presence of absence of animal flesh and animal products. The first dietary pattern (omnivorous) included both animal flesh and products; the second (lacto-ovo-vegetarian) included animal products (eggs and dairy) but no flesh; and the third (vegan) was solely plant-based. The results obtained suggest that a diet based on the principles of the Mediterranean diet, as suggested by the Double Pyramid, generates a lower environmental impact compared to diets that are heavily based on daily meat consumption.
Ambipolar pentacene field-effect transistor with double-layer organic insulator
NASA Astrophysics Data System (ADS)
Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee
2006-08-01
Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.
Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement
NASA Astrophysics Data System (ADS)
Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong
2017-11-01
Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.
NASA Astrophysics Data System (ADS)
Schultz, Peter
To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
High density circuit technology
NASA Technical Reports Server (NTRS)
Wade, T. E.
1979-01-01
Polyimide dielectric materials were acquired for comparative and evaluative studies in double layer metal processes. Preliminary experiments were performed. Also, the literature indicates that sputtered aluminum films may be successfully patterned using the left-off technique provided the substrate temperature remains low and the argon pressure in the chamber is relatively high at the time of sputtering. Vendors associated with dry processing equipment are identified. A literature search relative to future trends in VLSI fabrication techniques is described.
EPR investigation of Ti2+ in SrCl2 single crystals.
NASA Technical Reports Server (NTRS)
Herrington, J. R.; Estle, T. L.; Boatner, L. A.
1972-01-01
The observation of 'double quantum' transitions which made it possible to determine the charge state of Ti as 2+ is reported. The EPR spectrum observed at 1.2 K is presented in a graph. The first derivative of the absorption is shown vs the magnetic field. The hyperfine patterns for the Ti-47 and Ti-49 isotopes are identified. Spin-Hamiltonian parameters for Ti(2+) in various cubic hosts are listed.
Fundamental Studies on Aluminum Fuels
1944-12-01
Isooctr.no 200 C. Additives in the Syster. Aluminum Dilaur- r.te Cyclohexp.ne 201 2. Metathesis (Double Decomposition ) of Aluminum So^pc -ith...changes of hydrolysis -ire reduced (p»47). It has a sharp melting point (p. 88) and x-r:ty diffraotion pattern (p.71 ) and upon partial...of decomposition products. (In the same «ay as by distillation an acaotrope is often produoed and has a constant boiling point). It muat be noted
Pedrosa, Rafael; Andrés, Celia; Mendiguchía, Pilar; Nieto, Javier
2006-11-10
Enantiopure morpholine derivatives have been prepared by selenocyclofunctionalization of chiral 3-allyl-2-hydroxymethyl-substituted perhydro-1,3-benzoxazine derivatives. The cyclization occurs in high yields and diastereoselection, although the temperature of the reaction and the structure of the substituent at C-2 and the substitution pattern of the double bond can modify the regio- and stereochemistry of the final products.
Fatigue crack tip deformation and fatigue crack propagation
NASA Technical Reports Server (NTRS)
Kang, T. S.; Liu, H. W.
1972-01-01
The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).
Large area nano-patterning /writing on gold substrate using dip - pen nanolithography (DPN)
NASA Astrophysics Data System (ADS)
Saini, Sudhir Kumar; Vishwakarma, Amit; Agarwal, Pankaj B.; Pesala, Bala; Agarwal, Ajay
2014-10-01
Dip Pen Nanolithography (DPN) is utilized to pattern large area (50μmX50μm) gold substrate for application in fabricating Nano-gratings. For Nano-writing 16-MHA ink coated AFM tip was prepared using double dipping procedure. Gold substrate is fabricated on thermally grown SiO2 substrate by depositing ˜5 nm titanium layer followed by ˜30nm gold using DC pulse sputtering. The gratings were designed using period of 800nm and 25% duty cycle. Acquired AFM images indicate that as the AFM tip proceeds for nano-writing, line width decreases from 190nm to 100nm. This occurs probably due to depreciation of 16-MHA molecules in AFM tip as writing proceeds.
Meteor tracking via local pattern clustering in spatio-temporal domain
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel
2016-09-01
Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).
Double dissociation of semantic categories in Alzheimer's disease.
Gonnerman, L M; Andersen, E S; Devlin, J T; Kempler, D; Seidenberg, M S
1997-04-01
Data that demonstrate distinct patterns of semantic impairment in Alzheimer's disease (AD) are presented. Findings suggest that while groups of mild-moderate patients may not display category specific impairments, some individual patients do show selective impairment of either natural kinds or artifacts. We present a model of semantic organization in which category specific impairments arise from damage to distributed features underlying different types of categories. We incorporate the crucial notions of intercorrelations and distinguishing features, allowing us to demonstrate (1) how category specific impairments can result from widespread damage and (2) how selective deficits in AD reflect different points in the progression of impairment. The different patterns of impairment arise from an interaction between the nature of the semantic categories and the progression of damage.
Yamunadevi, Andamuthu; Dineshshankar, Janardhanam; Banu, Safeena; Fathima, Nilofar; Ganapathy; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Maheswaran, Thangadurai; Ilayaraja, Vadivel
2015-01-01
Dermatoglyphic patterns, which are regularly used in judicial and legal investigations, can be valuable in the diagnosis of many diseases associated with genetic disorders. Dental caries although of infectious origin, may have a genetic predisposition. Hence, we evaluated the correlation between dental caries and dermatoglyphic patterns among subjects with and without dental caries and evaluated its association with environmental factors such as salivary pH. Totally, 76 female students within the age group of 18-23 years were clinically examined, and their decayed, missing, filled teeth (DMFT) score and oral hygiene index-simplified were recorded. Based on their DMFT score, they were divided into following three groups; group I (n = 16, DMFT score = 0), group II (n = 30, DMFT score <5), and group III (n = 30, DMFT score ≥5). Their fingerprint patterns and salivary pH were recorded and analyzed using descriptive statistics. Dermatoglyphic pattern distribution in caries-free group showed more ulnar loops than high caries group (group III) while high caries group showed more whorl patterns. Presence of whorl with double loop, whorl within a loop was associated with high DMFT score. The total finger ridge count was lower in caries group. The mean salivary pH was higher in caries-free group than high caries group. Thus, we conclude that dermatoglyphic patterns may be potential diagnostic tool for detecting patients prone to develop dental caries.
Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei
NASA Astrophysics Data System (ADS)
Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana
2018-04-01
New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.
Snyder, Susan M; Rubenstein, Casey
2014-01-01
This study examined how incest, depression, parental drinking, relationship status, and living with parents affect patterns of substance use among emerging adults, 18 to 25 years old. The study sample included (n = 11,546) individuals who participated in Waves I, II, and III of the National Longitudinal Study of Adolescent Health (Add Health). The study used separate latent class analysis for males and females to determine how patterns of substance use clustered together. The study identified the following three classes of substance use: heavy, moderate, and normative substance use patterns. Multinomial logistic regression indicated that, for females only, incest histories also nearly doubled the risk of heavy-use class membership. In addition, experiencing depression, being single, and not living with parents serve as risk factors for males and females in the heavy-use group. Conversely, being Black, Hispanic, or living with parents lowered the likelihood of being in the group with the most substance use behaviors (i.e., heavy use). Findings highlight the need for interventions that target depression and female survivors of incest among emerging adults.
Snyder, Susan M.; Rubenstein, Casey
2016-01-01
This study examined how incest, depression, parental drinking, relationship status, and living with parents affect patterns of substance use among emerging adults, 18 to 25 years old. The study sample included (n = 11,546) individuals who participated in Waves I, II, and III of the National Longitudinal Study of Adolescent Health (Add Health). The study used separate latent class analysis for males and females to determine how patterns of substance use clustered together. The study identified the following three classes of substance use: heavy, moderate, and normative substance use patterns. Multinomial logistic regression indicated that, for females only, incest histories also nearly doubled the risk of heavy-use class membership. In addition, experiencing depression, being single, and not living with parents serve as risk factors for males and females in the heavy-use group. Conversely, being Black, Hispanic, or living with parents lowered the likelihood of being in the group with the most substance use behaviors (i.e., heavy use). Findings highlight the need for interventions that target depression and female survivors of incest among emerging adults. PMID:25052877
De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna
2010-08-01
During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.
Assimilate partitioning in avocado, Persea americana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finazzo, S.; Davenport, T.L.
1986-04-01
Assimilate partitioning is being studied in avocado, Persea americana cv. Millborrow in relation to fruit set. Single leaves on girdled branches of 10 year old trees were radiolabeled for 1 hr with 13..mu..Ci of /sup 14/CO/sub 2/. The source leaves were sampled during the experiment to measure translocation rates. At harvest the sink tissues were dissected and the incorporated radioactivity was measured. The translocation of /sup 14/C-labelled compounds to other leaves was minimal. Incorporation of label into fruitlets varied with the tissue and the stage of development. Sink (fruitlets) nearest to the labelled leaf and sharing the same phyllotaxy incorporatedmore » the most /sup 14/C. Source leaves for single non-abscising fruitlets retained 3X more /sup 14/C-labelled compounds than did source leaves for 2 or more fruitlets at 31 hrs. post-labelling. Export of label decreased appreciably when fruitlets abscised. If fruitlets abscised within 4 days of labeling then the translocation pattern was similar to the pattern for single fruitlets. If the fruitlet abscised later, the translocation pattern was intermediate between the single and double fruitlet pattern.« less
Santanelli di Pompeo, Fabio; Sorotos, Michail; Laporta, Rosaria; Pagnoni, Marco; Longo, Benedetto
2018-02-01
Excellent cosmetic results from skin-sparing mastectomy (SSM) are often impaired by skin flaps' necrosis (SFN), from 8%-25% or worse in smokers. This study prospectively investigated the efficacy of Double-Mirrored Omega Pattern (DMOP-SSM) compared to Wise Pattern SSM (WP-SSM) for immediate reconstruction in moderate/large-breasted smokers. From 2008-2010, DMOP-SSM was performed in 51 consecutive immediate breast reconstructions on 41 smokers (mean age = 49.8 years) with moderate/large and ptotic breasts. This active group (AG) was compared to a similar historical control group (CG) of 37 smokers (mean age = 51.1 years) who underwent WP-SSM and immediate breast reconstruction, with a mean follow-up of 37.6 months. Skin ischaemic complications, number of surgical revisions, time to wound healing, and patient satisfaction were analysed. Descriptive statistics were reported and comparison of performance endpoints was performed using Fisher's exact test and Mann-Whitney U-test. A p-value <.05 was considered significant. Patients' mean age (p = .316) and BMI (p = .215) were not statistically different between groups. Ischaemic complications occurred in 11.7% of DMOP-SSMs and in 32.4% of WP-SSMs (p = .017), and revision rates were, respectively, 5.8% and 24.3% (p = .012), both statistically significant. Mean time to wound healing was, respectively, 16.8 days and 18.4 days (p = .205). Mean patients' satisfaction scores were, respectively, 18.9 and 21.1, statistically significant (p = .022). Although tobacco use in moderate/large breasted patients can severely impair outcomes of breast reconstruction, the DMOP-SSM approach, compared to WP-SSM, allows smokers to benefit from SSM, but with statistically significant reduced skin flaps ischaemic complications, revision surgery, and better cosmetic outcomes.
Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas
2011-08-01
Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Copp, Hillary L; Shapiro, Daniel J; Hersh, Adam L
2011-06-01
The goal of this study was to investigate patterns of ambulatory antibiotic use and to identify factors associated with broad-spectrum antibiotic prescribing for pediatric urinary tract infections (UTIs). We examined antibiotics prescribed for UTIs for children aged younger than 18 years from 1998 to 2007 using the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey. Amoxicillin-clavulanate, quinolones, macrolides, and second- and third-generation cephalosporins were classified as broad-spectrum antibiotics. We evaluated trends in broad-spectrum antibiotic prescribing patterns and performed multivariable logistic regression to identify factors associated with broad-spectrum antibiotic use. Antibiotics were prescribed for 70% of pediatric UTI visits. Trimethoprim-sulfamethoxazole was the most commonly prescribed antibiotic (49% of visits). Broad-spectrum antibiotics were prescribed one third of the time. There was no increase in overall use of broad-spectrum antibiotics (P = .67); however, third-generation cephalosporin use doubled from 12% to 25% (P = .02). Children younger than 2 years old (odds ratio: 6.4 [95% confidence interval: 2.2-18.7, compared with children 13-17 years old]), females (odds ratio: 3.6 [95% confidence interval: 1.6-8.5]), and temperature ≥ 100.4°F (odds ratio: 2.9 [95% confidence interval: 1.0-8.6]) were independent predictors of broad-spectrum antibiotic prescribing. Race, physician specialty, region, and insurance status were not associated with antibiotic selection. Ambulatory care physicians commonly prescribe broad-spectrum antibiotics for the treatment of pediatric UTIs, especially for febrile infants in whom complicated infections are more likely. The doubling in use of third-generation cephalosporins suggests that opportunities exist to promote more judicious antibiotic prescribing because most pediatric UTIs are susceptible to narrower alternatives.
National Ambulatory Antibiotic Prescribing Patterns for Pediatric Urinary Tract Infection, 1998–2007
Shapiro, Daniel J.; Hersh, Adam L.
2011-01-01
OBJECTIVE: The goal of this study was to investigate patterns of ambulatory antibiotic use and to identify factors associated with broad-spectrum antibiotic prescribing for pediatric urinary tract infections (UTIs). METHODS: We examined antibiotics prescribed for UTIs for children aged younger than 18 years from 1998 to 2007 using the National Ambulatory Medical Care Survey and National Hospital Ambulatory Medical Care Survey. Amoxicillin-clavulanate, quinolones, macrolides, and second- and third-generation cephalosporins were classified as broad-spectrum antibiotics. We evaluated trends in broad-spectrum antibiotic prescribing patterns and performed multivariable logistic regression to identify factors associated with broad-spectrum antibiotic use. RESULTS: Antibiotics were prescribed for 70% of pediatric UTI visits. Trimethoprim-sulfamethoxazole was the most commonly prescribed antibiotic (49% of visits). Broad-spectrum antibiotics were prescribed one third of the time. There was no increase in overall use of broad-spectrum antibiotics (P = .67); however, third-generation cephalosporin use doubled from 12% to 25% (P = .02). Children younger than 2 years old (odds ratio: 6.4 [95% confidence interval: 2.2–18.7, compared with children 13–17 years old]), females (odds ratio: 3.6 [95% confidence interval: 1.6–8.5]), and temperature ≥100.4°F (odds ratio: 2.9 [95% confidence interval: 1.0–8.6]) were independent predictors of broad-spectrum antibiotic prescribing. Race, physician specialty, region, and insurance status were not associated with antibiotic selection. CONCLUSIONS: Ambulatory care physicians commonly prescribe broad-spectrum antibiotics for the treatment of pediatric UTIs, especially for febrile infants in whom complicated infections are more likely. The doubling in use of third-generation cephalosporins suggests that opportunities exist to promote more judicious antibiotic prescribing because most pediatric UTIs are susceptible to narrower alternatives. PMID:21555502
Model-based assist feature insertion for sub-40nm memory device
NASA Astrophysics Data System (ADS)
Suh, Sungsoo; Lee, Suk-joo; Choi, Seong-woon; Lee, Sung-Woo; Park, Chan-hoon
2009-04-01
Many issues need to be resolved for a production-worthy model based assist feature insertion flow for single and double exposure patterning process to extend low k1 process at 193 nm immersion technology. Model based assist feature insertion is not trivial to implement either for single and double exposure patterning compared to rule based methods. As shown in Fig. 1, pixel based mask inversion technology in itself has difficulties in mask writing and inspection although it presents as one of key technology to extend single exposure for contact layer. Thus far, inversion technology is tried as a cooptimization of target mask to simultaneously generate optimized main and sub-resolution assists features for a desired process window. Alternatively, its technology can also be used to optimize for a target feature after an assist feature types are inserted in order to simplify the mask complexity. Simplification of inversion mask is one of major issue with applying inversion technology to device development even if a smaller mask feature can be fabricated since the mask writing time is also a major factor. As shown in Figure 2, mask writing time may be a limiting factor in determining whether or not an inversion solution is viable. It can be reasoned that increased number of shot counts relates to increase in margin for inversion methodology. On the other hand, there is a limit on how complex a mask can be in order to be production worthy. There is also source and mask co-optimization which influences the final mask patterns and assist feature sizes and positions for a given target. In this study, we will discuss assist feature insertion methods for sub 40-nm technology.
Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio
2015-04-01
Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Budka, Josh; Fujioka, Shozo; Johal, Gurmukh
2016-01-01
A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant’s ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context. PMID:27288361
Tobón, Catalina; Ruiz-Villa, Carlos A.; Heidenreich, Elvio; Romero, Lucia; Hornero, Fernando; Saiz, Javier
2013-01-01
The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different atrial arrhythmic propagation patterns and the electrograms observed at more than 43000 points on the atrial surface. PMID:23408928
Díaz, Eider; García, Lorena; Hernández, Michelle; Palacio, Lesly; Ruiz, Diana; Velandia, Nataly; Villavicencio, Judy
2014-01-01
Objectives: To determine the frequency, variability, sexual dimorphism and bilateral symmetry of fourteen dental crown traits in the deciduous and permanent dentition of 60 dental models (35 women and 25 men) obtained from a native, indigenous group of Nasa school children of the Musse Ukue group in the municipality of Morales, Department of Cauca, Colombia. Methods: This is a quantitative, descriptive, cross-sectional study that characterizes dental morphology by means of the systems for temporary dentition from Dahlberg (winging), and ASUDAS (crowding, reduction of hypocone, metaconule and cusp 6), Hanihara (central and lateral incisors in shovel-shape and cusp 7), Sciulli (double bit, layered fold protostylid, cusp pattern and cusp number) and Grine (Carabelli trait); and in permanent dentition from ASUDAS (Winging, crowding, central and lateral incisors in shovel-shape and double shovel-shape, Carabelli trait, hypocone reduction, metaconule, cusp pattern, cusp number, layered fold protostylid, cusp 6 and cusp 7). Results: The most frequent dental crown features were the shovel-shaped form, grooved and fossa forms of the Carabelli trait, metaconule, cusp pattern Y6, layered fold, protostylid (point P) and cusp 6. Sexual dimorphism was not observed and there was bilateral symmetry in the expression of these features. Conclusions: The sample studied presented a great affinity with ethnic groups belonging to the Mongoloid Dental Complex due to the frequency (expression) and variability (gradation) of the tooth crown traits, upper incisors, the Carabelli trait, the protostylid, cusp 6 and cusp 7. The influence of the Caucasoide Dental Complex associated with ethno-historical processes cannot be ruled out. PMID:24970955
Epidemiological Transition and the Double Burden of Disease in Accra, Ghana
de-Graft Aikins, Ama
2010-01-01
It has long been recognized that as societies modernize, they experience significant changes in their patterns of health and disease. Despite rapid modernization across the globe, there are relatively few detailed case studies of changes in health and disease within specific countries especially for sub-Saharan African countries. This paper presents evidence to illustrate the nature and speed of the epidemiological transition in Accra, Ghana’s capital city. As the most urbanized and modernized Ghanaian city, and as the national center of multidisciplinary research since becoming state capital in 1877, Accra constitutes an important case study for understanding the epidemiological transition in African cities. We review multidisciplinary research on culture, development, health, and disease in Accra since the late nineteenth century, as well as relevant work on Ghana’s socio-economic and demographic changes and burden of chronic disease. Our review indicates that the epidemiological transition in Accra reflects a protracted polarized model. A “protracted” double burden of infectious and chronic disease constitutes major causes of morbidity and mortality. This double burden is polarized across social class. While wealthy communities experience higher risk of chronic diseases, poor communities experience higher risk of infectious diseases and a double burden of infectious and chronic diseases. Urbanization, urban poverty and globalization are key factors in the transition. We explore the structures and processes of these factors and consider the implications for the epidemiological transition in other African cities. PMID:20803094
Attygalle, A B; Svatos, A; Wilcox, C; Voerman, S
1994-05-15
Gas-phase Fourier-transform infrared spectra allow unambiguous determination of the configuration of the double bonds of long-chain unsaturated compounds bearing RCH=CHR' type bonds. Although the infrared absorption at 970-967 cm-1 has been used previously for the identification of trans bonds, the absorption at 3028-3011 cm-1 is conventionally considered to be incapable of distinguishing cis and trans isomers. In this paper, we present a large number of gas-phase spectra of monounsaturated long-chain acetates which demonstrate that an absorption, highly characteristic for the cis configuration, occurs at 3013-3011 cm-1, while trans compounds fail to show any bands in this region. However, if a double bond is present at the C-2 or C-3 carbon atoms, this cis=CH stretch absorption shows a hypsochromic shift to 3029-3028 and 3018-3017 cm-1, respectively. Similarly, if a cis double bond is present at the penultimate carbon atom, this band appears at 3022-3021 cm-1. All the spectra of trans alkenyl acetates showed the expected C-H wag absorption at 968-964 cm-1. In addition, the spectra of (E)-2-alkenyl acetates show a unique three-peak "finger-print" pattern which allows the identification of the position and configuration of this bond. Furthermore, by synthesizing and obtaining spectra of appropriate deuteriated compounds, we have proved that the 3013-3011 cm-1 band is representative of the C-H stretching vibration of cis compounds of RCH=CHR' type.
Perrotin, Audrey; Isingrini, Michel; Souchay, Céline; Clarys, David; Taconnat, Laurence
2006-05-01
This research investigated adult age differences in a metamemory monitoring task-episodic feeling-of-knowing (FOK) and in an episodic memory task-cued recall. Executive functioning and processing speed were examined as mediators of these age differences. Young and elderly adults were administered an episodic FOK task, a cued recall task, executive tests and speed tests. Age-related decline was observed on all the measures. Correlation analyses revealed a pattern of double dissociation which indicates a specific relationship between executive score and FOK accuracy, and between speed score and cued recall. When executive functioning and processing speed were evaluated concurrently on FOK and cued recall variables, hierarchical regression analyses showed that executive score was a better mediator of age-related variance in FOK, and that speed score was the better mediator of age-related variance in cued recall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabtaji, Agung, E-mail: sabtaji.agung@gmail.com, E-mail: agung.sabtaji@bmkg.go.id; Indonesia’s Agency for Meteorological, Climatological and Geophysics Region V, Jayapura 1572; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id
2015-04-24
West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as inputmore » for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.« less
Subwavelength and directional control of flexural waves in zone-folding induced topological plates
NASA Astrophysics Data System (ADS)
Chaunsali, Rajesh; Chen, Chun-Wei; Yang, Jinkyu
2018-02-01
Inspired by the quantum spin Hall effect shown by topological insulators, we propose a plate structure that can be used to demonstrate the pseudospin Hall effect for flexural waves. The system consists of a thin plate with periodically arranged resonators mounted on its top surface. We extend a technique based on the plane-wave expansion method to identify a double Dirac cone emerging due to the zone-folding in frequency band structures. This particular design allows us to move the double Dirac cone to a lower frequency than the resonating frequency of local resonators. We then manipulate the pattern of local resonators to open subwavelength Bragg band gaps that are topologically distinct. Building on this method, we verify numerically that a waveguide at an interface between two topologically distinct resonating plate structures can be used for guiding low-frequency, spin-dependent one-way flexural waves along a desired path with bends.
Diffraction and interference of walking drops
NASA Astrophysics Data System (ADS)
Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.
2016-11-01
A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.; Gilbert, D. B.; Ettenberg, M.
1981-01-01
The temperature dependence of threshold currents in constricted double-heterojunction diode lasers with strong lateral mode confinement is found to be significantly milder than for other types of lasers. The threshold-current relative variations with ambient temperature are typically two to three times less than for other devices of CW-operation capability. Over the interval 10-70 C the threshold currents fit the empirical exponential law exp/(T2-T1)/T0/ with T0 values in the 240-375 C range in pulsed operation, and in the 200-310 C range in CW operation. The external differential quantum efficiency and the mode far-field pattern near threshold are virtually invariant with temperature. The possible causes of high-T0 behavior are analyzed, and a new phenomenon - temperature-dependent current focusing - is presented to explain the results.
Agostini, Valentina; Knaflitz, Marco
2012-01-01
In many applications requiring the study of the surface myoelectric signal (SMES) acquired in dynamic conditions, it is essential to have a quantitative evaluation of the quality of the collected signals. When the activation pattern of a muscle has to be obtained by means of single- or double-threshold statistical detectors, the background noise level e (noise) of the signal is a necessary input parameter. Moreover, the detection strategy of double-threshold detectors may be properly tuned when the SNR and the duty cycle (DC) of the signal are known. The aim of this paper is to present an algorithm for the estimation of e (noise), SNR, and DC of an SMES collected during cyclic movements. The algorithm is validated on synthetic signals with statistical properties similar to those of SMES, as well as on more than 100 real signals. © 2011 IEEE
RKKY interaction in a chirally coupled double quantum dot system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heine, A. W.; Tutuc, D.; Haug, R. J.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less
Profile of an individual supporting member
NASA Astrophysics Data System (ADS)
During the past 2 years, the number of Individual Supporting Members in AGU has more than doubled. This increase in interest is primarily due to the AGU-GIFT program and its efforts to seek the voluntary support of all members. Your response has been encouraging, and we believe the number can be doubled again in the next 18 months.Who is the typical Individual Supporting Member? The first step in the development of a “profile” was to find the age pattern. The eldest was born in 1892—Congratulations on your 90th year!—and the youngest in 1948. One would hardly expect to find a Gaussian distribution. In fact there was no evidence of a “peak,” but 50% were born between 1910 and 1930—with the median age being 62—just beginning to harvest the fruits of senior citizenship. For comparison, the median age for the total membership of AGU is 42.
Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun
2008-09-15
Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.
NASA Astrophysics Data System (ADS)
Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping
2017-07-01
In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.
Indirect double photoionization of water
NASA Astrophysics Data System (ADS)
Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.
2011-05-01
The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.
Ab-initio study of double perovskite Ba2YSbO6
NASA Astrophysics Data System (ADS)
Mondal, Golak; Jha, D.; Himanshu, A. K.; Lahiri, J.; Singh, B. K.; Kumar, Uday; Ray, Rajyavardhan
2018-04-01
The density functional theory with generalized gradient approximation has been used to investigate the electronic structure of double perovskite oxide Ba2YSbO6 (BYS) synthesized in polycrystalline form by solid state reaction. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Riedvelt analysis of the XRD pattern. The crystal structure is cubic, space group being Fm-3m (No. 225) with the lattice parameter, a = 8.424 Å. Optical band-gap of this system has been calculated using UV-Vis Spectroscopy and Kubelka-Munk (KM) function, having the value 4.56eV. A detailed study of the electronic properties has also been carried out using the Full-Potential Linear Augmented Plane Wave (FPLAPW) as implemented in WIEN2k. BYS is found to be a large band-gap insulator with potential technological applications, such as dielectric resonators and filters in microwave applications.
APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion
Nowarski, Roni; Kotler, Moshe
2013-01-01
High frequency of cytidine to thymidine conversions were identified in the genome of several types of cancer cells. In breast cancer cells these mutations are clustered in long DNA regions associated with ssDNA, double-strand DNA breaks (DSBs) and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs and clustered mutations. PMID:23598277
APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.
Nowarski, Roni; Kotler, Moshe
2013-06-15
High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.
NASA Astrophysics Data System (ADS)
Guo, Shengchang; Evans, David G.; Li, Dianqing
2006-05-01
Intercalation of 2-naphthalenecarboxylic acid, 4-((4-chloro-5-methyl-2-sulfophenyl) azo)-3-hydroxy-, calcium salt (1:1) (C.I. Pigment Red 52:1, also known as New Rubine S6B) into a layered double hydroxide (LDHs) host was carried out using MgAl NO3 LDHs as a precursor in an effort to improve the thermal and photo stability of the pigment. After intercalation, the powder X-ray diffraction (XRD) pattern shows that the basal spacing of the LDHs increased from 0.86 to 1.92 nm. Infrared spectra and TG DTA curves demonstrate that there are supramolecular host guest interactions. It was found that the intercalated material is more stable than the pristine pigment at high temperatures. The pigment anion-pillared LDHs also exhibit much higher photostablity to UV-light than the pristine pigment.
SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
Pietra, Stefano; Lang, Patricia; Grebe, Markus
2015-03-01
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Design strategy for integrating DSA via patterning in sub-7 nm interconnects
NASA Astrophysics Data System (ADS)
Karageorgos, Ioannis; Ryckaert, Julien; Tung, Maryann C.; Wong, H.-S. P.; Gronheid, Roel; Bekaert, Joost; Karageorgos, Evangelos; Croes, Kris; Vandenberghe, Geert; Stucchi, Michele; Dehaene, Wim
2016-03-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCPs). As a result, the insertion of DSA for IC fabrication is being actively considered for the sub-7nm nodes. At these nodes the DSA technology could alleviate costs for multiple patterning and limit the number of litho masks that would be required per metal layer. One of the most straightforward approaches for DSA implementation would be for via patterning through templated DSA, where hole patterns are readily accessible through templated confinement of cylindrical phase BCP materials. Our in-house studies show that decomposition of via layers in realistic circuits below the 7nm node would require at least many multi-patterning steps (or colors), using 193nm immersion lithography. Even the use of EUV might require double patterning in these dimensions, since the minimum via distance would be smaller than EUV resolution. The grouping of vias through templated DSA can resolve local conflicts in high density areas. This way, the number of required colors can be significantly reduced. For the implementation of this approach, a DSA-aware mask decomposition is required. In this paper, our design approach for DSA via patterning in sub-7nm nodes is discussed. We propose options to expand the list of DSA-compatible via patterns (DSA letters) and we define matching cost formulas for the optimal DSA-aware layout decomposition. The flowchart of our proposed approach tool is presented.