Sample records for double polarization experiments

  1. The double polarization program of CBELSA/TAPS

    NASA Astrophysics Data System (ADS)

    Thiel, Annika

    2014-06-01

    The excitation spectrum of the proton consists of resonances with substancial width which are often strongly overlapping and are therefore difficult to disentangle. To determine the exact contributions and identify these resonances, a partial wave analysis solution has to be found. For a complete experiment, which leads to an unambiguous solution, several single and double polarization observables are needed. With the Crystal Barrel/TAPS experiment at ELSA, the measurement of double polarization observables in different reactions is possible by using a circularly or linearly polarized photon beam on a transversely or longitudinally polarized butanol target.

  2. Measurement of the Double Polarization Observable E in π0 and η Photoproduction off Protons with the Cbelsa/taps Experiment

    NASA Astrophysics Data System (ADS)

    Gottschall, M.; Müller, J.

    2014-01-01

    Double polarization experiments using a longitudinally or transversely polarized frozen-spin-butanol target and a linearly or circularly polarized photon beam were performed with the CBELSA/TAPS experiment at the electron accelerator ELSA. With its nearly 4π angular coverage, this setup is very well suited to study neutral meson photoproduction off the nucleon up to beam energies of 3.2 GeV. Results obtained for the double polarization observable E in neutral pion and eta photoproduction show the large sensitivity of the data on the contributing resonances. If the data are compared to the predictions of state of the art partial wave analyses, large discrepancies are observed.

  3. Designation of a polarization-converting system and its enhancement of double-frequency efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-08-01

    A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.

  4. Recent Results from the CBELSA/TAPS Experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Thiel, A.

    To determine the excitation spectrum of the nucleon, measurements of different observables in meson photoproduction are necessary. Many of these observables can be measured with the CBELSA/TAPS experiment, located at the ELSA accelerator in Bonn. The calorimeter system is ideally suited to measure reactions containing photons, giving an opportunity to measure final states comprising neutral mesons like π0 or η. A linearly or circularly polarized photon beam was used in combination with a longitudinally or transversely polarized butanol target. This allows the measurement of different (double) polarization observables like P, T E, G, and H. This contribution reports on the measurement of polarization observables in single or double meson photoproduction off the proton, measured with the CBELSA/TAPS experiment.

  5. Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer.

    PubMed

    de Sande, Juan Carlos G; Santarsiero, Massimo; Piquero, Gemma; Gori, Franco

    2012-12-03

    The polarization characteristics of unpolarized light passing through a double wedge depolarizer are studied. It is found that the degree of polarization of the radiation propagating after the depolarizer is uniform across transverse planes after the depolarizer, but it changes from one plane to another in a periodic way giving, at different distances, unpolarized, partially polarized, or even perfectly polarized light. An experiment is performed to confirm this result. Measured values of the Stokes parameters and of the degree of polarization are in complete agreement with the theoretical predictions.

  6. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  7. Single-photon interference experiment for high schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  8. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  9. Measurement of Polarization Observables in 2π0 Photoproduction off the Proton with the CBELSA/TAPS Experiment

    NASA Astrophysics Data System (ADS)

    Mahlberg, Philipp; Seifen, Tobias

    The reaction γp → pπ0π0 has been investigated with the Crystal-Barrel/TAPS experiment at ELSA. The analyzed dataset has been taken using a linear polarized photon beam impinging on a transversely polarized target, thus providing access to polarization observables. Preliminary results for the observables are shown along with predictions from partial wave analyses groups, indicating that double neutral pion photoproduction is not yet completely understood.

  10. On the equivalence between Young's double-slit and crystal double-refraction interference experiments.

    PubMed

    Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric

    2017-08-01

    We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

  11. Double-polarization observable G in neutral-pion photoproduction off the proton

    NASA Astrophysics Data System (ADS)

    Thiel, A.; Eberhardt, H.; Lang, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Crede, V.; Dieterle, M.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Klempt, E.; Koop, K.; Krusche, B.; Kube, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reeve, S.; Reicherz, G.; Runkel, S.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; van Pee, H.; Walther, D.; Wendel, Ch.; Wilson, A.; Winnebeck, A.; Witthauer, L.

    2017-01-01

    This paper reports on a measurement of the double-polarization observable G in π^0 photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Jülich-Bonn (JüBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed.

  12. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    NASA Astrophysics Data System (ADS)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  13. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  14. Polarized Solid State Target

    NASA Astrophysics Data System (ADS)

    Dutz, Hartmut; Goertz, Stefan; Meyer, Werner

    2017-01-01

    The polarized solid state target is an indispensable experimental tool to study single and double polarization observables at low intensity particle beams like tagged photons. It was one of the major components of the Crystal-Barrel experiment at ELSA. Besides the operation of the 'CB frozen spin target' within the experimental program of the Crystal-Barrel collaboration both collaborative groups of the D1 project, the polarized target group of the Ruhr Universität Bochum and the Bonn polarized target group, have made significant developments in the field of polarized targets within the CRC16. The Bonn polarized target group has focused its work on the development of technically challenging polarized solid target systems towards the so called '4π continuous mode polarized target' to operate them in combination with 4π-particle detection systems. In parallel, the Bochum group has developed various highly polarized deuterated target materials and high precision NMR-systems, in the meantime used for polarization experiments at CERN, JLAB and MAMI, too.

  15. Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Ji, Xiao; Bodenhausen, Geoffrey

    2017-11-01

    Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.

  16. Design and performance of the spin asymmetries of the nucleon experiment

    NASA Astrophysics Data System (ADS)

    Maxwell, J. D.; Armstrong, W. R.; Choi, S.; Jones, M. K.; Kang, H.; Liyanage, A.; Meziani, Z.-E.; Mulholland, J.; Ndukum, L.; Rondón, O. A.; Ahmidouch, A.; Albayrak, I.; Asaturyan, A.; Ates, O.; Baghdasaryan, H.; Boeglin, W.; Bosted, P.; Brash, E.; Brock, J.; Butuceanu, C.; Bychkov, M.; Carlin, C.; Carter, P.; Chen, C.; Chen, J.-P.; Christy, M. E.; Covrig, S.; Crabb, D.; Danagoulian, S.; Daniel, A.; Davidenko, A. M.; Davis, B.; Day, D.; Deconinck, W.; Deur, A.; Dunne, J.; Dutta, D.; El Fassi, L.; Elaasar, M.; Ellis, C.; Ent, R.; Flay, D.; Frlez, E.; Gaskell, D.; Geagla, O.; German, J.; Gilman, R.; Gogami, T.; Gomez, J.; Goncharenko, Y. M.; Hashimoto, O.; Higinbotham, D. W.; Horn, T.; Huber, G. M.; Jones, M.; Kalantarians, N.; Kang, H. K.; Kawama, D.; Keith, C.; Keppel, C.; Khandaker, M.; Kim, Y.; King, P. M.; Kohl, M.; Kovacs, K.; Kubarovsky, V.; Li, Y.; Liyanage, N.; Luo, W.; Mamyan, V.; Markowitz, P.; Maruta, T.; Meekins, D.; Melnik, Y. M.; Mkrtchyan, A.; Mkrtchyan, H.; Mochalov, V. V.; Monaghan, P.; Narayan, A.; Nakamura, S. N.; Nuruzzaman; Pentchev, L.; Pocanic, D.; Posik, M.; Puckett, A.; Qiu, X.; Reinhold, J.; Riordan, S.; Roche, J.; Sawatzky, B.; Shabestari, M.; Slifer, K.; Smith, G.; Soloviev, L.; Solvignon, P.; Tadevosyan, V.; Tang, L.; Vasiliev, A. N.; Veilleux, M.; Walton, T.; Wesselmann, F.; Wood, S. A.; Yao, H.; Ye, Z.; Zhu, L.

    2018-03-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer 2 . 5

  17. Sequential double photodetachment of He- in elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  18. Weak decays and double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, H.W.

    1983-08-01

    Work to measure the ..sigma../sup +/ 0 degree differential cross section in the reaction K/sup -/p ..-->.. ..sigma../sup +/..pi../sup -/ at several incident K/sup -/ momenta between 600 and 800 MeV/c as well as the asymmetries in the decays of polarized ..sigma../sup +/'s into protons and neutral pions and of polarized ..sigma../sup -/'s into neutrons and negative pions in collaboration with experimenters from Yale, Brookhaven, and the University of Pittsburgh (Brookhaven experiment 702) has been completed. Data from this experiment is currently being analyzed at Yale. Work is currently underway to develop and construct an experiment to search for neutrinolessmore » double beta decay in thin foils of Mo/sup 100/ in collaboration with experimenters from Lawrence Berkeley Laboratory. Development work on the solid state silicon detectors should be complete in the next six months and construction should e well underway within the next year.« less

  19. Double cross-polarization MAS NMR in the assignment of abundant-spin resonances: ¹⁹F-{²⁹Si}-¹⁹F FBCP/MAS NMR of fluoride ions incorporated in calcium silicate hydrate (C-S-H) phases.

    PubMed

    Tran, Thuan T; Bildsøe, Henrik; Jakobsen, Hans J; Skibsted, Jørgen

    2012-08-01

    A new version of the double cross-polarization MAS NMR experiment, which transfers polarization Forth and Back (FBCP) between high- and low-γ spin nuclei, is presented. The pulse sequence is demonstrated by ¹⁹F-{²⁹Si}-¹⁹F and ¹⁹F-{¹³C}-¹⁹F FBCP NMR spectra of a mixture of cuspidine (Ca₄Si₂O₇F₂) and Teflon (-CF₂-)(n). The experiment is useful for assignment of the high-γ spin resonances, as demonstrated by ¹⁹F-{²⁹Si}-¹⁹F FBCP NMR of a fluoride-containing calcium-silicate-hydrate (C-S-H) phase, where the ¹⁹F resonance from fluoride ions incorporated in the interlayer structure of the C-S-H phase is identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR.

    PubMed

    Cho, HyungJoon; Baugh, Jonathan; Ryan, Colm A; Cory, David G; Ramanathan, Chandrasekhar

    2007-08-01

    Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.

  1. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less

  2. Design and performance of the spin asymmetries of the nucleon experiment

    DOE PAGES

    Maxwell, J. D.; Armstrong, W. R.; Choi, S.; ...

    2018-03-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer 2.5 < Q 2 < 6.5 GeV 2 and Bjorken scaling 0.3 < x < 0.8 from initial beam energies of 4.7 and 5.9 GeV. Employing a polarized proton target which could be rotated with respect to the incident electron beam, both parallel and near perpendicular spin asymmetries were measured, allowing model-independent access to transverse polarization observables A 1, A 2, g 1, gmore » 2 and moment d 2 of the proton. This article summarizes the operation and performance of the polarized target, polarized electron beam, and novel detector systems used during the course of the experiment, and describes analysis techniques utilized to access the physics observables of interest.« less

  3. Design and performance of the spin asymmetries of the nucleon experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, J. D.; Armstrong, W. R.; Choi, S.

    The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer 2.5 < Q 2 < 6.5 GeV 2 and Bjorken scaling 0.3 < x < 0.8 from initial beam energies of 4.7 and 5.9 GeV. Employing a polarized proton target which could be rotated with respect to the incident electron beam, both parallel and near perpendicular spin asymmetries were measured, allowing model-independent access to transverse polarization observables A 1, A 2, g 1, gmore » 2 and moment d 2 of the proton. This article summarizes the operation and performance of the polarized target, polarized electron beam, and novel detector systems used during the course of the experiment, and describes analysis techniques utilized to access the physics observables of interest.« less

  4. CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eugene Pasyuk

    2009-12-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview ofmore » the experiment and its current status is presented.« less

  5. Next-To Order QCD Corrections for Transversely Polarized PP and bar {p}p Collisions

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Stratmann, M.; Vogelsang, W.

    We present a calculation of the next-to-leading order QCD corrections to the partonic cross sections contributing to single-inclusive high-pT hadron production in collisions of transversely polarized hadrons. We use a recently proposed projection technique and give some predictions for the double-spin asymmetry Aπ TT for the proposed experiments at RHIC and at the GSI.

  6. Highly sensitive rotation sensing based on orthogonal fiber-optic structures

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin

    2011-08-01

    In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than two orders and enhances bias stability for an order higher (compared with single axis result), achieving a bias stability of 0.01 deg/h. The evidences from all aspects convincingly show that the orthogonal fiber-optic structure is robust against environmental disturbance and material defects, achieving high stability and sensitivity.

  7. Polarized Compton Scattering Experiments at the Mainz Microtron

    NASA Astrophysics Data System (ADS)

    Martel, Philippe

    2017-01-01

    Interactions between an electromagnetic wave and a proton are described at the basic level by the mass, charge, and anomalous magnetic moment of the proton. Such a description, however, assumes a point-like particle, something the proton is certainly not. The internal structure of the proton leads to higher order terms, such as the scalar and vector polarizabilities, in the interaction. To study these polarizabilities, a multi-experiment program has been undertaken at the Mainz Microtron to measure observables in Compton scattering that exhibit dependence on these parameters. This program has made use of the A2 tagged photon beam, with either a linear or circular polarization, proton targets of either unpolarized LH2 or frozen-spin butanol with transverse or longitudinal polarization, as well as the nearly 4 π detection capability of the Crystal Ball and TAPS detectors. The first of these measurements, the double-polarization asymmetry Σ2 x, also the first of its kind, has already been published. Measurements of the beam asymmetry Σ3 and another double-polarization asymmetry Σ2 z have also been performed and are in various stages of analysis and publication. This talk will discuss the status of these measurements, as well as various fitting studies that are being performed with the data in hand, and plans for future measurements. on behalf of the A2 collaboration at MAMI.

  8. Magic angle for barrier-controlled double quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  9. CONCERNING THE INFLUENCE OF POLARIZED LIGHT ON THE GROWTH OF SEEDLINGS.

    PubMed

    Macht, D I

    1926-09-20

    While these experiments are not exhaustive, a sufficient number have been made to warrant the statement that the effect of polarized light of the visible spectrum on the growth of various seedlings and See PDF for Structure more particularly on the growth of Lupinus albus is somewhat different from that of non-polarized light. This is especially convincing in view of the results obtained with double sets of plants which were alternately exposed to polarized and non-polarized lights of the same intensities and at the same temperature. In every experiment thus performed the set which was placed in a polarizing chamber grew better. It is, furthermore, interesting to note that the phenomenon above observed did not take place when the seed portion of the plants was protected from light by wrapping with tinfoil. This agrees well with previous findings concerning the action of diastase on starch in polarized light. The above researches will be continued on a more elaborate scale but the results so far obtained are deemed worthy of publication in the form of a preliminary communication at the present time.

  10. Epidemiological Transition and the Double Burden of Disease in Accra, Ghana

    PubMed Central

    de-Graft Aikins, Ama

    2010-01-01

    It has long been recognized that as societies modernize, they experience significant changes in their patterns of health and disease. Despite rapid modernization across the globe, there are relatively few detailed case studies of changes in health and disease within specific countries especially for sub-Saharan African countries. This paper presents evidence to illustrate the nature and speed of the epidemiological transition in Accra, Ghana’s capital city. As the most urbanized and modernized Ghanaian city, and as the national center of multidisciplinary research since becoming state capital in 1877, Accra constitutes an important case study for understanding the epidemiological transition in African cities. We review multidisciplinary research on culture, development, health, and disease in Accra since the late nineteenth century, as well as relevant work on Ghana’s socio-economic and demographic changes and burden of chronic disease. Our review indicates that the epidemiological transition in Accra reflects a protracted polarized model. A “protracted” double burden of infectious and chronic disease constitutes major causes of morbidity and mortality. This double burden is polarized across social class. While wealthy communities experience higher risk of chronic diseases, poor communities experience higher risk of infectious diseases and a double burden of infectious and chronic diseases. Urbanization, urban poverty and globalization are key factors in the transition. We explore the structures and processes of these factors and consider the implications for the epidemiological transition in other African cities. PMID:20803094

  11. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  12. Photoproduction of η mesons from the neutron: Cross sections and double polarization observable E

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Challand, Th.; Crede, V.; Dutz, H.; Eberhardt, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Käser, A.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Koop, K.; Krusche, B.; Lang, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reicherz, G.; Rostomyan, T.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thiel, A.; Thoma, U.; Urban, M.; van Pee, H.; Walford, N. K.; Walther, D.; Wendel, Ch.; Werthmüller, D.; Wilson, A.; Winnebeck, A.

    2017-03-01

    Results from measurements of the photoproduction of η mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η→ 3π0→ 6γ decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γ n→ nη. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable E. Both data sets together were also used to extract the helicity-dependent cross sections σ_{1/2} and σ_{3/2}. The narrow structure in the excitation function of γ n→ nη appears associated with the helicity-1/2 component of the reaction.

  13. Sounding rocket research Aries/Firewheel, series 22, issue 15

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1981-01-01

    Rocket experiments in ionospheric particle and field research flow in seven programs during the last decade are summarized. Experimental techniques were developed and are discussed including the double-probe field technique. The auroral zone, polar cap, and equatorial spread F were studied.

  14. Determining pseudoscalar meson photoproduction amplitudes from complete experiments

    NASA Astrophysics Data System (ADS)

    Sandorfi, A. M.; Hoblit, S.; Kamano, H.; Lee, T.-S. H.

    2011-05-01

    A new generation of complete experiments is focused on a high precision extraction of pseudoscalar meson photoproduction amplitudes. Here, we review the development of the most general analytic form of the cross section, dependent upon the three polarization vectors of the beam, target and recoil baryon, including all single-, double- and triple-polarization terms involving 16 spin-dependent observables. We examine the different conventions that have been used by different authors, and we present expressions that allow the direct numerical calculation of any pseudoscalar meson photoproduction observables with arbitrary spin projections from the Chew-Goldberger-Low-Nambu amplitudes. We use this numerical tool to clarify apparent sign differences that exist in the literature, in particular with the definitions of six double-polarization observables. We also present analytic expressions that determine the recoil baryon polarization, together with examples of their potential use with quasi-4π detectors to deduce observables. As an illustration of the use of the consistent machinery presented in this review, we carry out a multipole analysis of the γp → K+Λ reaction and examine the impact of recently published polarization measurements. When combining data from different experiments, we utilize the Fierz identities to fit a consistent set of scales. In fitting multipoles, we use a combined Monte Carlo sampling of the amplitude space, with gradient minimization, and find a shallow χ2 valley pitted with a very large number of local minima. This results in broad bands of multipole solutions that are experimentally indistinguishable. While these bands have been noticeably narrowed by the inclusion of new polarization measurements, many of the multipoles remain very poorly determined, even in sign, despite the inclusion of data on eight different observables. We have compared multipoles from recent PWA codes with our model-independent solution bands and found that such comparisons provide useful consistency tests which clarify model interpretations. The potential accuracy of amplitudes that could be extracted from measurements of all 16 polarization observables has been studied with mock data using the statistical variations that are expected from ongoing experiments. We conclude that, while a mathematical solution to the problem of determining an amplitude free of ambiguities may require eight observables, as has been pointed out in the literature, experiments with realistically achievable uncertainties will require a significantly larger number.

  15. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGES

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  16. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  17. Ultra-wideband and broad-angle linear polarization conversion metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Martín, Ferran

    2017-05-01

    In this work, a metasurface acting as a linear polarization rotator, that can efficiently convert linearly polarized electromagnetic waves to cross polarized waves within an ultra wide frequency band and with a broad incident angle, is proposed. Based on the electric and magnetic resonant features of the unit cell, composed by a double-head arrow, a cut-wire, and two short V-shaped wire structures, three resonances, which lead to the bandwidth expansion of cross-polarization reflections, are generated. The simulation results show that an average polarization conversion ratio of 90% from 17.3 GHz to 42.2 GHz can be achieved. Furthermore, the designed metasurface exhibits polarization insensitivity within a broad incident angle, from 0° to 50°. The experiments conducted on the fabricated metasurface are in good agreement with the simulations. The proposed metasurface can find potential applications in reflector antennas, imaging systems, and remote sensors operating at microwave frequencies.

  18. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  19. Longitudinal Double-Spin Asymmetry ALL for Inclusive Jet Production in Polarized Proton Collisions at √s = 510 GeV

    NASA Astrophysics Data System (ADS)

    Quintero, Amilkar; STAR Collaboration

    2017-09-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions at center of mass energies up to 510 GeV, to gain a deeper insight into the spin structure and dynamics of the proton. The polarized gluon distribution function can be constrained in longitudinally polarized proton collisions through jet / di-jet production. Recent global analyses, which include results of the measurement of ALL for inclusive jet production at 200 GeV at mid-rapidity at the STAR experiment, provide evidence of a non-zero gluon polarization in the measured range of partonic momentum fraction of approximately 0.05

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  1. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  2. Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region

    NASA Astrophysics Data System (ADS)

    Zou, Huanling; Xiao, Zhongyin; Li, Wei; Li, Chuan

    2018-04-01

    A number of polarization convertors based on metamaterials(MMs) have been investigated recently, but no one has proposed a high-efficiency linear polarization transformer both in transmission and reflection modes. Here, a bilayered MM embedded with vanadium dioxide (VO2) composed of a pair of sloping gold patches, bottom hybrid layer and a dielectric spacer is proposed as a double-use linear polarization convertor. It has been demonstrated numerically that this device has advantages of switching between transmission polarization conversion and reflection polarization conversion based on the phase transition of the VO2 film in the terahertz (THz) regime and the polarization conversion ratios (PCR) in both cases are higher than 90% in wide bands. The simulated linear polarization transmission/reflection coefficients and the surface current distributions give insight into the mechanism of the linear polarization conversions. Moreover, the physical mechanism of polarization sensitivity of the designed structure is investigated by the distributions of electric field. The proposed double-use linear polarization convertor shows great prospects in polarization imaging, and polarized light communications.

  3. DOUBLE ENDOR with a linearly and a circularly polarized radiofrequency field

    NASA Astrophysics Data System (ADS)

    Schweiger, A.; Rudin, M.; Forrer, J.; Günthard, Hs. H.

    The combination of the two spectroscopical techniques, DOUBLE ENDOR and ENDOR with a circularly polarized radiofrequency field (CP-ENDOR), is described. with this new method, termed by the acronym CP-DOUBLE ENDOR, the selective induction of transitions of different types of nuclei and of different paramagnetic species allows a drastic reduction of the number of observed ENDOR lines. With this technique, analysis of hitherto not interpretable ENDOR spectra is often made possible. The experimental setup of the CP-DOUBLE ENDOR spectrometer is described. The advantage of using circularly polarized rf fields in DOUBLE ENDOR spectroscopy is illustrated by two applications on transition metal complexes in single crystals.

  4. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation.

    PubMed

    Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-10-05

    Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

  5. Measurement of Drell-Yan longitudinal double spin asymmetry in polarized p + p collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Perera, Gonaduwage; Pate, Stephen; Phenix Collaboration

    2016-09-01

    Measurement of the longitudinal double spin asymmetry (ALL) in the Drell-Yan process in high energy polarized proton-proton collisions provides clean access to the anti-quark helicity distributions in the proton without involving quark fragmentation functions. In the PHENIX experiment at RHIC, the Forward Silicon Vertex Detector (FVTX) together with the forward muon spectrometers have been used to study the Drell-Yan process by detecting the muon pairs in the forward region (1.2 < η < 2.4). In this talk, the status of evaluating the Drell-Yan signal fraction and the ALL asymmetry in the intermediate mass region (4.5 GeV < M < 8 GeV) using the RHIC 2013 dataset of proton-proton collisions at a center of mass energy of 510 GeV are presented. DOE, NMSU, UVa.

  6. Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser

    NASA Astrophysics Data System (ADS)

    Wang, Li-qiang

    2009-07-01

    A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.

  7. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  8. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  9. SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A p 1, at Large Bjorken x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulholland, Jonathan

    2012-05-01

    The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid 14NH 3 polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetriesmore » measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A 1 p and A 2 p as well as the spin structure functions g 1 p and g 2 p. This work addresses the extraction of the virtual Compton asymmetry A 1 p in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q 2 bins from 1.9 to 4.7 GeV 2.« less

  10. Reexamination of Spin Transport Through a DOUBLE-δ Magnetic Barrier with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Bi, Caihua; Zhai, Feng

    We revisit the properties of spin transport through a semiconductor 2DEG system subjected to the modulation of both a ferromagnetic metal (FM) stripe on top and the Rashba and Dresselhaus spin-orbit interactions (SOIs). The FM stripe has a magnetization along the transporting direction and generates an inhomogeneous magnetic field in the 2DEG plane which is taken as a double-δ shape. It is found that the spin polarization of this system generated from a spin-unpolarized injection can be remarkable only within a low Fermi energy region and is not more than 30% for the parameters available in current experiments. In this energy region, both the magnitude and the orientation of the spin polarization can be tuned by the Rashba strength, the Dresselhaus strength, and the magnetic field strength. The magnetization reversal of the FM stripe cannot result in a change of the conductance, but can rotate the orientation of the spin polarization. The results are in contrast to those in [ J. Phys.: Condens. Matter 15 (2003) L31] where a pure spin state for incident electrons is artificially assumed.

  11. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  12. Development of single cell lithium ion battery model using Scilab/Xcos

    NASA Astrophysics Data System (ADS)

    Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul

    2016-02-01

    In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).

  13. Climate change and the middle atmosphere. I - The doubled CO2 climate

    NASA Technical Reports Server (NTRS)

    Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.

    1990-01-01

    The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.

  14. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less

  15. Interaction of phenazinium dyes with double-stranded poly(A): Spectroscopy and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh

    2014-10-01

    A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.

  16. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kageya, Tsuneo; Ho, Dao; Peng, Peng

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14more » asymmetries.« less

  17. Output Beam Polarisation of X-ray Lasers with Transient Inversion

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.

    It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.

  18. Self-sustaining dynamical nuclear polarization oscillations in quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2013-02-22

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods.

  19. Ferroelectricity in d0 double perovskite fluoroscandates

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2015-08-01

    Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.

  20. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2008-02-06

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE in summer 2005. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate themore » beam heating by the target gas. The analysis of the d-vector p-vector {yields}dp and d-vector p-vector{yields}(dp{sub sp}){pi}{sup 0} reactions showed that events from the extended target can be clearly identified in the ANKE detector system.The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np{yields}d{pi}{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79{+-}0.07 in the vertical stray field of the D2 magnet acting as a holding field. The achieved target thickness was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  1. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2009-08-04

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate the beam heating bymore » the target gas. The analysis of the d-vectorp-vector->dp and d-vectorp-vector->(dp{sub sp})pi{sup 0} reactions showed that events from different positions of the extended target can be clearly identified in the ANKE detector system. The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np->dpi{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79+-0.07 in the vertical stray field of the D2 magnet acting as a holding field. The target thickness achieved was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  2. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  3. Ultra-small and broadband polarization splitters based on double-slit interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chengwei; Li, Hongyun; Gong, Qihuang

    2016-03-07

    An ultra-small and broadband polarization splitter is numerically and experimentally demonstrated based on the double-slit interference in a polymer-film-coated double-slit structure. The hybrid slab waveguide (air-polymer-Au) supports both the transverse-magnetic and transverse-electric modes. The incident beam from the back side can excite these two guided modes of orthogonally polarized states in the hybrid structure. By exploiting the difference slit widths and the large mode birefringence, these two guided modes propagate to the opposite directions along the front metal surface. Moreover, the short interference length broadens the operation bandwidth. Experimentally, a polarization splitter with a lateral dimension of only about 1.6 μmmore » and an operation bandwidth of 50 nm is realized. By designing the double-slit structure in a hybrid strip waveguide, the device dimension can be significant downscaled to about 0.3 × 1.3 μm{sup 2}. Such an ultra-small and broadband polarization splitter may find important applications in the integrated photonic circuits.« less

  4. A decision-directed network for dual-polarization crosstalk cancellation

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1979-01-01

    Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.

  5. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at highmore » latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.« less

  6. The polar amplification asymmetry: role of Antarctic surface height

    NASA Astrophysics Data System (ADS)

    Salzmann, Marc

    2017-05-01

    Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.

  7. Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery

    NASA Astrophysics Data System (ADS)

    Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed

    2011-01-01

    Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.

  8. Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kun; Wu, Jianzhong

    Recent years have witnessed growing interests in both the fundamentals and applications of electric double layer capacitors (EDLCs), also known as supercapacitors. A number of strategies have been explored to optimize the device performance in terms of both the energy and power densities. Because the properties of electric double layers (EDL) are sensitive to ion distributions in the close vicinity of the electrode surfaces, the supercapacitor performance is sensitive to both the electrode pore structure and the electrolyte composition. In this paper, we study the effects of polar additives on EDLC capacitance using the classical density functional theory within themore » framework of a coarse-grained model for the microscopic structure of the porous electrodes and room-temperature ionic liquids. The theoretical results indicate that a highly polar, low-molecular-weight additive is able to drastically increase the EDLC capacitance at low bulk concentration. Additionally, the additive is able to dampen the oscillatory dependence of the capacitance on the pore size, thereby boosting the performance of amorphous electrode materials. Finally, the theoretical predictions are directly testable with experiments and provide new insights into the additive effects on EDL properties.« less

  9. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye

    2018-04-01

    A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.

  10. Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties.

    PubMed

    Kaufmann, M; Hupfer, M L; Sachse, T; Herrmann-Westendorf, F; Weiß, D; Dietzek, B; Beckert, R; Presselt, M

    2018-04-30

    Supramolecular structures determine properties of optoelectronically active materials and can be tailored via the Langmuir-Blodgett (LB) technique. Interactions between dyes can cause high crystallinities of Langmuir monolayers, thus rendering retaining their integrity during the LB-deposition challenging. However, increasing degrees of freedom exclusively at the polar anchoring moieties of dyes might improve processability without perturbing the dye's optoelectronic properties nor the function-determining crystallinity of the layer. (Amphiphilic) thiazole dyes without, with a mono-polar, and with a double-polar anchor were synthesized, whereas the two constituting polar moieties of the latter derivate are separated by a flexible alkyl chain. The supramolecular structures and crystallinities of Langmuir and LB monolayers were characterized by means of LB isotherms, atomic force microscopy and polarization-resolved fluorescence spectroscopy. As compared to the mono-polar reference the introduction of a flexible double-polar head did not deteriorate UV-vis absorption, emission or electrochemical properties of the thiazole but significantly extended the range of constant compressibility modulus, thus indicating improved processability of the Langmuir monolayers. Indeed, AFM studies revealed that the integrity of the monolayers could be retained during LB-deposition. Additionally, also the underlying supramolecular structure of the chromophore moieties is largely identical to those obtained from the mono-polar reference thiazoles. Copyright © 2018. Published by Elsevier Inc.

  11. The extraction of the spin structure function, g2 (and g1) at low Bjorken x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukum, Luwani Z.

    2015-08-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less

  12. Why is Light Text Harder to Read Than Dark Text?

    NASA Technical Reports Server (NTRS)

    Scharff, Lauren V.; Ahumada, Albert J.

    2005-01-01

    Scharff and Ahumada (2002, 2003) measured text legibility for light text and dark text. For paragraph readability and letter identification, responses to light text were slower and less accurate for a given contrast. Was this polarity effect (1) an artifact of our apparatus, (2) a physiological difference in the separate pathways for positive and negative contrast or (3) the result of increased experience with dark text on light backgrounds? To rule out the apparatus-artifact hypothesis, all data were collected on one monitor. Its luminance was measured at all levels used, and the spatial effects of the monitor were reduced by pixel doubling and quadrupling (increasing the viewing distance to maintain constant angular size). Luminances of vertical and horizontal square-wave gratings were compared to assess display speed effects. They existed, even for 4-pixel-wide bars. Tests for polarity asymmetries in display speed were negative. Increased experience might develop full letter templates for dark text, while recognition of light letters is based on component features. Earlier, an observer ran all conditions at one polarity and then switched. If dark and light letters were intermixed, the observer might use component features on all trials and do worse on the dark letters, reducing the polarity effect. We varied polarity blocking (completely blocked, alternating smaller blocks, and intermixed blocks). Letter identification responses times showed polarity effects at all contrasts and display resolution levels. Observers were also more accurate with higher contrasts and more pixels per degree. Intermixed blocks increased the polarity effect by reducing performance on the light letters, but only if the randomized block occurred prior to the nonrandomized block. Perhaps observers tried to use poorly developed templates, or they did not work as hard on the more difficult items. The experience hypothesis and the physiological gain hypothesis remain viable explanations.

  13. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  14. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    PubMed

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  15. Double Stokes-Mueller polarimetry in KTP (Potassium Titanyl Phosphate) crystal

    NASA Astrophysics Data System (ADS)

    Shaji, Chitra; S B, Sruthil Lal; Sharan, Alok

    2017-04-01

    Ultra-structural properties of material are being probed by Double Stokes-Mueller polarimetry (DSMP) technique. It makes use of higher dimensions of Stokes vector (9 X 1) and Mueller matrix (4 X9) to characterize the nonlinear optical properties of a material. Second harmonic generation (SHG) at 532nm using 1064nm as fundamental cw beam from Nd: YAG laser in type II phase matched KTP (Potassium Titanyl Phosphate) crystal is studied using DSMP. The experimental measurements for determining double Mueller matrix are carried out in the ``Polarization In Polarization Out'' (PIPO) arrangement. Nine input polarization states are incident on the sample and the linear Stokes vector of the emerging light from the sample is measured. The KTP crystal is oriented such that the SHG signal efficiency at the incident horizontal and vertical polarizations is high as compared to diagonal polarization states. The susceptibility tensor components and the phase difference between them at this orientation are determined from the double Mueller matrix elements. These determined values give information regarding the crystal axis orientations. To our knowledge, this is the first report of the use of DSMP technique to determine the crystal orientations of a biaxial crystal.

  16. Mueller matrix polarimetry on a Young's double-slit experiment analog.

    PubMed

    Arteaga, Oriol; Ossikovski, Razvigor; Kuntman, Ertan; Kuntman, Mehmet A; Canillas, Adolf; Garcia-Caurel, Enric

    2017-10-01

    In this Letter we describe an experiment in which coherent light is sent through a calcite crystal that separates the photons by their polarization. The two beams are then let to superpose, and this recombined beam is used to measure the Mueller matrix of the system. Results are interpreted according to our recent formalism of coherent superposition in material media. This is the first experimental implementation of a Young's experiment with complete polarimetry, and it is demonstrated that our method can be used for the experimental synthesis of optical devices with on-demand optical properties.

  17. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  18. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.

    2018-06-01

    We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.

  19. Coherent population trapping with polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less

  20. Localization and loss of coherence in molecular double slit experiments

    NASA Astrophysics Data System (ADS)

    Langer, Burkhard; Becker, Uwe

    2009-11-01

    In their famous paper Einstein, Podolsky and Rosen questioned 1935 the completeness of quantum mechanics concerning a local realistic description of our reality. They argued on the basis of superpositions of position and momentum states against the inherent non-locality and loss of information on prior conditions by quantum mechanics. This pioneering proposal was, however, too vague to be implemented in any experimental proof. Consequently, angular momentum related variables such as the polarization of light became the working horse of all experiments proving the EPR predictions. However, the spin and its related polarization properties are abstract quantities compared to position and momentum. Here we present the first evidence that non-locality and loss of prior quantum state information occurs also for position in ordinary space. This shows that the tunnelling effect and entanglement are inherently correlated

  1. Overhauser shift and dynamic nuclear polarization on carbon fibers

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Denninger, Gert

    2018-06-01

    We report on the first experimental magnetic resonance determination of the coupling between electrons and nuclear spins (1H, 13C) in carbon fibers. Our results strongly support the assumption that the electronic spins are delocalized on graphene like structures in the fiber. The coupling between these electrons and the nuclei of the lattice results in dynamic nuclear polarization of the nuclei (DNP), enabling very sensitive NMR experiments on these nuclear spins. For possible applications of graphene in spintronics devices the coupling between nuclei and electrons is essential. We were able to determine the interactions down to 30 × 10-9(30 ppb) . We were even able to detect the coupling of the electrons to 13C (in natural abundance). These experiments open the way for a range of new double resonance investigations with possible applications in the field of material science.

  2. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming

    NASA Astrophysics Data System (ADS)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    2017-10-01

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high latitudes warm, while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar midtroposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  3. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Yeung, M.; Gong, Z.; Wang, H. Y.; Kreuzer, C.; Zhou, M. L.; Streeter, M. J. V.; Foster, P. S.; Cousens, S.; Dromey, B.; Meyer-ter-Vehn, J.; Zepf, M.; Schreiber, J.

    2018-02-01

    We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ˜30 MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.

  4. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at √s = 200 GeV

    DOE PAGES

    Adamczyk, L.

    2015-08-26

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A LL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .

  5. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

  6. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  7. Measurement of the proton $$A_1$$ and $$A_2$$ spin asymmetries. Probing Color Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Whitney

    The Spin Asymmetries of the Nucleon Experiment (SANE) measured the proton spin structure functionmore » $$g_2$$ in a range of Bjorken x, 0.3 < x < 0.8, where extraction of the twist-3 matrix element $$d_2^p$$ (an integral of $$g_2$$ weighted by $x^2$) is most sensitive. The data was taken from $Q^2$ equal to 2.5 $GeV^2$ up to 6.5 $GeV^2$. In this polarized electron scattering off a polarized hydrogen target experiment, two double spin asymmetries, A∥ and A⊥ were measured using the BETA (Big Electron Telescope Array) Detector. BETA consisted of a scintillator hodoscope, gas Cerenkov counter, lucite hodoscope and a large lead glass electromagnetic calorimeter. With a unique open geometry, a threshold gas Cerenkov detector allowed BETA to cleanly identify electrons for this inclusive experiment. A measurement of $$d_2^p$$ is compared to lattice QCD calculations.« less

  8. High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping

    2017-07-01

    In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.

  9. Behavioural and physiological mechanisms of polarized light sensitivity in birds.

    PubMed

    Muheim, Rachel

    2011-03-12

    Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.

  10. Behavioural and physiological mechanisms of polarized light sensitivity in birds

    PubMed Central

    Muheim, Rachel

    2011-01-01

    Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system. PMID:21282180

  11. Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla.

    PubMed

    Bomsdorf, H; Röschmann, P; Wieland, J

    1991-11-01

    In vivo 13C spectroscopy experiments were performed using a whole-body MR system at a static field of 4 T. The main goal of the investigations was to evaluate the sensitivity increase achievable by means of 13C/1H double-resonance techniques at 4 T. Spectra from subcutaneous fat as well as muscle glycogen from the lower leg were acquired using frequency selective proton decoupling and the polarization transfer method SINEPT. With respect to measurements on subcutaneous fat, polarization transfer turned out to be more efficient than selective decoupling. About a fourfold enhancement in spectral peak intensity for the C = C line doublet of the unsaturated fatty acid chain was obtained. Combining polarization transfer with decoupling yielded a factor of 6 in signal amplitude. In contrast to that, the signal enhancement observed in measurements on the glycogen C-1 resonance was only around twofold. The lower efficiency is explained by fast T2 relaxation of the proton transition. A T2 value of about 3 ms was derived from the experimental data. Acquisition times as low as 3 min were realized for normal level glycogen in human calf muscle, enabling a time resolution adequate for dynamic studies on muscle glycogen depletion. Aspects of RF power absorption in tissue and the generally higher efficiency make polarization transfer methods preferable to selective decoupling in whole-body 13C spectroscopy at 4 T.

  12. Manipulation of group-velocity-locked vector dissipative solitons and properties of the generated high-order vector soliton structure.

    PubMed

    Zhu, S N; Wu, Z C; Fu, S N; Zhao, L M

    2018-03-20

    Details of various composites of the projections originated from a fundamental group-velocity-locked vector dissipative soliton (GVLVDS) are both experimentally and numerically explored. By combining the projections from the orthogonal polarization components of the GVLVDS, a high-order vector soliton structure with a double-humped pulse profile along one polarization and a single-humped pulse profile along the orthogonal polarization can be observed. Moreover, by de-chirping the composite double-humped pulse, the time separation between the two humps is reduced from 15.36 ps to 1.28 ps, indicating that the frequency chirp of the GVLVDS contributes significantly to the shaping of the double-humped pulse profile.

  13. Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers.

    PubMed

    Fedotov, Andrey; Noronen, Teppo; Gumenyuk, Regina; Ustimchik, Vasiliy; Chamorovskii, Yuri; Golant, Konstantin; Odnoblyudov, Maxim; Rissanen, Joona; Niemi, Tapio; Filippov, Valery

    2018-03-19

    We present a birefringent Yb-doped tapered double-clad fiber with a record core diameter of 96 µm. An impressive gain of over 38 dB was demonstrated for linearly polarized CW and pulsed sources at a wavelength of 1040 nm. For the CW regime the output power was70 W. For a mode-locked fiber laser a pulse energy of 28 µJ with 292 kW peak power was reached at an average output power of 28 W for a 1 MHz repetition rate. The tapered double-clad fiber has a high value of polarization extinction ratio at 30 dB and is capable of delivering the linearly polarized diffraction-limited beam (M 2 = 1.09).

  14. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  15. Flexible metasurface black nickel with stepped nanopillars.

    PubMed

    Qian, Qinyu; Yan, Ying; Wang, Chinhua

    2018-03-15

    We report on a monolithic, all-metallic, and flexible metasurface perfect absorber [black nickel (Ni)] based on coupled Mie resonances originated from vertically stepped Ni nanopillars homoepitaxially grown on an Ni substrate. Coupled Mie resonances are generated from Ni nanopillars with different sizes such that Mie resonances of the stepped two sets of Ni nanopillars occur complementarily at different wavelengths to realize polarization-independent broadband absorption over the entire visible wavelength band (400-760 nm) within an ultra-thin surface layer of only 162 nm thick in total. Two-step double-beam interference lithography and electroplating are utilized to fabricate the proposed monolithic metasurface that can be arbitrarily bent and pressed. A black nickel metasurface is experimentally demonstrated in which an average polarization-independent absorption of 0.972 (0.961, experiment) in the entire visible band is achieved and remains 0.838 (0.815, experiment) when the incident angle increases to 70°.

  16. The effect of geometric and electric constraints on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Mitov, Michel

    2008-08-01

    Polymer-stabilized cholesteric liquid crystals (PSCLCs) with a double-handed circularly polarized reflection band are fabricated. The geometric and electric constraints appear to be relevant parameters in obtaining a single-layer CLC structure with a clear-cut double-handed circularly polarized reflection band since light scattering phenomena can alter the reflection properties when the PSCLC is cooled from the elaboration temperature to the operating one. A compromise needs to be found between the LC molecule populations, which are bound to the polymer network due to strong surface effects or not. Besides, a monodomain texture is preserved if the PSCLC is subjected to an electric field at the same time as the thermal process intrinsic to the elaboration process. As a consequence, the light scattering is reduced and both kinds of circularly polarized reflected light beams are put in evidence. Related potential applications are smart reflective windows for the solar light management or reflective polarizer-free displays with higher brightness.

  17. A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment

    DOE PAGES

    Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...

    2015-09-26

    In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less

  18. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  19. Polar Radiation-Flux Symmetry Measurements in Z-Pinch-Driven Hohlraums with Symmetric Double-Pinch Drive

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.

    2000-10-01

    We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).

  20. Polarized micro Raman spectroscopy of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moon, Hyerim; Yoon, Duhee; Son, Young-Woo; Cheong, Hyeonsik

    2009-03-01

    The frequency of Raman 2D band of the graphite depends on the excitation laser energy. This phenomenon is explained with double resonance Raman process. In polarized micro-Raman spectroscopy of single layer graphene, Raman G band (˜1586 cm-1) is isotropic, and 2D band (˜2686 cm-1) strongly depends on relative polarizations of the incident and scattered photons. This strong polarization dependence originates from inhomogeneous optical absorption and emission mediated by resonant electron-phonon interaction. In bi-layer graphene, Raman 2D band can be decomposed into four Lorenztian peaks which can be interpreted in terms of the four transition paths in the double resonance Raman process. We investigated the polarization dependence of each Lorenztian peak in the Raman 2D band of bi-layer graphene for different excitation laser energies. Strong polarization dependence of the Raman 2D band, similar to the case of single layer graphene, is observed. The excitation energy dependence of the polarized Raman scattering is analyzed in terms of the band structure of bi-layer graphene.

  1. A terahertz in-line polarization converter based on through-via connected double layer slot structures

    PubMed Central

    Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung

    2017-01-01

    A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498

  2. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) themore » source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.« less

  4. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  5. Recent Results from Experiments at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldenbaum, Frank

    2010-08-05

    In hadron physics, experiments using hadronic probes may shed light on open questions on the structure of hadrons, their interactions that are subject to the strong force and on the symmetries of nature. Therefore a major focus of the physics program studied at the COoler SYnchrotron COSY of the Forschungszentrum Juelich is the production of mesons and hyperons in hadron- hadron scattering with the aim to investigate relevant production processes, interactions of the participating particles as well as symmetries and symmetry breaking. The COoler SYnchrotron COSY at Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c covering hadronmore » physics in the light quark sector. The availability of the beam cooling systems allow precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets. Due to the excellent experimental conditions at COSY single- and double-polarization measurements can be performed with high reaction rates. With the operation of the recently installed WASA-at-COSY apparatus, high-statistics studies aiming at rare decays of {eta} and {eta}{sup '} are effectively turning COSY into a meson factory. This contribution summarizes the ongoing physics program at the COSY facility, using the detector systems ANKE, WASA and COSY-TOF highlighting a few selective recent results and outlining future developments. The research at COSY also provides a step towards the realization of FAIR with studies on spin manipulation and polarization build-up of protons in polarized targets.« less

  6. Antiproton beam polarizer using a dense polarized target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtsekhowski, Bogdan

    2011-05-01

    We describe considerations regarding the spin filtering method for the antiproton beam. The proposed investigation of the double polarization cross section for antiproton to nucleon interaction is outlined. It will use a single path of the antiproton beam through a dense polarized target, e.g. 3He or CH2, followed by a polarimeter.

  7. Double ionization of neon in elliptically polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard

    2018-06-01

    We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.

  8. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  9. Colored Flag by Double Refraction.

    ERIC Educational Resources Information Center

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  10. Monitoring of the Spacecraft Potential in the Magetosphere With a Double Probe Instrument

    NASA Astrophysics Data System (ADS)

    Laakso, H.

    1998-11-01

    Measurements of the double probe instrument can be used for monitoring the variation of the spacecraft potential Vs in tenuous plasmas where the satellite usually floats at a positive potential. This study deals with the Vs variation of the Polar satellite in the magnetosphere, using three and half years of data in 1996-99. The observations are binned with the Kp index in order to investigate how the level of geomagnetic activity affects the average surface potential. Two different antenna baselines are used, 6 and 60 meters, which both can be used for monitoring the spacecraft potential. In a low-density environment, however, the short antenna measurements are more influenced by the charging sheath of the satellite, but the data are nevertheless qualitatively useful. In burst mode the sampling rate of the double probe experiment is 1-8 kHz, and then very fast spacecraft potential variations can be monitored. Typically Vs varies between 0 and 50 volts so that in the plasmasphere it is 0-1 volt, at the plasmapause it exhibits a steep increase by 3-5 volts, and outside the plasmasphere Vs is more than 5 volts. Highest Vs's occur in the high-altitude (> 4 RE) polar cap, where Vs is usually between 20 and 30 volts, and on auroral field lines where it frequently lies in the 30-50 volts range and occasionally above 50 volts.

  11. Treatment targets for M2 microglia polarization in ischemic stroke.

    PubMed

    Wang, Ji; Xing, Hongyi; Wan, Lin; Jiang, Xingjun; Wang, Chen; Wu, Yan

    2018-06-05

    As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  14. Recoil polarization and beam-recoil double polarization measurement of eta electroproduction on the proton in the region of the S11(1535) resonance.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Cheymol, B; Distler, M O; Doria, L; Fonvieille, H; Friedrich, J; Janssens, P; Makek, M; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Tiator, L; Walcher, Th; Weinriefer, M

    2007-09-28

    The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  15. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    PubMed

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  16. The nature of pulsar radio emission

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  17. Measurements of double-helicity asymmetries in inclusive J /ψ production in longitudinally polarized p +p collisions at √{s }=510 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; He, X.; Hemmick, T. K.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kanda, S.; Kang, J. H.; Kang, J. S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y. K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotov, D.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Velkovska, J.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-12-01

    We report the double-helicity asymmetry, ALL J /ψ, in inclusive J /ψ production at forward rapidity as a function of transverse momentum pT and rapidity |y |. The data analyzed were taken during √{s }=510 GeV longitudinally polarized p +p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J /ψ particles are predominantly produced through gluon-gluon scatterings, thus ALL J /ψ is sensitive to the gluon polarization inside the proton. We measured ALL J /ψ by detecting the decay daughter muon pairs μ+μ- within the PHENIX muon spectrometers in the rapidity range 1.2 <|y |<2.2 . In this kinematic range, we measured the ALL J /ψ to be 0.012 ±0.010 (stat) ±0.003 (syst). The ALL J /ψ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x : one at moderate range x ≈5 ×10-2 where recent data of jet and π0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x ≈2 ×10-3. Thus our new results could be used to further constrain the gluon polarization for x <5 ×10-2.

  18. Double-layered microstrip metamaterial beam scanning leaky wave antenna with consistent gain and low cross-polarization

    NASA Astrophysics Data System (ADS)

    An, Yong-li; Tan, Yi-li; Zhang, Hong-bo; Wu, Guo-cheng

    2017-12-01

    In this paper, a novel double-layered microstrip metamaterial beam scanning leaky wave antenna (LWA) is proposed and investigated to achieve consistent gain and low cross-polarization. Thanks to the continuous phase constant changing from negative to positive values over the passband of the double-layered microstrip metamaterial, the proposed LWA, which consists of 20 identical microstrip metamaterial unit cells, can obtain a continuous beam scanning property from backward to forward directions. The proposed LWA is fabricated and measured. The measured results show that the fabricated antenna obtains a continuous beam scanning angle of 140° over the operating frequency band of 3.80-5.25 GHz (32%), the measured 3 dB gain bandwidth is 30.17% with maximum gain of 11.7 dB. Besides, the measured cross-polarization of the fabricated antenna keeps at a level of at least 30 dB below the co-polarization across the entire radiation region. Moreover, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.

  19. Electromagnetic field scattering by a triangular aperture.

    PubMed

    Harrison, R E; Hyman, E

    1979-03-15

    The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.

  20. ABC effect and resonance d*(2380)

    NASA Astrophysics Data System (ADS)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Skorodko, T.

    2017-11-01

    A new state in the two-baryon system with mass 2380 MeV and width 80 MeV has been detected in the experiments at the Juelich Cooler Synchrotron (COSY). The new particle denoted now d*(2380) has quantum numbers I( J p ) = 0(3+). The total cross sections for the d and 4He fusion reactions show similar to each other resonance-like energy dependence. The resonance-like structure is sensed in the double-pionic fusion channels and polarized np scattering.

  1. Magnetostriction-polarization coupling in multiferroic Mn 2MnWO 6

    DOE PAGES

    Li, Man-Rong; McCabe, Emma E.; Stephens, Peter W.; ...

    2017-12-11

    Double corundum-related polar magnets are promising materials for multiferroic and magnetoelectric applications in spintronics. However, their design and synthesis is a challenge, and magnetoelectric coupling has only been observed in Ni 3TeO 6 among the known double corundum compounds to date. Here in this paper we address the high-pressure synthesis of a new polar and antiferromagnetic corundum derivative Mn 2MnWO 6, which adopts the Ni 3TeO 6-type structure with low temperature first-order field-induced metamagnetic phase transitions (T N = 58 K) and high spontaneous polarization (~ 63.3 μC·cm -2). The magnetostriction-polarization coupling in Mn 2MnWO 6 is evidenced by secondmore » harmonic generation effect, and corroborated by magnetic-field-dependent pyroresponse behavior, which together with the magnetic-field-dependent polarization and dielectric measurements, qualitatively indicate magnetoelectric coupling. Finally, piezoresponse force microscopy imaging and spectroscopy studies on Mn 2MnWO 6 show switchable polarization, which motivates further exploration on magnetoelectric effect in single crystal/thin film specimens.« less

  2. Magnetostriction-polarization coupling in multiferroic Mn 2MnWO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Man-Rong; McCabe, Emma E.; Stephens, Peter W.

    Double corundum-related polar magnets are promising materials for multiferroic and magnetoelectric applications in spintronics. However, their design and synthesis is a challenge, and magnetoelectric coupling has only been observed in Ni 3TeO 6 among the known double corundum compounds to date. Here in this paper we address the high-pressure synthesis of a new polar and antiferromagnetic corundum derivative Mn 2MnWO 6, which adopts the Ni 3TeO 6-type structure with low temperature first-order field-induced metamagnetic phase transitions (T N = 58 K) and high spontaneous polarization (~ 63.3 μC·cm -2). The magnetostriction-polarization coupling in Mn 2MnWO 6 is evidenced by secondmore » harmonic generation effect, and corroborated by magnetic-field-dependent pyroresponse behavior, which together with the magnetic-field-dependent polarization and dielectric measurements, qualitatively indicate magnetoelectric coupling. Finally, piezoresponse force microscopy imaging and spectroscopy studies on Mn 2MnWO 6 show switchable polarization, which motivates further exploration on magnetoelectric effect in single crystal/thin film specimens.« less

  3. Lack of ferroelectricity in PbTiO3 at high pressures

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Ahart, Muhtar; Hemley, Russell J.

    The classic ferroelectric PbTiO3 continues to surprise. It was believed that ferroelectrics would become paraelectric under pressure, and this was observed in Raman experiments on PbTiO3. We predicted a morphotropic phase transition under pressure and verified it experimentally. At higher pressures it become paraelectric, but DFT predicted higher pressure ferroelectricity, and this seemed confirmed by experiments. New Second Harmonic Generation (SHG) measurements on PbTiO3 to 100 GPa and down to 10 K find no evidence for ferroelectricity above 20 GPa. Our DFT computations show centrosymmetric I4mcm as most stable from 20-90 GPa; I4mcm is the ground state of SrTiO3, and the rotations quench the polar instability. We predict a polar I4cm structure above 90 GPa, but the double well depth is very small. This work has been supported by the US ONR, ERC Advanced Grant ToMCaT, EFREE, CDAC, NSF and the Carnegie Institution for Science.

  4. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    PubMed

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  5. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    PubMed Central

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  6. Wave-vector and polarization dependence of conical refraction.

    PubMed

    Turpin, A; Loiko, Yu V; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2013-02-25

    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal.

  7. A 1D radiative transfer benchmark with polarization via doubling and adding

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  8. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles

    NASA Astrophysics Data System (ADS)

    Horiuchi, Sachio; Kagawa, Fumitaka; Hatahara, Kensuke; Kobayashi, Kensuke; Kumai, Reiji; Murakami, Youichi; Tokura, Yoshinori

    2012-12-01

    The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization-electric field (P-E) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm-2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P-E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure-property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices.

  9. Final Technical Report Project: Low-Energy Photonuclear Studies at HIGS and Lund

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Gerald

    This report summarizes a program of low-energy photonuclear studies at MAX-Lab in Lund (Sweden) and at the High Intensity Gamma Source (HIGS) at Duke University. A major emphasis has been on Compton scattering from deuterium in order to determine the electric and magnetic polarizabilities of the neutron. The studies at Lund utilized unpolarized photons at Egamma = 62-115 MeV to measure differential cross sections. The studies at HIGS utilized polarized and unpolarized photon beams (both linear and circular) at Egamma < 90 MeV. Polarization observables will be exploited to improve our understanding of the electric and magnetic polarizabilities, and inmore » particular, double-polarization observables (using polarized targets) will be measured in the future to provide new information about the spin polarizabilities of the nucleon. The MAX-Lab experiments (using unpolarized photons) focused on an approved PAC proposal for Compton scattering on the deuteron aimed at making a precise determination of the electromagnetic polarizabilities of the neutron. At MAX-Lab we had three of the largest NaI detectors in the world, each capable of ~2% energy resolution. We have completed our measurements in two separate tagged photon energy ranges which overlap each other (62-97 MeV and 90-115 MeV) and the results of these experiments have been published. The photon beam at the High Intensity Gamma Source (HIGS) has several distinct advantages that make it unique: (1) ultra-high photon flux, ultimately reaching 100 MHz, (2) 100% linearly polarized photon beam, as well as circular polarization, (3) monoenergetic beam, with ~2% energy resolution, and (4) extremely low-background beam environment. Exploiting the high flux and polarization capabilities of the HIGS photon beam is central in the series of experiments being performed at this facility. Very little data exist on Compton scattering using polarized photons. We will exploit clear sensitivities in the polarization observables to the electric and magnetic polarizabilities of the nucleon, and we will ultimately extend these studies to the investigation of the spin polarizabilities. To accomplish these objectives, a liquid hydrogen/deuterium/helium cryotarget has been constructed at HIGS, and an array of NaI detectors has been commissioned for Compton studies.« less

  10. Free energy calculations on the stability of the 14-3-3ζ protein.

    PubMed

    Jandova, Zuzana; Trosanova, Zuzana; Weisova, Veronika; Oostenbrink, Chris; Hritz, Jozef

    2018-03-01

    Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Full-subcarriers Polar-OFDM for optical spectrum-efficient transmission exploiting Polarization Multiplexing

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liu, Yejun; Zhou, Yufang; Wei, Xuetao; Liu, Yuying

    2018-07-01

    The exponential growth of the demand for broadband services has imposed great challenges on the design of spectrum-efficient optical transmission system in Passive Optical Network (PON). Recently, an innovative Orthogonal Frequency Division Multiplexing (OFDM) scheme, called Polar-OFDM (P-OFDM), has emerged as a promising solution to boost the spectral efficiency of optical transmission in PON. However, the traditional P-OFDM does not yet perform best in spectral efficiency as it only uses half of the total subcarriers. In this paper, we verify a promising complementation between Polarization Multiplexing (POLMUX) and P-OFDM aiming at higher spectral efficiency. We then propose the full-subcarriers P-OFDM by loading data on the even-indexed subcarriers of X polarization and the odd-indexed subcarriers of Y polarization, respectively. Thus, all of the subcarriers will be utilized for effective data transmission, which can double the spectral efficiency. More importantly, because the subcarriers are interlaced on different polarizations, the cross-polarization interference can be significantly mitigated, which enables the independent channel estimation and equalization at the receiver to recover the data carried on each polarization. Our evaluation results demonstrate that the proposed system realizes the double spectral efficiency of the traditional P-OFDM with reasonable Bit Error Rate (BER) performance loss.

  12. Measurement of DC Electric Field in the Midlatitude Ionosphere by S-520-23 Sounding Rocket Experiments

    NASA Astrophysics Data System (ADS)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Watanabe, S.; Okada, T.; Abe, T.; Kumamoto, A.

    2014-12-01

    S-520-23 sounding rocket experiments are carried out at Uchinoura Space Center (USC) in Japan at 19:20 LT on 2 September, 2007. The purpose of this experiment is the investigation of the process of momentum transportation between the atmospheres and the plasma in the thermosphere during the summer evening time at mid latitudes. The S-520-23 payload was equipped with a two set of orthogonal double probes to measure both DC and AC less than 40Hz electric fields in the spin plane of the payload. One of the double probe is the inflatable structure antenna, called the SPINAR, with a length of 5m tip-to-tip. The SPINAR was the first successful use of an inflatable structure as a flight antenna. It extended and worked without any problems. Another one is the NEI type antenna with a length of 2m tip-to-tip. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifiers using the floating (unbiased) double probe technique. The potential differences on the two main orthogonal axes were digitized on-board using 16-bit analog-digital converters, sampled at 400 samples/sec with low pass filters at cut-off frequency of 40Hz. We have investigated the DC electric field during the rocket ascent. And it was able to obtain the electric field vector in a geographic-coordinates system. The direction of DC electric field vector at altitude from 140km to 170km is seems to be dependent on the direction of a neutral wind in the ionosphere. And intensity of DC electric field is increasing at altitude more than 260km. Its direction is east. It is thought that the polarization electric field was observed in the region where the difference of the electron density was large after sunset. In this presentation, we will describe the result of investigation of the relationship between an electric field and ionospheric plasma in detail. Especially the dependence of the direction of electric field and the direction of the neutral wind is investigated. Then we will show the irradiated region during the sounding rocket flight, and examine a possibility that a polarization electric field is generated in this region.

  13. Double spin asymmetries of inclusive hadron electroproductions from a transversely polarized ³He target

    DOE PAGES

    Zhao, Yuxiang X.

    2015-07-14

    We report the measurement of beam-target double-spin asymmetries A LT in the inclusive production of identified hadrons, e +³He ↑ → h + X, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized ³He target. Hadrons (π ±, K ± and proton) were detected at 16° with an average momentum h>=2.35 GeV/c and a transverse momentum (p T) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the ³He target were observed to be non-zero for π ± production when the target was polarized transversely in the horizontal plane. The π⁺ and π⁻ asymmetries have opposite signs, analogousmore » to the behavior of A LT in semi-inclusive deep-inelastic scattering.« less

  14. Measurements of double-helicity asymmetries in inclusive J / ψ production in longitudinally polarized p + p collisions at s = 510 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    We report the double-helicity asymmetry, A J/ψ LL, in inclusive J/ψ production at forward rapidity as a function of transverse momentum p T and rapidity |y|. The data analyzed were taken during √s = 510 GeV longitudinally polarized p + p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J/ψ particles are predominantly produced through gluon-gluon scatterings, thus A J/ψ LL is sensitive to the gluon polarization inside the proton. We measured A J/ψ LL by detecting the decay daughter muon pairs μ +μ – within the PHENIX muonmore » spectrometers in the rapidity range 1.2 < |y| < 2.2. In this kinematic range, we measured the A J/ψ LL to be 0.012 ± 0.010 (stat) ±0.003 (syst). The A J/ψ LL can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x: one at moderate range x ≈ 5 × 10 –2 where recent data of jet and π 0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x ≈ 2 × 10 –3. Furthermore, our new results could be used to further constrain the gluon polarization for x < 5 × 10 –2.« less

  15. Measurements of double-helicity asymmetries in inclusive J / ψ production in longitudinally polarized p + p collisions at s = 510 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-12-29

    We report the double-helicity asymmetry, A J/ψ LL, in inclusive J/ψ production at forward rapidity as a function of transverse momentum p T and rapidity |y|. The data analyzed were taken during √s = 510 GeV longitudinally polarized p + p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J/ψ particles are predominantly produced through gluon-gluon scatterings, thus A J/ψ LL is sensitive to the gluon polarization inside the proton. We measured A J/ψ LL by detecting the decay daughter muon pairs μ +μ – within the PHENIX muonmore » spectrometers in the rapidity range 1.2 < |y| < 2.2. In this kinematic range, we measured the A J/ψ LL to be 0.012 ± 0.010 (stat) ±0.003 (syst). The A J/ψ LL can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x: one at moderate range x ≈ 5 × 10 –2 where recent data of jet and π 0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x ≈ 2 × 10 –3. Furthermore, our new results could be used to further constrain the gluon polarization for x < 5 × 10 –2.« less

  16. Gluon polarization in the proton: Constraints at low x from the measurement of the double longitudinal spin asymmetry for forward-rapidity hadrons with the PHENIX detector at RHIC

    NASA Astrophysics Data System (ADS)

    McKinney, Cameron Palmer

    In the 1980s, polarized deep inelastic lepton-nucleon scattering experiments revealed that only about a third of the proton's spin of ½ h is carried by the quarks and antiquarks, leaving physicists with the puzzle of how to account for the remaining spin. As gluons carry roughly 50% of the proton's momentum, it seemed most logical to look to the gluon spin as another significant contributor. However, lepton-nucleon scattering experiments only access the gluon helicity distribution, Delta g, through effects on the quark distributions via scaling violations. Constraining Deltag through scaling violations requires experiments that together cover a large range of Q 2. Such experiments had been carried out with unpolarized beams, leaving g(x) (the unpolarized gluon distribution) relatively well-known, but the polarized experiments have only thus far provided weak constraints on Deltag in a limited momentum fraction range. With the commissioning in 2000 of the Relativistic Heavy Ion Collider, the first polarized proton-proton (pp) collider, and the first polarized pp running in 2002, the gluon distributions could be accessed directly by studying quark-gluon and gluon-gluon interactions. In 2009, data from measurements of double longitudinal spin asymmetries, ALL, at the STAR and PHENIX experiments through 2006 were included in a QCD global analysis performed by Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang (DSSV), yielding the first direct constraints on the gluon helicity. The DSSV group found that the contribution of the gluon spin to the proton spin was consistent with zero, but the data provided by PHENIX and STAR was all at mid-rapidity, meaning Delta g was constrained by data only a range in x from 0.05 to 0.2, leaving out helicity contributions from the huge number of low- x gluons. A more recent analysis by DSSV from 2014 including RHIC data through 2009 for the first time points to significant gluon polarization at intermediate momentum fractions, meaning gluon polarization measurements may be more interesting than anticipated, especially at momentum fractions where no constraints exist as of yet. A forward detector upgrade in PHENIX, the Muon Piston Calorimeter (MPC), was designed with the purpose of extending the sensitivity to Delta g to lower x. Monte Carlo simulations indicate that measurements of hadrons in the MPC's pseudorapidity of range 3.1 < eta <3.9 probe asymmetric collisions between high-x quarks and low-x gluons, with the x of the gluons reaching below 0.01 at a collision energy √s = 500 GeV. We access Deltag through measurements of ALL for electromagnetic clusters in the MPC; this thesis details the measurement from the Run 11 (2011) data set at √ s = 500GeV. We find ALL≈ 0, but the statistical uncertainties from this measurement mean we likely cannot resolve the small expected asymmetries. However, improved techniques for determining the relative luminosity between bunch crossings with different helicity configurations will allow data from a much larger data set in Run 13 to be most impactful in constraining Deltag, whereas previous measurements of ALL have had difficulties limiting the systematic uncertainty from relative luminosity. In this thesis, we begin by presenting an overview of the physics motivation for this experiment. Then, we discuss the experimental apparatus at RHIC and PHENIX, with a focus on those systems integral to our analysis. The analysis sections of the thesis cover calibration of the Muon Piston Calorimeter, a careful examination of the relative luminosity systematic uncertainty, and the process of obtaining a final physics result.

  17. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds.

    PubMed

    Zukoshi, Reo; Savelli, Ilaria; Novales Flamarique, Iñigo

    2018-04-01

    Many vertebrates have cone photoreceptors that are most sensitive to ultraviolet (UV) light termed UV cones. The ecological functions that these cones contribute to are seldom known though they are suspected of improving foraging and communication in a variety of fishes. In this study, we used several spectral backgrounds to assess the contribution of UV and violet cones, or long wavelength (L) cones, in the foraging performance of juvenile Cumaná guppy, Poecilia reticulata, or marine stickleback, Gasterosteus aculeatus. Regardless of whether the light spectrum contained or not wavelengths below 450 nm (the limiting wavelength for UV cone stimulation), the foraging performance of both species was statistically the same, as judged by the mean distance and angle associated with attacks on prey (Daphnia magna). Our experiments also showed that the foraging performance of sticklebacks when only the double cones (and, almost exclusively, the L cones) were active was similar to that when all cones were functional, demonstrating that the double cone was sufficient for prey detection. This result indicates that foraging potentially relied on an achromatic channel serving prey motion detection, as the two spectral cone types that make up the double cone [maximally sensitive to middle (M) and long (L) wavelengths, respectively] form the input to the achromatic channel in cyprinid fishes and double cones are widely associated with achromatic tasks in other vertebrates including reptiles and birds. Stickleback performance was also substantially better when foraging under a 100% linearly polarized light field than when under an unpolarized light field. Together, our results suggest that in some teleost species UV cones exert visually-mediated ecological functions different from foraging, and furthermore that polarization sensitivity could improve the foraging performance of sticklebacks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    PubMed

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  19. Experimental verification of PSM polarimetry: monitoring polarization at 193nm high-NA with phase shift masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick

    2006-03-01

    The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.

  20. Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jia-Lu; Gu, Bing, E-mail: gubing@seu.edu.cn; Liu, Dahui

    2014-10-27

    Optical limiting (OL) effects can be enhanced by exploiting various limiting mechanisms and by designing nonlinear optical materials. In this work, we present the large enhancement of OL effects by manipulating the polarization distribution of the light field. Theoretically, we develop the Z-scan and nonlinear transmission theories on a two-photon absorber under the excitation of cylindrical vector beams. It is shown that both the sensitivity of Z-scan technique and the OL effect using radially polarized beams have the large enhancement compared with that using linearly polarized beams (LPBs). Experimentally, we investigate the nonlinear absorption properties of a double-decker Pr[Pc(OC{sub 8}H{submore » 17}){sub 8}]{sub 2} rare earth complex by performing Z-scan measurements with femtosecond-pulsed radially polarized beams at 800 nm wavelength. The observed two-photon absorption process, which originates from strong intramolecular π–π interaction, is exploited for OL application. The results demonstrate the large enhancement of OL effects using radially polarized beams instead of LPBs.« less

  1. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen

    2017-09-01

    With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

  2. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  3. Large Double-ringed Basin

    NASA Image and Video Library

    2000-08-05

    Taken about 40 minutes before NASA Mariner 10 made its close approach to Mercury on Sept. 21,1974, this picture shows a large double-ringed basin center of picture located in the planet south polar region

  4. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  5. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    NASA Astrophysics Data System (ADS)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  6. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  7. Transition of recollision trajectories from linear to elliptical polarization

    DOE PAGES

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...

    2016-03-15

    Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.

  8. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  9. Resonant microsphere gyroscope based on a double Faraday rotator system.

    PubMed

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  10. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  11. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC; initial tests, calibration, and characteristics

    NASA Astrophysics Data System (ADS)

    Helhel, S.; Khamitov, I.; Kahya, G.; Bayar, C.; Kaynar, S.; Gumerov, R.

    2015-10-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian-Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabilities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limitations as well as its linearity. An instrumental intrinsic polarization was determined for the 1 × 5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2 %, and position angle as 1.9∘. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  12. Direct evidence of double-slope power spectra in the high-latitude ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Miloch, W. J.; Moen, J. I.

    2014-03-01

    We report direct observations of the double-slope power spectra for plasma irregularities in the F layer of the polar ionosphere. The investigation of cusp irregularities ICI-2 sounding rocket, which was launched into the polar cusp ionosphere, intersected enhanced plasma density regions with decameter-scale irregularities. Density measurements at unprecedented high resolution with multi-Needle Langmuir Probes allowed for a detailed study of the plasma irregularities down to kinetic scales. Spectral analysis reveals double-slope power spectra for regions of enhanced fluctuations associated mainly with density gradients, with the steepening of the spectra occurring close to the oxygen gyrofrequency. These findings are further supported with the first results from the ICI-3 rocket, which flew through regions with strong precipitation and velocity shears. Previously, double-slope spectra have been observed in the equatorial ionosphere. The present work gives a direct evidence that the double-slope power spectra can be common in the high-latitude ionosphere.

  13. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J

    2016-03-14

    A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase.

  14. Invited Article: Coherent imaging using seeded free-electron laser pulses with variable polarization: First results and research opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capotondi, F.; Pedersoli, E.; Mahne, N.

    2013-05-15

    FERMI-Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a 'seeded' scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline.more » The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump/FEL-probe with two color FEL pulses generated by the same electron bunch.« less

  15. Transversity 2005

    NASA Astrophysics Data System (ADS)

    Barone, Vincenzo; Ratcliffe, Philip G.

    Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I. Schmidt. Sivers effect in semi-inclusive deeply inelastic scattering and Drell-Yan / J. C. Collins ... [et al.]. Helicity formalism and spin asymmetries in hadronic processes / M. Anselmino ... [et al.]. Including Cahn and Sivers effects into event generators / A. Kotzinian. Comparing extractions of Sivers functions / M. Anselmino ... [et al.]. Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects / D. Boer. "T-odd" effects in transverse spin and azimuthal asymmetries in SIDIS / L. P. Gamberg & G. R. Goldstein. T-odd effects in unpolarized Drell-Yan scattering / G. R. Goldstein & L. P. Gamberg. Alternative approaches to transversity: how convenient and feasible are they? / M. Radici. Relations between single and double transverse asymmetries / O. V. Teryaev. Cross sections, error bars and event distributions in simulated Drell-Yan azimuthal asymmetry measurements / A. Bianconi. Next-to-leading order QCD corrections for transversely polarized pp and p¯p collisions / A. Mukherjee, M. Stratmann & W. Vogelsang. Double transverse-spin asymmetries in Drell-Yan and J/[symbol] production from proton-antiproton collisions / M. Guzzi ... [et al.]. The quark-quark correlator: theory and phenomenology / E. Di Salvo. Chiral quark model spin filtering mechanism and hyperon polarization / S. M. Troshin & N. E. Tyurin -- Closing lecture. Where we've been ... and where we're going / G. Bunce.

  16. The parallel-antiparallel signal difference in double-wave-vector diffusion-weighted MR at short mixing times: A phase evolution perspective

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2011-01-01

    Experiments with two diffusion weightings applied in direct succession in a single acquisition, so-called double- or two-wave-vector diffusion-weighting (DWV) experiments at short mixing times, have been shown to be a promising tool to estimate cell or compartment sizes, e.g. in living tissue. The basic theory for such experiments predicts that the signal decays for parallel and antiparallel wave vector orientations differ by a factor of three for small wave vectors. This seems to be surprising because in standard, single-wave-vector experiments the polarity of the diffusion weighting has no influence on the signal attenuation. Thus, the question how this difference can be understood more pictorially is often raised. In this rather educational manuscript, the phase evolution during a DWV experiment for simple geometries, e.g. diffusion between parallel, impermeable planes oriented perpendicular to the wave vectors, is considered step-by-step and demonstrates how the signal difference develops. Considering the populations of the phase distributions obtained, the factor of three between the signal decays which is predicted by the theory can be reproduced. Furthermore, the intermediate signal decay for orthogonal wave vector orientations can be derived when investigating diffusion in a box. Thus, the presented “phase gymnastics” approach may help to understand the signal modulation observed in DWV experiments at short mixing times.

  17. Measurement of the cross section and longitudinal double-spin asymmetry for dijet production in polarized p p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, C.; Li, Y.; Li, X.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, F.; Liu, Y.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, R.; Ma, G. L.; Ma, L.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, Z.; Xu, J.; Yang, Y.; Yang, S.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, J. B.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, Z.; Zhu, X.; Zyzak, M.; STAR Collaboration

    2017-04-01

    We report the first measurement of the longitudinal double-spin asymmetry AL L for midrapidity dijet production in polarized p p collisions at a center-of-mass energy of √{s }=200 GeV . The dijet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. AL L results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-x >0.05 .

  18. FAST TRACK COMMUNICATION: Controllable optical bistability and multistability in a double two-level atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Lü, Xin-You; Zheng, Li-Li

    2010-08-01

    We theoretically investigate the behaviour of optical bistability (OB) and optical multistability (OM) in a generic double two-level atomic system driven by two orthogonally polarized fields (a π-polarized control field and a σ-polarized probe field). It is found that the behaviour of OB can be controlled by adjusting the intensity or the frequency detuning of the control field. Interestingly enough, our numerical results also show that it is easy to realize the transition from OB to OM or vice versa by adjusting the relative phase between the control and probe fields. This investigation can be used for the development of new types of devices for realizing an all-optic switching process.

  19. Measurement of polarization observables in vector meson photoproduction using a transversely-polarized frozen-spin target and polarized photons at CLAS, Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Priyashree

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c 2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ +π -(π 0) will be presented. For the reaction ρπ +π -, eight polarization observables (I s, I c, P x, P y,more » $$P^s_{x;y}$$, $$P^c_{x; y}$$) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ +π(π 0, five polarization observables (T, Σ, F, H, P) have been extracted, four of which are first-time measurements at all energies. This analysis thus represents a comprehensive program on vector-meson photoproduction: The ω is observed and studied directly from the data and the polarization observables for the (broad) ω can be extracted from the double-pion reaction in a partial-wave analysis. The 13 polarization observables extracted in this analysis substantially augment the world database of polarization observables for these reactions and are expected to play a crucial role in identifying the contributing baryon resonances.« less

  20. Solar system applications of Mie theory and of radiative transfer of polarized light

    NASA Technical Reports Server (NTRS)

    Whitehill, L. P.

    1972-01-01

    A theory of the multiple scattering of polarized light is discussed using the doubling method of van de Hulst. The concept of the Stokes parameters is derived and used to develop the form of the scattering phase matrix of a single particle. The diffuse reflection and transmission matrices of a single scattering plane parallel atmosphere are expressed as a function of the phase matrix, and the symmetry properties of these matrices are examined. Four matrices are required to describe scattering and transmission. The scattering matrix that results from the addition of two identical layers is derived. Using the doubling method, the scattering and transmission matrices of layers of arbitrary optical thickness can be derived. The doubling equations are then rewritten in terms of their Fourier components. Computation time is reduced since each Fourier component doubles independently. Computation time is also reduced through the use of symmetry properties.

  1. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  2. Studies of $$\\Lambda n$$ interaction through polarization observables for final-state interactions in exclusive $$\\Lambda$$ photoproduction off the deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilieva, Yordanka; Cao, Tongtong; Zachariou, Nicholas

    2016-06-01

    Theoretical studies suggest that experimental observables for hyperon production reactions can place stringent constraints on the free parameters of hyperon-nucleon potentials, which are critical for the understanding of hypernuclear matter and neutron stars. Here we present preliminary experimental results for the polarization observables S, Py, Ox, Oz, Cx, and Cz for final-state interactions (FSI) in exclusive L photoproduction off the deuteron. The observables were obtained from data collected during the E06-103 (g13) experiment with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at Jefferson Lab. The g13 experiment ran with unpolarized deuteron target and circularly- and linearly-polarized photon beamsmore » with energies between 0.5 GeV and 2.5 GeV and collected about 51010 events with multiple charged particles in the final state. To select the reaction of interest, the K+ and the L decay products, a proton and a negative pion, were detected in the CLAS. The missing-mass technique was used to identify exclusive hyperon photoproduction events. Final-state interaction events were selected by requesting that the reconstructed neutron has a momentum larger than 200 MeV/c. The large statistics of E06-103 provided statistically meaningful FSI event samples, which allow for the extraction of one- and two-fold differential single- and double-polarization observables. Here we present preliminary results for a set of six observables for photon energies between 0.9 GeV and 2.3 GeV and for several kinematic variables in the Ln center-of-mass frame. Our results are the very first estimates of polarization observables for FSI in hyperon photoproduction and will be used to constrain the free parameters of hyperon-nucleon potentials.« less

  3. The Role of Superthermal Electrons in the Formation of Double Layers and their Application in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Singh, N.

    2014-12-01

    It is now widely recognized that superthermal electrons commonly exist with the thermal population in most space plasmas. When plasmas consisting of such electron population expand, double layers (DLs) naturally forma due to charge separation; the more mobile superthermal electrons march ahead of the thermal population, leaving a positive charge behind and generating electric fields. Under certain conditions such fields evolve into thin double layers or shocks. The double layers accelerate ions. Such double-layer formation was first invoked to explain expansion of laser produced plasmas. Since then it has been studied in laboratory experiments, and applied to (i) polar wind acceleration,(ii) the existence of low-altitude double layers in the auroral acceleration, (iii) a possible mechanism for the origination of the solar wind, (iv) the helicon double layer thrusters, and (v) the deceleration of electrons after their acceleration in solar flare events. The role of superthermal-electron driven double layers, also known as the low-altitude auroral double layers in the upward current region, in the upward acceleration of ionospheric ions is well-known. In the auroral application the upward moving superthermal electrons consist of backscattered downgoing primary energetic electrons as well as the secondary electrons. Similarly we suggest that such double layers might play roles in the acceleration of ions in the solar wind across the coronal transition region, where the superthermal electrons are supplied by magnetic reconnection events. We will present a unified theoretical view of the superthermal electron-driven double layers and their applications. We will summarize theoretical, experimental, simulation and observational results highlighting the common threads running through the various existing studies.

  4. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    NASA Astrophysics Data System (ADS)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  5. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase.

    PubMed

    Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen

    2016-04-04

    The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.

  6. Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in p→+p→ Collisions at s=200GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Calderón de La Barca Sánchez, M.; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moura, M. M.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van der Kolk, N.; van Leeuwen, M.; Vander Molen, A. M.; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zawisza, M.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2008-06-01

    We report a new STAR measurement of the longitudinal double-spin asymmetry ALL for inclusive jet production at midrapidity in polarized p+p collisions at a center-of-mass energy of s=200GeV. The data, which cover jet transverse momenta 5

  7. POLAR 5 - An electron accelerator experiment within an aurora. III - Evidence for significant spacecraft charging by an electron accelerator at ionospheric altitudes

    NASA Technical Reports Server (NTRS)

    Jacobsen, T. A.; Maynard, N. C.

    1980-01-01

    The POLAR 5 rocket experiment carried an electron accelerator on a 'daughter' payload which injected a 0.1 A beam of 10 keV electrons in a pulsed mode every 410 ms. With spin and precession, injections were made over a wide range of pitch angles. Measurements from a double probe electric field instrument and from particle detectors on the 'mother' payload and from a crude RPA on the 'daughter' payload are interpreted to indicate that the 'daughter' charges to a potential between several hundred volts and 1 kV. The neutralizing return current to the 'daughter' is shown to be asymmetrically distributed with the majority being collected from the direction of the beam. The additional electrons necessary to neutralize the daughter are thought to be produced and heated through beam-plasma interactions postulated by Maehlum et al. (1980) and Grandal et al. (1980) to explain the particle and optical measurements. Significant electric fields emanating from the charged 'daughter' and the beam are seen at distances exceeding 100 m at the 'mother' payload.

  8. Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús

    2001-01-01

    To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.

  9. An optically passive method that doubles the rate of 2-Ghz timing fiducials

    NASA Astrophysics Data System (ADS)

    Boni, R.; Kendrick, J.; Sorce, C.

    2017-08-01

    Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.

  10. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  11. Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..

    2014-01-01

    We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.

  12. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  13. Single and double spin asymmetries for pion electro-production from the deuteron in the resonance region

    NASA Astrophysics Data System (ADS)

    Careccia, Sharon L.

    The single and double spin asymmetries At and Aet have been measured in pi- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'pi-p)p exclusive channel was identified using the missing mass technique and the asymmetries were extracted as a function of the momentum transfer Q2, invariant mass W, and center of mass pion angles cos(theta*) and φ*. The results are generally in agreement with the phenomenological model MAID at low energies, but there are discrepancies in the 2nd and 3rd resonance regions, as well as at forward angles.

  14. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV

  15. Measurements of the Double-Spin Asymmetry A 1 on Helium-3: Toward a Precise Measurement of the Neutron A 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parno, Diana Seymour

    2011-04-01

    The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarizedmore » electron beam, combined with Hall A's facilities for a high-density, highly polarized 3He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95. In this work, we present the analysis of a portion of the E06-014 data, measured with an incident beam energy of 4.74 GeV and spanning 1.5 < Q 2 < 5.5 (GeV/c) 2. From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A 1, on the 3He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A η 1 that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon.« less

  16. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  17. Structural transitions in hybrid improper ferroelectric C a3T i2O7 tuned by site-selective isovalent substitutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Zheng, S. H.; Wang, H. W.; Gong, J. J.; Li, X.; Zhang, Y.; Yang, K. L.; Lin, L.; Yan, Z. B.; Dong, Shuai; Liu, J.-M.

    2018-05-01

    C a3T i2O7 is an experimentally confirmed hybrid improper ferroelectric material, in which the electric polarization is induced by a combination of the coherent Ti O6 octahedral rotation and tilting. In this work, we investigate the tuning of ferroelectricity of C a3T i2O7 using isovalent substitutions on Ca sites. Due to the size mismatch, larger/smaller alkaline earths prefer A'/A sites, respectively, allowing the possibility for site-selective substitutions. Without extra carriers, such site-selected isovalent substitutions can significantly tune the Ti O6 octahedral rotation and tilting, and thus change the structure and polarization. Using the first-principles calculations, our study reveals that three substituted cases (Sr, Mg, and Sr+Mg) show divergent physical behaviors. In particular, (CaTiO3) 2SrO becomes nonpolar, which can reasonably explain the suppression of polarization upon Sr substitution observed in experiment. In contrast, the polarization in (MgTiO3) 2CaO is almost doubled upon substitutions, while the estimated coercivity for ferroelectric switching does not change. The (MgTiO3) 2SrO remains polar but its structural space group changes, with moderate increased polarization and possible different ferroelectric switching paths. Our study reveals the subtle ferroelectricity in the A3T i2O7 family and suggests one more practical route to tune hybrid improper ferroelectricity, in addition to the strain effect.

  18. Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference

    NASA Astrophysics Data System (ADS)

    Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.

    The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List

  19. Measurement of the cross section and longitudinal double-spin asymmetry for dijet production in polarized p p collisions at s = 200 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-04-28

    We report the first measurement of the longitudinal double-spin asymmetry A LL for mid-rapidity dijet production in polarized pp collisions at a center-of-mass energy ofmore » $$\\sqrt{s}$$ = 200 GeV. The dijet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. A LL results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. Lastly, the measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-x > 0.05.« less

  20. Analysis and design of stereoscopic display in stereo television endoscope system

    NASA Astrophysics Data System (ADS)

    Feng, Dawei

    2008-12-01

    Many 3D displays have been proposed for medical use. When we design and evaluate new system, there are three demands from surgeons. Priority is the precision. Secondly, displayed images should be easy to understand, In addition, surgery lasts hours and hours, they do not like fatiguing display. The stereo television endoscope researched in this paper make celiac viscera image on the photosurface of the left and right CCD by imitating human binocular stereo vision effect by using the double-optical lines system. The left and right video signal will be processed by frequency multiplication and display on the monitor, people can observe the stereo image which has depth impression by using a polarized LCD screen and a pair of polarized glasses. Clinical experiments show that by using the stereo TV endoscope people can make minimally invasive surgery more safe and reliable, and can shorten the operation time, and can improve the operation accuracy.

  1. Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk

    NASA Technical Reports Server (NTRS)

    Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.; hide

    2015-01-01

    We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.

  2. Results from EDDAatCOSY: Spin Observables in Proton-Proton Elastic Scattering

    NASA Astrophysics Data System (ADS)

    Rohdjeß, Heiko

    2003-07-01

    Elastic proton-proton scattering as one of the fundamental hadronic reactions has been studied with the internal target experiment EDDA at the Cooler-Synchrotron COSY/Jülich. A precise measurement of differential cross section, analyzing power and three spin-correlation parameters over a large angular (θc.m. ≈ 35° - 90°) and energy (Tp ≈ 0.5 - 2.5 GeV) range has been carried out in the past years. By taking scattering data during the acceleration of the COSY beam, excitation functions were measured in small energy steps and consistent normalization with respect to luminosity and polarization. The experiment uses internal fiber targets and a polarized hydrogen atomic-beam target in conjunction with a double-layered, cylindrical scintillator hodoscope for particle detection. The results on differential cross sections and analyzing powers have been published and helped to improve phase shift solutions. Recently data taking with polarized beam and target has been completed. Preliminary results for the spin-correlation parameters A NN, ASS, and ASL are presented. The observable ASS has been measured the first time above 800 MeV and our results are in sharp contrast to phase-shift predictions at higher energies. Our analysis shows that some of the ambiguities in the direct reconstruction of scattering amplitudes which also show up as differences between available phase-shift solutions, will be reduced by these new measurements.

  3. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    PubMed

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  4. Interference and partial which-way information: A quantitative test of duality in two-atom resonance

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    2000-01-01

    We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.

  5. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  6. Parallel electric fields in extragalactic jets - Double layers and anomalous resistivity in symbiotic relationships

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.

  7. Simulations of induced-charge electro-osmosis in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing

    2005-03-01

    Theories of nonlinear electrokinetic phenomena generally assume a uniform, neutral bulk electroylte in contact with a polarizable thin double layer near a metal or dielectric surface, which acts as a "capacitor skin". Induced-charge electro-osmosis (ICEO) is the general effect of nonlinear electro-osmotic slip, when an applied electric field acts on its own induced (diffuse) double-layer charge. In most theoretical and experimental work, ICEO has been studied in very simple geometries, such as colloidal spheres and planar, periodic micro-electrode arrays. Here we use finite-element simulations to predict how more complicated geometries of polarizable surfaces and/or electrodes yield flow profiles with subtle dependence on the amplitude and frequency of the applied voltage. We also consider how the simple model equations break down, due to surface conduction, bulk diffusion, and concentration polarization, for large applied voltages (as in most experiments).

  8. High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms

    DOE PAGES

    Li, Fankang; Feng, Hao; Thaler, Alexander N.; ...

    2017-04-13

    The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. Our experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. Here, we conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup canmore » be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. Furthermore, the use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.« less

  9. Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure

    NASA Astrophysics Data System (ADS)

    Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa

    2017-12-01

    We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.

  10. Multilayer thin film design as far ultraviolet polarizers

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas T.

    1993-01-01

    We use a concept of induced transmission and absorption to design multilayer thin film reflection polarizers in the FUV region. We achieve high s-polarization reflectance and a high degree of polarization by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of aluminum as the substrate. For convenience they are designed at a 45 deg angle of incidence. For example, our polarizer designed for the Lyman-alpha line (121.6 nm) has 88.67 percent reflectance for the s-polarization case, and 1.21 percent for the p-polarization case, with a degree of polarization of 97.31 percent. If we make a double surface polarizer with this design, it will have a degree of polarization of 99.96 percent and s-polarization throughput of 78.62 percent.

  11. Sequential Double lonization: The Timing of Release

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.

    2011-05-01

    The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.

  12. Latest results from meson photoproduction at ELSA and MAMI

    NASA Astrophysics Data System (ADS)

    Krusche, B.

    2014-06-01

    Photoproduction of mesons plays a key role for the investigation of the excitation spectrum of the nucleon and thus for our understanding of the strong interaction in the non-perturbative regime. In this contribution we discuss recent results from the experiments at the tagged photon beams of the electron accelerators ELSA in Bonn and MAMI in Mainz. They include the measurement of cross sections and (double) polarization observables for single meson production and production of meson pairs off free protons as well as of quasi-free nucleons bound in light nuclei (in particular the deuteron).

  13. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  14. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  15. Polarization characteristics of double-clad elliptical fibers.

    PubMed

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  16. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.

    2017-12-01

    Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.

  17. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  18. Phase Acrobatics: The Influence of Excitonic Resonance and Gold Nonresonant Background on Heterodyne-Detected Vibrational Sum Frequency Generation Emission.

    PubMed

    Rich, Christopher C; Lindberg, Kathryn A; Krummel, Amber T

    2017-04-06

    We show how heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy can discriminate between the excitonic and monomeric properties of a helical, nanotube molecular aggregate by monitoring the phase of the VSFG emission associated with different polarization configurations. By keeping track of the "phase acrobatics" associated with the added phase of the nonresonant SFG emission of gold as well as that of the double-resonance conditions achieved when the SF frequency is resonant with an electronic exciton transition, we discover that for aggregates of tetra(sulfonatophenyl)porphyrin (TSPP) the PPP-polarized spectra exhibit double-resonance conditions while SSP-polarized spectra exhibit resonance only with the ground-state vibration. Along with observed shifts in the vibrational frequency, intensity differences, and sign flips in the imaginary second-order susceptibility, χ s,Im (2) , we conclude that PPP-polarized HD-VSFG spectra reflect the delocalized, excitonic nature of the molecular aggregate, while the SSP-polarized HD-VSFG spectra measure the localized, monomeric nature of the molecular subunits. It is implied from this study that HD-VSFG spectroscopy can be uniquely utilized to measure the excitonic and monomeric properties associated with molecular assemblies for a single sample.

  19. Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.

  20. Bilocal current densities and mean trajectories in a Young interferometer with two Gaussian slits and two detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, L. P., E-mail: lpwithers@mitre.org; Narducci, F. A., E-mail: francesco.narducci@navy.mil

    2015-06-15

    The recent single-photon double-slit experiment of Steinberg et al., based on a weak measurement method proposed by Wiseman, showed that, by encoding the photon’s transverse momentum behind the slits into its polarization state, the momentum profile can subsequently be measured on average, from a difference of the separated fringe intensities for the two circular polarization components. They then integrated the measured average velocity field, to obtain the average trajectories of the photons enroute to the detector array. In this paper, we propose a modification of their experiment, to demonstrate that the average particle velocities and trajectories change when the modemore » of detection changes. The proposed experiment replaces a single detector by a pair of detectors with a given spacing between them. The pair of detectors is configured so that it is impossible to distinguish which detector received the particle. The pair of detectors is then analogous to the simple pair of slits, in that it is impossible to distinguish which slit the particle passed through. To establish the paradoxical outcome of the modified experiment, the theory and explicit three-dimensional formulas are developed for the bilocal probability and current densities, and for the average velocity field and trajectories as the particle wavefunction propagates in the volume of space behind the Gaussian slits. Examples of these predicted results are plotted. Implementation details of the proposed experiment are discussed.« less

  1. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    PubMed

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  2. Physiological Ecology of Mesozoic Polar Forests in a High CO2 Environment

    PubMed Central

    BEERLING, D. J.; OSBORNE, C. P.

    2002-01-01

    Fossils show that coniferous forests extended into polar regions during the Mesozoic, a time when models and independent palaeo‐CO2 indicators suggest that the atmospheric CO2 concentration was at least double that of the present day. Consequently, such polar forests would have experienced high CO2 interacting with an extreme variation in light. Here we describe an experiment investigating this plant–environment interaction for extant tree species that were important components of polar forests, and give results from the first year of treatment. Specifically, we tested the hypotheses that growth in elevated CO2 (1) stimulates photosynthesis; (2) reduces photoinhibition during the polar summer; and (3) reduces respiration of above‐ and below‐ground plant organs. Our results indicate that CO2 fertilization generally does not affect photosynthesis under continuous daylight characteristic of the polar summer but does increase it when the period of illumination is shorter. Growth in elevated CO2 did not alter the potential for photoinhibition. CO2 enrichment significantly reduced leaf and root respiration rates by 50 and 25 %, respectively, in a range of evergreen taxa. Incorporating these observed CO2 effects into numerical simulations using a process‐based model of coniferous forest growth indicates that a high palaeo‐CO2 concentration would have increased the productivity of Cretaceous conifer forests in northern Alaska. This results from decreased respiratory costs that more than compensate for the absence of high CO2–high temperature interactions during the polar summer. The longer‐term effects of CO2 enrichment on seasonal changes in the above‐ and below‐ground carbon balance of trees are discussed. PMID:12096745

  3. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOEpatents

    Tran, Tri D.; Lenz, David J.

    2002-01-01

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  5. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    NASA Technical Reports Server (NTRS)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  7. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  8. Photoproduction of Mesons on Quasi-Free Nucleons

    NASA Astrophysics Data System (ADS)

    Keshelashvili, I.

    2014-11-01

    The investigation of excited baryon states is important to understand the underling nature/symmetries of hadronic matter. Historically, the first nucleon excitation experiments have been done using charged pion and kaon secondary beams. Later the antiproton-proton scattering has also been involved. However, since the beginning of the 90's meson photoproduction reactions have been considered as a powerful tool in baryon spectroscopy. In this contribution, we overview our experimental programs conducted at the bremsstrahlung photon beams of the MAMI accelerator in Mainz and the ELSA accelerator in Bonn. The results are differential and total cross sections for photoproduction of light neutral mesons and of meson pairs off quasi-free nucleons bound in the deuteron (and sometimes other light nuclei). The scientific programs of this experiments also include single and double polarization measurements as well.

  9. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaccione, G.; Vobornik, I.; Fujii, J.

    2009-04-15

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beammore » facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.« less

  10. Intensity-intensity correlations as a probe of interferences under conditions of noninterference in the intensity

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; von Zanthier, J.; Skornia, C.; Walther, H.

    2002-05-01

    The different behavior of first-order interferences and second-order correlations are investigated for the case of two coherently excited atoms. For intensity measurements this problem is in many respects equivalent to Young's double-slit experiment and was investigated in an experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)] and later analyzed in detail by Itano et al. [Phys. Rev. A 57, 4176 (1998)]. Our results show that in cases where the intensity interferences disappear the intensity-intensity correlations can display an interference pattern with a visibility of up to 100%. The contrast depends on the polarization selected for the detection and is independent of the strength of the driving field. The nonclassical nature of the calculated intensity-intensity correlations is also discussed.

  11. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  12. Insight into the Narrow Structure in η Photoproduction on the Neutron from Helicity-Dependent Cross Sections.

    PubMed

    Witthauer, L; Dieterle, M; Abt, S; Achenbach, P; Afzal, F; Ahmed, Z; Annand, J R M; Arends, H J; Bashkanov, M; Beck, R; Biroth, M; Borisov, N S; Braghieri, A; Briscoe, W J; Cividini, F; Costanza, S; Collicott, C; Denig, A; Downie, E J; Drexler, P; Ferretti-Bondy, M I; Gardner, S; Garni, S; Glazier, D I; Glowa, D; Gradl, W; Günther, M; Gurevich, G M; Hamilton, D; Hornidge, D; Huber, G M; Käser, A; Kashevarov, V L; Kay, S; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lazarev, A B; Linturi, J M; Lisin, V; Livingston, K; Lutterer, S; MacGregor, I J D; Mancell, J; Manley, D M; Martel, P P; Metag, V; Meyer, W; Miskimen, R; Mornacchi, E; Mushkarenkov, A; Neganov, A B; Neiser, A; Oberle, M; Ostrick, M; Otte, P B; Paudyal, D; Pedroni, P; Polonski, A; Prakhov, S N; Rajabi, A; Reicherz, G; Ron, G; Rostomyan, T; Sarty, A; Sfienti, C; Sikora, M H; Sokhoyan, V; Spieker, K; Steffen, O; Strakovski, I I; Strub, Th; Supek, I; Thiel, A; Thiel, M; Thomas, A; Unverzagt, M; Usov, Yu A; Wagner, S; Walford, N K; Watts, D P; Werthmüller, D; Wettig, J; Wolfes, M; Zana, L

    2016-09-23

    The double polarization observable E and the helicity dependent cross sections σ_{1/2} and σ_{3/2} were measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost 4π detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from η→2γ and η→3π^{0}. The results show that the narrow structure previously observed in η photoproduction from the neutron is only apparent in σ_{1/2} and hence, most likely related to a spin-1/2 amplitude. Nucleon resonances that contribute to this partial wave in η production are only N 1/2^{-} (S_{11}) and N 1/2^{+} (P_{11}). Furthermore, the extracted Legendre coefficients of the angular distributions for σ_{1/2} are in good agreement with recent reaction model predictions assuming a narrow resonance in the P_{11} wave as the origin of this structure.

  13. Insight into the Narrow Structure in η Photoproduction on the Neutron from Helicity-Dependent Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witthauer, L.; Dieterle, M.; Abt, S.

    2016-09-22

    Here, the double polarization observable E and the helicity dependent cross sections σ 1/2 and σ 3/2 were measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost 4π detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from η→2γ and η→3π 0. The results show that the narrow structure previously observed in η photoproduction from the neutron is only apparent inmore » σ 1/2 and hence, most likely related to a spin-1/2 amplitude. Nucleon resonances that contribute to this partial wave in η production are only N1/2 – (S11) and N1/2 + (P 11). Furthermore, the extracted Legendre coefficients of the angular distributions for σ1/2 are in good agreement with recent reaction model predictions assuming a narrow resonance in the P 11 wave as the origin of this structure.« less

  14. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  15. Measurements of the Neutron Longitudinal Spin Asymmetry A1n and Flavor Decomposition in the Valence Quark Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flay, David J.

    2014-08-01

    The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quarkparton distribution functions,Dd=d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Dd/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowingmore » for the extraction of the neutron asymmetry An1 and the ratios Dd/d and Du/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2« less

  16. Polarization reconstruction algorithm for a Compton polarimeter

    NASA Astrophysics Data System (ADS)

    Vockert, M.; Weber, G.; Spillmann, U.; Krings, T.; Stöhlker, Th

    2018-05-01

    We present the technique of Compton polarimetry using X-ray detectors based on double-sided segmented semiconductor crystals that were developed within the SPARC collaboration. In addition, we discuss the polarization reconstruction algorithm with particular emphasis on systematic deviations between the observed detector response and our model function for the Compton scattering distribution inside the detector.

  17. Large magnetic to electric field contrast in azimuthally polarized vortex beams generated by a metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2015-09-01

    We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.

  18. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    NASA Astrophysics Data System (ADS)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  19. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  20. Longitudinal Double Spin Asymmetries of π0 - Jet Correlations in Polarized Proton Collisions at s = 510 GeV at STAR

    NASA Astrophysics Data System (ADS)

    Wang, Yaping

    One of the primary goals of the spin physics program at STAR is to constrain the polarized gluon distribution function, Δg(x), by measuring the longitudinal double-spin asymmetry (ALL) of various final-state channels. Using a jet in the mid-rapidity region |η| < 0.9 correlated with an azimuthally back-to-back π0 in the forward rapidity region 0.8 < η < 2.0 provides a new possibility to access the Δg(x) distribution at Bjorken-x down to 0.01. Compared to inclusive jet or inclusive π0 measurements, this channel also allows to constrain the initial parton kinematics. In these proceedings, we will present the status of the analysis of the π0-jet ALL in longitudinally polarized proton+proton collisions at s =510 GeV with 80 pb‑1 of data taken during the 2012 RHIC run. We also compare the projected ALL uncertainties to theoretical predictions of the ALL by next-to-leading order (NLO) model calculations with different polarized parton distribution functions.

  1. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  2. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    DOE PAGES

    Kim, A.; Avakian, H.; Burkert, V.; ...

    2017-02-22

    The target and double spin asymmetries of the exclusive pseudoscalar channelmore » $$\\vec e\\vec p\\to ep\\pi^0$$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $$x_B$$, $-t$ and $$\\phi$$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $$\\tilde{H}_T$$ and $$E_T$$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $$H_T$$ and $$\\bar E_T$$. Finally, these data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.« less

  3. Detailed study of the water trimer potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.E.; Schaefer, H.F. III

    The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported aremore » the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.« less

  4. On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.

    2011-01-01

    Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.

  5. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles.

    PubMed

    Wang, Peng Hui; Salcedo, Walter J; Pichaandi, Jothirmayanantham; van Veggel, Frank C J M; Brolo, Alexandre G

    2015-11-21

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb(3+)/Er(3+)) nanoparticles (UC NPs) at ∼665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ∼550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.

  6. Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors.

    PubMed

    Fabiano, Simone; Crispin, Xavier; Berggren, Magnus

    2014-01-08

    The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.

  7. Interface reconstruction with emerging charge ordering in hexagonal manganite

    PubMed Central

    Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent

    2018-01-01

    Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782

  8. Ozone response to a CO2 doubling - Results from a stratospheric circulation model with heterogeneous chemistry

    NASA Technical Reports Server (NTRS)

    Pitari, G.; Palermi, S.; Visconti, G.; Prinn, R. G.

    1992-01-01

    A spectral 3D model of the stratosphere has been used to study the sensitivity of polar ozone with respect to a carbon dioxide increase. The lower stratospheric cooling associated with an imposed CO2 doubling may increase the probability of polar stratospheric cloud (PSC) formation and this affect ozone. The ozone perturbation obtained with the inclusion of a simple parameterization for heterogeneous chemistry on PSCs is compared to that relative to a pure homogeneous chemistry. In both cases the temperature perturbation is determined by a CO2 doubling, while the total chlorine content is kept at the present level. It is shown that the lower temperature may increase the depth and the extension of the ozone hole by extending the area amenable to PSC formation. It may be argued that this effect, coupled with an increasing amount of chlorine, may produce a positive feedback on the ozone destruction.

  9. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOEpatents

    Tran, Tri D.; Lenz, David J.

    2004-07-13

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The battery further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of cells, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  10. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOEpatents

    Tran, Tri D [Livermore, CA; Lenz, David J [Livermore, CA

    2006-11-21

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The batter further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of ells, t flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  11. A broadband double-slot waveguide antenna

    NASA Astrophysics Data System (ADS)

    Kisliuk, M.; Axelrod, A.

    1987-09-01

    A double transverse slot broadband antenna based on the H-guide transverse-slot radiator design of Kisliuk and Axelrod (1985) is described. The double transverse slot antenna may be used in microwave and mm-wave applications (as a phased array element), in imaging systems, or as a stand-alone linearly polarized antenna. The equations for calculating the radiation efficiency and the input impedance and the experimental and theoretical curves for radiation efficiency of the double-slot antenna are presented along with diagrams of the antenna and the equivalent circuit of an individual slot in a slot array.

  12. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  13. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterle, M.; Witthauer, L.; Cividini, F.

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  14. Preliminary Results of T and F Asymmetries for KLambda Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Walford, Natalie; Klein, Franz

    2013-04-01

    The search for undiscovered excited states of the nucleon continues to be a focus of experiments at Jefferson Lab. A large effort has been launched using the CLAS detector to provide the database, which will allow nearly model-independent partial wave analyses to be carried out in the search for such states. Polarization observables play a crucial role in this effort, as they are essential in disentangling overlapping resonant and non-resonant amplitudes. Recent coupled-channel analyses [1] have found strong sensitivity of the K-Lambda channel to several higher mass nucleon resonances. In 2010, double-polarization data were taken at JLab using circularly polarized photons incident on a transversely polarized frozen spin target (FROST) [2] comprising butanol, operated at the low temperature of 30mK. The reaction products were detected in CLAS using tagged photons. We will present preliminary data of the T and F asymmetries of the K-Lambda final state with comparisons to predictions of recent multipole analyses. There are very few published measurements of the T asymmetry and none of the F asymmetry for the K-Lambda channel. This work is the first of its kind and will significantly broaden the world database for this reaction.[4pt] [1] A.V. Anisovich et al., Eur. Phys. J. A48 (2012) 15.2] C.D. Keith et al., Nucl. Instr. Meth. A694 (2012) 27.

  15. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE PAGES

    Dieterle, M.; Witthauer, L.; Cividini, F.; ...

    2017-05-10

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  16. Determination of E and G Observables in n Photoproduction on the CLAS Frozen Spin Target (FROST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senderovich, Igor; Morrison, Brian T.; Dugger, Michael R.

    2014-01-01

    Polarization observables are vital for disentangling overlapping resonances in the baryon spectrum. Extensive data have been collected at Jefferson Lab in Hall B with circularly and linearly polarized tagged photon beam incident on longitudinally polarized protons provided by the Frozen Spin Target (FROST). The focus of the described work is on η photoproduction, which acts as an "isospin filter", isolating the N*(I = 1/2) resonances. Preliminary results for the double-polarization observables E and G are presented. There are currently no data on these in the world database for η photoproduction.

  17. Non-deterministic quantum CNOT gate with double encoding

    NASA Astrophysics Data System (ADS)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2013-09-01

    We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.

  18. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Faria, Faiza Afroz; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Sensale-Rodriguez, Berardi; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2017-10-01

    For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs), the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  19. The New APD Based Readout for the Crystal Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Urban, M.; Honisch, Ch; Steinacher, M.; CBELSA/TAPS Collaboration

    2015-02-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds.

  20. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan; ...

    2018-01-02

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less

  1. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Niedziela, Jennifer L.; Sinclair, Ryan

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments andmore » theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.« less

  2. Momentum-resolved observations of the phonon instability driving geometric improper ferroelectricity in yttrium manganite.

    PubMed

    Bansal, Dipanshu; Niedziela, Jennifer L; Sinclair, Ryan; Garlea, V Ovidiu; Abernathy, Douglas L; Chi, Songxue; Ren, Yang; Zhou, Haidong; Delaire, Olivier

    2018-01-02

    Magnetoelectrics offer tantalizing opportunities for devices coupling ferroelectricity and magnetism but remain difficult to realize. Breakthrough strategies could circumvent the mutually exclusive origins of magnetism and ferroelectricity by exploiting the interaction of multiple phonon modes in geometric improper and hybrid improper ferroelectrics. Yet, the proposed instability of a zone-boundary phonon mode, driving the emergence of ferroelectricity via coupling to a polar mode, remains to be directly observed. Here, we provide previously missing evidence for this scenario in the archetypal improper ferroelectric, yttrium manganite, through comprehensive scattering measurements of the atomic structure and phonons, supported with first-principles simulations. Our experiments and theoretical modeling resolve the origin of the unusual temperature dependence of the polarization and rule out a reported double-step ferroelectric transition. These results emphasize the critical role of phonon anharmonicity in rationalizing lattice instabilities in improper ferroelectrics and show that including these effects in simulations could facilitate the design of magnetoelectrics.

  3. Transition properties from the Hermitian formulation of the coupled cluster polarization propagator

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert

    2014-09-01

    Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

  4. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    DOE PAGES

    Gao, Xuan; Casa, Diego; Kim, Jungho; ...

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Moreover we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  5. The effects of vector leptoquark on the ℬb(ℬ = Λ,Σ) →ℬμ+μ- decays

    NASA Astrophysics Data System (ADS)

    Wang, Shuai-Wei; Huang, Jin-Shu

    2016-07-01

    In this paper, we have studied the baryonic semileptonic ℬb(ℬ = Λ, Σ) →ℬμ+μ- decays in the vector leptoquark model with U = (3, 3, 2/3) state. Using the parameters’ space constrained through some well-measured decay modes, such as Bs → μ+μ-, Bs -B¯s mixing and B → K∗μ+μ- decays, we show the effects of vector leptoquark state on the double lepton polarization asymmetries of ℬb(ℬ = Λ, Σ) →ℬμ+μ- decays, and find that the double lepton polarization asymmetries, except for PLL, PLN and PNL, are sensitive to the contributions of vector leptoquark model.

  6. Phonon effects on the radiative recombination of excitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Karwat, Paweł; Sitek, Anna; Machnikowski, Paweł

    2011-11-01

    We study theoretically the radiative recombination of excitons in double quantum dots in the presence of carrier-phonon coupling. We show that the phonon-induced pure dephasing effects and transitions between the exciton states strongly modify the spontaneous emission process and make it sensitive to temperature, which may lead to nonmonotonic temperature dependence of the time-resolved luminescence. We show also that, under specific resonance conditions, the biexcitonic interband polarization can be coherently transferred to the excitonic one, leading to an extended lifetime of the total coherent polarization, which is reflected in the nonlinear optical spectrum of the system. We study the stability of this effect against phonon-induced decoherence.

  7. Probabilistic joint inversion of waveforms and polarity data for double-couple focal mechanisms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wéber, Zoltán

    2018-06-01

    Estimating the mechanisms of small (M < 4) earthquakes is quite challenging. A common scenario is that neither the available polarity data alone nor the well predictable near-station seismograms alone are sufficient to obtain reliable focal mechanism solutions for weak events. To handle this situation we introduce here a new method that jointly inverts waveforms and polarity data following a probabilistic approach. The procedure called joint waveform and polarity (JOWAPO) inversion maps the posterior probability density of the model parameters and estimates the maximum likelihood double-couple mechanism, the optimal source depth and the scalar seismic moment of the investigated event. The uncertainties of the solution are described by confidence regions. We have validated the method on two earthquakes for which well-determined focal mechanisms are available. The validation tests show that including waveforms in the inversion considerably reduces the uncertainties of the usually poorly constrained polarity solutions. The JOWAPO method performs best when it applies waveforms from at least two seismic stations. If the number of the polarity data is large enough, even single-station JOWAPO inversion can produce usable solutions. When only a few polarities are available, however, single-station inversion may result in biased mechanisms. In this case some caution must be taken when interpreting the results. We have successfully applied the JOWAPO method to an earthquake in North Hungary, whose mechanism could not be estimated by long-period waveform inversion. Using 17 P-wave polarities and waveforms at two nearby stations, the JOWAPO method produced a well-constrained focal mechanism. The solution is very similar to those obtained previously for four other events that occurred in the same earthquake sequence. The analysed event has a strike-slip mechanism with a P axis oriented approximately along an NE-SW direction.

  8. Generation of the September 29, 2009 Samoa Tsunami: Examination of a Possible Non-Double Couple Component (Invited)

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Kirby, S. H.; Ross, S.; Dartnell, P.

    2009-12-01

    A non-double couple component associated with the Mw=8.0 September 29, 2009 Samoa earthquake is investigated to explain direct tsunami arrivals at deep-ocean pressure sensors (i.e., DART stations). In particular, we seek a tsunami generation model that correctly predicts the polarity of first motions: negative at the Apia station (#51425) NW of the epicenter and positive at the Tonga (#51426) and Aukland (#54401) stations south of the epicenter. Slip on a single, finite fault corresponding to either nodal plane of the best-fitting double couple fails to predict the positive first-motion polarity observed at the southerly (Tonga and Aukland) DART stations. The Samoa earthquake has a significant non-double component as measured by the compensated linear vector dipole (CLVD) ratio that ranges from |ɛ|=0.15 (USGS CMT) to |ɛ| =0.37 (Global CMT). To test what effect the non-double component has on tsunami generation, the static elastic displacement field at the sea floor is computed from the full moment tensor. This displacement field represents the initial conditions for tsunami propagation computed using a finite-difference approximation to the linear shallow-water wave equations. The tsunami waveforms calculated from the full moment tensor are consistent with the observed polarities at all of the DART stations. The static displacement field is then decomposed into double-couple and non-double couple components to determine the relative contribution of each to the tsunami wavefield. Although a point-source approximation to the tsunami source is typically inadequate at near-field and regional distances, finite-fault inversions of the 2009 Samoa earthquake indicate that peak slip is spatially concentrated near the hypocenter, suggesting that the point-source representation may be acceptable in this case. Generation of the 2009 Samoa tsunami may involve earthquake rupture on multiple faults and/or along curved faults, both of which are observed from multibeam bathymetry in the epicentral region. The exact rupture path of the earthquake is presently unclear. It is evident from seismological and tsunami observations of the 2009 Samoa event, however, that uniform slip on a single, planar fault cannot explain all aspects of the observed tsunami wavefield.

  9. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    PubMed

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan

    2016-02-01

    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  10. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    PubMed

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation with a fully linear polarized light source.

  11. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less

  12. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    PubMed

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  13. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagula, R. M.; Vinnichenko, M. Ya.; Makhov, I. S.

    2017-03-15

    The modulation of polarized radiation by GaAs/AlGaAs structures with tunnel-coupled double quantum wells in a strong lateral electric field is studied. The spectra of the variation in the refractive index under a lateral electric field in the vicinity of the intersubband resonance are experimentally investigated.

  14. Zero-n gap in one dimensional photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chobey, Mahesh K., E-mail: mahesh01chobey@gmail.com; Suthar, B.

    2016-05-06

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  15. Polarimetry and Interferometry Applications

    DTIC Science & Technology

    2005-02-01

    contribution of the backscattering is occurring in the crown. Since for the traditional SAR interferometry only the total phase center of all scattering...double bounce scattering mechanism between the tree trunks and ground level. This contribution has its scattering phase center on the ground and is not...polarizations shows several differences. But addi- tionally to these amplitude images also the phase relations between the polarizations contain

  16. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  17. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    1996-01-01

    The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.

  18. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    NASA Astrophysics Data System (ADS)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  19. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Shi, Zhemin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  20. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    NASA Astrophysics Data System (ADS)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-03-01

    Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton e →p →→e'p'γ are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized NH3 14 target. The three asymmetries were measured in 165 four-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of generalized parton distributions. The measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H ˜ Compton form factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  1. Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References

    NASA Astrophysics Data System (ADS)

    Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.

    2010-04-01

    Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.

  2. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    NASA Astrophysics Data System (ADS)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  3. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.

    PubMed

    Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P

    2012-12-07

    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

  4. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    NASA Astrophysics Data System (ADS)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.

  5. [Analysis of Polarization Characteristics of Wheat and Maize Crops Using Land-Based Remote Sensing Measurements].

    PubMed

    Sid'ko, A F; Botvich, I Yu; Pisman, T I; Shevyrnogov, A P

    2015-01-01

    The paper presents analysis of a study of the polarized component of the reflectance factor (Rq) and the degree of polarization (P) of wheat and maize crops depending on the wavelength. Registration of polarization characteristics was carried out in the field from the elevated work platform at heights of 10 to 18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820-nm. The viewing angle was no greater than 20 degree with respect to the nadir. The reflection spectra of wheat and maize crops obtained using a polarizer adjusted to transmit the maximum and minimum amounts of light (R(max) and R(min)) were studied. Based on these reflection spectra polarization characteristics, which. differ in the visible and infrared spectral region, were determined and analyzed.

  6. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  7. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η →2 γ and η →3 π0→6 γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1 /2). It is absent for reactions with parallel spin orientation (σ3 /2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them withLegendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P11 and S11 partial waves to explain the narrow structure.

  8. Multimode Bose-Hubbard model for quantum dipolar gases in confined geometries

    NASA Astrophysics Data System (ADS)

    Cartarius, Florian; Minguzzi, Anna; Morigi, Giovanna

    2017-06-01

    We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons: They experience a periodic potential due to an optical lattice oriented along the wave guide and are polarized by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multimode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability, taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a nontrivial way. Convergence tests at the linear-zigzag instability demonstrate that our multimode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.

  9. Propagation optical quarks after an uniaxial crystal: the experiment

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. A.; Konovalenko, V. L.; Zinovev, A. O.; Anischenko, P. M.; Glumova, M. V.

    2013-12-01

    There is a lots of different papers reporting about the propagation of the different types of an optical beams in a uniaxial crystals are known by that time. This beams are: Lager-Gaussian and Bessel- Gaussian beams. It is common for all this types of beams, that if propagation axis and crystal axis coincides, and accident beam had a circular polarization, are can get type spiral type degenerated umbilici, which corresponds to the charge 2 optical vortex in the orthogonal polarized beam component, generated by crystal [1] (Fig 1). This generation accurse due to total angular momentum conservation law symmetry axis of the crystal. One to the changing of the spin momentum which is associated with the beam polarization, this leads to the orbital momentum changes that associated with topological charge of formed orthogonal circular component. Double charged optical vortex could be easily perturbed by tilting beam axis with respect to the crystal axis. If the tilt angles are small (<0.1°) central umbilici splits on two lemons and the surrounding ring umbilici splits on two pairs of monster-star. The further increasing of the tilt angle leads to the topological charge of circular components becomes, equal, and additional orbital moment correspond to the beam mass center displacement.

  10. Effect of Photogenerated Carriers on Ferroelectric Polarization Reversal

    NASA Astrophysics Data System (ADS)

    Weis, Martin; Li, Jun; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-12-01

    Three non-symmetric switching peaks were observed in current-voltage (J-V) characteristic of the pentacene/poly(vinylidene fluoride-trifluoroethylene) double-layer device. However, upon illumination only two symmetric switching peaks appeared during the same J-V measurement. The similar difference between dark and illumination were also obtained in capacitance-voltage characteristics. These results showed the strong influence of internal fields by photogenerated carriers, which modifies the polarization reversal process of ferroelectric layer. The gradual shift of the polarization reversal with increase of illumination intensity is assigned to the space-charge field of trapped electrons.

  11. Advances in large, transportable, highly spin-polarized, solid HD targets operable in the frozen-spin mode in a 1-4K temperature environment

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron Paul

    The development of large, portable highly spin-polarized solid HD targets has been in progress at Syracuse University for the past 5 years. These targets are scheduled for deployment at Brookhaven National Laboratory, bearing the acronym SPHICE (Spin-Polarized Hydrogen Ice), for studies of the electro-magnetic spin structure of the nucleus via scattering of polarized gammas from the HD polarized protons and deuterons. The target work has just reached the milestone demonstration of the complete system, including polarization of triple targets containing 4 moles of solid HD, aging of these targets so that they retain their polarization for months under storage at a temperature of 1.3K and in an 8 Tesla field, and for at least a week at operational conditions of 1.3K and 0.7 Tesla in an in-beam cryostat. Cold-transfers of the polarized targets to a storage cryostat have been successfully carried out, and the storage cryostat has been trucked from Syracuse to BNL with one polarized target, sufficient to test the in-beam operations there. The complete system is presented here, with emphasis on innovations for engagement and disengagement of multiple targets, a solution to the challenge of attaining sufficiently strong RF fields in the large volume probe coils at acceptable power dissipation in the cables, and the polarization production and monitoring in the highly inhomogeneous magnetic fields owing to the multiple targets and the large dimensions of the targets. In this first multiple target production and extraction-to-storage cycle, air-ice accumulation in the dilution refrigerator due to repetitive use of cold sliding o-ring seals resulted in a rupture of one of the inserted targets, and a consequent partial thermal short from a solid HD ice bridge. The o-ring fault was cured with double evacuatable o-ring seals, and the air-ice was successfully cleaned out. However, the refrigerator operating base temperature was substantially higher than that normally obtained and the proton polarizations were accordingly lower than the 48% previously obtained. Nevertheless, the targets passed all their production procedures and are still useful for a first experiment at BNL. We anticipate an era of important use of these now demonstrated specially advantageous polarized frozen-spin HD targets.

  12. Studies on interaction of an intramolecular charge transfer fluorescence probe: 4'-dimethylamino-2,5-dihydroxychalcone with DNA.

    PubMed

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-10-15

    The interaction of a new intramolecular charge transfer probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC), with calf thymus DNA has been studied. Compared to the spectral characteristics of the free form in aqueous solution, the fluorescence of DMADHC enhanced dramatically accompanying a blueshift of the emission maxima in the presence of DNA. The absorption and fluorescence spectra, salt concentration effect, KI quenching, fluorescence polarization, and DNA denaturation experiments were given. These results give evidence that the DMADHC molecule is inserted into the base-stacking domain of the DNA double helix. The intrinsic binding constant and the binding site number were estimated. The analytical characteristics were also given.

  13. Attributing Contributions of Climate Feedbacks to the Seasonal Cycle of Surface Warming due to CO2 Increase

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Cai, M.

    2012-12-01

    Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.

  14. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  15. Perspective on concentration polarization effects in electrochromatographic separations.

    PubMed

    Tallarek, Ulrich; Leinweber, Felix C; Nischang, Ivo

    2005-01-01

    This work illustrates the appearance and electrohydrodynamic consequences of concentration polarization in the particulate and monolithic fixed beds used in capillary electrochromatography and related electrical-field assisted processes. Key property of most porous materials is the co-existence of bulk, quasi-electroneutral macroporous regions and mesoporous compartments which are ion-permselective (due to electrical double-layer overlap) causing different transport numbers for co-ionic and counterionic species, e.g., background electrolyte components, or the analytes. For a cathodic electroosmotic flow the (cation) permselectivity, together with diffusive and electrokinetic transport induces depleted and enriched concentration polarization zones at the anodic and cathodic interfaces, respectively, in dependence of the mobile phase ionic strength and applied electrical fields. At high field strength a secondary, nonequilibrium electrical double layer may be created in the depleted concentration polarization zones of a material stimulating electroosmosis of the second kind. The potential of this induced-charge electroosmosis with respect to nonlinear flow velocities and electrokinetic instability mixing (basically destroying the concentration polarization zones) is analyzed in view of the pore space morphology in random-close packings of spherical-shaped, porous particles and hierarchically structured monoliths. Possible applications based on a fine-tuning of the illustrated effects emerge for microfluidic pumping and mixing, or the intensification of sample recovery in adsorption processes. With this perspective we want to focus the attention on concentration polarization in electrochromatographic systems by presenting and discussing original data acquired on relevant microscopic as well as macroscopic scales, and point towards the importance of related effects in colloid and membrane science.*

  16. Para-hydrogen induced polarization without incorporation of para-hydrogen into the analyte.

    PubMed

    Atkinson, Kevin D; Cowley, Michael J; Duckett, Simon B; Elliott, Paul I P; Green, Gary G R; López-Serrano, Joaquín; Khazal, Iman G; Whitwood, Adrian C

    2009-01-19

    The cationic iridium complexes [Ir(COD)(PR3)2]BF4 (1a-c) (a, R = Ph; b, R = p-tolyl; c, R = p-C6H4-OMe) react with parahydrogen in the presence of pyridine to give trans, cis, cis-[Ir(PR3)2(py)2(H)2]+ (2a-c) and small amounts of fac, cis-[Ir(PR3)(py)3(H)2]+ (3a-c), each of which exhibit polarized hydride resonances due to the magnetic inequivalence associated with the resultant AA"XX" spin system when 15N-labeled pyridine is employed. The pyridine ligands in 2 are labile, exchanging slowly into free pyridine with a rate constant of 0.4 s(-1) for 2a at 335 K in a dissociative process where DeltaH(double dagger) = 134 +/- 1 kJ mol(-1) and DeltaS(double dagger) = 151 +/- 5 J mol(-1) K(-1). Pyridine ligand exchange in 2 proves to be slower than that determined for 3. Parahydrogen induced polarization (PHIP) based on the hydride ligands of 2 and 3 is transferred efficiently to the 15N nuclei of the bound pyridine ligand by suitable insensitive-nuclei-enhanced-by-polarization-transfer (INEPT) based procedures. Related methods are then used to facilitate the sensitization of the free pyridine 15N signal by a factor of 120-fold through ligand exchange even though this substrate does not contain parahydrogen. This therefore corresponds to the successful polarization of an analyte by parahydrogen induced polarization methods without the need for the actual chemical incorporation of any parahydrogen derived nuclei into it.

  17. Space qualification tests of the PAMELA instrument

    NASA Astrophysics Data System (ADS)

    Sparvoli, R.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Menn, W.; Simon, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaja, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region. PAMELA will fly on-board of the Resurs-DK1 satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch.

  18. Faradaic AC Electrokinetic Flow and Particle Traps

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing; Chang, Hsueh-Chia

    2004-11-01

    Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.

  19. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    NASA Astrophysics Data System (ADS)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  20. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  1. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators.

    PubMed

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  2. Sensor development for in situ detection of concentration polarization and fouling of reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Detrich, Kahlil T.; Goulbourne, Nakhiah C.

    2009-03-01

    The purpose of this research is to evaluate three polymer electroding techniques in developing a novel in situ sensor for an RO system using the electrical response of a thin film composite sensor. Electrical impedance spectroscopy (EIS) was used to measure the sensor response when exposed to sodium chloride solutions with concentrations from 0.1 M to 0.8 M in both single and double bath configurations. An insulated carbon grease sensor was mechanically stable while a composite Direct Assembly Process (DAP) sensor was fragile upon hydration. Scanning electron microscopy results from an impregnation-reduction technique showed gold nanoparticles were deposited most effectively when presoaked in a potassium hydroxide solution and on an uncoated membrane; surface resistances remained too high for sensor implementation. Through thickness carbon grease sensors showed a transient response to changes in concentration, and no meaningful concentration sensitivity was noted for the time scales over which EIS measurements were taken. Surface carbon grease electrodes attached to the polyamide thin film were not sensitive to concentration. The impedance spectra indicated the carbon grease sensor was unable to detect changes in concentration in double bath experiments when implemented with the polyamide surface exposed to salt solutions. DAP sensors lacked a consistent response to changes in concentration too. A reverse double bath experiment with the polysulfone layer exposed to a constant concentration exhibited a transient impedance response similar to through thickness carbon grease sensors in a single bath at constant concentration. These results suggest that the microporous polysulfone layer is responsible for sensor response to concentration.

  3. Asymmetric Stokes-V Profiles at the Penumbral Boundary of a Sunspot

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Balasubramanaim, K. S.; Suematsu, Yoshinori

    2003-01-01

    We present the spectropolarimetric measurements of a sunspot in the active region NOAA 6958 (15S03W), situated near the central meridian disk passage. The follower polarity sunspot was somewhat symmetrically round shaped with an elongated penumbra. There were several opposite polarity magnetic elements at, and beyond the penumbral boundary. The H-alpha images of the sunspot show the bright emission regions near the penumbral boundary towards the sun-center, which was of opposite polarity with respect to the main spot. The net-circular polarization (NCP) map shows that NCP is negative in the inner part of the spot and positive at the penumbral boundary and near the H-alpha plage. The Doppler velocities were determined by measuring the center-of-gravity (COG) of the Stokes-I profile and zero-crossing (ZC) wavelength of the Stokes-V profiles. The COG velocity map in general agrees with the Evershed flow. In addition, it shows the up flow in the penumbral region. The ZC velocities show the strong down flow at the penumbral boundary. Double-lobed Stokes-V profiles are observed at the locations, where the penumbral fibrils terminate coinciding the H-alpha plage. The Double lobed profiles had an unshifted component similar to the Stokes-V profiles of the sunspot penumbra and a shifted component with a velocity of about 5 km/s. The amplitude of the second component increases along the penumbral fibril as a function of the distance from the center of the sunspot. In this paper we discuss the role of emerging flux in generating the observed double lobed profiles. Based on our present observations, we propose to observe with the Solar-B Spectropolarimeter for understanding the nature of emerging flux near the sunspots.

  4. Dynamics of double-polarity subduction: application to the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Peral, M.; Zlotnik, S.; Fernandez, M.; Verges, J.; Jiménez-Munt, I.; Torne, M.

    2015-12-01

    The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model proposed by Vergés and Fernàndez (2012) suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model of double-polarity subduction is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle and the problem is driven by Rayleigh-Taylor instability. The main factors to be studied are the interaction between the two plates, the poloidal and toroidal mantle fluxes, the velocity variations of slabs, the stress distribution and the variations in the trench morphology.

  5. Specific Binding of Adamantane Drugs and Direction of their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy

    PubMed Central

    Cady, Sarah D.; Wang, Jun; Wu, Yibing; DeGrado, William F.; Hong, Mei

    2011-01-01

    The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as DPC micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in dodecylphosphocholine (DPC) micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18–60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the pore but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of membrane proteins. PMID:21381693

  6. First measurement of the double spin asymmetry in (-->)e(-->)p-->e(prime)pi(+)n in the resonance region.

    PubMed

    De Vita, R; Anghinolfi, M; Burkert, V D; Dodge, G E; Minehart, R; Taiuti, M; Weller, H; Adams, G; Amaryan, M J; Anciant, E; Armstrong, D S; Asavapibhop, B; Asryan, G; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bosted, P; Bouchigny, S; Branford, D; Brooks, W K; Bueltmann, S; Calarco, J R; Capitani, G P; Carman, D S; Carnahan, B; Cazes, A; Ciciani, L; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Demirchyan, R; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Farhi, L; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Gai, M; Garçon, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Golovatch, E; Griffioen, K; Guidal, M; Guillo, M; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ishkanov, B S; Ito, M M; Jenkins, D; Joo, K; Kelley, J H; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Kramer, L H; Kuang, Y; Kuhn, S E; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Loukachine, K; Lucas, M; Major, W; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Muccifora, V; Mueller, J; Mutchler, G S; Napolitano, J; Nelson, S O; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Opper, A K; O'Rielly, G V; Osipenko, M; Park, K; Pasyuk, E; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Reolon, A R; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rock, S; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Sapunenko, V; Sargsyan, M; Schumacher, R A; Serov, V S; Shafi, A; Sharabian, Y G; Shaw, J; Skabelin, A V; Smith, E S; Smith, T; Smith, L C; Sober, D I; Sorrell, L; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strakovsky, I I; Taylor, S; Tedeschi, D J; Thompson, R; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weisberg, A; Weygand, D P; Whisnant, C S; Wolin, E; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2002-02-25

    The double spin asymmetry in the (-->)e(-->)p --> e(prime)pi(+)n reaction has been measured for the first time in the resonance region for four-momentum transfer Q2 = 0.35-1.5 GeV(2). Data were taken at Jefferson Lab with the CLAS detector using a 2.6 GeV polarized electron beam incident on a polarized solid NH3 target. Comparison with predictions of phenomenological models shows strong sensitivity to resonance contributions. Helicity-1/2 transitions are found to be dominant in the second and third resonance regions. The measured asymmetry is consistent with a faster rise with Q(2) of the helicity asymmetry A1 for the F(15)(1680) resonance than expected from the analysis of the unpolarized data.

  7. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  8. Optical manipulation of electron spin in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  9. Cost-efficient manufacturing process of switchable glazing based on twisted nematic LC cells

    NASA Astrophysics Data System (ADS)

    Kurz, Eberhard; Rau, Lothar; Frühauf, Norbert; Haase, Walter; Prskalo, Marijo; Sobek, Werner

    2011-10-01

    Large-area glass facades are widely spread in contemporary architecture. They meet demands for natural light illumination of rooms and satisfy esthetic requirements of modern architecture. However, larger glass facades increase transfer of energy into the building. Since this has to be compensated by the intense use of air conditioning, modulation of the energy passing through the glazing is essential. The authors have been developing a corresponding system. It consists of a modified twisted nematic (TN) liquid crystal (LC) cell which is embedded in a double glazing. Since a conventional outside film polarizer is susceptible to heat, the authors substituted this component for an inside coatable polarizer. Long term outdoor weathering tests demonstrated that the concept is viable. Part of the current research is the integration of the TN LC cell into double-glazing. A further demand for such a system is a cost-efficient manufacturing process. It has been investigated to use the coatable polarizer at the same time as an alignment layer for the liquid crystal. Aluminum zinc oxide (AZO) is to be used for the electrode material substituting conventionally used indium tin oxide (ITO) which is expensive. Currently the authors are looking into the coating process for the inside polarizer.

  10. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Gaoyang; Young, Joshua; Liu, Xian

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI 3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH 3NH 3PbI 3, CsSnI 3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI 3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI 3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to createmore » the double perovskite (CsRb)Sn 2I 6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI 6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI 3. More importantly, unlike nonpolar CsSnI 3, the electric polarization present in ferroelectric (CsRb)Sn 2I 6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.« less

  11. Solvent signal suppression for high-resolution MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël

    2017-05-01

    Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.

  12. Visualization of polarization state and its application in optics classroom teaching

    NASA Astrophysics Data System (ADS)

    Lei, Bing; Liu, Wei; Shi, Jianhua; Wang, Wei; Yao, Tianfu; Liu, Shugang

    2017-08-01

    Polarization of light and the related knowledge are key and difficult points in optical teaching, and they are difficult to be understood since they are very abstract concepts. To help students understand the polarization properties of light, some classroom demonstration experiments have been constructed by employing the optical source, polarizers, wave plates optical cage system and polarization axis finder (PAF). The PAF is a polarization indicating device with many linear polarizing components concentric circles, which can visualize the polarization axis's direction of linearly polarized light intuitively. With the help of these demonstration experiment systems, the conversion and difference between the linear polarized light and circularly polarized light have been observed directly by inserting or removing a quarter-wave plate. The rotation phenomenon of linearly polarized light's polarization axis when it propagates through an optical active medium has been observed and studied in experiment, and the strain distribution of some mounted and unmounted lenses have also been demonstrated and observed in experiment conveniently. Furthermore, some typical polarization targets, such as liquid crystal display (LCD), polarized dark glass and skylight, have been observed based on PAF, which is quite suitable to help students understand these targets' polarization properties and the related physical laws. Finally, these demonstration experimental systems have been employed in classroom teaching of our university in physical optics, optoelectronics and photoelectric detection courses, and they are very popular with teachers and students.

  13. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posik, Matthew; Flay, David; Parno, Diana

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolvemore » the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.« less

  14. Q2 Evolution of the Neutron Spin Structure Moments using a 3He Target

    NASA Astrophysics Data System (ADS)

    Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatie, F.; Saha, A.; Slifer, K.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2004-01-01

    We have measured the spin structure functions g1 and g2 of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058GeV off a polarized 3He target at a 15.5° scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Γ1(Q2)=∫10g1(x,Q2)dx, Γ2(Q2)=∫10g2(x,Q2)dx, and d2(Q2)=∫10x2[2g1(x,Q2)+3g2(x,Q2)]dx for the neutron in the range 0.1≤Q2≤0.9 GeV2 with good precision. Γ1(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2 is nonzero over the measured range.

  15. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    PubMed

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  16. naked cuticle targets dishevelled to antagonize Wnt signal transduction

    PubMed Central

    Rousset, Raphaël; Mack, Judith A.; Wharton, Keith A.; Axelrod, Jeffrey D.; Cadigan, Ken M.; Fish, Matthew P.; Nusse, Roel; Scott, Matthew P.

    2001-01-01

    In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/β-catenin and activate downstream genes. PMID:11274052

  17. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  18. Induction of Fetal Hemoglobin by Propionic and Butyric Acid Derivatives: Correlations between Chemical Structure and Potency of Hb F Induction1

    PubMed Central

    Liakopoulou, Effie; Li, Qiliang; Stamatoyannopoulos, George

    2010-01-01

    Short-chain fatty acids (C2-C9) induce fetal hemoglobin synthesis in primary cell cultures, primates, and patients. We carried out experiments to test whether relationships exist between chemical structure and the Hb F-inducing potential of several short-chain fatty acid derivatives. BFUe cultures were performed in the presence of propionic and butyric congeners, covering the full spectrum of substitutions of these molecules, including polar and non-polar groups, esters, and double bonds. We found that the fetal hemoglobin inducibility is related to the chemical structure of the inducing compound. This structure–activity relation depends on the length of carbon chain, the nature of the substitutions, and the position of more potent substitutions on the carbon chain. It appears that substitutions enhancing the inducibility of these compounds are (with decreasing potency): methyl > phenyl > hydroxy ≫ amino groups. Placement of these substitutions at a position distal to the carboxyl group enhances γ-globin inducibility. Presence of the carboxyl group is prerequisite for γ-globin inducibility. PMID:12482403

  19. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of Japan, AIST. This work was supported by JSPS KAKENHI Grant Number 24540463.

  20. The PEPPo method for polarized positrons and PEPPo II

    DOE PAGES

    Cardman, Lawrence S.

    2018-05-01

    The Polarized Electrons for Polarized Positrons (PEPPo) experiment at the injector of the Continuous Electron Beam Accelerator Facility demonstrated for the first time the efficient transfer of polarization from electrons to positrons via a two-step process: polarized bremsstrahlung radiation is induced by a polarized electron beam in a high-Z target; then the polarized bremsstrahlung produces polarized positrons via the pair-production process in the same target. Positron polarization up to 82% was measured for an initial electron beam momentum of 8.19 MeV/c, limited only by the electron beam polarization of 85%. This technique extends polarized positron capabilities from GeV to MeVmore » electron beams, and opens access to polarized positron beam physics to a wide community. We present the results of the PEPPo experiment and outline tentative plans for a follow-up experiment that would investigate key aspects of an approach based on PEPPo as a polarized positron source for the 12 GeV Upgrade of CEBAF.« less

  1. Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser

    NASA Astrophysics Data System (ADS)

    Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.

    2008-10-01

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  2. Observation of high-order polarization-locked vector solitons in a fiber laser.

    PubMed

    Tang, D Y; Zhang, H; Zhao, L M; Wu, X

    2008-10-10

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  3. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.

    PubMed

    Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira

    2008-02-22

    It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.

  4. Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating.

    PubMed

    Asano, Kosuke; Yokoyama, Satoshi; Kemmochi, Atsushi; Yatagai, Toyohiko

    2014-05-01

    A wire grid polarizer comprised of chromium oxide is designed for a micro-lithography system using an ArF excimer laser. Optical properties for some material candidates are calculated using a rigorous coupled-wave analysis. The chromium oxide wire grid polarizer with a 90 nm period is fabricated by a double-patterning technique using KrF lithography and dry etching. The extinction ratio of the grating is greater than 20 dB (100:1) at a wavelength of 193 nm. Differences between the calculated and experimental results are discussed.

  5. Polarization asymmetry in two-electron photodetachment - A cogent test of the ionization threshold law

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Bhatia, A. K.

    1988-01-01

    A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.

  6. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witthauer, L.; Dieterle, M.; Abt, S.

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η → 2γ and η → 3π 0 → 6γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected withmore » the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ 1/2). It is absent for reactions with parallel spin orientation (σ 3/2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P 11 and S 11 partial waves to explain the narrow structure.« less

  7. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  8. Ferroelectric and structural instability in double perovskites Me1+Bi3+Me3+Nb5+O6 (Me1+ = Na, K, Rb; Me3+ = Sc, Ga, In, Lu)

    NASA Astrophysics Data System (ADS)

    Zinenko, V. I.; Zamkova, N. G.; Zhandun, V. S.; Pavlovskii, M. S.

    2012-06-01

    Within the Gordon-Kim generalized model with regard to the polarizabilities of ions, the lattice constants, the high-frequency permittivity, the Born dynamic charges, and the vibration constants of the crystal lattice are calculated for cation-ordered double perovskites Me1+Bi3+Me3+Nb5+O6. The vibration spectra of all the compounds exhibit two types of instabilities: instability associated with the rotation of the oxygen octahedron and ferroelectric instability. Various combinations of distortions with respect to the rotation mode yield five energetically most favorable distorted phases. The symmetry and the energy characteristics of these phases are discussed. In four of the five phases, the distortions associated with the oxygen octahedron rotation lead to polar phases, thus allowing one to speak of improper ferroelectricity in these compounds. One phase turns out to be nonpolar; however, it contains unstable polar modes such that a displacement along the eigenvectors of these modes gives rise to polarization in the crystal.

  9. Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast

    PubMed Central

    Bendezú, Felipe O.; Martin, Sophie G.

    2011-01-01

    Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types. PMID:21148300

  10. Solar-Powered Cooler and Heater for an Automobile Interior

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  11. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  12. The isotopic composition of methane in polar ice cores

    NASA Technical Reports Server (NTRS)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  13. Incorporating realistic surface longwave spectral emissivity in the CESM and the impact on simulated current climate and climate changes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Huang, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.

    2016-12-01

    As of today, most state-of-the-art GCMs still assumes blackbody surface in their longwave radiation scheme. Recent works by Chen et al. (2014) and Feldman et al. (2014) have suggested that the surface spectral emissivity can impact the simulated radiation budget and climate change in a discernible way, especially in high latitudes. Using a recently developed global emissivity database that covers both far-IR and mid-IR, we incorporated the LW surface spectral emissivity into the radiation scheme of the CESM. Effort has been made to ensure a consistent treatment of surface upward LW broadband flux in both the land module and the atmospheric module of the CESM, an important aspect overlooked by the previous study. Then we assess impacts of the inclusion of surface spectral emissivity on simulated mean-state climate and climate changes by carrying out two sets of parallel runs. The first pair of experiments uses the standard slab-ocean CESM v1.1.1 to run two experiments: one control run using forcings at year 2000 level and one sensitivity run abruptly doubling the CO2. The second pair of experiment setup is identical to the first one but using the CESM that we have modified (Surface emissivity is a prognostic variable in our second pair of experiments). The current climate simulation results show that the Sahara desert region in the modified CESM has a warmer surface temperature than in the standard CESM by 2-3K. Over the high-latitude regions, the modified CESM tends to have a colder surface temperature than the standard CESM by 1-2.5K. As a result, the climatological sea ice coverage in the modified CESM is 8% more than it in the standard CESM in both Polar Regions. All these differences are statistically significant. As for simulated climate change in response to a doubling of CO2, the Arctic region in the modified CESM warms consistently faster than in the standard CESM by 1-2K while the Antarctic region shows a non-uniform pattern of differences between two models. Differences in the changes of sea ice coverage between two models show a zonally-uniform dipole pattern over both polar oceans. The reasons for such differences and its linkage with the change of surface spectral emissivity are further explained.

  14. Ordering of the O-O stretching vibrational frequencies in ozone

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.; Lee, Timothy J.; Scheiner, Andrew C.; Schaefer, Henry F., III

    1989-01-01

    The ordering of nu1 and nu3 for O3 is incorrectly predicted by most theoretical methods, including some very high level methods. The first systematic electron correlation method based on one-reference configuration to solve this problem is the coupled cluster single and double excitation method. However, a relatively large basis set, triple zeta plus double polarization is required. Comparison with other theoretical methods is made.

  15. Multi-Particle Interferometry Based on Double Entangled States

    NASA Technical Reports Server (NTRS)

    Pittman, Todd B.; Shih, Y. H.; Strekalov, D. V.; Sergienko, A. V.; Rubin, M. H.

    1996-01-01

    A method for producing a 4-photon entangled state based on the use of two independent pair sources is discussed. Of particular interest is that each of the pair sources produces a two-photon state which is simultaneously entangled in both polarization and space-time variables. Performing certain measurements which exploit this double entanglement provides an opportunity for verifying the recent demonstration of nonlocality by Greenberger, Horne, and Zeilinger.

  16. Seasonal dependence of large-scale Birkeland currents

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.

    1981-01-01

    Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.

  17. A new measurement of electron transverse polarization in polarized nuclear β-decay

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Akiyama, T.; Hata, M.; Hirayama, Y.; Ikeda, M.; Ikeda, Y.; Ishii, T.; Kameda, D.; Mitsuoka, S.; Miyatake, H.; Nagae, D.; Nakaya, Y.; Ninomiya, K.; Nitta, M.; Ogawa, N.; Onishi, J.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.; Watanabe, Y. X.; Murata, J.

    2017-03-01

    The Mott polarimetry for T-violation (MTV) experiment tests time-reversal symmetry in polarized nuclear β-decay by measuring an electron’s transverse polarization as a form of angular asymmetry in Mott scattering using a thin metal foil. A Mott scattering analyzer system developed using a tracking detector to measure scattering angles offers better event selectivity than conventional counter experiments. In this paper, we describe a pilot experiment conducted at KEK-TRIAC using a prototype system with a polarized 8Li beam. The experiment confirmed the sound performance of our Mott analyzer system to measure T-violating triple correlation (R correlation), and therefore recommends its use in higher-precision experiments at the TRIUMF-ISAC.

  18. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization.

    PubMed

    He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang

    2015-08-01

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.

  19. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071

    2015-08-15

    High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less

  20. Asymmetry of bifurcated features in radio pulsar profiles

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.

    2012-03-01

    High-quality integrated radio profiles of some pulsars contain bifurcated, highly symmetric emission components (BECs). They are observed when our line of sight traverses through a split-fan shaped emission beam. It is shown that for oblique cuts through such a beam, the features appear asymmetric at nearly all frequencies, except for a single 'frequency of symmetry'νsym, at which both peaks in the BEC have the same height. Around νsym, the ratio of flux in the two peaks of a BEC evolves in a way resembling the multifrequency behaviour of J1012+5307. Because of the inherent asymmetry resulting from the oblique traverse of the sightline, each minimum in double notches can be modelled independently. Such a composed model reproduces the double notches of B1929+10 if the fitted function is the microscopic beam of curvature radiation in the orthogonal polarization mode. These results confirm our view that some of the double components in radio pulsar profiles directly reveal the microscopic nature of the emitted radiation beam as the microbeam of the curvature radiation polarized orthogonally to the trajectory of electrons.

  1. Float zone growth and spectroscopic properties of Yb:CaYAlO4 single crystal for ultra-short pulse lasers

    NASA Astrophysics Data System (ADS)

    Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu

    2018-06-01

    Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.

  2. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutheil, Yann

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS ismore » critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.« less

  3. Tunable double-clad ytterbium-doped fiber laser based on a double-pass Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Meng, Yichang; Zhang, Shumin; Wang, Xinzhan; Du, Juan; Li, Hongfei; Hao, Yanping; Li, Xingliang

    2012-03-01

    We have demonstrated an adjustable double-clad Yb 3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.

  4. Double Collins effect in e+e-→Λ Λ ¯ X and e+e-→Λ π X processes in a diquark spectator model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Yang, Yongliang; Lu, Zhun

    2018-06-01

    We study the Collins function H1⊥ of the Λ hyperon, which describes the fragmentation of a transversely polarized quark into an unpolarized Λ hyperon. We calculate H1⊥ for light quarks of the Λ hyperon, in the diquark spectator model with a Gaussian form factor for the hyperon-quark-diquark vertex. The model calculation includes contributions from both the scalar diquark and vector diquark spectators. Using the model result, we estimate the azimuthal asymmetry A12, which appears in the ratio of unlike-sign events to like-sign events contributed by double Collins effects, in the processes e+e-→Λ Λ ¯X and e+e-→Λ π X . The QCD evolution effects for the half kT moment of the Collins function and the unpolarized fragmentation function D1(z ) are also included. The results show that the asymmetries are sizable and measurable at the kinematical configurations of Belle and BABAR experiments. We also find that the evolution effects play an important role in the phenomenological analysis.

  5. Beam-target helicity asymmetry for γ → n → → π - p in the N * resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.; Peng, P.; Bass, C.

    In this paper, we report the first beam-target double-polarization asymmetries in themore » $$\\gamma + n(p) \\rightarrow \\pi^- + p(p)$$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $HD$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analysis techniques that show excellent agreement, and these have been used to deduce the $E$ polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to revised values for several $$\\gamma nN^*$$ resonance photo-couplings.« less

  6. Beam-Target Helicity Asymmetry for γ → n → → π - p in the N * Resonance Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.; Peng, P.; Bass, C.

    2017-06-01

    We report the first beam-target double-polarization asymmetries in the gamma+n(p)->pi(-)+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several gamma nN*more » resonance photocouplings.« less

  7. Beam-Target Helicity Asymmetry for γ[over →]n[over →]→π^{-}p in the N^{*} Resonance Region.

    PubMed

    Ho, D; Peng, P; Bass, C; Collins, P; D'Angelo, A; Deur, A; Fleming, J; Hanretty, C; Kageya, T; Khandaker, M; Klein, F J; Klempt, E; Laine, V; Lowry, M M; Lu, H; Nepali, C; Nikonov, V A; O'Connell, T; Sandorfi, A M; Sarantsev, A V; Schumacher, R A; Strakovsky, I I; Švarc, A; Walford, N K; Wei, X; Whisnant, C S; Workman, R L; Zonta, I; Adhikari, K P; Adikaram, D; Akbar, Z; Amaryan, M J; Anefalos Pereira, S; Avakian, H; Ball, J; Bashkanov, M; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A; Briscoe, W J; Burkert, V D; Carman, D S; Celentano, A; Charles, G; Chetry, T; Ciullo, G; Clark, L; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; Dashyan, N; De Sanctis, E; De Vita, R; Djalali, C; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Filippi, A; Fradi, A; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Glazier, D I; Gleason, C; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hakobyan, H; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Keller, D; Khachatryan, G; Kim, A; Kim, W; Klein, A; Kubarovsky, V; Kuleshov, S V; Lanza, L; Lenisa, P; Livingston, K; MacGregor, I J D; Markov, N; McKinnon, B; Mineeva, T; Mokeev, V; Montgomery, R A; Movsisyan, A; Munoz Camacho, C; Murdoch, G; Niccolai, S; Niculescu, G; Osipenko, M; Paolone, M; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pogorelko, O; Price, J W; Procureur, S; Protopopescu, D; Ripani, M; Riser, D; Ritchie, B G; Rizzo, A; Rosner, G; Sabatié, F; Salgado, C; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Strauch, S; Tian, Ye; Torayev, B; Ungaro, M; Voskanyan, H; Voutier, E; Watts, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W

    2017-06-16

    We report the first beam-target double-polarization asymmetries in the γ+n(p)→π^{-}+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several γnN^{*} resonance photocouplings.

  8. Beam-target helicity asymmetry for γ → n → → π - p in the N * resonance region

    DOE PAGES

    Ho, D.; Peng, P.; Bass, C.; ...

    2017-06-16

    In this paper, we report the first beam-target double-polarization asymmetries in themore » $$\\gamma + n(p) \\rightarrow \\pi^- + p(p)$$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $HD$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analysis techniques that show excellent agreement, and these have been used to deduce the $E$ polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to revised values for several $$\\gamma nN^*$$ resonance photo-couplings.« less

  9. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.

    PubMed

    Takahashi, R; Kono, K; Tarucha, S; Ono, K

    2011-07-08

    We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.

  10. Trehalose facilitates DNA melting: a single-molecule optical tweezers study.

    PubMed

    Bezrukavnikov, Sergey; Mashaghi, Alireza; van Wijk, Roeland J; Gu, Chan; Yang, Li Jiang; Gao, Yi Qin; Tans, Sander J

    2014-10-07

    Using optical tweezers, here we show that the overstretching transition force of double-stranded DNA (dsDNA) is lowered significantly by the addition of the disaccharide trehalose as well as certain polyol osmolytes. This effect is found to depend linearly on the logarithm of the trehalose concentration. We propose an entropic driving mechanism for the experimentally observed destabilization of dsDNA that is rooted in the higher affinity of the DNA bases for trehalose than for water, which promotes base exposure and DNA melting. Molecular dynamics simulation reveals the direct interaction of trehalose with nucleobases. Experiments with other osmolytes confirm that the extent of dsDNA destabilization is governed by the ratio between polar and apolar fractions of an osmolyte.

  11. Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Berman, B. L.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bennhold, C.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; de Sanctis, E.; Deur, A.; Devita, R.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fix, A.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Roberts, W.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2005-10-01

    Beam-helicity asymmetries for the two-pion-photoproduction reaction γ→p→pπ+π- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not provide an adequate description for the behavior of this new observable.

  12. Interfaces in polymer nanocomposites – An NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of themore » polymer dynamics in the melt under shear flow.« less

  13. Recent Results of TMD Measurements from Jefferson Lab Hall A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiaodong

    2013-10-01

    This slide-show presents results on transverse momentum distributions. The presentation covers: target single-spin asymmetry (SSA) (in parity conserving interactions); • Results of JLab Hall A polarized {sup 3}He target TMD measurement; • Semi-­inclusive deep-inelastic scattering channels (E06-010); • Target single-spin asymmetry A{sub UT}, Collins and Sivers SSA on neutron; • Double-spin asymmetry A{sub LT}, extract TMD g{sub 1T} on neutron; • Inclusive channels SSA (E06-010, E05-015, E07-013) • Target SSA: inclusive {sup 3}He(e,e’) quasi-elastic scattering; • Target SSA: inclusive {sup 3}He(e,e’) deep inelastic-elastic scattering; • New SIDIS experiments planned in Hall-A for JLab-12 GeV.

  14. Magnetic Ground State Stabilized by Three-Site Interactions: Fe /Rh (111 )

    NASA Astrophysics Data System (ADS)

    Krönlein, Andreas; Schmitt, Martin; Hoffmann, Markus; Kemmer, Jeannette; Seubert, Nicolai; Vogt, Matthias; Küspert, Julia; Böhme, Markus; Alonazi, Bandar; Kügel, Jens; Albrithen, Hamad A.; Bode, Matthias; Bihlmayer, Gustav; Blügel, Stefan

    2018-05-01

    We report the direct observation of a theoretically predicted magnetic ground state in a monolayer Fe on Rh(111), which is referred to as an up-up-down-down (↑↑↓↓) double-row-wise antiferromagnetic spin structure, using spin-polarized scanning tunneling microscopy. This exotic phase, which exists in three orientational domains, is revealed by experiments with magnetic probe tips performed in external magnetic fields. It is shown that a hitherto unconsidered four-spin-three-site beyond-Heisenberg interaction distinctly contributes to the spin coupling of atoms with S ≥1 spins. The observation of the ↑↑↓↓ order substantiates the presence of higher-order, in particular, three-site interactions, in thin magnetic films of itinerant magnets.

  15. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  16. VLBI observations at 2.3 GHz of the compact galaxy 1934-638

    NASA Technical Reports Server (NTRS)

    Tzioumis, Anastasios K.; Jauncey, David L.; Preston, Robert A.; Meier, David L.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Nicolson, George D.; Niell, Arthur E.; Wehrle, Ann E.

    1989-01-01

    VLBI observations of the strong radio source 1934-638 show it to be a binary with a component separation of 42.0 + or - 0.2 mas, a position angle of 90.5 + or - 1 deg, and component sizes of about 2.5 mas. The results imply the presence of an additional elongated component aligned with, and between, the compact double components. The sources's almost equal compact double structure, peaked spectrum, low variability, small polarization, and particle-dominated radio lobes suggests that it belongs to the class of symmetric compact double sources identified by Phillips and Mutel (1980, 1981, 1982).

  17. Measurement of the absolute neutron beam polarization from a supermirror polarizer and the absolute efficiency of a neutron spin rotator for the NPDGamma experiment using a polarized 3He neutron spin-filter

    NASA Astrophysics Data System (ADS)

    Musgrave, M. M.; Baeßler, S.; Balascuta, S.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Chupp, T. E.; Cianciolo, V.; Crawford, C.; Craycraft, K.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Grammer, K.; Greene, G. L.; Hamblen, J.; Hayes, C.; Huffman, P.; Jiang, C.; Kucuker, S.; McCrea, M.; Mueller, P. E.; Penttilä, S. I.; Snow, W. M.; Tang, E.; Tang, Z.; Tong, X.; Wilburn, W. S.

    2018-07-01

    Accurately measuring the neutron beam polarization of a high flux, large area neutron beam is necessary for many neutron physics experiments. The Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) is a pulsed neutron beam that was polarized with a supermirror polarizer for the NPDGamma experiment. The polarized neutron beam had a flux of ∼ 109 neutrons per second per cm2 and a cross sectional area of 10 × 12 cm2. The polarization of this neutron beam and the efficiency of a RF neutron spin rotator installed downstream on this beam were measured by neutron transmission through a polarized 3He neutron spin-filter. The pulsed nature of the SNS enabled us to employ an absolute measurement technique for both quantities which does not depend on accurate knowledge of the phase space of the neutron beam or the 3He polarization in the spin filter and is therefore of interest for any experiments on slow neutron beams from pulsed neutron sources which require knowledge of the absolute value of the neutron polarization. The polarization and spin-reversal efficiency measured in this work were done for the NPDGamma experiment, which measures the parity violating γ-ray angular distribution asymmetry with respect to the neutron spin direction in the capture of polarized neutrons on protons. The experimental technique, results, systematic effects, and applications to neutron capture targets are discussed.

  18. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi

    2015-03-01

    Compared to the weak spin-orbit-interaction (SOI) in graphene, layered transitionmetal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way to extend functionalities of novel spintronics and valleytronics devices. Such a valley polarization achieved via valley-selective circular dichroism has been predicted theoretically and demonstrated with optical experiments in MX2 systems. Despite the exciting progresses, the generation of a valley/spin current by valley polarization in MX2 remains elusive and a great challenge. A spin/valley current in MX2 compounds caused by such a valley polarization has never been observed, nor its electric-field control. In this talk, we demonstrated, within an electric-double-layer transistor based on WSe2, the manipulation of a spin-coupled valley photocurrent whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further greatly modulated with an external electric field. Such room temperature generation and electric control of valley/spin photocurrent provides a new property of electrons in MX2 systems, thereby enabling new degrees of control for quantum-confined spintronics devices. (In collaboration with S.C. Zhang, Y.L. Chen, Z.X. Shen, B Lian, H.J. Zhang, G Xu, Y Xu, B Zhou, X.Q. Wang, B Shen X.F. Fang) Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  19. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  20. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    PubMed

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  1. Strain-induced changes of the electronic properties of B -site ordered double-perovskite Sr2CoIrO6 thin films

    NASA Astrophysics Data System (ADS)

    Esser, S.; Chang, C. F.; Kuo, C.-Y.; Merten, S.; Roddatis, V.; Ha, T. D.; Jesche, A.; Moshnyaga, V.; Lin, H.-J.; Tanaka, A.; Chen, C. T.; Tjeng, L. H.; Gegenwart, P.

    2018-05-01

    B -site ordered thin films of double perovskite Sr2CoIrO6 were epitaxially grown by a metalorganic aerosol deposition technique on various substrates, actuating different strain states. X-ray diffraction, transmission electron microscopy, and polarized far-field Raman spectroscopy confirm the strained epitaxial growth on all used substrates. Polarization-dependent Co L2 ,3 x-ray absorption spectroscopy reveals a change of the magnetic easy axis of the antiferromagnetically ordered (high-spin) Co3 + sublattice within the strain series. By reversing the applied strain direction from tensile to compressive, the easy axis changes abruptly from in-plane to out-of-plane orientation. The low-temperature magnetoresistance changes its sign respectively and is described by a combination of weak antilocalization and anisotropic magnetoresistance effects.

  2. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  3. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    PubMed

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  4. Cavity-photon contribution to the effective interaction of electrons in parallel quantum dots

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Sitek, Anna; Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei

    2016-05-01

    A single cavity photon mode is expected to modify the Coulomb interaction of an electron system in the cavity. Here we investigate this phenomena in a parallel double quantum dot system. We explore properties of the closed system and the system after it has been opened up for electron transport. We show how results for both cases support the idea that the effective electron-electron interaction becomes more repulsive in the presence of a cavity photon field. This can be understood in terms of the cavity photons dressing the polarization terms in the effective mutual electron interaction leading to nontrivial delocalization or polarization of the charge in the double parallel dot potential. In addition, we find that the effective repulsion of the electrons can be reduced by quadrupolar collective oscillations excited by an external classical dipole electric field.

  5. Experimental testing of scattering polarization models

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Casini, Roberto; Tomczyk, Steven; Landi Degl'Innocenti, Egidio; Marsell, Brandan

    2018-06-01

    We realized a laboratory experiment to study the polarization of the Na I doublet at 589.3 nm, in the presence of a magnetic field. The purpose of the experiment is to test the theory of scattering polarization for illumination conditions typical of astrophysical plasmas. This work was stimulated by solar observations of the Na I doublet that have proven particularly challenging to reproduce with current models of polarized line formation, even casting doubts on our very understanding of the physics of scattering polarization on the Sun. The experiment has confirmed the fundamental correctness of the current theory, and demonstrated that the "enigmatic'' polarization of those observations is exclusively of solar origin.

  6. Remote double resonance coupling of radar energy to ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1971-01-01

    Experimental results indicate that low frequency modulation of a high power radar beam, tuned to one of the critical frequencies of the ionosphere, may produce field-aligned density irregularities when the modulation frequency matches an ionospheric eigenfrequency. By choosing the radar carrier frequency and polarization, a number of interaction layers were selected. The variety of possible excitations shows that the double resonance technique may be adaptable to a number of different objectives.

  7. Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Kalshoven, James E., Jr.; Tierney, Michael R., Jr.; Daughtry, Craig S. T.; McMurtrey, James E., III

    1995-05-01

    Polarized laser remote-sensing measurements that correlate the yield, the normalized difference vegetation index, and the leaf area index with the depolarized backscattered radiation from corn plots grown with eight different nitrogen fertilization dosages are presented. A polarized Nd:YAG laser emitting at 1064 and 532 nm is used. Depolarization increased significantly with increasing fertilization at the infrared wavelength, and there was a decrease in the depolarization at the green wavelength. The depolarization spectral difference index, defined as the absolute difference in the depolarization at the two wavelengths, is introduced as a parameter that is an indicator of the condition of the internal leaf structure.

  8. A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers

    NASA Astrophysics Data System (ADS)

    Yang, Peiling; Ma, Jianxin; Zhang, Junyi

    2018-06-01

    In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.

  9. Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays.

    PubMed

    Scott, Matthew; Kaler, Karan V. I. S.; Paul, Reginald

    2001-06-15

    Strong frequency-dependent fluid flow has been observed near the surface of microelectrode arrays. Modeling this phenomenon has proven to be difficult, with existing theories unable to account for the qualitative trend observed in the frequency spectra of this flow. Using recent electrode polarization results, a more comprehensive model of the double layer on the electrode surface is used to obtain good theoretical agreement with experimental data. Copyright 2001 Academic Press.

  10. A remarkable enhancement of selectivity towards versatile analytes by a strategically integrated H-bonding site containing phase.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka

    2015-09-28

    A double β-alanylated L-glutamide-derived organic phase has been newly designed and synthesized in such a way that integrated H-bonding (interaction) sites make it very suitable for the separation of versatile analytes, including shape-constrained isomers, and nonpolar, polar and basic compounds. The β-alanine residues introduced into two long-chain alkyl group moieties provide ordered polar groups through H-bonding among the amide groups.

  11. First measurement of the polarization observable E in the p → (γ → ,π+) n reaction up to 2.25 GeV

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Briscoe, W. J.; Döring, M.; Klempt, E.; Nikonov, V. A.; Pasyuk, E.; Rönchen, D.; Sarantsev, A. V.; Strakovsky, I.; Workman, R.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Anefalos Pereira, S.; Anisovich, A. V.; Badui, R. A.; Ball, J.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Benmouna, N.; Biselli, A. S.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; O'Rielly, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seely, M. L.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stoler, P.; Stepanyan, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Tucker, R.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-01

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γ → p → →π+ n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Jülich-Bonn, and SAID groups.

  12. Repolarization of hepatocytes in culture.

    PubMed

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  13. First measurement of the polarization observable E in the p →(y →π +)n reaction up to 2.25 GeV

    DOE PAGES

    Strauch, Steffen

    2015-08-28

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E , for the reaction y →p →→π +n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have beenmore » included in new multipole analyses resulting in updated nucleon resonance parameters. Lastly, we report updated fits from the Bonn–Gatchina, Jülich–Bonn, and SAID groups.« less

  14. Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-10-01

    In core-collapse supernovae, the ν{sub e} and ν-bar {sub e} species may experience collective flavor swaps to non-electron species ν{sub x}, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l{sub e}, l{sub ē}, l{sub x}) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l{sub e}+l{sub ē}+4l{sub x} = 1 in a ternary diagram, which is exploredmore » via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.« less

  15. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entiremore » frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.« less

  16. Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2000-01-01

    We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.

  17. Polarization Facilities at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eversheim, Dieter

    2008-02-06

    The cooler synchrotron COSY at the Forschungszentrum Juelich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  18. Polarization Facilities at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, Dieter

    2008-02-01

    The cooler synchrotron COSY at the Forschungszentrum Jülich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  19. Low-level sensory plasticity during task-irrelevant perceptual learning: Evidence from conventional and double training procedures

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen; Seitz, Aaron R.

    2009-01-01

    Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are controversial, since such learning may also be attributed to plasticity in later stages of sensory processing or in readout from sensory to decision stages, or to changes in high-level central processing. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show direction-selective learning for the designated contrast polarity that does not transfer to the opposite contrast polarity. This polarity specificity was replicated in a double training procedure in which subjects were additionally exposed to the opposite polarity. Taken together, these results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells. Finally, a theoretical explanation is provided to understand the data. PMID:19800358

  20. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    PubMed

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  1. Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties

    NASA Astrophysics Data System (ADS)

    Sekkat, Zouheir; Knoll, Wolfgang

    1995-10-01

    It was shown recently that the application of a dc field across a polymer film containing polar azo dye chromophores at a temperature far below that of its glass transition leads to an appreciable polar order when the azo dyes undergo cis \\left-right-double-arrow trans isomerization. We present a detailed theoretical study of this phenomenon based on the enhanced mobility of the azo chromophores during the isomerization process. The equations representing this phenomenological theory are solved by recurrence relations of Legendre polynomials, and both the steady state and the dynamics are investigated. Analytical expressions are derived for the photoinduced polar order and its related anisotropy for both cis and trans molecular distributions.

  2. Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices

    PubMed Central

    Yang, Ching-Han; Chen, Yuan-Di; Wu, Shing-Trong; Fuh, Andy Ying-Guey

    2016-01-01

    We present a simple and flexible method to generate various vectorial vortex beams (VVBs) with a Pancharatnam phase based on the scheme of double reflections from a single liquid crystal spatial light modulator (SLM). In this configuration, VVBs are constructed by the superposition of two orthogonally polarized orbital angular momentum (OAM) eigenstates. To verify the optical properties of the generated beams, Stokes polarimetry is developed to measure the states of polarization (SOP) over the transverse plane, while a Shack–Hartmann wavefront sensor is used to measure the OAM charge of beams. It is shown that both the simulated and the experimental results are in good qualitative agreement. In addition, polarization patterns and OAM charges of generated beams can be controlled independently using the proposed method. PMID:27526858

  3. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Guo, Zhongyi; Tian, Lihua; Shen, Fei; Zhou, Hongping; Guo, Kai

    2017-06-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the phase, amplitude and polarization of transmitted or reflected electromagnetic waves. Here, we propose an all-dielectric metasurface working in mid-infrared (mid-IR) range, in which the transmitted phase can almost span over the entire 2π range for both X-polarization and Y-polarization simultaneously just by tailoring the geometric sizes of the silicon (Si) nanobricks, while the transmitted amplitude can be maintained at high values without significant variations. We have successfully realized the beam deflector, beam splitter and the focusing lenses based on the designed metasurfaces at a wavelength of 4.5 µm. Our work paves the way toward establishing low-loss dielectric-based mid-IR devices and extends the modulating dimension of the metasurfaces.

  4. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  5. Estimating Terra MODIS Polarization Effect Using Ocean Data

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.; Brinkmann, Jake; Wu, Aisheng; Xiong, Jack

    2016-01-01

    Terra MODIS has been known since pre-launch to have polarization sensitivity, particularly in shortest-wavelength bands 8 and 9. On-orbit reflectance trending of pseudo-invariant sites show a variation in reflectance as a function of band and scan mirror angle of incidence consistent with time-dependent polarization effects from the rotating double-sided scan mirror. The MODIS Characterization Support Team [MCST] estimates the Mueller matrix trending from this variation as observed from a single desert site, but this effect is not included in Collection 6 [C6] calibration. Here we extend the MCSTs current polarization sensitivity monitoring to two ocean sites distributed over latitude to helpestimate the uncertainties in the derived Mueller matrix. The Mueller matrix elements derived for polarization-sensitive Band 8 for a given site are found to be fairly insensitive to surface brdf modeling. The site-to-site variation is a measure of the uncertainty in the Mueller estimation.Results for band 8 show that the polarization correction reduces mirror-side striping by up to 50% and reduces the instrument polarization effect on reflectance time series of an ocean target.

  6. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    NASA Astrophysics Data System (ADS)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  7. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  8. Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure

    DTIC Science & Technology

    2014-07-14

    second uses the linear-response theory more familiar to people working in the �eld of condensed-matter physics. We have introduced a quasiparticle ...picture and found that in this picture the bare EIT model in Fig. 2 (a) can be compared to a double EIT system shown in Fig. 2 (b). The quasiparticle ...energy levels consists of a particle (with positive quasiparticle energy ) and a hole (with negative quasiparticle energy) branch. The double EIT

  9. Measurement of target and double-spin asymmetries for the e ⃗p ⃗→e π+(n ) reaction in the nucleon resonance region at low Q2

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J.-P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel e ⃗p ⃗→e π+(n ) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c ) 2 . The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6∘. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  10. A double-arm Møller Polarimeter for Jefferson Lab's Hall B

    NASA Astrophysics Data System (ADS)

    Grún, E.; Krúger, H.; Dermott, S.; Fechtig, H.; Graps, A. L.; Zook, H. A.; Gustafson, B. A.; Hamilton, D. P.; Hanner, M. S.; Heck, A.; Horányi, M.; Kissel, J.; Lindbad, B. A.; Linkert, D.; Linkert, G.; Mann, I.; Mcdonnell, J. A. M.; Morfill, G. E.; Polanskey, C.; Schwehm, G.; Srama, R.

    1998-10-01

    We have constructed and commissioned a double-arm Møller polarimeter for the Hall B beamline at the Thomas Jefferson National Accelerator Facility. The polarimeter measures the longitudinal polarization of the 0.8-4.0 GeV electron beam as it enters the experimental hall. The primary components of the apparatus are a target chamber, a pair of quadrupole magnets, and a pair of lead/scintillating-fiber detectors. The target chamber contains two 20 μm-thick permendur foils tilted at ± 20^o with respect to the beam axis. A target polarization of approximately 8% is produced along the beam direction by a 90 G (nominal) magnetic field generated by a pair of Helmholtz coils. The scattered Møller-electron pairs are directed toward the detectors by the quadrupoles. The quadrupoles are are individually tuned--depending on the beam energy--to center the peak of the Møller asymmetry (θ_c.m.=90^o) onto the fixed detectors. The real-to-accidental coincident-detection rate is better than 200:1. The beam polarization can be measured to a 3% relative statistical precision in less than 30 minutes with a relative systematic uncertainty of less than 5%.

  11. Ferroelectric and structural instability in double perovskites Me{sup 1+}Bi{sup 3+}Me{sup 3+}Nb{sup 5+}O{sub 6} (Me{sup 1+} = Na, K, Rb; Me{sup 3+} = Sc, Ga, In, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinenko, V. I., E-mail: zvi@iph.krasn.ru; Zamkova, N. G.; Zhandun, V. S.

    2012-06-15

    Within the Gordon-Kim generalized model with regard to the polarizabilities of ions, the lattice constants, the high-frequency permittivity, the Born dynamic charges, and the vibration constants of the crystal lattice are calculated for cation-ordered double perovskites Me{sup 1+}Bi{sup 3+}Me{sup 3+}Nb{sup 5+}O{sub 6}. The vibration spectra of all the compounds exhibit two types of instabilities: instability associated with the rotation of the oxygen octahedron and ferroelectric instability. Various combinations of distortions with respect to the rotation mode yield five energetically most favorable distorted phases. The symmetry and the energy characteristics of these phases are discussed. In four of the five phases,more » the distortions associated with the oxygen octahedron rotation lead to polar phases, thus allowing one to speak of improper ferroelectricity in these compounds. One phase turns out to be nonpolar; however, it contains unstable polar modes such that a displacement along the eigenvectors of these modes gives rise to polarization in the crystal.« less

  12. Measurement of target and double-spin asymmetries for the e → p → → e π + ( n ) reaction in the nucleon resonance region at low Q 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Adhikari, K. P.; Bosted, P.

    We repormore » t measurements of target- and double-spin asymmetries for the exclusive channel e → p → → e π + ( n ) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q 2 range from 0.0065 to 0.35 (GeV/c) 2. The Q 2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.« less

  13. Measurement of target and double-spin asymmetries for the $$\\vec e\\vec p\\to e\\pi^+ (n)$$ reaction in the nucleon resonance region at low $Q^2$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Adhikari, K. P.; Bosted, P.

    We report measurements of target- and double-spin asymmetries for the exclusive channelmore » $$\\vec e\\vec p\\to e\\pi^+ (n)$$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$$_3$$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $$6^\\circ$$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.« less

  14. Measurement of target and double-spin asymmetries for the $$\\vec e\\vec p\\to e\\pi^+ (n)$$ reaction in the nucleon resonance region at low $Q^2$

    DOE PAGES

    Zheng, X.; Adhikari, K. P.; Bosted, P.; ...

    2016-10-19

    We report measurements of target- and double-spin asymmetries for the exclusive channelmore » $$\\vec e\\vec p\\to e\\pi^+ (n)$$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$$_3$$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $$6^\\circ$$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.« less

  15. Measurement of the doubly-polarized He 3 → ( γ → , n ) p p reaction at 16.5 MeV and its implications for the GDH sum rule

    DOE PAGES

    Laskaris, G.; Yan, X.; Mueller, J. M.; ...

    2015-10-01

    We report new measurements of the double-polarized photodisintegration of 3He at an incident photon energy of 16.5 MeV, carried out at the High Intensity γ-ray Source (HIγS) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three-body channel to the Gerasimov–Drell–Hearn (GDH) integrand were extracted and compared with the state-of-the-art three-body calculations. The calculations, which include the Coulomb interaction and are in good agreement with the results of previous measurements at 12.8 and 14.7 MeV, deviate from the new cross section results at 16.5 MeV. Lastly, the GDH integrand was foundmore » to be about one standard deviation larger than the maximum value predicted by the theories.« less

  16. Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at √s = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-02-02

    We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less

  17. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  18. Charged-pion cross sections and double-helicity asymmetries in polarized p +p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-02-01

    We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.

  19. Information content of the space-frequency filtering of blood plasma layers laser images in the diagnosis of pathological changes

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Bodnar, G. B.; Kushnerick, L. Ya.; Savich, V. O.

    2013-12-01

    The bases of method of the space-frequency of the filtering phase allocation of blood plasma pellicle are given here. The model of the optical-anisotropic properties of the albumen chain of blood plasma pellicle with regard to linear and circular double refraction of albumen and globulin crystals is proposed. Comparative researches of the effectiveness of methods of the direct polarized mapping of the azimuth images of blood plasma pcllicle layers and space-frequency polarimetry of the laser radiation transformed by divaricate and holelikc optical-anisotropic chains of blood plasma pellicles were held. On the basis of the complex statistic, correlative and fracta.1 analysis of the filtered frcquencydimensional polarizing azimuth maps of the blood plasma pellicles structure a set of criteria of the change of the double refraction of the albumen chains caused by the prostate cancer was traced and proved.

  20. Double Parton Fragmentation Function and its Evolution in Quarkonium Production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo

    2014-01-01

    We summarize the results of a recent study on a new perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum pT at collider energies. Such a new factorization formalism includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the mQ2/p_T^2 expansion for heavy quark mass mQ. For the NLP contribution, the so-called double parton fragmentation functions are involved, whose evolution equations have been derived. We estimate fragmentation functions in the non-relativistic QCD formalism, and found that their contribution reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization, in contrast to the single parton fragmentation function. This might shed some light on the heavy quarkonium polarization puzzle.

  1. Synthesis of Single and Double Dibenzohelicenes by Rhodium-Catalyzed Intramolecular [2+2+2] and [2+1+2+1] Cycloaddition.

    PubMed

    Yamano, Ryota; Shibata, Yu; Tanaka, Ken

    2018-04-25

    Dibenzo[7]helicenes were synthesized with up to 99 % ee by rhodium(I)/binap-catalyzed enantioselective intramolecular [2+2+2] cycloaddition of 2-phenylnaphthalene-linked triynes. Additionally, [2+1+2+1] cycloaddition products, that is, twisted anthracenes, were also synthesized by using difluorphos as ligand. Although these compounds are not configurationally stable at elevated temperature, their Scholl reactions afforded configurationally stable double dibenzo[6]helicenes. The thus-obtained dibenzo[7]helicene exhibited good circularly polarized luminescence property and the double dibenzo[6]helicene showed high fluorescence quantum yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures.

    PubMed

    Shi, Xuesong; Jiang, Lan; Li, Xin; Wang, Sumei; Yuan, Yanping; Lu, Yongfeng

    2013-10-01

    This study proposes a method for adjusting subwavelength ripple periods and the corresponding double-grating structures formed on fused silica by designing femtosecond laser pulse trains based on localized transient electron density control. Four near-constant period ranges of 190-490 nm of ripples perpendicular to the polarization are obtained by designing pulse trains to excite and modulate the surface plasmon waves. In the period range of 350-490 nm, the double-grating structure is fabricated in one step, which is probably attributable to the grating-assisted enhanced energy deposition and subsequent thermal effects.

  3. Use of Linear and Circular Polarization: The Secret LCD Screen and 3D Cinema

    NASA Astrophysics Data System (ADS)

    Richtberg, Stefan; Girwidz, Raimund

    2017-10-01

    References to everyday life are important for teaching physics. Discussing polarization phenomena, liquid crystal displays (LCDs) and 3D cinemas provide such references. In this paper we describe experiments to support students' understanding of linearly polarized light as well as the phenomenon of inverted colors using a secret LCD screen. Moreover we explain how 3D glasses work (when using polarizers) and introduce some experiments to point out why 3D cinemas use circularly polarized light instead of linearly polarized light. When using linearly polarized light, viewers must keep their head level all the time. Using circularly polarized light, this is not necessary.

  4. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons, which is particularly useful for identifying furan and arene rings. The Cdbnd O carbons, whose chemical shifts vary strongly (between 212 and 165 ppm) and systematically depend on their two bonding partners, show particularly informative cross peaks, given that one bonding partner is defined by the other frequency coordinate of the cross peak. The new techniques and the information content of the resulting spectra are validated on sulfuric-acid treated low-temperature carbon materials and on products of the Maillard reaction. The crucial need for spectral editing for correct peak assignment is demonstrated in an example.

  5. Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina.

    PubMed

    Young, S R; Martin, G R

    1984-01-01

    A wave optical model was used to analyse the scattering properties of avian retinal oil droplets. Computations for the near field region showed that oil droplets perform significant light collection in cone photoreceptors and so enhance outer segment photon capture rates. Scattering by the oil droplet of the principal cone of a double cone pair, combined with accessory cone dichroic absorption under conditions of transverse illumination, may mediate avian polarization sensitivity.

  6. Surface-Finish Measurement with Interference Microscopes,

    DTIC Science & Technology

    1977-02-01

    Microscope 17 Multiple-Beam Interference Microscope .. 25 Fringes of Equal Chromatic Order 27 Nomarski Polarization-Contrast Technique 33...characteristics of each instrument: the double and multiple-beam interferometer, the FECO fringe interferometer, and the Nomarski polarization contrast...328X Beam Reichert 8X 0.15 2.22 87 33X Nomarski 16X 0.25 1.33 52 55X 203X Technique 32X 0.40 0.83 33 87X 395X 45 X 0.65 0.51 20 142X 567 X 80X

  7. PolarTREC-Teachers and Researchers Exploring and Collaborating: Bringing Polar Research to the Classroom

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program that pairs K-12 teachers with researchers to improve science education through authentic polar research experience. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wider range of research activities in the Arctic and Antarctic. PolarTREC uses a Teacher Research Experience (TRE) model to foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. With the help of their host researcher and the research team, teachers will develop the experience and tools necessary to teach science through scientific inquiry and investigation based on real-world experiences. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and ongoing teacher/researcher networks. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600. The PolarTREC website will be accessible in 2007 through the ARCUS web site at www.arcus.org.

  8. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  9. Theoretical investigations on a class of double-focus planar lens on the anisotropic material

    NASA Astrophysics Data System (ADS)

    Bozorgi, Mahdieh; Atlasbaf, Zahra

    2017-05-01

    We study a double-focus lens constituted of V-shaped plasmonic nano-antennas (VSPNAs) on the anisotropic TiO2 thin film. The phase and amplitude variations of cross-polarized scattered wave from a unit cell are computed by the developed fast Method of Moments (MoM) in which the dyadic Green's function is evaluated with the transmission line model in the spectral domain. Using the calculated phase and amplitude diagrams, a double-focus lens on the anisotropic thin film is designed in 2 μm. To validate the numerical results, the designed lens is analysed using a full-wave EM-solver. The obtained results show a tunable asymmetric behavior in the focusing intensity of the focal spots for different incident polarizations. It is shown that changing the thickness of anisotropic thin film leads to the changing in such an asymmetric behavior and also the intensity ratio of two focal spots. In addition, the lens performance is examined in the broadband wavelength range from 1.76 to 2.86 μm. It is achieved that the increasing the wavelength leads to decreasing the focal distances of the designed lens and increasing its numerical aperture (NA).

  10. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains

    NASA Astrophysics Data System (ADS)

    Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong

    2016-04-01

    In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.

  11. Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi

    2017-12-01

    Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.

  12. Frequency Variation of the Polarimetric Scattering Mechanisms of Forests and its Consequences on Biomass Estimation using InSAR

    NASA Astrophysics Data System (ADS)

    Thirion-Lefevre, L.; Guinvarc'h, R.

    2016-12-01

    InSAR provides forest height estimation that can be used to evaluate the aboveground biomass (AGB). This estimation depends on frequency, polarization and forest structure. If the forest is dense, high frequency gives a good estimation of the AGB whatever the polarization. For other forests, the response is a mix of scattering mechanisms with different phase centers. For instance at P-band, more information can be obtained on the structure thanks to a deeper penetration. However, double bounce mechanism can be strong with its phase center closer to the ground. As a consequence, AGB is underestimated. Quantifying double bounce mechanism can therefore help to assess this estimation. This mechanism can actually be significantly lowered using the Double Brewster Effect (DBE). The latter occurs for a dielectric dihedral and results in a reduced VV component by more than 10 dB for a large angular bandwidth, typically from 20° to 70° (HH is not affected). It consists in two successive Brewster effects, one for the ground, one for the trunk. This DBE is then dependent on the frequency and on the properties of the scatterers (moisture, ground composition, etc). It gives a new light on the interpretation of InSAR height estimation, based on a phenomenology study. We will first quantify this effect on real data at P- and L-bands. We will then present the relation between DBE and the interferometric height using a coherent scattering electromagnetic model previously validated on forests at P- and L-bands. Actually, the interferometric coherence of a forest can be modeled for each polarization by a simple summation of the coherence of the main scattering mechanisms (single and double bounce scattering), weighted by their respective magnitude. Thus, at HH, the resulting height will be determined by the relative weight of the scattering mechanisms. At VV, if DBE is strong, then the interferometric height will depend on the single scattering only.

  13. Quantification of site-city interaction effects on the response of structure under double resonance condition

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; Narayan, Jay Prakash

    2018-01-01

    This paper presents the site-city interaction (SCI) effects on the response of closely spaced structures under double resonance condition (F_{02{{D}}}^{{S}} = F_{02{{D}}}^{{B}}), where F_{02{{D}}}^{{S}} and F_{02{{D}}}^{{B}} are fundamental frequencies of 2-D structure and 2-D basin, respectively. This paper also presents the development of empirical relations to predict the F_{02{{D}}}^{{B}} of elliptical and trapezoidal basins for both the polarizations of the S wave. Simulated results revealed that F_{02{{D}}}^{{B}} of a 2-D basin very much depends on its geometry, shape ratio and polarization of the incident S wave. The obtained spectral amplification factor (SAF) at F_{02{{D}}}^{{S}} of a standalone structure in a 2-D basin is greater than that in the 1-D case under double resonance condition. A considerable reduction of the fundamental resonance frequency of structures due to the SCI effects is observed for both the polarizations of the S wave. The SAFs at F_{02{{D}}}^{{S}} of closely spaced structures due to SCI effects is larger in the case of SV than SH waves. A splitting of the fundamental-mode frequency bandwidth along with the drastic decrease of SAF due to the SCI effects is obtained. The findings of this paper raise the question concerning the validity of the predicted response of standalone structure based on soil-structure interaction for the design of structures in a 2-D small basin, in an urban environment.

  14. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  15. Ab initio calculation of hyperfine splitting constants of molecules

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.

    1980-08-01

    Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.

  16. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  17. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    PubMed Central

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  18. Double-rod metasurface for mid-infrared polarization conversion

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Luo, Yi; Liu, Lu; He, De; Xu, Hongyan; Jing, Hongwei; Jiang, Yadong; Liu, Zhijun

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grants Nos. 61421002 and 61575036), the Chinese National 1000 Plan for Young Talents, and the Startup Funding from University of Electronic Science and Technology of China.

  19. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  20. Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.

    2011-10-01

    The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.

  1. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    PubMed

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  2. Meaningful questions: The acquisition of auxiliary inversion in a connectionist model of sentence production.

    PubMed

    Fitz, Hartmut; Chang, Franklin

    2017-09-01

    Nativist theories have argued that language involves syntactic principles which are unlearnable from the input children receive. A paradigm case of these innate principles is the structure dependence of auxiliary inversion in complex polar questions (Chomsky, 1968, 1975, 1980). Computational approaches have focused on the properties of the input in explaining how children acquire these questions. In contrast, we argue that messages are structured in a way that supports structure dependence in syntax. We demonstrate this approach within a connectionist model of sentence production (Chang, 2009) which learned to generate a range of complex polar questions from a structured message without positive exemplars in the input. The model also generated different types of error in development that were similar in magnitude to those in children (e.g., auxiliary doubling, Ambridge, Rowland, & Pine, 2008; Crain & Nakayama, 1987). Through model comparisons we trace how meaning constraints and linguistic experience interact during the acquisition of auxiliary inversion. Our results suggest that auxiliary inversion rules in English can be acquired without innate syntactic principles, as long as it is assumed that speakers who ask complex questions express messages that are structured into multiple propositions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Precision measurement of the neutron twist-3 matrix element d(2)(n): probing color forces.

    PubMed

    Posik, M; Flay, D; Parno, D S; Allada, K; Armstrong, W; Averett, T; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J-P; Choi, S; Chudakov, E; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; Deng, X; Deur, A; Dutta, C; El Fassi, L; Franklin, G B; Friend, M; Gao, H; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Guo, L; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Hyde, C; Ibrahim, H F; Jiang, X; Jin, G; Katich, J; Kelleher, A; Kolarkar, A; Korsch, W; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Long, E; Lukhanin, A; Mamyan, V; McNulty, D; Meziani, Z-E; Michaels, R; Mihovilovič, M; Moffit, B; Muangma, N; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Nuruzzaman; Oh, Y; Peng, J C; Qian, X; Qiang, Y; Rakhman, A; Riordan, S; Saha, A; Sawatzky, B; Shabestari, M H; Shahinyan, A; Širca, S; Solvignon, P; Subedi, R; Sulkosky, V; Tobias, W A; Troth, W; Wang, D; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y-W; Zhao, B; Zheng, X

    2014-07-11

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x  (0.25≤x≤0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized (3)He target. In this dedicated experiment, the spin structure function g(2)((3)He) was determined with precision at large x, and the neutron twist-3 matrix element d(2)(n) was measured at ⟨Q(2)⟩ of 3.21 and 4.32  GeV(2)/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ⟨Q(2)⟩=5  GeV(2)/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30  MeV/fm in magnitude.

  4. Investigation of the CH3Cl + CN- reaction in water: Multilevel quantum mechanics/molecular mechanics study

    NASA Astrophysics Data System (ADS)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-01

    The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  5. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  6. Enhanced photovoltage on the surface of topological insulator via optical aging

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomoki; Ishida, Yukiaki; Sumida, Kazuki; Chen, Jiahua; Kokh, Konstantin A.; Tereshchenko, Oleg E.; Shin, Shik; Kimura, Akio

    2018-05-01

    The efficient generation of spin-polarized current is one of the keys to realizing spintronic devices with a low power consumption. Topological insulators are strong candidates for this purpose. A surface photovoltaic effect can be utilized on the surface of a topological insulator, where a surface spin-polarized current can flow upon illumination. Here, we used time- and angle-resolved photoelectron spectroscopy on the surface of Bi2Te3 to demonstrate that the magnitude of the surface photovoltage is almost doubled in optically aged samples, i.e., samples whose surface has been exposed to intense infrared light illumination. Our findings pave the way for optical control of the spin-polarized current by utilizing topological insulators.

  7. Exogenous attentional capture by subliminal abrupt-onset cues: evidence from contrast-polarity independent cueing effects.

    PubMed

    Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2013-08-01

    In the present study, we tested whether subliminal abrupt-onset cues capture attention in a bottom-up or top-down controlled manner. For our tests, we varied the searched-for target-contrast polarity (i.e., dark or light targets against a gray background) over four experiments. In line with the bottom-up hypothesis, our results indicate that subliminal-onset cues capture attention independently of the searched-for target-contrast polarity (Experiment 1), and this effect is not stronger for targets that matched the searched-for target-contrast polarity (Experiment 2). In fact, even to-be-ignored cues associated with a no-go response captured attention in a salience-driven way (Experiment 3). For supraliminal cues, we found attentional capture only by cues with a matching contrast polarity, reflecting contingent capture (Experiment 4). The results point toward a specific role of subliminal abrupt onsets for attentional capture. 2013 APA, all rights reserved

  8. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity ofmore » these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.« less

  9. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  10. Tordo 1 polar cusp barium plasma injection experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wescott, E.M.; Stenbaek-Nielsen, H.C.; Davis, T.N.

    1978-04-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched from Cape Parry, Northwest Territories, Canada, into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. One experiment, Tordo 1, took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to B moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min untilmore » the barium flux tubes encountered large E fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.« less

  11. Analysis of polarization characteristics of plant canopies using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sid'ko, A. F.; Botvich, I. Yu.; Pisman, T. I.; Shevyrnogov, A. P.

    2014-09-01

    The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10-18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (Rmax and Rmin), polarized component of the reflectance factor (Rq), and the degree of polarization (Р). Wheat, corn, and grass canopies have higher Rmax and Rmin values than forest plants. The Rq and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data.

  12. Expect the unexpected: A look at teacher-researcher partnerships over the long-term

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.; Larson, A.

    2016-02-01

    For over ten years, the Arctic Research Consortium of the United States (ARCUS) has developed and implemented PolarTREC-Teachers and Researchers Exploring and Collaborating (PolarTREC). This unique program has brought K-12 educators and polar researchers together through an innovative teacher research experience model. Utilizing field-based experiences in the polar regions, PolarTREC provide teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry they need to promote authentic scientific research in their classroom. PolarTREC has the potential to transform the nature of STEM education. In this presentation, we will share how the PolarTREC model has led to teachers and researchers developing positive, professional relationships with the potential to grow into long-term partnerships. And, how these partnerships have led to both unexpected and amazing outcomes.

  13. Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Rossen, P. von

    2005-04-06

    The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less

  14. Quantitative analysis of intramolecular exciplex and electron transfer in a double-linked zinc porphyrin-fullerene dyad.

    PubMed

    Al-Subi, Ali Hanoon; Niemi, Marja; Tkachenko, Nikolai V; Lemmetyinen, Helge

    2012-10-04

    Photoinduced charge transfer in a double-linked zinc porphyrin-fullerene dyad is studied. When the dyad is excited at the absorption band of the charge-transfer complex (780 nm), an intramolecular exciplex is formed, followed by the complete charge separated (CCS) state. By analyzing the results obtained from time-resolved transient absorption and emission decay measurements in a range of solvents with different polarities, we derived a dependence between the observable lifetimes and internal parameters controlling the reaction rate constants based on the semiquantum Marcus electron-transfer theory. The critical value of the solvent polarity was found to be ε(r) ≈ 6.5: in solvents with higher dielectric constants, the energy of the CCS state is lower than that of the exciplex and the relaxation takes place via the CCS state predominantly, whereas in solvents with lower polarities the energy of the CCS state is higher and the exciplex relaxes directly to the ground state. In solvents with moderate polarities the exciplex and the CCS state are in equilibrium and cannot be separated spectroscopically. The degree of the charge shift in the exciplex relative to that in the CCS state was estimated to be 0.55 ± 0.02. The electronic coupling matrix elements for the charge recombination process and for the direct relaxation of the exciplex to the ground state were found to be 0.012 ± 0.001 and 0.245 ± 0.022 eV, respectively.

  15. A precision measurement of the neutron 2. Probing the color force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posik, Matthew R.

    2014-01-01

    The g 2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d 2, a measure of this local color force, has its information encoded in an x 2 weighted integral of a linear combination of spin structure functions g 1 and g 2 and thus is dominated by the valence-quark regionmore » at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d 2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV 2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d 2 and extracted color forces.« less

  16. In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography.

    PubMed

    Wolter, Marc; Lämmerhofer, Michael

    2017-05-12

    This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  18. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    NASA Astrophysics Data System (ADS)

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  19. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    PubMed Central

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-01-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427

  20. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.

    PubMed

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-06

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  1. Antiferroelectric polarization switching and dynamic scaling of energy storage: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Huang, B. Y.; Lu, Z. X.; Zhang, Y.; Xie, Y. L.; Zeng, M.; Yan, Z. B.; Liu, J.-M.

    2016-05-01

    The polarization-electric field hysteresis loops and the dynamics of polarization switching in a two-dimensional antiferroelectric (AFE) lattice submitted to a time-oscillating electric field E(t) of frequency f and amplitude E0, is investigated using Monte Carlo simulation based on the Landau-Devonshire phenomenological theory on antiferroelectrics. It is revealed that the AFE double-loop hysteresis area A, i.e., the energy loss in one cycle of polarization switching, exhibits the single-peak frequency dispersion A(f), suggesting the unique characteristic time for polarization switching, which is independent of E0 as long as E0 is larger than the quasi-static coercive field for the antiferroelectric-ferroelectric transitions. However, the dependence of recoverable stored energy W on amplitude E0 seems to be complicated depending on temperature T and frequency f. A dynamic scaling behavior of the energy loss dispersion A(f) over a wide range of E0 is obtained, confirming the unique characteristic time for polarization switching of an AFE lattice. The present simulation may shed light on the dynamics of energy storage and release in AFE thin films.

  2. Electric polarization observed in single crystals of multiferroic Lu 2 MnCoO 6

    DOE PAGES

    Chikara, Shalinee; Singleton, John; Bowlan, John M.; ...

    2016-05-17

    We report electric polarization and magnetization measurements in single crystals of double perovskite Lu 2MnCoO 6 using pulsed magnetic fields and optical second harmonic generation in dc magnetic fields. We observe well-resolved magnetic field-induced changes in the electric polarization in single crystals and thereby resolve the question about whether multiferroic behavior is intrinsic to these materials or is an extrinsic feature of polycrystals. We find electric polarization along the crystalline b axis, that is suppressed by applying a magnetic fields along the c axis, and advance a model for the origin of magnetoelectric coupling. We furthermore map the phase diagrammore » using both capacitance and electric polarization to identify regions of ordering and regions of magnetoelectric hysteresis. This compound is a rare example of coupled hysteretic behavior in the magnetic and electric properties. Furthermore, the ferromagneticlike magnetic hysteresis loop that couples to hysteretic electric polarization can be attributed not to ordinary ferromagnetic domains, but to the rich physics of magnetic frustration of Ising-like spins in the axial next-nearest-neighbor interaction model.« less

  3. East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    ESA Director General Antonio Rodotà and Luan Enjie, Administrator of the CNSA, signed an official agreement that will enable European experiments to be flown on Chinese satellites for the first time. "This agreement marks a significant advance for international cooperation in the exploration and peaceful use of outer space," said Mr. Rodotà. "It is one of the most important landmarks in scientific collaboration since ESA and the People's Republic of China first agreed to exchange scientific information more than 20 years ago." "The Double Star programme will be just the first step in substantial cooperation between the Chinese National Space Administration and ESA" said Mr Luan Enjie. "The signing of today's agreement paves the way not only for reciprocal cooperation between scientists, but for the establishment of comprehensive cooperation between the two agencies". Double Star will follow in the footsteps of ESA's groundbreaking Cluster mission by studying the effects of the Sun on the Earth's environment. Conducting joint studies with Cluster and Double Star should increase the overall scientific return from both missions. A key aspect of ESA's participation in the Double Star project is the inclusion of 10 instruments that are identical to those currently flying on the four Cluster spacecraft. A further eight experiments will be provided by Chinese institutes. "We hope it will be possible to make coordinated measurements with both Cluster and Double Star." said Cluster Project Scientist Philippe Escoubet. "For example, we would hope to carry out a joint exploration of the magnetotail, a region where storms of high energy particles are generated. When these particles reach Earth, they can cause power cuts, damage satellites and disrupt communications." Six of the eleven Cluster principal investigators have agreed to provide flight spares or duplicates of the experiments that are currently revolutionising our understanding of near-Earth space. This reuse of Cluster instruments has a number of advantages for both European and Chinese scientists. "By flying experiments identical to those on Cluster, we can reduce costs and development time," explained Alberto Gianolio, ESA Project Manager for Double Star. "This will minimise risk and help us to ensure that we are able to meet the spacecraft development schedule." ESA has agreed to contribute 8 million euros to the Double Star programme. This funding will be used for refurbishment and pre-integration of the European instruments, acquisition of data for 4 hours per day and coordination of scientific operations. Notes for Editors: Double Star will be the first mission launched by China to explore the Earth's magnetosphere - the magnetic bubble that surrounds our planet. As its name suggests, Double Star will involve two satellites - each designed, developed, launched and operated by the CNSA - flying in complementary orbits around the Earth. This orbital configuration will enable scientists to obtain simultaneous data on the changing magnetic field and population of electrified particles in different regions of the magnetosphere. The duo is expected to be launched by Chinese Long March 2C rockets in December 2002 and March 2003. This schedule may enable them to operate alongside ESA's Cluster mission - a mini-flotilla of four identical spacecraft launched into elliptical orbits around the Earth last summer. The "equatorial" spacecraft (DSP-1) will be launched into an elliptical orbit of 550 x 60,000 km, inclined at 28.5 degrees to the equator. This will enable it to investigate the Earth's huge magnetic tail, the region where particles are accelerated towards the planet's magnetic poles by a process known as reconnection. The "polar" satellite (DSP-2) will concentrate on physical processes taking place over the magnetic poles and the development of aurorae. It will have a 350 x 25,000 km orbit taking it round the Earth once every 7.3 hours.

  4. Optical polarizer material

    DOEpatents

    Ebbers, C.A.

    1999-08-31

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  5. Broadband non-polarizing beam splitter based on guided mode resonance effect

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Yong; Xu, Cheng; Qiang, Ying-Huai; Zhu, Ya-Bo

    2011-10-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm~1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.

  6. Optical polarizer material

    DOEpatents

    Ebbers, Christopher A.

    1999-01-01

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  7. Depth-encoded all-fiber swept source polarization sensitive OCT

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.

    2014-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008

  8. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier

    DOE PAGES

    Zhao, Zhi; Sheehy, Brian; Minty, Michiko

    2017-03-29

    Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.

  9. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE PAGES

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.; ...

    2017-10-31

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  10. On the concept of a filtered bundle

    NASA Astrophysics Data System (ADS)

    Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz

    We present the notion of a filtered bundle as a generalization of a graded bundle. In particular, we weaken the necessity of the transformation laws for local coordinates to exactly respect the weight of the coordinates by allowing more general polynomial transformation laws. The key examples of such bundles include affine bundles and various jet bundles, both of which play fundamental roles in geometric mechanics and classical field theory. We also present the notion of double filtered bundles which provide natural generalizations of double vector bundles and double affine bundles. Furthermore, we show that the linearization of a filtered bundle — which can be seen as a partial polarization of the admissible changes of local coordinates — is well defined.

  11. Planar Lattice Instability in LA2CUO4.1 across the Superconducting Transition

    NASA Astrophysics Data System (ADS)

    Acosta-Alejandro, Manuel; Mustre-de Leon, Jose; Conradson, Steven

    2001-03-01

    The local atomic structure of La2CuO4.1 around Cu K-edge is analyzed for 10

  12. Broadband infrared absorbers with stacked double chromium ring resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Huixu; Stan, Liliana; Czaplewski, David A.

    A broadband absorber in the infrared wavelength range from 1 μm up to 5 μm is designed and demonstrated with stacked double chromium ring resonators on a reflective chromium mirror. The near-perfect broadband absorption is realized by combining the multilayer impedance match in the short wavelength range and the double plasmonic resonances in the long wavelength range, which is illustrated with an equivalent circuit model for the impedance analysis. The broadband absorber is proved to be angle-insensitive and polarization-independent due to the geometrical symmetry. Lastly, the thermal analysis for heat generation and temperature distributions inside the absorber structure is alsomore » investigated.« less

  13. Delamination-restacking behaviour of surfactant intercalated layered hydroxy double salts, M 3Zn 2(OH) 8(surf) 2ṡ2H 2O [M = Ni, Co and surf = dodecyl sulphate (DS), dodecyl benzene sulphonate (DBS)

    NASA Astrophysics Data System (ADS)

    Rajamathi, Jacqueline T.; Ravishankar, N.; Rajamathi, Michael

    2005-02-01

    Surfactant anion intercalated nickel-zinc and cobalt-zinc layered hydroxy double salts were prepared through a modified acetate hydrolysis route. These organo-inorganic hybrids delaminate readily in alcohols such as 1-butanol to give stable translucent colloids. The extent of delamination and the stability of the colloids obtained are comparable to what has been observed in the case of layered double hydroxides (LDHs). The original layered solid could be obtained either by evaporation of the colloid or precipitation by the addition of a polar solvent such as acetone.

  14. Double line groups: structure, irreducible representations and spin splitting of the bands

    NASA Astrophysics Data System (ADS)

    Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.

    2018-06-01

    Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.

  15. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    PubMed

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter.

    PubMed

    Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S

    2014-06-10

    In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.

  17. Response of the larger protozooplankton to an iron-induced phytoplankton bloom in the Polar Frontal Zone of the Southern Ocean (EisenEx)

    NASA Astrophysics Data System (ADS)

    Henjes, Joachim; Assmy, Philipp; Klaas, Christine; Smetacek, Victor

    2007-05-01

    The responses of larger (>50 μm in diameter) protozooplankton groups to a phytoplankton bloom induced by in situ iron fertilization (EisenEx) in the Polar Frontal Zone (PFZ) of the Southern Ocean in austral spring are presented. During the 21 days of the experiment, samples were collected from seven discrete depths in the upper 150 m inside and outside the fertilized patch for the enumeration of acantharia, foraminifera, radiolaria, heliozoa, tintinnid ciliates and aplastidic thecate dinoflagellates. Inside the patch, acantharian numbers increased twofold, but only negligibly in surrounding waters. This finding is of major interest, since acantharia are suggested to be involved in the formation of barite (BaSO 4), a palaeoindicator of both ancient and modern high-productivity regimes. Foraminifera increased significantly in abundance inside and outside the fertilized patch. However, the marked increase of juveniles after a full-moon event suggests a lunar periodicity in the reproduction cycle of some foraminiferan species rather than a reproductive response to enhanced food availability. In contrast, adult radiolaria showed no clear trend during the experiment, but juveniles increased threefold, indicating elevated reproduction. Aplastidic thecate dinoflagellates almost doubled in numbers and biomass but also increased outside the patch. Tintinnid numbers decreased twofold, although biomass remained constant because of a shift in the size spectrum. Empty tintinnid loricae, however, increased by a factor of two, indicating that grazing pressure on this group mainly by copepods, intensified during EisenEx. The results show that iron-fertilization experiments can shed light on the biology and the role of these larger protists in pelagic ecosystem, which will improve their use as proxies in paleoceanography.

  18. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    PubMed

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  19. Tautomerism of monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, Te) in the gas phase and in the polar and aprotic solution: An ab initio computational investigation

    NASA Astrophysics Data System (ADS)

    Li, Qiang-Gen; Deng, Chao; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Wang, Xin

    Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6-311+G(d,p) and 6-311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(=X)OH are much more stable than the silanone forms CH3Si(=O)XH in the gas-phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(=O)XH are dominant. This situation may be attributed to the fact that the Si=O and O=H single bonds in the silanol forms are stronger than the Si=X and X=H single bonds in the silanone forms, respectively, even though the Si=X (X D S, Se, and Te) double bonds are much weaker than the Si=O double bondE These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si=S double bond is stronger than the S=O double bond for the tautomeric equilibrium of RSi(=O)SH (R=H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(=S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution.0

  20. Multi-band reflector antenna with double-ring element frequency selective subreflector

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Lee, S. W.

    1993-01-01

    Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.

  1. Connecting Arctic/Antarctic Researchers and Educators (CARE): Supporting Teachers and Researchers Beyond the Research Experience

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Warnick, W. K.; Breen, K.; Fischer, K.; Wiggins, H.

    2007-12-01

    Teacher research experiences (TREs) require long-term sustained support for successful transfer of research experiences into the classroom. Specifically, a support mechanism that facilitates focused discussion and collaboration among teachers and researchers is critical to improve science content and pedagogical approaches in science education. Connecting Arctic/Antarctic Researchers and Educators (CARE) is a professional development network that utilizes online web meetings to support the integration of science research experiences into classroom curriculum. CARE brings together teachers and researchers to discuss field experiences, current science issues, content, technology resources, and pedagogy. CARE is a component of the Arctic Research Consortium of the U.S. (ARCUS) education program PolarTREC--Teachers and Researchers Exploring and Collaborating. PolarTREC is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. The CARE network was established to develop a sustainable learning community through which teachers and researchers will further their work to bring polar research into classrooms. Through CARE, small groups of educators are formed on the basis of grade-level and geographic region; each group also contains a teacher facilitator. Although CARE targets educators with previous polar research experiences, it is also open to those who have not participated in a TRE but who are interested in bringing real-world polar science to the classroom. Researchers are regularly invited to attend the web meetings, and some CARE meetings host specific researchers to talk about their work and their experiences working with teachers in the field. Facilitated group meetings focus on discussions of field experiences, current scientific research, and application of experiences to classrooms and curriculum. CARE is designed to be mindful of participants' needs; the meeting agendas reflect the stated concerns of participating teachers and researchers, such as incorporating real data into everyday curriculum, teaching about the impacts of climate change in a meaningful and educational way, developing polar related lessons and units that include State and National standards, and incorporating scientific tools and instruments into everyday curriculum. In addition to the regularly scheduled CARE group meetings, a series of CARE Seminars will be held in spring 2008 and open to the public. The public CARE Seminars will focus on issues that are of interest to a wider range of educators (e.g. clues from past climates, impacts of climate change on the Arctic, cultural sensitivity and working with indigenous peoples, and women and minorities of polar science. CARE provides a mechanism for teachers and researchers to interact, leveraging their diverse experiences and expertise to form long-term professional relationships that continue beyond the research experience. To learn more about CARE and PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by the National Science Foundation.

  2. Review of modern double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( < 0.46 eV) and a coupling constant of Majoron to neutrino ( < 1.3 . 10-5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to at the level of ˜ 0.01-0.1 eV are discussed.

  3. Analysis of the polar amplification pattern of global warming on an aquaplanet in "ghost forcing" experiments with no ice-albedo feedbacks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Langen, P. L.

    2004-05-01

    Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedback - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate Dynamics, 20: p.775-787. Hansen, J., Sato M, and R. Ruedy, (1997) Radiative forcing and climate response, JGR, 102, No. D6, 6831-6864.

  4. Influence of the charge double layer on solid oxide fuel cell stack behavior

    NASA Astrophysics Data System (ADS)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  5. Group-velocity-locked vector soliton molecules in fiber lasers.

    PubMed

    Luo, Yiyang; Cheng, Jianwei; Liu, Bowen; Sun, Qizhen; Li, Lei; Fu, Songnian; Tang, Dingyuan; Zhao, Luming; Liu, Deming

    2017-05-24

    Physics phenomena of multi-soliton complexes have enriched the life of dissipative solitons in fiber lasers. By developing a birefringence-enhanced fiber laser, we report the first experimental observation of group-velocity-locked vector soliton (GVLVS) molecules. The birefringence-enhanced fiber laser facilitates the generation of GVLVSs, where the two orthogonally polarized components are coupled together to form a multi-soliton complex. Moreover, the interaction of repulsive and attractive forces between multiple pulses binds the particle-like GVLVSs together in time domain to further form compound multi-soliton complexes, namely GVLVS molecules. By adopting the polarization-resolved measurement, we show that the two orthogonally polarized components of the GVLVS molecules are both soliton molecules supported by the strongly modulated spectral fringes and the double-humped intensity profiles. Additionally, GVLVS molecules with various soliton separations are also observed by adjusting the pump power and the polarization controller.

  6. DUV phase mask for 100 nm period grating printing

    NASA Astrophysics Data System (ADS)

    Jourlin, Y.; Bourgin, Y.; Reynaud, S.; Parriaux, O.; Talneau, A.; Karvinen, P.; Passilly, N.; Zain, A. Md.; De La Rue, R. M.

    2008-04-01

    Whereas microelectronic lithography is heading to the 32 nm node and discussing immersion and double-patterning strategies, there is much which can be done with the 45 nm node in microoptics for white light processing. For instance, one of the most demanding applications in terms of achievable period is the LCD lossless polarizer, which can transmit the TM polarization and reflect the TE polarization evenly all through the visible spectrum - provided that a 1D metal grid of 100 nm period can be fabricated. The manufacture of such polarizing panels cannot resort to the step & repeat cameras of microelectronics since the substrates are too large, too thin, too wavy and full of contaminants. There is therefore a need for specific fabrication techniques. It is one of these techniques that a subgroup of partners belonging to two of the Networks of Excellence of the European Community, NEMO and ePIXnet, have decided to explore together.

  7. Development of dual-wavelength Mie polarization Raman lidar for aerosol and cloud vertical structure probing

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie

    2014-11-01

    A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.

  8. Polarity control in WSe2 double-gate transistors

    NASA Astrophysics Data System (ADS)

    Resta, Giovanni V.; Sutar, Surajit; Balaji, Yashwanth; Lin, Dennis; Raghavan, Praveen; Radu, Iuliana; Catthoor, Francky; Thean, Aaron; Gaillardon, Pierre-Emmanuel; de Micheli, Giovanni

    2016-07-01

    As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted considerable interest thanks to their electrical properties. Here, we report the first experimental demonstration of a doping-free, polarity-controllable device fabricated on few-layer WSe2. We show how modulation of the Schottky barriers at drain and source by a separate gate, named program gate, can enable the selection of the carriers injected in the channel, and achieved controllable polarity behaviour with ON/OFF current ratios >106 for both electrons and holes conduction. Polarity-controlled WSe2 transistors enable the design of compact logic gates, leading to higher computational densities in 2D-flatronics.

  9. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

    PubMed Central

    Braaf, Boy; Vermeer, Koenraad A.; de Groot, Mattijs; Vienola, Kari V.; de Boer, Johannes F.

    2014-01-01

    In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss. PMID:25136498

  10. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  11. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    PubMed

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  12. Two distinct mechanisms ensure transcriptional polarity in double-stranded RNA bacteriophages.

    PubMed

    Yang, Hongyan; Makeyev, Eugene V; Butcher, Sarah J; Gaidelyte, Ausra; Bamford, Dennis H

    2003-01-01

    In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of phi6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, phi8 and phi13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn(2+) to produce minus-sense copies on phi13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including phi13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form.

  13. Two Distinct Mechanisms Ensure Transcriptional Polarity in Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Butcher, Sarah J.; Gaidelyte·, Aušra; Bamford, Dennis H.

    2003-01-01

    In most double-stranded RNA (dsRNA) viruses, RNA transcription occurs inside a polymerase (Pol) complex particle, which contains an RNA-dependent RNA Pol subunit as a minor component. Only plus- but not minus-sense copies of genomic segments are produced during this reaction. In the case of φ6, a dsRNA bacteriophage from the Cystoviridae family, isolated Pol synthesizes predominantly plus strands using virus-specific dsRNAs in vitro, thus suggesting that Pol template preferences determine the transcriptional polarity. Here, we dissect transcription reactions catalyzed by Pol complexes and Pol subunits of two other cystoviruses, φ8 and φ13. While both Pol complexes synthesize exclusively plus strands over a wide range of conditions, isolated Pol subunits can be stimulated by Mn2+ to produce minus-sense copies on φ13 dsRNA templates. Importantly, all three Pol subunits become more prone to the native-like plus-strand synthesis when the dsRNA templates (including φ13 dsRNA) are activated by denaturation before the reaction. Based on these and earlier observations, we propose a model of transcriptional polarity in Cystoviridae controlled on two independent levels: Pol affinity to plus-strand initiation sites and accessibility of these sites to the Pol in a single-stranded form. PMID:12502836

  14. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  15. A complete measurement of spin-observables for intermediate-energy inclusive quasielastic polarized proton scattering from 12C

    NASA Astrophysics Data System (ADS)

    Chan, C.; Drake, T. E.; Abegg, R.; Frekers, D.; Häusser, O.; Hicks, K.; Hutcheon, D. A.; Lee, L.; Miller, C. A.; Schubank, R.; Yen, S.

    1990-04-01

    The complete set of Wolfenstein parameters, the polarization, the asymmetry of scattering and the unpolarized double-differential cross section are presented for inclusive quasielastic proton scattering from 12C at a central momentum transfer of q = 1.9 fm -1 and incident energies of 290 and 420 MeV. The spin observables D0, Dx, Dy and Dz as well as the longitudinal-to-transverse ratio of spin-flip probabilities are extracted from the data. Across the quasielastic continuum, the experimental data is compared to the variations expected from a single-scattering Fermi-gas approximation using the free NN amplitudes. Medium effects are evident in the pronounced quenching of the polarization parameter relative to the free value.

  16. Using polarized muons as ultrasensitive spin labels in free radical chemistry

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Roduner, Emil

    2009-08-01

    In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Ahrens, L. A.; Bai, M.

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is challenging. In a medium energy accelerator, the depolarizing spin resonances are strong enough to cause significant polarization loss but full Siberian snakes cause intolerably large orbit excursions and are also not feasible since straight sections usually are too short. Recently, two helical partial Siberian snakes with double pitch design have been installed in the Brookhaven Alternating Gradient Synchrotron (AGS). With a careful setup of optics at injection and along the energy ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances otherwise encountered during accelerationmore » to maintain a high intensity polarized beam in medium energy synchrotrons. The observation of partial snake resonances of higher than second order will also be described.« less

  18. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  19. Polarized targets in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cates, G.D. Jr.

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less

  20. Rotatable spin-polarized electron source for inverse-photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less

  1. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl 6

    DOE PAGES

    Pilania, G.; Uberuaga, B. P.

    2015-03-19

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl 6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl 3 and RbZnCl 3) forming the double perovskite exhibit a stark contrast. While CsCaCl 3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl 3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We showmore » that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl 6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. As a result, the computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities.« less

  2. Theoretical Studies of Routes to Synthesis of Tetrahedral N4

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2007-01-01

    A paper [Chem. Phys. Lett. 345, 295 (2001)] describes theoretical studies of excited electronic states of nitrogen molecules, with a view toward utilizing those states in synthesizing tetrahedral N4, or Td N4 a metastable substance under consideration as a high-energy-density rocket fuel. Several ab initio theoretical approaches were followed in these studies, including complete active space self-consistent field (CASSCF), state-averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD). Standard double zeta polarized and triple zeta double polarized one-particle basis sets were used. The CASSCF calculations overestimated the excitation energies, while SACASSCF calculations partly corrected these overestimates. The accuracy of the CIS calculations varied, depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results were in generally good agreement. The energies of the lowest six excited singlet states of Td N4 as calculated by the LRCCSD were compared with the energies of possible excited states of N2 + N2 fragments, leading to the conclusion that the most likely route for synthesis of Td N4 would involve a combination of two bound quintet states of N2.

  3. Reduced Capillary Length Scale in the Application of Ostwald Ripening Theory to the Coarsening of Charged Colloidal Crystals in Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Rowe, Jeffrey D.; Baird, James K.

    2007-06-01

    A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.

  4. Multiferroic Double Perovskites ScFe1-xCrxO3 (1 /6 ≤x ≤5 /6 ) for Highly Efficient Photovoltaics and Spintronics

    NASA Astrophysics Data System (ADS)

    Cai, Tian-Yi; Liu, Shi-Chen; Ju, Sheng; Liu, Cheng-You; Guo, Guang-Yu

    2017-09-01

    Ferroelectric oxides are attractive materials for constructing efficient solar cells. Nevertheless, a wide band gap of nearly 3.0 eV in these ferroelectric oxides would result in poor overall sunlight absorption and, hence, low energy conversion efficiency. Here, by systematic first-principles density-functional calculations, we demonstrate that double-perovskite semiconductors ScFe1-xCrxO3 (1 /6 ≤x ≤5 /6 ) with a narrow band gap of approximately 1.8 eV would simultaneously exhibit large ferroelectric polarization (100 μ C /cm2 ) and ferrimagnetic magnetization (170 emu/cm3 ). Within a Schottky-based model for a typical sandwich solar-cell structure, a power-conversion efficiency of 9.0% can be reached by neglecting all other sources of photovoltaicity in ferroelectric materials. This value is larger than the largest value of 8.1% observed in ferroelectric oxides. Furthermore, these double perovskites are found to be single-spin semiconductors, and the obtained photocurrent is fully spin polarized over almost the entire Sun spectrum. These fascinating advantages would make ScFex Cr1 -xO3 (1 /6 ≤x ≤5 /6 ) semiconductors promising candidates for highly efficient solar cells and spin photovoltaic devices.

  5. A cross correlation PIV technique using electro-optical image separation

    NASA Astrophysics Data System (ADS)

    Wirth, M.; Baritaud, T. A.

    1996-11-01

    A new approach for 2-dimensional flow field investigation by PIV has been developed for measurements with high spatial resolution without the well known directional ambiguity. This feature of the technique is especially important for measurements in flows with reversal regions or strong turbulent motion as in-cylinder engine measurements. The major aim of the work was to achieve the benefits of cross correlation PIV image evaluation at reasonable cost and under application of common single wavelength double pulsed laser systems as they are mainly used for PIV experiments. The development of the technique is based on polarization rotation of the light scattered by the seeding particles by means of a ferroelectric liquid crystal half wave plate (FLC). Measurement samples from low turbulent jets and the flow in the wake of a cylinder are being presented.

  6. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.

  7. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    PubMed

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  8. Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.

  9. Studies of the General Parton Distributions.

    NASA Astrophysics Data System (ADS)

    Goloskokov, Sergey

    2017-12-01

    We discuss possibility to study Generalized Parton Distributions (GPSs) induced processes using polarized beams at NICA. We show that important information on GPDs structure can be obtained at NICA in exclusive meson production and in Drell-Yan (D-Y) process that determined by the double GPDs contribution.

  10. Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas

    NASA Astrophysics Data System (ADS)

    Sinha, Ujjwal; Kaw, Predhiman

    2012-03-01

    When a circularly polarized laser pulse falls on an overdense plasma, it displaces the electrons via ponderomotive force creating a double layer. The double layer constitutes of an ion and electron sheath with in which the electrostatic field present is responsible for ion acceleration. In this paper, we have analyzed the effect a static longitudinal magnetic field has over the ion acceleration mechanism. The longitudinal magnetic field changes the plasma dielectric constant due to cyclotron effects which in turn enhances or reduces the ponderomotive force exerted by the laser depending on whether the laser is left or right circularly polarized. Also, the analysis of the ion space charge region present behind the ion sheath of the laser piston that undergoes coulomb explosion has been explored for the first time. We have studied the interaction of an incoming ion beam with the laser piston and the ion space charge. It has been found that the exploding ion space charge has the ability to act as an energy amplifier for incoming ion beams.

  11. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  12. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.

    PubMed

    Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2018-05-14

    We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

  13. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...

    2017-01-23

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  14. Characterizing substrate–surface interactions on alumina-supported metal catalysts by dynamic nuclear polarization-enhanced double-resonance NMR spectroscopy [Characterizing substrate-surface interactions on alumina supported metal catalysts by DNP-enhanced double-resonance NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.

    The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less

  15. Temporal correlation and correlated momentum distribution in nonsequential double ionization of Mg by circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen

    2017-07-01

    We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).

  16. Measurement of Double-Polarization Asymmetries in the Quasielastic He → 3 ( e → , e ' d ) Process

    DOE PAGES

    Mihovilovic, M.; Jin, G.; Long, E.; ...

    2014-12-05

    We present a precise measurement of double-polarization asymmetries in the 3He(e,e'd) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at Q 2=0.25(GeV/c) 2 for missing momenta up to 270MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on pm and omega, but are systematically offset. Beyond the region of the quasi-elastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies inmore » the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two- and/or three-body dynamics is required.« less

  17. Precision Measurements of $$A_1^n$$ in the Deep Inelastic Regime

    DOE PAGES

    Parno, Diana; Flay, David; Posik, Matthew; ...

    2015-04-07

    We have performed precision measurements of the double-spin virtual-photon asymmetry A₁ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ³He target. Our data cover a wide kinematic range 0.277 ≤ x ≤ 0.5480 at an average Q² value of 3.078 (GeV/c)², doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Ourmore » data are consistent with a previous observation of an View the MathML source A 1 n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in (Δd+Δd¯)/(d+d¯) up to x=0.548.« less

  18. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  19. Target and double spin asymmetries for {rvec e} {rvec p} {yields} e{prime} p {pi}{sup 0}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angela Biselli

    2004-03-01

    An extensive experimental program to measure the spin structure of the nucleons is carried out in Hall B with the CLAS detector at Jefferson Lab using a polarized electron beam incident on a polarized target. Spin degrees of freedom offer the possibility to test, in an independent way, existing models of resonance electroproduction. The present analysis selects the exclusive channel {rvec p}({rvec e}, e{prime}, p){pi}{sup 0} from data taken in 2000-2001, to extract single and double asymmetries in a Q{sup 2} range from 0.2 to 0.75 GeV{sup 2} and W range from 1.1 to 1.6 GeV/c{sup 2}. Results of themore » asymmetries will be presented as a function of the center of mass decay angles of the {pi}{sup 0} and compared with the unitary isobar model MAID, the dynamic model by Sato and Lee and the dynamic model DMT.« less

  20. SU(4) Kondo effect in double quantum dots with ferromagnetic leads

    NASA Astrophysics Data System (ADS)

    Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu

    2018-02-01

    We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.

  1. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  2. Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, A.; Seidel, D. J.; Maleki, J.

    1993-01-01

    A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.

  3. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  4. Polarization Observables T and F in the yp -> pi p Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao

    The theory that describes the interaction of quarks is Quantum Chromodynamics (QCD), but how quarks are bound inside a nucleon is not yet well understood. Pion photoproduction experiments reveal important information about the nucleon excited states and the dynamics of the quarks within it and thus provide a useful tool to study QCD. Detailed information about this reaction can be obtained in experiments that utilize polarized photon beams and polarized targets. Pion photoproduction in the γρ -> π0ρ reaction has been measured in the FROST experiment at the Thomas Jefferson National Accelerator Facility. In this experiment circularly polarized photons withmore » electron-beam energies up to 3.082 GeV impinged on a transversely polarized frozen-spin target. Final-state protons were detected in the CEBAF Large Acceptance Spectrometer. Results of the polarization observables T and F have been extracted. The data generally agree with predictions of present partial wave analyses, but also show marked differences. The data will constrain further partial wave analyses and improve the extraction of proton resonance properties.« less

  5. Scattering on plane waves and the double copy

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  6. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    DOE PAGES

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less

  7. A Centralized Display for Mission Monitoring

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    2004-01-01

    Humans traditionally experience a vigilance decrement over extended periods of time on reliable systems. One possible solution to aiding operators in monitoring is to use polar-star displays that will show deviations from normal in a more salient manner. The primary objectives of this experiment were to determine if polar-star displays aid in monitoring and preliminary diagnosis of the aircraft state. This experiment indicated that the polar-star display does indeed aid operators in detecting and diagnosing system events. Subjects were able to notice system events earlier and they subjectively reported the polar-star display helped them in monitoring, noticing an event, and diagnosing an event. Therefore, these results indicate that the polar-star display used for monitoring and preliminary diagnosis improves performance in these areas for system related events.

  8. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrózek, M., E-mail: mariusz.mrozek@uj.edu.pl; Rudnicki, D. S.; Gawlik, W.

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit maymore » be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.« less

  9. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  10. Main features of detectors and isotopes to investigate double beta decay with increased sensitivity

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.

    2018-03-01

    The current situation in double beta decay experiments, the characteristics of modern detectors and the possibility of increasing the sensitivity to neutrino mass in future experiments are discussed. The issue of the production and use of enriched isotopes in double beta decay experiments is discussed in addition.

  11. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    PubMed

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  12. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate science to the broader public.

  13. Probing Pre- and In-service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    NASA Astrophysics Data System (ADS)

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-09-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these teachers were interviewed. The results showed that the physics teachers' thought experiments with classical particles, light, and electrons were often partial. Many teachers also suffered a lack of the basic ideas and principles of physics, which probably hindered thought experimenting. In particular, understanding the ontological nature of classical particles, light and electrons seemed to be essential in performing the double-slit experiment in an appropriate way. However, the in-service physics teachers who had teaching experience in modern physics were more prepared for the double-slit thought experiment than the pre-service teachers. The results suggest that both thought experiments and the double-slit experiment should be given more weight in physics teacher education, even if experience in modern physics teaching at upper secondary school seems to some extent to develop teachers' abilities.

  14. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less

  15. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  16. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE PAGES

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...

    2018-02-15

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    We review activities with experiments using polarized protons and polarized antiprotons at Fermilab for future high-energy spin physics we describe an experimental program with polarized collider at RHIC.

  18. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.

  19. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator.

    PubMed

    Qiu, Xiaoming; Ruan, Xiaoke; Li, Yanping; Zhang, Fan

    2018-05-28

    In this study, a multi-layer metal-oxide-semiconductor capacitor (MLMOSC) polarization insensitive modulator is proposed. The design is validated by numerical simulation with commercial software LUMERICAL SOLUTION. Based on the epsilon-near-zero (ENZ) effect of indium tin oxide (ITO), the device manages to uniformly modulate both the transverse electric (TE) and the transverse magnetic (TM) modes. With a 20μm-long double-layer metal-oxide-semiconductor capacitor (DLMOSC) polarization insensitive modulator, in which two metal-oxide-semiconductor (MOS) structures are formed by the n-doped Si/HfO 2 /ITO/HfO 2 / n-doped Si stack, the extinction ratios (ERs) of both the TE and the TM modes can be over 20dB. The polarization dependent losses of the device can be as low as 0.05dB for the "OFF" state and 0.004dB for the "ON" state. Within 1dB polarization dependent loss, the device can operate with over 20dB ERs at the S, C, and L bands. The polarization insensitive modulator offers various merits including ultra-compact size, broadband spectrum, and complementary metal oxide semiconductor (CMOS) compatibility.

  20. The MTV experiment: a test of time reversal symmetry using polarized 8Li

    NASA Astrophysics Data System (ADS)

    Murata, J.; Baba, H.; Behr, J. A.; Hirayama, Y.; Iguri, T.; Ikeda, M.; Kato, T.; Kawamura, H.; Kishi, R.; Levy, C. D. P.; Nakaya, Y.; Ninomiya, K.; Ogawa, N.; Onishi, J.; Openshaw, R.; Pearson, M.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.

    2014-01-01

    The MTV ( Mott Polarimetry for T- Violation Experiment) experiment at TRIUMF-ISAC ( Isotope Separator and ACcelerator), which aims to achieve the highest precision test of time reversal symmetry in polarized nuclear beta decay by measuring a triple correlation ( R-correlation), is motivated by the search for a new physics beyond the Standard Model. In this experiment, the existence of non-zero transverse electron polarization is examined utilizing the analyzing power of Mott scattering from a thin metal foil. Backward scattering electron tracks are measured using a multi-wire drift chamber for the first time. The MTV experiment was commissioned at ISAC in 2009 using an 80 % polarized 8Li beam at 107 pps, resulting in 0.1 % statistical precision on the R-parameter in the first physics run performed in 2010. Next generation cylindrical drift chamber (CDC) is now being installed for the future run.

Top