Rusu, M; Kivistö, Samuli; Gawith, C; Okhotnikov, O
2005-10-17
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
NASA Astrophysics Data System (ADS)
Rusu, M.; Kivistö, Samuli; Gawith, C. B. E.; Okhotnikov, O. G.
2005-10-01
We report on successful realization of a picosecond visible-continuum source embedding a single mode fiber taper. The output of ytterbium mode-locked fiber laser was frequency doubled in a periodically-polled lithium niobate (PPLN) crystal to produce green pump light. Spectral brightness of the white light generated in the tapered fiber was improved by limiting the broadening just to the visible wavelengths. The influence of taper parameters, particularly the dispersion, on white light spectrum has been studied.
Bolpasi, V; von Klitzing, W
2010-11-01
A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.
Double-clad fiber with a tapered end for confocal endomicroscopy.
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-11-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber.
Double-clad fiber with a tapered end for confocal endomicroscopy
Lemire-Renaud, Simon; Strupler, Mathias; Benboujja, Fouzi; Godbout, Nicolas; Boudoux, Caroline
2011-01-01
We present a double-clad fiber coupler (DCFC) for use in confocal endomicroscopy to reduce speckle contrast, increase signal collection while preserving optical sectioning. The DCFC is made by incorporating a double-clad tapered fiber (DCTF) to a fused-tapered DCFC for achromatic transmission (from 1265 nm to 1325 nm) of > 95% illumination light trough the single mode (SM) core and collection of > 40% diffuse light through inner cladding modes. Its potential for confocal endomicroscopy is demonstrated in a spectrally-encoded imaging setup which shows a 3 times reduction in speckle contrast as well as 5.5 × increase in signal collection compared to imaging with a SM fiber. PMID:22076259
Mortazavi, Vajihesadat; Fathi, Mohammadhossein; Katiraei, Najmeh; Shahnaseri, Shirin; Badrian, Hamid; Khalighinejad, Navid
2012-01-01
Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9). In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post) (group DT.N) and zirconia posts (Cosmopost) (group Zr.N). In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W), double taper Light posts and Ribbond fibers (DT+R.W) and Zirconia posts (Zr.W). After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05). Results: The mean failure loads (N) were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05). A significant difference was detected between groups DT.N and Zr.W (P=0.027). Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004). Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts. PMID:22623936
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Radiation Losses Due to Tapering of a Double-Core Optical Waveguide
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)
2001-01-01
The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.
Pruthi, Varun; Talwar, Sangeeta; Nawal, Ruchika Roongta; Pruthi, Preeti Jain; Choudhary, Sarika; Yadav, Seema
2018-01-01
The aim of this study was to evaluate retention & fracture resistance of different fibre posts. 90 extracted human permanent maxillary central incisors were used in this study. For retention evaluation, after obturation, post space preparation was done in all root canals and posts were cemented under three groups. Later, the posts were grasped & pulled out from the roots with the help of a three-jaw chuck at a cross-head speed of 5mm/min. Force required to dislodge each post was recorded in Newtons. To evaluate the fracture behavior of posts, artificial root canals were drilled into aluminium blocks and posts were cemented. Load required to fracture each post was recorded in Newtons. The results of the present study show the mean retention values for Fibrekleer Parallel post were significantly greater than those for Synca Double tapered post & Bioloren Tapered post. The mean retention values of the Double tapered post & the tapered post were not statistically different. The Synca Double tapered post had the highest mean load to fracture, and this value was significantly higher than those of FibreKleer Parallel & Bioloren Tapered post. The mean fracture resistance values of Parallel & tapered post were not statistically different. This study showed parallel posts to have better retention than tapered and double tapered posts. Regarding the fracture resistance, double tapered posts were found to be better than parallel and tapered posts.
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz
2011-02-01
We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.
Studies on low-loss coupling of non-node anti-resonant hollow-core fiber and tapered fiber
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Liu, Wenbo; Xi, Xiaoming
2017-10-01
Up to now, near almost optical fiber gas lasers employ/adopt the scheme of free-space coupling, which increases the difficulty to adjust the optical path, and has poor stability. All-fiber structure fiber-gas lasers are important development directions in the future. We established the numerical model of SMF-28 type tapered single-mode fiber and non-node hollow-core fiber. When the SMF-28 type single-mode fiber has a waist diameter of 40μm when the light source is LP01 fundamental mode with 1550nm wavelength, the mode field diameter is the largest. Meanwhile, we simulated that the equivalent mode field diameter of non-node anti-resonant hollow-core fiber is about 75μm at the same 1550nm wavelength light source. Then, we use different waist diameters of SMF-28 type tapered fibers injected to the non-node anti-resonant hollow-core fiber in simulation and experiments. In the scheme of the single-ended low-loss coupling, the simulation results indicate that the best waist diameter of tapered fiber is 40μm, and the calculated maximum coupling efficiency is 83.55%. Meanwhile, the experimental result of maximum coupling efficiency is 80.74% when the best waist diameter of tapered fiber is also 40μm. As for the double-ended low-loss coupling, the calculated maximum coupling efficiency is near 83.38%.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Modulation of frequency doubled DFB-tapered diode lasers for medical treatment
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Hansen, Anders K.; Noordegraaf, Danny; Jensen, Ole B.; Skovgaard, Peter M. W.
2017-02-01
The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.
Peru, M; Peru, C; Mannocci, F; Sherriff, M; Buchanan, L S; Pitt Ford, T R
2006-02-01
The aim of this study was to evaluate root canals instrumented by dental students using the modified double-flared technique, nickel-titanium (NiTi) rotary System GT files and NiTi rotary ProTaper files by micro-computed tomography (MCT). A total of 36 root canals from 18 mesial roots of mandibular molar teeth were prepared; 12 canals were prepared with the modified double-flared technique, using K-flexofiles and Gates-Glidden burs; 12 canals were prepared using System GT and 12 using ProTaper rotary files. Each root was scanned using MCT preoperatively and postoperatively. At the coronal and mid-root sections, System GT and ProTaper files produced significantly less enlarged canal cross-sectional area, volume and perimeter than the modified double-flared technique (P < 0.05). In the mid-root sections there was significantly less thinning of the root structure towards the furcation with System GT and ProTaper (P < 0.05). The rotary techniques were both three times faster than the modified double-flared technique (P < 0.05). Qualitative evaluation of the preparations showed that both ProTaper and System GT were able to prepare root canals with little or no procedural error compared with the modified double-flared technique. Under the conditions of this study, inexperienced dental students were able to prepare curved root canals with rotary files with greater preservation of tooth structure, low risk of procedural errors and much quicker than with hand instruments.
Topçuoğlu, Hüseyin Sinan; Topçuoğlu, Gamze; Akti, Ahmet; Düzgün, Salih
2016-06-01
The aim of this study was to compare the resistance to cyclic fatigue of ProTaper Next X2 (PTN X2; size 25, 0.06 taper), Hyflex CM (HCM; size 25, 0.06 taper), OneShape (OS; size 25, 0.06 taper), and ProTaper Universal F2 (PTU F2; size 25, 0.08 taper) nickel-titanium files in an artificial root canal with a double (S-shaped) curvature. A total of 160 new PTN X2, OS, HCM, and PTU F2 files were tested in an artificial stainless steel canal with a double curvature. Forty files from each system were rotated until fracture to calculate the number of cycles to failure. The length of each fractured fragment was recorded. Data were analyzed by using one-way analysis of variance and Tukey post hoc tests. The resistance to cyclic fatigue of the PTN X2 and HCM instruments was significantly greater than the OS and PTU F2 instruments in the apical curvature (P < .05). There was no statistical difference in the cyclic fatigue resistance of the PTN X2 and HCM instruments in the apical curvature (P > .05). In addition, there was no statistical difference between the OS and PTU F2 instruments in the apical curvature (P > .05). PTN X2, OS, HCM, and PTU F2 instruments showed similar cyclic fatigue resistance values in the coronal curvature (P > .05). This study showed that PTN X2 and HCM instruments exhibit greater resistance to cyclic fatigue than OS and PTU F2 instruments in the apical curvature of an artificial canal with a double curvature. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper
NASA Astrophysics Data System (ADS)
Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan
2010-03-01
A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.
Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks
NASA Astrophysics Data System (ADS)
Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.
2016-01-01
Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.
Using a slightly tapered optical fiber to attract and transport microparticles.
Sheu, Fang-Wen; Wu, Hong-Yu; Chen, Sy-Hann
2010-03-15
We exploit a fiber puller to transform a telecom single-mode optical fiber with a 125 microm diameter into a symmetric and unbroken slightly tapered optical fiber with a 50 microm diameter at the minimum waist. When the laser light is launched into the optical fiber, we can observe that, due to the evanescent wave of the slightly tapered fiber, the nearby polystyrene microparticles with 10 microm diameters will be attracted onto the fiber surface and roll separately in the direction of light propagation. We have also simulated and compared the optical propulsion effects on the microparticles when the laser light is launched into a slightly tapered fiber and a heavily tapered (subwavelength) fiber, respectively.
Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers.
Fedotov, Andrey; Noronen, Teppo; Gumenyuk, Regina; Ustimchik, Vasiliy; Chamorovskii, Yuri; Golant, Konstantin; Odnoblyudov, Maxim; Rissanen, Joona; Niemi, Tapio; Filippov, Valery
2018-03-19
We present a birefringent Yb-doped tapered double-clad fiber with a record core diameter of 96 µm. An impressive gain of over 38 dB was demonstrated for linearly polarized CW and pulsed sources at a wavelength of 1040 nm. For the CW regime the output power was70 W. For a mode-locked fiber laser a pulse energy of 28 µJ with 292 kW peak power was reached at an average output power of 28 W for a 1 MHz repetition rate. The tapered double-clad fiber has a high value of polarization extinction ratio at 30 dB and is capable of delivering the linearly polarized diffraction-limited beam (M 2 = 1.09).
Chen, Nan-Kuang; Hsu, Kuei-Chu; Liaw, Shien-Kuei; Lai, Yinchieh; Chi, Sien
2008-08-01
A tapered fiber with a depressed-index outer ring is fabricated and dispersion engineered to generate a widely tunable (1250-1650 nm) fundamental-mode leakage loss with a high cutoff slope (-1.2 dB/nm) and a high attenuation for stop band (>50 dB) by modification of both waveguide and material dispersions. The higher cutoff slope is achieved with a larger cross angle between the two refractive index dispersion curves of the tapered fiber and surrounding optical liquids through the use of depressed-index outer ring structures in double-cladding fibers.
Functional significance of the taper of vertebrate cone photoreceptors
Hárosi, Ferenc I.
2012-01-01
Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013
Pisanello, Marco; Oldenburg, Ian A.; Sileo, Leonardo; Markowitz, Jeffrey E.; Peterson, Ralph E.; Della Patria, Andrea; Haynes, Trevor M.; Emara, Mohamed S.; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L.
2017-01-01
Optogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs. PMID:28628101
Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L
2017-08-01
Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei
2014-01-01
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.
Photonic lantern with multimode fibers embedded
NASA Astrophysics Data System (ADS)
Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min
2014-08-01
A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.
Cost-benefit analysis of sequential warning lights in nighttime work zone tapers.
DOT National Transportation Integrated Search
2011-06-01
Improving safety at nighttime work zones is important because of the extra visibility concerns. The deployment of sequential lights is an innovative method for improving driver recognition of lane closures and work zone tapers. Sequential lights are ...
Sheu, Fang-Wen; Huang, Yen-Si
2013-01-01
A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber. PMID:23449118
Sheu, Fang-Wen; Huang, Yen-Si
2013-02-28
A stripped no-core optical fiber with a 125 µm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-µm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-µm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.
Tapered rib fiber coupler for semiconductor optical devices
Vawter, Gregory A.; Smith, Robert Edward
2001-01-01
A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.
Bhatti, Namrata; Sroa, Renu; Sikri, Vimal K
2010-04-01
To determine the shaping ability and cleaning efficiency of hand K-flexofiles, ProTaper, LightSpeed and Mtwo instruments during the preparation of curved root canals in extracted human teeth. A total of 120 root canals of mandibular and maxillary molars with curvature more than 20° were divided into four groups of 30 each. In group A, canals were prepared using hand K-flexofiles following the crown down technique. In group B LightSpeed, in group C ProTaper, and in group D Mtwo rotary instruments were used to prepare the root canals. Using pre- and post-instrumentation radiographs, straightening of the canal curvature was determined with Corel Draw 9.0 software tools. The amount of debris and smear layer were quantified at three different areas (coronal, middle, and apical thirds) of root canal using SEM. The collected data were analyzed statistically using Student's paired 't' test. The mean change in curvature for hand K-files was 7.71°, for ProTaper files 6.03°, for Mtwo 5.43°, and for LightSpeed instruments were found to be 4.57°. The percentage change in the curvature for all the four groups was statistically highly significant (P< 0.01). LightSpeed instruments maintained the original canal curvature significantly (P< 0.01) better than the other instruments. For leftover debris, the minimum percentage was found to be associated with ProTaper (65.48%) followed by Mtwo (66.22%), LightSpeed (71.67%) and the maximum with hand K-files (74.16%). However, the difference in mean leftover debris between ProTaper and Mtwo was not significant. ProTaper and Mtwo resulted in good cleaning, and LightSpeed maintained the original canal curvature better than the ProTaper, Mtwo, or Hand K-files.
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-01-01
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5. PMID:24141267
Ji, Wen Bin; Tjin, Swee Chuan; Lin, Bo; Ng, Choong Leng
2013-10-17
We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻⁵.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan
2012-11-05
We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.
Vertically-tapered optical waveguide and optical spot transformer formed therefrom
Bakke, Thor; Sullivan, Charles T.
2004-07-27
An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
Stress intensity factor in a tapered specimen
NASA Technical Reports Server (NTRS)
Xue-Hui, L.; Erdogan, F.
1985-01-01
The general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a compact and for a slender tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.
Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung
2014-01-13
A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-02-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.
Spontaneous reductions in smoking during double-blind buprenorphine detoxification.
Patrick, Mollie E; Dunn, Kelly E; Badger, Gary J; Heil, Sarah H; Higgins, Stephen T; Sigmon, Stacey C
2014-09-01
Evidence suggests a positive association between administration of psychoactive drugs and rates of cigarette smoking. Prevalence of smoking among opioid-dependent individuals, for example, is four times greater than the general population. We recently completed a randomized double-blind trial evaluating outpatient buprenorphine taper for prescription opioid (PO) abusers, which provided a unique opportunity to examine naturalistic changes in smoking among participants who detoxified without resumption of illicit opioid use. Participants received no smoking-cessation services and were not encouraged to alter their smoking in any way. A subset of 10 opioid-dependent smokers, who were randomized to receive the same 4-week buprenorphine taper and successfully completed detoxification, were included in the present study. They provided staff-observed urine specimens thrice-weekly throughout the 12-week trial. Specimens were analyzed on-site via enzyme-multiplied immunoassay for urinary cotinine, a metabolite of nicotine that provides a sensitive biochemical measure of smoking status. Mean cotinine levels were significantly different across study phases, with significantly lower cotinine levels during taper (1317.5 ng/ml) and post-taper (1015.8 ng/ml) vs. intake (1648.5 ng/ml) phases (p''s<.05). Overall, mean cotinine levels decreased by 38% between intake and end-of-study, reflecting a reduction of approximately eight cigarettes per day. These data provide additional evidence that opioids influence smoking and extend prior findings to include primary PO abusers, rigorous double-blind opioid dosing conditions and urinary cotinine. These results also suggest that, while likely insufficient for complete cessation, patients who successfully taper from opioids may also experience concurrent reductions in smoking and thus may be ideal candidates for smoking cessation services. Copyright © 2014 Elsevier Ltd. All rights reserved.
Principles and performance of tapered fiber lasers: from uniform to flared geometry.
Kerttula, Juho; Filippov, Valery; Chamorovskii, Yuri; Ustimchik, Vasily; Golant, Konstantin; Okhotnikov, Oleg G
2012-10-10
We have studied the recently demonstrated concept of fiber lasers based on active tapered double-clad fiber (T-DCF) in copropagating and counterpropagating configurations, both theoretically and experimentally, and compared the performance to fiber lasers based on conventional cylindrical fibers in end-pumped configurations. Specific properties of T-DCFs were considered theoretically using a rate-equation model developed for tapered fibers, and a detailed comparative study was carried out experimentally. Furthermore, we have studied mode coupling effects in long adiabatic tapers due to coiling and local bending. The results allow us to conclude that, with proper fiber design, the T-DCF technology offers a high-potential alternative for bright, cost-effective fiber devices.
High finesse microfiber knot resonators made from double-ended tapered fibers.
Xiao, Limin; Birks, T A
2011-04-01
We fabricated optical microfiber knot resonators from thin tapered fibers (diameter down to 1 μm) linked to untapered fiber at both ends. We demonstrated a finesse of about 100, over twice as high as previously reported for microfiber resonators. Low-loss encapsulation of microfiber knot resonators in hydrophobic silica aerogel was also investigated.
Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidaka, Y.; She, Y.; Murphy, J.B.
2011-03-28
We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less
Tapered fibers embedded in silica aerogel.
Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A
2009-09-15
We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.
Collection of Light From an Optical Fiber With a Numerical Aperture Greater Than One
NASA Technical Reports Server (NTRS)
Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)
1996-01-01
In an optical fiber having NA greater than 1, light may be internally reflected when it strikes the fiber end at a fiber-air interface. This problem may be overcome by modification of the fiber by reverse tapering the core. Light is redirected by the taper to strike the interface at an angle closer to normal. This allows light to exit the fiber end that would by internally reflected in an untapered fiber of NA greater than 1. The novelty of the present invention lies in the tapering of the fiber core for increased through transmission of light. Prior art devices have made use of fiber tapers to achieve mode control or fiber coupling. The problem of internal reflection has not been addressed as it is one that is not as important in fibers having NA less than 1, which are more common. In chemical sensing it is advantageous to make use of fibers having higher NA due to an increased sensitivity. However the advantages in sensitivity are diminished due to the loss of signal at the fiber-air interface. The present invention overcomes the problem of loss at the interface, thus facilitating the use of high NA fibers for chemical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliabue, Giulia; Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125; Poulikakos, Dimos
2016-05-30
Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding ofmore » the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.« less
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-01-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344
Pulido-Navarro, María Guadalupe; Escamilla-Ambrosio, Ponciano Jorge; Marrujo-García, Sigifredo; Álvarez-Chávez, José Alfredo; Martínez-Piñón, Fernando
2017-07-01
In this work the feasibility of employing two well-known techniques already used on designing optical fiber sensors is explored. The first technique employed involves monomode tapered fibers, which were fabricated using a taper machine designed, built, and implemented in our laboratory. This implementation greatly reduced the costs and fabrication time allowing us to produce the desired taper length and transmission conditions. The second technique used fiber Bragg gratings, which we decided to have mechanically induced and for that reason we devised and produced our own mechanical gratings with the help of a computer numerical control tool. This grating had to be fabricated with aluminum to withstand temperatures of up to 600°C. When light traveling through an optical fiber reaches a taper it couples into the cladding layer and comes back into the core when the taper ends. In the same manner, when the light encounters gratings in the fiber, it couples to the cladding modes, and when the gratings end, the light couples back into the core. For our experimentation, the tapering machine was programmed to fabricate single-mode tapers with 3 cm length, and the mechanically induced gratings characteristics were 5 cm length, and had a period of 500 μm and depth of the period of 300 μm. For the conducting tests, the tapered fiber is positioned in between two aluminum slabs, one grooved and the other plane. These two blocks accomplish the mechanically induced long period grating (LPG); the gratings on the grooved plaque are imprinted on the taper forming the period gratings. An optical spectrum analyzer is used to observe the changes on the transmission spectrum as the temperature varies from 20°C to 600°C. The resultant attenuation peak wavelength in the transmission spectrum shifts up to 8 nm, which is a higher shift compared to what has been reported using nontapered fibers. As the temperature increases there is no longer a shift, but there is significant power loss. Such a characteristic can be used as well for sensing applications.
Changes of propagation light in optical fiber submicron wires
NASA Astrophysics Data System (ADS)
Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.
2013-05-01
At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.
Application of fiber tapers in astronomy
NASA Astrophysics Data System (ADS)
Marcel, Jaclyn; Haynes, Roger; Bland-Hawthorn, Joss
2006-06-01
Fiber tapers have the potential to significantly advance instrument technology into the realm of fully integrated optical systems. Our initial investigation was directed at the use of fiber tapers as f-ratio transformation devices. Using a technique developed for testing focal ratio degradation (FRD), a collimated light source was injected at different angles into various fiber taper samples and the far-field profile of the fiber output was observed. We compare the FRD present in the optical fiber tapers with conventional fibers and determine how effectively fiber tapers perform as image converters. We demonstrate that while silica fiber tapers may have slightly more intrinsic FRD than conventional fibers they still show promise as adiabatic mode transformers and are worth investigating further for their potential use in astronomical instruments. In this paper we present a brief review of the current status of fiber tapers with particular focus on the astronomical applications. We demonstrate the conservation of etendue in the taper transformation process and present the experimental results for a number of different taper profiles and manufacturers.
Tapered undulator for SASE FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je
We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).
Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder
NASA Technical Reports Server (NTRS)
Jordan, Jennifer L.; Ponchak, George E.; Tavassolian, Negar; Tentzeris, Manos M.
2007-01-01
The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented.
Bent optical fiber tapers for refractometery and biosensing
NASA Astrophysics Data System (ADS)
Penchev, Emil; Eftimov, Tinko; Bock, Wojtek
2015-01-01
We report the results of our study of the spectral shifts caused by surrounding refractive index changes (SRI) in bent fibre tapers. Fused and etched fibre tapers were fabricated using a gas burner and HF acid. Spectral shifts as high as 200 nm have been observed for SRI variations from 1.33 to 1.44 and sensitivity as high as 830 nm/r.i.u. around water RI values. We present results for refractometric measurements of cow milk of varying fat content and compare results with those obtained with conventional Abbe refractometers and high sensitivity double resonance LPGs.
Fabrication and application of a non-contact double-tapered optical fiber tweezers.
Liu, Z L; Liu, Y X; Tang, Y; Zhang, N; Wu, F P; Zhang, B
2017-09-18
A double-tapered optical fiber tweezers (DOFTs) was fabricated by a chemical etching called interfacial layer etching. In this method, the second taper angle (STA) of DOFTs can be controlled easily by the interfacial layer etching time. Application of the DOFTs to the optical trapping of the yeast cells was presented. Effects of the STA on the axile trapping efficiency and the trapping position were investigated experimentally and theoretically. The experimental results are good agreement with the theoretical ones. The results demonstrated that the non-contact capture can be realized for the large STA (e.g. 90 deg) and there was an optimal axile trapping efficiency as the STA increasing. In order to obtain a more accurate measurement result of the trapping force, a correction factor to Stokes drag coefficient was introduced. This work provided a way of designing and fabricating an optical fiber tweezers (OFTs) with a high trapping efficient or a non-contact capture.
Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio
2015-10-01
Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.
NASA Astrophysics Data System (ADS)
Lu, Zhigang; Su, Zhicheng; Wei, Yanyu
2018-05-01
A double-ridge-loaded folded waveguide (DRL-FW) travelling wave tube (TWT) based on period-tapered structure is proposed. Through analysing the dispersion characteristics of the DRL-FW slow wave structure (SWS), the physical mechanism of the band-edge oscillation is obtained. Period-tapered SWS is proposed and analysed for verifying the feasibility in suppressing upper-band-edge oscillation and increasing the output power. Then the electromagnetic characteristics and the beam-wave interaction of TWT based on the period-tapered DRL-FW SWS are investigated. The calculation results predict that it potentially could provide continuous wave power over 600W from 29 GHz to 32 GHz without upper-band-edge oscillation. The bandwidth expands from 29-31GHz to 29-32GHz and electron efficiency is increased from more than 8.3% to more than 11%, while the range of operating voltage expands from 22kV-22.5kV to 22kV-24kV. The corresponding saturated gain can reach over 36.8 dB. In addition, we have carried out experimental tests on the transmission characteristics of period-tapered DRL-FW SWS. The cold test results show that the voltage stand-wave ratio (VSWR) is below 1.8 in the range of 29-32GHz. Good transmission characteristics greatly reduce the risk of reflection wave oscillation, thus improving the stability of DRL-FW TWT.
Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry
NASA Technical Reports Server (NTRS)
Macon, David J.
2006-01-01
An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
Corrugated metal-coated tapered tip for scanning near-field optical microscope.
Antosiewicz, Tomasz J; Szoplik, Tomasz
2007-08-20
This paper addresses an important issue of light throughput of a metal-coated tapered tip for scanning near-field microscope (SNOM). Corrugations of the interface between the fiber core and metal coating in the form of parallel grooves of different profiles etched in the core considerably increase the energy throughput. In 2D FDTD simulations in the Cartesian coordinates we calculate near-field light emitted from such tips. For a certain wavelength range total intensity of forward emission from the corrugated tip is 10 times stronger than that from a classical tapered tip. When realized in practice the idea of corrugated tip may lead up to twice better resolution of SNOM.
Aguiar, Carlos M; Câmara, Andréa C
2008-12-01
This study evaluated, by means of the radiography examination, the occurrence of deviations in the apical third of root canals shaped with hand and rotary instruments. Sixty mandibular human molars were divided into three groups. The root canals in group 1 were instrumented with ProTaper (Dentsply/Maillefer, Ballaigues, Switzerland) for hand use, group 2 with ProTaper and group 3 with RaCe. The images obtained by double superimposition of the pre- and postoperative radiographs were evaluated by two endodontists with the aid of a magnifier-viewer and a fivefold magnifier. Statistical analysis was performed using the Fisher-Freeman-Halton. The instrumentation using the ProTaper for hand use showed 25% of the canals with a deviation in the apical third, as did the ProTaper, while the corresponding figure for the RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) was 20%, but these results were not statistically significant. There was no correlation between the occurrence of deviations in the apical third and the systems used.
An elastic strip with multiple cracks and applications to tapered specimens
NASA Technical Reports Server (NTRS)
Liu, X.-H.; Erdogan, F.
1985-01-01
In this paper an infinite elastic strip containing arbitrarily oriented cracks and subjected to uniform tension and a pair of concentrated forces is formulated in terms of a system of singular integral equations. Even though the technique is sufficiently general to solve new multiple crack problem, with the objective of applying the results to tapered specimens, only a certain symmetric crack geometry and loading conditions are considered. The stress intensity factors are calculated for edge cracks in the strip under uniform tension and for a 'compact' and a 'slender' tapered specimen (the latter simulating the double cantilever beam) under concentrated forces or crack surface wedge forces.
Investigation of Wing Characteristics at a Mach Number of 1.53 II : Swept Wings of Taper Ratio 0.5
NASA Technical Reports Server (NTRS)
Vincenti, Walter G; Van Dyke, Milton D; Matteson, Frederick H
1948-01-01
Measured values of lift, drag, and pitching moment at M(sub o) = 1.53 are presented for seven wings varying in sweep angle from 60 degrees sweepforward to 60 degrees sweepback. All wings had a cambered, double-wedge section 5-percent thick and a common taper ratio of 0.5. The experimental results are compared with the predictions of the linear theory.
Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.
Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2016-02-01
Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3 cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.
Tapered fiber based high power random laser.
Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun
2016-04-18
We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.
2006-01-01
The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.
Lefebvre, Daniel R; Strande, Louise F; Hewitt, Charles W
2008-01-01
Acquiring a blood-borne disease is a risk of performing operations. Most data about seroconversion are based on hollow-bore needlesticks. Some studies have examined the inoculation volumes of pure blood delivered by suture needles. There is a lack of data about the effect of double-gloving on contaminant transmission in less viscous fluids that are not prone to coagulation. We used enzymatic colorimetry to quantify the volume of inoculation delivered by a suture needle that was coated with an aqueous contaminant. Substrate color change was measured using a microplate reader. Both cutting and tapered suture needles were tested against five different glove types and differing numbers of glove layers (from zero to three). One glove layer removed 97% of contaminant from tapered needles and 65% from cutting needles, compared with the no-glove control data. Additional glove layers did not significantly improve contaminant removal from tapered needles (p > 0.05). For the cutting needle, 2 glove layers removed 91% of contaminant, which was significantly better than a single glove (p = 0.002). Three glove layers did not afford statistically significant additional protection (p = 0.122). There were no statistically significant differences between glove types (p = 0.41). With an aqueous needle contaminant, a single glove layer removes contaminant from tapered needles as effectively as multiple glove layers. For cutting needles, double-glove layering offers superior protection. There is no advantage to triple-glove layering. A surgeon should double-glove for maximum safety. Additionally, a surgeon should take advantage of other risk-reduction strategies, such as sharps safety, risk management, and use of sharpless instrumentation when possible.
NASA Astrophysics Data System (ADS)
Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei
2014-11-01
We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.
Yuan, Yinquan; Ding, Liyun
2011-10-24
For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip. © 2011 Optical Society of America
Fine structure of the retinal photoreceptors of the great horned owl (Bubo virginianus).
Braekevelt, C R
1993-01-01
The retinal photoreceptors of the great horned owl (Bubo virginianus) consist of rods, single cones and unequal double cones present in a ratio of about 30:1.2. In the light-adapted state the rods are stout cells which are not felt to undergo retinomotor movements. The rod outer segment consists of a stack of scalloped membranous discs enclosed by the cell membrane. The rod inner segment shows an ellipsoid of mitochondria and a wealth of rough endoplasmic reticulum (RER) and polysomes, Golgi zones and autophagic vacuoles but not hyperboloid of glycogen. Single cones show a slightly tapered outer segment, a heterogenous oil droplet and an ellipsoid of mitochondria at the apex of the inner segment. Double cones consist of a larger chief member which also displays an oil droplet and a slightly smaller accessory member which does not. Both members of the double cone as well as the single cone show a prominent ellipsoid, plentiful polysomes and RER and Golgi zones in the inner segment. Neither single nor double cones possess a condensed paraboloid of glycogen but instead show plentiful scattered glycogen particles. Along the contiguous membranes between accessory and chief cones a few presumed junctional complexes are seen near the external limiting membrane. Judging by their morphology in light-adaptation the cones of this species do not undergo photomechanical movements. Rods and cones (both types) have both invaginated (ribbon) and numerous superficial (conventional) synaptic sites. Rods are more numerous in this nocturnally active bird than is usually noted in avian species.
Bi-Tapered Fiber Sensor Using a Supercontinuum Light Source for a Broad Spectral Range
NASA Astrophysics Data System (ADS)
Garcia Mina, Diego Felipe
We describe the fabrication bi-tapered optical fiber sensors designed for shorter wavelength operation and we study their optical properties. The new sensing system designed and built for the project is a specialty optical fiber that is single-mode in the visible/near infrared wavelength region of interest. In fabricating the tapered fiber we control the taper parameters, such as the down-taper and up-taper rate, shape and length, and the fiber waist diameter and length. The sensing is mode is via the electromagnetic field, which is evanescent outside the optical fiber and is confined close to the fiber's surface (within a couple hundred nanometers). The fiber sensor system has multiple advantages as a compact, simple device with an ability to detected tiny changes in the refractive index. We developed a supercontinuum light source to provide a wide spectral wavelength range from visible to near IR. The source design was based on coupling light from a femtosecond laser in a photonic crystal fiber designed for high nonlinearity. The output light was efficiently coupled into the bi-tapered fiber sensor and good signal to noise was achieved across the wavelength region. The bi-tapered fiber starts and ends with a single mode fiber in the waist region there are many modes with different propagation constants that couple to the environment outside the fiber. The signals have a strong periodic component as the wavelength is scanned; we exploit the periodicity in the signal using a discrete Fourier transform analysis to correlate signal phase changes with the refractive index changes in the local environment. For small index changes we also measure a strong correlation with the dominant Fourier amplitude component. Our experiments show that our phase-based signal processing technique works well at shorter wavelengths and we extract a new feature, the Fourier amplitude, to measure the refractive index difference. We conducted experiments using aqueous medium with controlled refractive index, such as water-glycerol mixtures. We find sensitivity to changes in the refractive index close to 0.00002 in so-called Refractive Index Units (RIUs). That is smaller than reported in recent literature, but by no means a limiting value. The technique is not limited to aqueous solutions surrounding the fiber, but it can also be adapted to study volatile organic compounds. Future improvements in the fiber sensing system are discussed, including adding thin films to the surface for label-free detection and to draw the electromagnetic field to the fiber's surface.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber.
Trevisanutto, J O; Linhananta, A; Das, G
2016-12-15
The authors demonstrated the fabrication of a fiber Bragg grating-like plasmonic nanostructure on the surface of a tapered optical fiber using gold nanorods (GNRs). A multimode optical fiber with core and cladding diameters of 105 and 125 μm, respectively, was used to make a tapered fiber using a dynamic etching process. The tip diameter was ∼100 nm. Light from a laser was coupled to the untapered end of the fiber, which produced a strong evanescent field around the tapered section of the fiber. The gradient force due to the evanescent field trapped the GNRs on the surface of the tapered fiber. The authors explored possible causes of the GNR distribution. The plasmonic structure will be a good candidate for sensing based on surface enhanced Raman scattering.
Liu, Sheng-Bo; Fan, Bin; Cheung, Gary S P; Peng, Bing; Fan, Ming-Wen; Gutmann, James L; Song, Ya-Ling; Fu, Qiang; Bian, Zhuan
2006-12-01
To compare the cleaning efficacy and shaping ability of engine-driven ProTaper and GT files, and manual preparation using K-Flexofile instruments in curved root canals of extracted human teeth. 45 canals of maxillary and mandibular molars with curvatures between 25 degrees and 40 degrees were divided into three groups. The groups were balanced with regard to the angle and the radius of canal curvature. Canals in each group were prepared to an apical size of 25 with either the rotary ProTaper or GT system, or manually with K-Flexofile using the modified double-flared technique. Irrigation was done with 2 mL 2.5% NaOCl after each instrument and, as the final rinse, 10 mL 2.5% NaOCl then 10 mL 17% EDTA and finally 5 mL distilled water. The double-exposure radiographic technique was used to examine for the presence of apical transportation. The time required to complete the preparation, as well as any change in working length after preparation were recorded. The roots were then grooved and split longitudinally. The amounts of debris and smear layer were evaluated at the apical, middle and coronal regions under the scanning electron microscope. Data were analyzed either parametrically with the F-test or non-parametrically using the Kruskal-Wallis test, where appropriate. Two GT files but none of the K-Flexofile and ProTaper instruments separated. For debris removal, the ProTaper group achieved a better result than GT (P < 0.05) but not the K-Flexofile group at all three regions (apical, middle and coronal). K-Flexofiles produced significantly less smear layer than ProTaper and GT files only in the middle third of the canal (P < 0.01). Both NiTi rotary instruments maintained the original canal shape better than the K-Flexofiles (P < 0.05) and required significantly less time to complete the preparation.
NASA Astrophysics Data System (ADS)
Han, Qi-Gang; Yang, Wen-Ke; Zhu, Pin-Wen; Ban, Qing-Chu; Yan, Ni; Zhang, Qiang
2013-07-01
In order to increase the maximum cell pressure of the cubic high pressure apparatus, we have developed a new structure of tungsten carbide cubic anvil (tapered cubic anvil), based on the principle of massive support and lateral support. Our results indicated that the tapered cubic anvil has some advantages. First, tapered cubic anvil can push the transfer rate of pressure well into the range above 36.37% compare to the conventional anvil. Second, the rate of failure crack decreases about 11.20% after the modification of the conventional anvil. Third, the limit of static high-pressure in the sample cell can be extended to 13 GPa, which can increase the maximum cell pressure about 73.3% than that of the conventional anvil. Fourth, the volume of sample cell compressed by tapered cubic anvils can be achieved to 14.13 mm3 (3 mm diameter × 2 mm long), which is three and six orders of magnitude larger than that of double-stage apparatus and diamond anvil cell, respectively. This work represents a relatively simple method for achieving higher pressures and larger sample cell.
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
NASA Astrophysics Data System (ADS)
Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang
2016-09-01
Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.
Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe
2013-09-01
The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.
Kim, Hyeon-Cheol; Lee, Min-Ho; Yum, Jiwan; Versluis, Antheunis; Lee, Chan-Joo; Kim, Byung-Min
2010-07-01
Nickel-titanium (NiTi) rotary files can produce cleanly tapered canal shapes with low tendency of transporting the canal lumen. Because NiTi instruments are generally perceived to have high fracture risk during use, new designs have been marketed to lower fracture risks. However, these design variations may also alter the forces on a root during instrumentation and increase dentinal defects that predispose a root to fracture. This study compared the stress conditions during rotary instrumentation in a curved root for three NiTi file designs. Stresses were calculated using finite element (FE) analysis. FE models of ProFile (Dentsply Maillefer, Ballaigues, Switzerland; U-shaped cross-section and constant 6% tapered shaft), ProTaper Universal (Dentsply; convex triangular cross-section with notch and progressive taper shaft), and LightSpeed LSX (Lightspeed Technology, Inc, San Antonio, TX; noncutting round shaft) were rotated within a curved root canal. The stress and strain conditions resulting from the simulated shaping action were evaluated in the apical root dentin. ProTaper Universal induced the highest von Mises stress concentration in the root dentin and had the highest tensile and compressive principal strain components at the external root surface. The calculated stress values from ProTaper Universal, which had the biggest taper shaft, approached the strength properties of dentin. LightSpeed generated the lowest stresses. The stiffer file designs generated higher stress concentrations in the apical root dentin during shaping of the curved canal, which raises the risk of dentinal defects that may lead to apical root cracking. Thus, stress levels during shaping and fracture susceptibility after shaping vary with instrument design. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers
NASA Astrophysics Data System (ADS)
Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh; Sumpf, Bernd; Paschke, Katrin; Andersen, Peter E.
2015-03-01
We demonstrate a concept for visible laser sources based on sum-frequency generation of beam combined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion efficiency of 12.1%. As an example of potential applications, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser, thus demonstrating good beam quality and power stability. The maximum output powers achieved when pumping the Ti:sapphire laser are 226 mW (CW) and 185 mW (mode-locked) at 1.7 W green pump power. The optical spectrum emitted by the mode-locked Ti:sapphire laser shows a spectral width of about 54 nm (FWHM), indicating less than 20 fs pulse width.
NASA Astrophysics Data System (ADS)
Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji
2007-01-01
The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.
Bifurcation and Firing Patterns of the Pancreatic β-Cell
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Shenquan; Liu, Xuanliang; Zeng, Yanjun
Using a model of individual isolated pancreatic β-cells, we investigated bifurcation diagrams of interspike intervals (ISIs) and largest Lyapunov exponents (LLE), which clearly demonstrated a wide range of transitions between different firing patterns. The numerical simulation results revealed the effect of different time constants and ion channels on the neuronal discharge rhythm. Furthermore, an individual cell exhibited tonic spiking, square-wave bursting, and tapered bursting. Additionally, several bifurcation phenomena can be observed in this paper, such as period-doubling, period-adding, inverse period-doubling and inverse period-adding scenarios. In addition, we researched the mechanisms underlying two kinds of bursting (tapered and square-wave bursting) by use of fast-slow dynamics analysis. Finally, we analyzed the codimension-two bifurcation of the fast subsystem and studied cusp bifurcation, generalized Hopf (or Bautin) bifurcation and Bogdanov-Takens bifurcation.
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration
2017-06-01
The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.
Optical nanofiber temperature monitoring via double heterodyne detection
NASA Astrophysics Data System (ADS)
Anderson, P.; Jalnapurkar, S.; Moiseev, E. S.; Chang, D.; Barclay, P. E.; Lezama, A.; Lvovsky, A. I.
2018-05-01
Tapered optical fibers (nanofibers) whose diameters are smaller than the optical wavelength are very fragile and can be easily destroyed if excessively heated by energy dissipated from the transmitted light. We present a technique for monitoring the nanofiber temperature using two-stage heterodyne detection. The phase of the heterodyne output signal is determined by that of the transmitted optical field, which, in turn, depends on the temperature through the refractive index. From the phase data, by numerically solving the heat exchange equations, the temperature distribution along the nanofiber is determined. The technique is applied to the controlled heating of the nanofiber by a laser in order to remove rubidium atoms adsorbed on its surface that substantially degrade its transmission. Almost 90% of the nanofiber's original transmission is recovered.
Acoustic vibration sensor based on nonadiabatic tapered fibers.
Xu, Ben; Li, Yi; Sun, Miao; Zhang, Zhen-Wei; Dong, Xin-Yong; Zhang, Zai-Xuan; Jin, Shang-Zhong
2012-11-15
A simple and low-cost vibration sensor based on single-mode nonadiabatic fiber tapers is proposed and demonstrated. The environmental vibrations can be detected by demodulating the transmission loss of the nonadiabatic fiber taper. Theoretical simulations show that the transmission loss is related to the microbending of the fiber taper induced by vibrations. Unlike interferometric sensors, this vibration sensor does not need any feedback loop to control the quadrature point to obtain a stable performance. In addition, it has no requirement for the coherence of the light source and is insensitive to temperature changes. Experimental results show that this sensing system has a wide frequency response range from a few hertz to tens of kilohertz with the maximal signal to noise ratio up to 73 dB.
Tu, Tianyu; Pang, Fufei; Zhu, Shan; Cheng, Jiajing; Liu, Huanhuan; Wen, Jianxiang; Wang, Tingyun
2017-04-17
We have theoretically and experimentally demonstrated a novel approach to excite Bloch surface wave (BSW) on tapered optical fibers, which are coated with one-dimensional photonic crystal (1DPC) consisting of periodic TiO2 and Al2O3 by atomic layer deposition technology. Two resonant dips are found in transmission spectra that are originated from the excitation of BSW for p-polarized light and s-polarized light, respectively. For the first time, we have demonstrated the developed device for refractive index (RI) sensing.
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...
2017-12-18
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun
2017-12-01
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.
Ristić, Davor; Rasoloniaina, Alphonse; Chiappini, Andrea; Féron, Patrice; Pelli, Stefano; Conti, Gualtiero Nunzi; Ivanda, Mile; Righini, Giancarlo C; Cibiel, Gilles; Ferrari, Maurizio
2013-09-09
Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
The width-tapered double cantilever beam for interlaminar fracture testing
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Jensen, R. M.; Bullman, G. W.; Hunston, D. L.
1984-01-01
The width-tapered double-cantilever-beam (WTDCB) specimen configuration used to determine the Mode-I interlaminar fracture energy (IFE) of composites has special advantages for routine development work and for quality-assurance purposes. These advantages come primarily from the simplicity of testing and the fact that the specimen is designed for constant change in compliance with crack length, so that the computation of Mode-I IFE is independent of crack length. In this paper, a simplified technique for fabrication and testing WTDCB specimens is described. Also presented are the effects of fiber orientation and specimen dimensions, a comparison of data obtained using the WTDCB specimens and other specimen geometries, and comparison of data obtained at different laboratories. It is concluded that the WTDCB gives interlaminar Mode-I IFE essentially equal to other type specimens, and that it can be used for rapid screening in resin-development work and for quality assurance of composite materials.
Characterization of a 3D optrode array for infrared neural stimulation
Abaya, T.V.F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Clark, G.A.; Solzbacher, F.
2012-01-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%. PMID:23024914
Characterization of a 3D optrode array for infrared neural stimulation.
Abaya, T V F; Diwekar, M; Blair, S; Tathireddy, P; Rieth, L; Clark, G A; Solzbacher, F
2012-09-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.
Stability comparison between commercially available mini-implants and a novel design: part 1.
Hong, Christine; Lee, Haofu; Webster, Richard; Kwak, Jinny; Wu, Benjamin M; Moon, Won
2011-07-01
To compare mechanical stability among five mini-implant designs--a newly invented design and four commercially available designs that vary by shape and threading; to calculate external surface area of each design using high-resolution micro-computed tomography; and to evaluate the relationship between surface area and stability results. The four commercially available mini-implants--single-threaded and cylindrical (SC), single-threaded and tapered (ST), double-threaded and cylindrical (DC), double-threaded and tapered (DT)--and a new implant that is designed to engage mostly in cortical bone with shorter and wider dimensions (N1) were inserted in simulated bone with cortical and trabecular bone layers. The mechanical study consisted of torque measurements and lateral displacement tests. External surface area was computed using a 25-µm micro-CT. Maximum insertion torque, maximum removal torque, and force levels for displacements were the highest in N1, followed by DT, ST, DC, and SC (α = .05). The surface area was largest in DT, followed by N1, ST, DC, and SC. Surface area engaged in cortical bone, however, was the greatest in N1. The surface area of mini-implants had positive correlation with stability. Among commercial designs, both added tapering and double threading improved stability. N1 was the most stable design within this research design. The new design has the potential to be clinically superior; it has enhanced stability and there is diminished risk of endangering nearby anatomic structures during placement and orthodontic treatment, but the design requires refinements to reduce insertion torque to avoid clinical difficulty and patient discomfort.
High-efficiency power transfer for silicon-based photonic devices
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Yu, Kyoungsik
2018-02-01
We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.
NASA Astrophysics Data System (ADS)
Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi
2007-03-01
We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.
Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.
Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz
2016-06-10
In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design.
NASA Astrophysics Data System (ADS)
Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya
2018-03-01
This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
Efficacy of Tramadol Extended-Release for Opioid Withdrawal: A Randomized Clinical Trial.
Dunn, Kelly E; Tompkins, D Andrew; Bigelow, George E; Strain, Eric C
2017-09-01
Opioid use disorder (OUD) is a significant public health problem. Supervised withdrawal (ie, detoxification) from opioids using clonidine or buprenorphine hydrochloride is a widely used treatment. To evaluate whether tramadol hydrochloride extended-release (ER), an approved analgesic with opioid and nonopioid mechanisms of action and low abuse potential, is effective for use in supervised withdrawal settings. A randomized clinical trial was conducted in a residential research setting with 103 participants with OUD. Participants' treatment was stabilized with morphine, 30 mg, administered subcutaneously 4 times daily. A 7-day taper using clonidine (n = 36), tramadol ER (n = 36), or buprenorphine (n = 31) was then instituted, and patients were crossed-over to double-blind placebo during a post-taper period. The study was conducted from October 25, 2010, to June 23, 2015. Retention, withdrawal symptom management, concomitant medication utilization, and naltrexone induction. Results were analyzed over time and using area under the curve for the intention-to-treat and completer groups. Of the 103 participants, 88 (85.4%) were men and 43 (41.7%) were white; mean (SD) age was 28.9 (10.4) years. Buprenorphine participants (28 [90.3%]) were significantly more likely to be retained at the end of the taper compared with clonidine participants (22 [61.1%]); tramadol ER retention was intermediate and did not differ significantly from that of the other groups (26 [72.2%]; χ2 = 8.5, P = .01). Time-course analyses of withdrawal revealed significant effects of phase (taper, post taper) for the Clinical Opiate Withdrawal Scale (COWS) score (taper mean, 5.19 [SE, .26]; post-taper mean, 3.97 [SE, .23]; F2,170 = 3.6, P = .03) and Subjective Opiate Withdrawal Scale (SOWS) score (taper mean,8.81 [SE, .40]; post-taper mean, 4.14 [SE, .30]; F2,170 = 15.7, P < .001), but no group effects or group × phase interactions. Analyses of area under the curve of SOWS total scores showed significant reductions (F2,159 = 17.7, P < .001) in withdrawal severity between the taper and post-taper periods for clonidine (taper mean, 13.1; post-taper mean, 3.2; P < .001) and tramadol ER (taper mean, 7.4; post-taper mean, 2.8; P = .03), but not buprenorphine (taper mean, 6.4; post-taper mean, 7.4). Use of concomitant medication increased significantly (F2,159 = 30.7, P < .001) from stabilization to taper in the clonidine (stabilization mean, 0.64 [SE, .05]; taper mean, 1.54 [SE, .10]; P < .001) and tramadol ER (stabilization mean, 0.53 [SE, .05]; taper mean, 1.19 [SE, .09]; P = .003) groups and from stabilization to post taper in the buprenorphine group (stabilization mean, 0.46 [SE, .05] post-taper mean, 1.17 [SE, .09]; P = .006), suggesting higher withdrawal for those groups during those periods. Naltrexone initiation was voluntary and the percentage of participants choosing naltrexone therapy within the clonidine (8 [22.2%]), tramadol ER (7 [19.4%]), or buprenorphine (3 [9.7%]) groups did not differ significantly (χ2 = 2.5, P = .29). The results of this trial suggest that tramadol ER is more effective than clonidine and comparable to buprenorphine in reducing opioid withdrawal symptoms during a residential tapering program. Data support further examination of tramadol ER as a method to manage opioid withdrawal symptoms. Clinicaltrials.gov Identifier: NCT01188421.
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji
2013-11-18
A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
High-brightness 1.3 μm InAs/GaAs quantum dot tapered laser with high temperature stability.
Cao, Yulian; Ji, Haiming; Xu, Pengfei; Gu, Yongxian; Ma, Wenquan; Yang, Tao
2012-10-01
We demonstrate high-brightness 1.3 μm tapered lasers with high temperature stability by using p-doped InAs/GaAs quantum dots (QDs) as the active region. It is found that the beam quality factor M(2) for the devices is almost unchanged as the light power and temperature increase. The almost constant M(2) results from the p-doped QD active region.
Strong focusing effect of 660 nm laser by microsized tapered glass tubes with different diameters
NASA Astrophysics Data System (ADS)
Lin, Chongnan; Luo, Xujia; Zhu, Xiaoyang; Zhu, Li; Wang, Hongcheng; Zhang, Ao; Xu, Runyu; Qu, Zheng; Chen, Ximeng; Zhang, Weiyi; Shao, Jianxiong
2017-09-01
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes' diameter of exit are obtained.
Alrahabi, M; Zafar, M S
2018-06-01
: We compared apical transportation in the WaveOne and ProTaper Next systems, which are rotary nickel-titanium systems with reciprocating and continuous rotation movements, respectively, using manual measurements obtained from resin blocks with simulated root canals and double digital radiographs of extracted teeth. : We used 30 resin blocks with simulated root canals and 30 extracted teeth for this study. The same endodontist performed root canal shaping using the WaveOne or ProTaper Next system. We assessed apical transportation by measuring the amounts (in mm) of material lost 1 mm from the apical foramen in the resin blocks and by using double digital radiography for the extracted teeth. Significant differences between groups were assessed using t-tests. P < 0.05 was considered statistically significant. : The amount of apical transportation differed significantly between the two systems when resin blocks were used for assessment (P < 0.05), but there were no significant differences when extracted teeth were used (P < 0.05). In the current study, there was no significant difference in apical transportation between natural teeth prepared using WaveOne and those prepared using ProTaper Next. However, significant differences were observed between the two systems with resin blocks. These findings indicate that the use of resin blocks is not an accurate method for apical transportation evaluation.
Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak
2017-02-21
This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane's position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices.
Mode-field adapter for tapered-fiber-bundle signal and pump combiners.
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael
2015-02-01
We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.
NASA Astrophysics Data System (ADS)
Doney, Robert L.; Agui, Juan H.; Sen, Surajit
2009-09-01
Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.
Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.
Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred
2011-10-10
We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).
Aging Effects of Environmentally-Friendly Cleaners on Adhesive Bond Integrity
NASA Technical Reports Server (NTRS)
Biegert, L. L.; Anderson, G. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.; McCool, A. A. (Technical Monitor)
2000-01-01
Because of the 1990 Clean Air Act Amendment many chlorinated solvents are being phased out of use in manufacturing industries. Replacement of the ODC (ozone- depleting chemicals) with less volatile, non-ozone depleting cleaners has been extensively studied over the past nine years at Thiokol Propulsion, Cordant Technologies. Many of the non-ODC cleaners contain compounds that can potentially degrade over time under conditions of high temperature, humidity and exposure to light. The chemical composition of environmentally conditioned cleaners and the subsequent effect on aluminum/amine-cured epoxy bond integrity as measured by Tapered Double Cantilever Beam were evaluated. From this study it is observed that moisture content increases for those cleaners containing polar compounds. Non-volatile residue content increases as stabilizers are depleted and the chemical compound limonene is oxidized. A change in aluminum/ amine-cured epoxy bond fracture toughness is observed as some of these cleaners age with increases in moisture and NVR content.
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Integrated double-clad photonic crystal fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Jun; Gu, Yanran; Chen, Zilun
2017-10-01
This paper studies and fabricates an integrated double-clad photonic crystal fiber amplifier, which overcomes the shortcomings of space application and makes full use of excellent property of double-clad photonic crystal fiber. In the experiment, the (6 + 1) × 1 end-pump coupler with DC-PCF is fabricated. The six pump fibers are fabricated with 105 / 125μm (NA = 0.22) multi-mode fiber. The signal fiber is made of ordinary single-mode fiber SMF-28. Then we spliced the tapered fiber bundle to photonic crystal fiber. At last, we produce double-clad photonic crystal fiber with an end-cap that are able to withstand high average power and protect the system. We have fabricated an integrated Yb-double-clad photonic crystal fiber amplifier.
Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F
2011-01-01
This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kfir, A; Elkes, D; Pawar, A; Weissman, A; Tsesis, I
2017-01-01
The objective of this study is to determine the potential for microcracks in the radicular dentin of first maxillary premolars using three different mechanized endodontic instrumentation systems. Eighty extracted maxillary first premolars with two root canals and no externally visible microcracks were selected. Root canal instrumentation was performed with either the ProTaper file system, the WaveOne primary file, or the self-adjusting file (SAF). Teeth with intact roots served as controls. The roots were cut into segments and examined with an intensive, small-diameter light source that was applied diagonally to the entire periphery of the root slice under ×20 magnification; the presence of microcracks and fractures was recorded. Pearson's chi-square method was used for statistical analysis, and significance was set at p < 0.05. Microcracks were present in 30 and 20 % of roots treated with the ProTaper and WaveOne systems, respectively, while no microcracks were present in the roots treated with the SAF (p = 0.008 and p = 0.035, respectively). Intact teeth presented with cracks in 5 % of the roots. The intensive, small-diameter light source revealed microcracks that could not be detected when using the microscope's light alone. Within the limitations of this study, it could be concluded that mechanized root canal instrumentation with the ProTaper and WaveOne systems in maxillary first premolars causes microcracks in the radicular dentin, while the use of the SAF file causes no such microcracks. Rotary and reciprocating files with large tapers may cause microcracks in the radicular dentin of maxillary first premolars. Less aggressive methods should be considered for these teeth.
Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun
2015-10-19
Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.
All-fiber orbital angular momentum mode generation and transmission system
NASA Astrophysics Data System (ADS)
Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin
2017-11-01
We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.
Reliability and performance of innovative surgical double-glove hole puncture indication systems.
Edlich, Richard F; Wind, Tyler C; Heather, Cynthia L; Thacker, John G
2003-01-01
During operative procedures, operating room personnel wear sterile surgical gloves designed to protect them and their patients against transmissible infections. The Food and Drug Administration (FDA) has set compliance policy guides for manufacturers of gloves. The FDA allows surgeons' gloves whose leakage defect rates do not exceed 1.5 acceptable quality level (AQL) to be used in operating rooms. The implications of this policy are potentially enormous to operating room personnel and patients. This unacceptable risk to the personnel and patient could be significantly reduced by the use of sterile double surgical gloves. Because double-gloves are also susceptible to needle puncture, a double-glove hole indication system is urgently needed to immediately detect surgical needle glove punctures. This warning would allow surgeons to remove the double-gloves, wash their hands, and then don a sterile set of double-gloves with an indication system. During the last decade, Regent Medical has devised non-latex and latex double-glove hole puncture indication systems. The purpose of this comprehensive study is to detect the accuracy of the non-latex and latex double-glove hole puncture indication systems using five commonly used sterile surgical needles: the taper point surgical needle, tapercut surgical needle, reverse cutting edge surgical needle, taper cardiopoint surgical needle, and spatula surgical needle. After subjecting both the non-latex and latex double-glove hole puncture indication systems to surgical needle puncture in each glove fingertip, these double-glove systems were immersed in a sterile basin of saline, after which the double-gloved hands manipulated surgical instruments. Within two minutes, both the non-latex and latex hole puncture indication systems accurately detected needle punctures in all of the surgical gloves, regardless of the dimensions of the surgical needles. In addition, the size of the color change visualized through the translucent outer glove did not correlate with needle diameter. On the basis of this extensive experimental evaluation, both the non-latex and latex double-glove hole puncture indication systems should be used in all operative procedures by all operating room personnel.
Salit, K; Salit, M; Krishnamurthy, Subramanian; Wang, Y; Kumar, P; Shahriar, M S
2011-11-07
We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.
The study of the thermally expanded core technique in end-pumped (N+1)×1 type combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Feng, Yujun; Ma, Yi
2015-02-01
Tapering will raise the signal loss in an end-pumped (N+1)×1 type combiner. In this paper, the Thermally Expanded Core (TEC) technique is used in the signal loss optimization experiment with the tapering ratio of the pump combiner is 0.6. The experimental results indicate that the coupling efficiency of the 1.55μm signal light increases from 81.1% to 86.6%, after being heated 10 minutes at the homo-waist region of the tapered signal fiber with an 8mm wide hydroxygen flame. Detail analysis shows that the TEC technique can both reduce the loss of the LP01 mode and the LP11 mode in the signal fiber.
SiN-assisted polarization-insensitive multicore fiber to silicon photonics interface
NASA Astrophysics Data System (ADS)
Poulopoulos, Giannis N.; Kalavrouziotis, Dimitrios; Mitchell, Paul; Macdonald, John R.; Bakopoulos, Paraskevas; Avramopoulos, Hercules
2015-06-01
We demonstrate a polarization-insensitive coupler interfacing multicore-fiber (MCF) to silicon waveguides. It comprises a 3D glass fanout transforming the circular MCF core-arrangement to linear and performing initial tapering, followed by a Spot-Size-Converter on the silicon chip. Glass waveguides are formed of multiple overlapped modification elements and appropriate offsetting thereof yields tapers with symmetric cross-section. The Spot-Size-Converter is an inverselytapered silicon waveguide with a tapered polymer overcladding where light is initially coupled, whereas phase-matching gradually shifts it towards the silicon core. Co-design of the glass fanout and Spot-Size-Converter obtains theoretical loss below 1dB for the overall Si-to-MCF transition in both polarizations.
Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S
2017-07-01
Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.
Design studies of the Ku-band, wide-band Gyro-TWT amplifier
NASA Astrophysics Data System (ADS)
Jung, Sang Wook; Lee, Han Seul; Jang, Kwong Ho; Choi, Jin Joo; Hong, Yong Jun; Shin, Jin Woo; So, Jun Ho; Won, Jong Hyo
2014-02-01
This paper reports a Ku-band, wide band Gyrotron-Traveling-wave-tube(Gyro-TWT) that is currently being developed at Kwangwoon University. The Gyro-TWT has a two stage linear tapered interaction circuit to obtain a wide operating bandwidth. The linearly-tapered interaction circuit and nonlinearly-tapered magnetic field gives the Gyro-TWT a wide operating bandwidth. The Gyro-TWT bandwidth is 23%. The 2d-Particle-in-cell(PIC) and MAGIC2d code simulation results are 17.3 dB and 24.34 kW, respectively for the maximum saturated output power. A double anode MIG was simulated with E-Gun code. The results were 0.7 for the transvers to the axial beam velocity ratio (=alpha) and a 2.3% axial velocity spread at 50 kV and 4 A. A magnetic field profile simulation was performed by using the Poisson code to obtain the grazing magnetic field of the entire interaction circuit with Poisson code.
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.
1987-01-01
An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.
Electrode support for gas arc welding torch having coaxial vision
NASA Technical Reports Server (NTRS)
Richardson, Richard W. (Inventor)
1987-01-01
An improved electrode mounting structure for a gas tungsten arc welding torch having a coaxial imaging system. The electrode mounting structure includes a support having a central hub and a plurality of spokes which extend from the hub generally radially with respect to the axis of the torch into supporting engagement with the interior walls of the torch. The spaces between the spokes are optical passages for transmission of light to form the image. A tubular collet holder is threadedly engaged at its upper end to the hub and extends downwardly toward the open end of the torch. The collet holder has an inwardly tapering constriction near its lower end. An electrode-retaining, tubular collet is mounted within the collet holder and has a longitudinally split and tapered end seating against the tapered constriction. A spring seats against the upper end of the collet and forces the split end against the tapered constriction to wedge the split end radially inwardly to grip the electrode within the collet.
Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak
2017-01-01
This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane’s position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices. PMID:28772571
Türker, Sevinç-Aktemur
2015-01-01
Background This study aimed to compare glide path preparation of different pathfinding systems and their effects on the apical transportation of ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland) in mesial root canals of extracted human mandibular molars, using digital subtraction radiography. Material and Methods The mesial canals of 40 mandibular first molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 4 groups with 10 canals each. Glide paths were created in group 1 with #10, #15 and #20 K-type (Dentsply Maillefer, Ballaigues, Switzerland) stainless steel manual files; in group 2 with Path-File (Dentsply Maillefer) #1, #2, and #3 and in group 3 with #16 ProGlider (Dentsply Maillefer) rotary instruments; in group 4 no glide paths were created. All canals were instrumented up to ProTaper Next X2 to the working length. A double digital radiograph technique was used, pre and post-instrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. Instrument failures were also recorded. The data were analyzed statistically using ANOVA and Tukey tests (p<0.05). Results No significant differences were found among groups regarding apical transportation (p>0.05). Two ProTaper Next instruments failed in-group 4. Conclusions Within the parameters of this study, there was no difference between the performance of path-finding files and ProTaper Next system maintained root canal curvature well and was safe to use either with path-finding files or alone. Key words:Glide path, PathFile, ProGlider, ProTaper Next, transportation. PMID:26330936
Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul
2010-10-01
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3° at anterior/posterior, 3° at medial/lateral and 10° from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.
Nguyen, Quan Dong; Merrill, Pauline T; Clark, W Lloyd; Banker, Alay S; Fardeau, Christine; Franco, Pablo; LeHoang, Phuc; Ohno, Shigeaki; Rathinam, Sivakumar R; Thurau, Stephan; Abraham, Abu; Wilson, Laura; Yang, Yang; Shams, Naveed
2016-11-01
To evaluate the efficacy and safety of intravitreal sirolimus in the treatment of noninfectious uveitis (NIU) of the posterior segment (i.e., posterior, intermediate, or panuveitis). Phase III, randomized, double-masked, active-controlled, 6-month study with intravitreal sirolimus. Adults with active NIU of the posterior segment (intermediate, posterior, or panuveitis), defined as a vitreous haze (VH) score >1+. Subjects discontinued NIU medications before baseline, except for systemic corticosteroids, which were allowed only for those already receiving them at baseline and were rapidly tapered after baseline per protocol. Intravitreal sirolimus assigned 1:1:1 at doses of 44 (active control), 440, or 880 μg, administered on Days 1, 60, and 120. The primary efficacy outcome was the percentage of subjects with VH 0 response at Month 5 (study eye) without use of rescue therapy. Secondary outcomes at Month 5 were VH 0 or 0.5+ response rate, corticosteroid tapering success rate (i.e., tapering to a prednisone-equivalent dosage of ≤5 mg/day), and changes in best-corrected visual acuity (BCVA). Adverse events during the double-masked treatment period are presented. A total of 347 subjects were randomized. Higher proportions of subjects in the intravitreal sirolimus 440 μg (22.8%; P = 0.025) and 880 μg (16.4%; P = 0.182) groups met the primary end point than in the 44 μg group (10.3%). Likewise, higher proportions of subjects in the 440 μg (52.6%; P = 0.008) and 880 μg (43.1%; P = 0.228) groups achieved a VH score of 0 or 0.5+ than in the 44 μg group (35.0%). Mean BCVA was maintained throughout the study in each dose group, and the majority of subjects receiving corticosteroids at baseline successfully tapered off corticosteroids (44 μg [63.6%], 440 μg [76.9%], and 880 μg [66.7%]). Adverse events in the treatment and active control groups were similar in incidence, and all doses were well tolerated. Intravitreal sirolimus 440 μg demonstrated a significant improvement in ocular inflammation with preservation of BCVA in subjects with active NIU of the posterior segment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation.
Hammer, Jonas; Cavanna, Andrea; Pennetta, Riccardo; Chekhova, Maria V; Russell, Philip St J; Joly, Nicolas Y
2018-05-15
Precise control of the dispersion landscape is of crucial importance if optical fibers are to be successfully used for the generation of three-photon states of light-the inverse of third-harmonic generation (THG). Here we report gas-tuning of intermodal phase-matched THG in sub-micron-diameter tapered optical fiber. By adjusting the pressure of the surrounding argon gas up to 50 bars, intermodally phase-matched third-harmonic light can be generated for pump wavelengths within a 15 nm range around 1.38 μm. We also measure the infrared fluorescence generated in the fiber when pumped in the visible and estimate that the accidental coincidence rate in this signal is lower than the predicted detection rate of photon triplets.
Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S
2008-06-13
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.
Theoretical and simulation studies of seeding methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Claudio
We report the theoretical and experimental studies done with the support of DOE-Grant DE-SC0009983 to increase an X-ray FEL peak power from the present level of 20 to 40 GW to one or more TW by seeding, undulator tapering and using the new concept of the Double Bunch FEL.
Does Surface Topography Play a Role in Taper Damage in Head-neck Modular Junctions?
Pourzal, Robin; Hall, Deborah J; Ha, Nguyen Q; Urban, Robert M; Levine, Brett R; Jacobs, Joshua J; Lundberg, Hannah J
2016-10-01
There are increasing reports of total hip arthroplasty failure subsequent to modular taper junction corrosion. The surfaces of tapers are machined to have circumferential machining marks, resulting in a surface topography of alternating peaks and valleys on the scale of micrometers. It is unclear if the geometry of this machined surface topography influences the degree of fretting and corrosion damage present on modular taper junctions or if there are differences between modular taper junction material couples. (1) What are the differences in damage score and surface topography between CoCr/CoCr and CoCr/Ti modular junctions? (2) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/CoCr couples? (3) How are initial surface topography, flexural rigidity, taper angle mismatch, and time in situ related to visual taper damage scores for CoCr/Ti couples? Damage on stem and head tapers was evaluated with a modified Goldberg score. Differences in damage scores were determined between a group of 140 CoCr/CoCr couples and 129 CoCr/Ti couples using a chi-square test. For a subgroup of 70 retrievals, selected at random, we measured five variables, including initial stem taper machining mark height and spacing, initial head taper roughness, flexural rigidity, and taper angle mismatch. All retrievals were obtained at revision surgeries. None were retrieved as a result of metal-on-metal failures or were recalled implants. Components were chosen so there was a comparable number of each material couple and damage score. Machining marks around the circumference of the tapers were measured using white light interferometry to characterize the initial stem taper surface topography in terms of the height of and spacing between machining mark peaks as well as initial head taper roughness. The taper angle mismatch was assessed with a coordinate measuring machine. Flexural rigidity was determined based on measurements of gross taper dimensions and material properties. Differences of median or mean values of all variables between material couples were determined (Wilcoxon rank-sum tests and t-tests). The effect of all five variables along with time in situ on stem and head taper damage scores was tested with a multiple regression model. With 70 retrievals, a statistical power of 0.8 could be achieved for the model. Damage scores were different between CoCr/CoCr and CoCr/Ti modular taper junction material couples. CoCr/CoCr stem tapers were less likely to be mildly damaged (11%, p = 0.006) but more likely to be severely damaged (4%, p = 0.02) than CoCr/Ti stem tapers (28% and 1%, respectively). CoCr/CoCr couples were less likely to have moderately worn head tapers (7% versus 17%, p = 0.003). Stem taper machining mark height and spacing and head taper roughness were 11 (SD 3), 185 (SD 46), and 0.57 (SD 0.5) for CoCr/CoCr couples and 10 (SD 3), 170 (SD 56), and 0.64 (SD 0.4) for CoCr/Ti couples, respectively. There was no difference (p = 0.09, p = 0.1, p = 0.16, respectively) for either factor between material couples. Larger stem taper machining mark heights (p = 0.001) were associated with lower stem taper damage scores, and time in situ (p = 0.006) was associated with higher stem taper damage scores for CoCr/CoCr material couples. Stem taper machining marks that had higher peaks resulted in slower damage progression over time. For CoCr/Ti material couples, head taper roughness was associated with higher stem (p = 0.001) and head taper (p = 0.003) damage scores, and stem taper machining mark height, but not time in situ, was associated with lower stem taper damage scores (p = 0.007). Stem taper surface topography was related to damage scores on retrieved head-neck modular junctions; however, it affected CoCr/CoCr and CoCr/Ti couples differently. A taper topography of circumferential machining marks with higher peaks appears to enable slower damage progression and, subsequently, a reduction of the reported release of corrosion products. This may be of interest to implant designers and manufacturers in an effort to reduce the effects of metal release from modular femoral components.
Mesoscopic effect of spectral modulation for the light transmitted by a SNOM tip
NASA Astrophysics Data System (ADS)
Rähn, M.; Pärs, M.; Palm, V.; Jaaniso, R.; Hizhnyakov, V.
2010-06-01
The effect of a tapered metal-coated optical fiber terminated by a sub-wavelength aperture (SWA) on the spectrum of the transmitted light is investigated experimentally. Under certain conditions a remarkable spectral modulation of the transmitted light can be observed. This effect is of a mesoscopic origin, occurring only for a certain interval of SWA diameters. One can conclude that a noticeable modulation appears when the number of the transmitted fiber modes is small but exceeds unity, thus indicating the presence of a phase shift between different modes. To discern between two possible sources of such phase shift, the fiber length dependence of the output spectrum has been studied. According to the results obtained for the used sample of 200 nm SNOM tip, the observed phase shift is mostly caused rather by the inherent modal dispersion of the multimode fiber than by the mode-dependent light slowdown in the tapered region close to SWA due to the coupling to surface plasmons of the metal coating. The SWA acts here mainly as an effective mode filter.
Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.
2007-03-20
A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.
WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics
NASA Technical Reports Server (NTRS)
Stekalov, Dmitry; Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Iltchenko, Vladimir
2007-01-01
Theoretical and experimental investigations have demonstrated the feasibility of compact white-light sensor optics consisting of unitary combinations of (1) low-profile whispering-gallery-mode (WGM) resonators and (2) tapered rod optical waveguides. These sensors are highly wavelength-dispersive and are expected to be especially useful in biochemical applications for measuring absorption spectra of liquids. These sensor optics exploit the properties of a special class of non-diffracting light beams that are denoted Bessel beams because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have large values of angular momentum. In a sensor optic of this type, a low-profile WGM resonator that supports modes having large angular momenta is used to generate high-order Bessel beams. As used here, "low-profile" signifies that the WGM resonator is an integral part of the rod optical waveguide but has a radius slightly different from that of the adjacent part(s).
Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities
NASA Astrophysics Data System (ADS)
André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando
2016-09-01
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
Toward efficient fiber-based quantum interface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey
2016-04-01
NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports, vol. 528, no. 1, p. 1-45, 2013. [2] A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park and M.D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, vol. 450, p. 402-406, 2007. [3] Michael J. Burek , Yiwen Chu, Madelaine S.Z. Liddy, Parth Patel, Jake Rochman , Srujan Meesala, Wooyoung Hong, Qimin Quan, Mikhail D. Lukin and Marko Loncar High quality-factor optical nanocavities in bulk single-crystal diamond, Nature communications 6718 (2014) [4] Tim Schroder, Andreas W. Schell, Gunter Kewes, Thomas Aichele, and Oliver Benson Fiber-Integrated Diamond-Based Single Photon Source, Nano Lett. 2011, 11, 198-202 [5]Lars Liebermeister, et. al. "Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center", Appl. Phys. Lett. 104, 031101 (2014)
Compact plasmonic memristor with high extinction efficiency
NASA Astrophysics Data System (ADS)
Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Zhang, Guangfu
2017-10-01
Here we present a plasmonic memristor operated at the telecommunication wavelength with compact size (0.61 μm), and high extinction efficiency (4.6 dB/μm). The plasmonic memristor consists of a triangle-shaped metal taper mounted on the top of a Si waveguide with rational doping in the area below the apex of the taper. This device can achieve vertical coupling of light energy from the Si waveguide to the plasmonic region and at the same time concentrates the plasmon to the apex of the metal taper. Moreover, the area with concentrated plasmon is overlap with that where the memristive behavior occurs due to the formation/removal of the metallic nanofilament. As a result, the highly distinct transmission induced by the switching of the plasmonic memristor can be achieved due to the maximized interaction between the plasmon and the filament.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
Polynkin, PaveL; Polynkin, Alexander; Peyghambarian, N; Mansuripur, Masud
2005-06-01
We report a simple optical sensing device capable of measuring the refractive index of liquids propagating in microfluidic channels. The sensor is based on a single-mode optical fiber that is tapered to submicrometer dimensions and immersed in a transparent curable soft polymer. A channel for liquid analyte is created in the immediate vicinity of the taper waist. Light propagating through the tapered section of the fiber extends into the channel, making the optical loss in the system sensitive to the refractive-index difference between the polymer and the liquid. The fabrication process and testing of the prototype sensing devices are described. The sensor can operate both as a highly responsive on-off device and in the continuous measurement mode, with an estimated accuracy of refractive-index measurement of approximately 5 x 10(-4).
Double-Zero-Index Structural Phononic Waveguides
NASA Astrophysics Data System (ADS)
Zhu, Hongfei; Semperlotti, Fabio
2017-12-01
We report on the theoretical and experimental realization of a double-zero-index elastic waveguide and the corresponding acoustic cloaking and supercoupling effects. The proposed waveguide uses geometric tapers in order to induce Dirac-like cones at k → =0 due to accidental degeneracy. The nature of the degeneracy is explored by a k .p perturbation method adapted to thin structural waveguides. The results confirm the linear nature of the dispersion around the degeneracy and the possibility to map the material to effective-medium properties. Effective parameters numerically extracted using boundary medium theory confirm that the phononic waveguide maps into a double-zero-index material. Numerical and experimental results confirm the expected cloaking and supercoupling effects.
Optimal Shape of a Gamma-ray Collimator: single vs double knife edge
NASA Astrophysics Data System (ADS)
Metz, Albert; Hogenbirk, Alfred
2017-09-01
Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.
Differential optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S. (Inventor)
1978-01-01
A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.
Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C
1998-02-01
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.
Toyota beamline (BL33XU) at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.
2016-07-27
The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators,more » in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.« less
Optical fiber refractometer based on tapered tilted-fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Yu, Zhe; Xue, Meng
2016-11-01
Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. In our experiment, we changed the physical structure of the TFBGs to improve the refractive index sensing ability. One way is to stretch the grating section 5 mm longer. The result showed that not only the number of the cladding mode of the TFBG decreases but also the full width half-maximum (FWHM) of the cladding modes and core mode changes. The FWHM of the cladding mode of the tapered TFBG is more than twice than that of the original. However, the refractive index sensitivity of the tapered TFBG has no obvious improvement. Another way is to etch the grating section with 20% hydrofluoric acid solution. We find that the smaller the clad diameter, the higher the refractive index sensitivity of the TFBG.
Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper
NASA Astrophysics Data System (ADS)
Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li
2018-06-01
A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.
Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins
NASA Astrophysics Data System (ADS)
Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.
1994-07-01
An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
Design and Manufacture of Structurally Efficient Tapered Struts
NASA Technical Reports Server (NTRS)
Brewster, Jebediah W.
2009-01-01
Composite materials offer the potential of weight savings for numerous spacecraft and aircraft applications. A composite strut is just one integral part of the node-to-node system and the optimization of the shut and node assembly is needed to take full advantage of the benefit of composites materials. Lockheed Martin designed and manufactured a very light weight one piece composite tapered strut that is fully representative of a full scale flight article. In addition, the team designed and built a prototype of the node and end fitting system that will effectively integrate and work with the full scale flight articles.
NASA Astrophysics Data System (ADS)
Teng, Chuanxin; Yu, Fangda; Jing, Ning; Zheng, Jie
2016-11-01
The temperature dependence of a refractive index (RI) sensing probe based on a U-shape tapered plastic optical fiber (POF) was investigated experimentally. The changes in light propagation loss in the probe induced by temperature are of the same order of magnitude as those induced by measured RI changes. The temperature dependence loss and temperature dependence RI deviation of the sensing probe were measured (at the wavelength of 635 nm) in temperature of 10-60 °C. By extracting pure temperature dependence of the sensing probe alone, the influence of temperature to the sensor was characterized.
NASA Technical Reports Server (NTRS)
Sivells, James C; Spooner, Stanley H
1949-01-01
Report presents the results of an investigation conducted in the Langley 19-foot pressure tunnel to determine the maximum lift and stalling characteristics of two thin wings equipped with several types of flaps. Split, single slotted, and double slotted flaps were tested on one wing which had NACA 65-210 airfoil sections and split and double slotted flaps were tested on the other, which had NACA 64-210 airfoil sections. Both wings were zero sweep, an aspect ratio of 9, and a taper ratio of 0.4.
Power enhanced frequency conversion system
NASA Technical Reports Server (NTRS)
Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)
2001-01-01
A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.
300 mW of coherent light at 488 nm using a generic approach
NASA Astrophysics Data System (ADS)
Karamehmedović, Emir; Pedersen, Christian; Andersen, Martin T.; Tidemand-Lichtenberg, Peter
2008-02-01
We present a generic approach for efficient generation of CW light with a predetermined wavelength within the visible or UV spectrum. Based on sum-frequency generation (SFG), the circulating intra-cavity field of a high-finesse diode pumped CW solid-state laser (DPSSL) and the output from a tapered, single-frequency external cavity diode laser (ECDL) are mixed inside a 10 mm periodically poled KTP crstal (pp-KTP). The pp-KTP is situated inside the DPSSL cavity to enhance conversion efficiency of the nonlinear mixing process. This approach combines different solid state technologies; the tuneability of ECDLs, the high intra-cavity filed of DPSSLs and flexible quasi phase matching in pp-tapered ECDL with a center wavelength of 766 nm in combination with a high finesse Nd:YVo4 laser at 1342 nm. Up to 308 mW of light at 488nm was measured in our experiments. The conversion of te ECDL beam was up to 47% after it was transmitted through a PM fiber, and up to 32% without fiber coupling. Replacing the seed laser and the nonlinear crystal makes it possible to generate light at virtually any desired wavelength withing the visible spectrum.
NASA Astrophysics Data System (ADS)
Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.
2018-02-01
Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.
Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.
Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R
2013-02-11
We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.
A short tapered stem reduces intraoperative complications in primary total hip arthroplasty.
Molli, Ryan G; Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Sneller, Michael A
2012-02-01
While short-stem design is not a new concept, interest has surged with increasing utilization of less invasive techniques. Short stems are easier to insert through small incisions. Reliable long-term results including functional improvement, pain relief, and implant survival have been reported with standard tapered stems, but will a short taper perform as well? We compared short, flat-wedge, tapered, broach-only femoral stems to standard-length, double-tapered, ream and broach femoral stems in terms of intraoperative complications, short-term survivorship, and pain and function scores. We retrospectively reviewed the records of 606 patients who had 658 THAs using a less invasive direct lateral approach from January 2006 to March 2008. Three hundred sixty patients (389 hips) had standard-length stems and 246 (269 hips) had short stems. Age averaged 63 years, and body mass index averaged 30.7 kg/m(2). We recorded complications and pain and function scores and computed short-term survival. Minimum followup was 0.8 months (mean, 29.2 months; range, 0.8-62.2 months). We observed a higher rate of intraoperative complications with the standard-length stems (3.1%; three trochanteric avulsions, nine femoral fractures) compared with the shorter stems (0.4%; one femoral fracture) and managed all complications with application of one or more cerclage cables. There were no differences in implant survival, Harris hip score, and Lower Extremity Activity Scale score between groups. Fewer intraoperative complications occurred with the short stems, attesting to the easier insertion of these devices. While longer followup is required, our early results suggest shortened stems can be used with low complication rates and do not compromise the survival and functional outcome of cementless THA. Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
Shokraneh, Ali; Ajami, Majid; Farhadi, Nastaran; Hosseini, Mohsen; Rohani, Bita
2017-01-01
The purpose of this prospective, randomized, double-blind study was to compare postoperative pain of root canal treatment in patients with asymptomatic mandibular molar teeth with necrotic pulp and periapical lesion using three different instrumentation techniques: hand, multi-file rotary (ProTaper Universal), and reciprocating single-file (Wave-One) instrumentation techniques. Ninety-six patients who fulfilled specific inclusion criteria were assigned to three groups according to the root canal instrumentation technique used: Hand (G1), ProTaper Universal (G2), and Wave-One (G3). One-visit root canal treatment was carried out, and the severity of the postoperative pain was assessed by the Heft-Parker visual analogue scale 6, 12, 18, 24, 48, and 72 h after treatment. Data were analyzed by Kruskal-Wallis, χ 2 , Cochrane Q, one-way ANOVA, and Spearman's correlation analyses (α = 0.05). The patients in group 3 reported significantly lower postoperative pain levels at 6, 12, and 18 h compared with the patients in the two other groups (P < .05). In addition, the patients in group 2 reported significantly lower postoperative pain levels at 6 and 12 h compared with the patients in group 1 (P < .05). There were no significant differences in postoperative pain between the three groups at other time intervals (P > .05). The analgesic consumption was significantly higher in group 1 (P < .05), but no difference was seen between the two other groups (P > .05). Postoperative pain was significantly lower in patients undergoing root canal instrumentation with the Wave-One file compared with the ProTaper Universal and hand files.
High Efficiency Electron-Laser Interactions in Tapered Helical Undulators
NASA Astrophysics Data System (ADS)
Duris, Joseph Patrick
Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral tomore » narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.« less
Efficacy of etanercept in preventing relapse of uveitis controlled by methotrexate.
Foster, C Stephen; Tufail, Fehma; Waheed, Nadia Khalida; Chu, David; Miserocchi, Elisabetta; Baltatzis, Stefanos; Vredeveld, Cindy M
2003-04-01
To evaluate the efficacy of etanercept vs placebo in preventing relapses of uveitis in patients taking methotrexate with control of uveitis and whose methotrexate dosage was being tapered. Patients with chronic or recurrent noninfectious uveitis with inflammation controlled by low-dose methotrexate were randomized to either the drug or placebo group in a double-masked manner, given a methotrexate taper schedule, and followed for 24 weeks. The main outcome measures were control of inflammation, visual acuity, and adverse reactions. Data were analyzed both as an attempt-to-treat analysis and an analysis only of those patients who completed the study. A total of 20 patients were randomized to the drug and placebo groups. Relapse of uveitis occurred in 3 of 10 patients in the treatment group and 5 of 10 patients in the control group. Two patients in the treatment group withdrew prematurely from the study due to adverse effects. There was no significant difference between the treatment and placebo groups with regard to the rate of relapse and the final visual acuity. No patient suffered from any irreversible, long-term morbidity or mortality. Etanercept has no significant efficacy over placebo in preventing relapses of uveitis in patients being tapered from methotrexate.
Polydimethylsiloxane-based Self healing Composite and Coating Materials
2006-01-01
TGA thermogravimetric analysis TDCB tapered double cantilever beam RH relative humidity DMDN-Sn dimethyldineodacanoate tin DBBE-Sn di-n-butyl bis(2...properties of micro-capsules by thermogravimetric analysis (TGA). As shown in figure 2.17, no weight change occurred up to the boiling point of...Elemental analysis of separated prepolymer phase and control samples. ..............24 Table 2.4: The size values of phase separated PDMS droplets
High power (2+1) ×1 taper-fused all-fiber side-pumped combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Ma, Yi; Yan, Hong
2018-03-01
A novel design and fabrication method of a (2+1) ×1 taper-fused all-fiber side-pumped combiner is reported. The pump coupling efficiency of this pump combiner was studied theoretically and experimentally. The measurement results indicated that the coupling efficiency of the pump light is 96.5%, the signal-to-pump isolation reaches 31dB, and the signal loss of the combiner is 0.19dB. A backward-pumped fiber laser system was established by using this (2+1) ×1 side-pumped combiner directly, achieving a signal laser output of 1007W with M2=1.33.
Fiber optic engine for micro projection display.
Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan
2010-03-01
A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.
Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.
Fu, Ling; Gu, Min
2006-05-15
A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.
NASA Astrophysics Data System (ADS)
Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael
2014-02-01
Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.
Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar
2015-06-01
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.
Du, Juan; Wang, Qingkai; Jiang, Guobao; Xu, Changwen; Zhao, Chujun; Xiang, Yuanjiang; Chen, Yu; Wen, Shuangchun; Zhang, Han
2014-01-01
By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics. PMID:25213108
Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.
Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A
2010-03-29
Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.; Otwinowski, Zbyszek; Borek, Dominika
2016-01-01
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. PMID:27047303
Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping
2017-07-24
All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Early outcomes following low dose naltrexone enhancement of opioid detoxification.
Mannelli, Paolo; Patkar, Ashwin A; Peindl, Kathleen; Gottheil, Edward; Wu, Li-Tzy; Gorelick, David A
2009-01-01
Although withdrawal severity and treatment completion are the initial focus of opioid detoxification, post-detoxification outcome better defines effective interventions. Very low dose naltrexone (VLNTX) in addition to methadone taper was recently associated with attenuated withdrawal intensity during detoxification. We describe the results of a seven-day follow-up evaluation of 96 subjects who completed inpatient detoxification consisting of the addition of VLNTX (0.125 or 0.250 mg per day) or placebo to methadone taper in a double blind, randomized investigation. Individuals receiving VLNTX during detoxification reported reduced withdrawal and drug use during the first 24 hours after discharge. VLNTX addition was also associated with higher rates of negative drug tests for opioids and cannabis and increased engagement in outpatient treatment after one week. Further studies are needed to test the utility of this approach in easing the transition from detoxification to various follow-up treatment modalities designed to address opioid dependence.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
NASA Astrophysics Data System (ADS)
Ishizawa, Atsushi; Goto, Takahiro; Kou, Rai; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki
2017-07-01
We demonstrate on-chip octave-spanning supercontinuum (SC) generation with a Si-wire waveguide (SWG). We precisely controlled the SWG width so that the group velocity becomes flat over a wide wavelength range. By adjusting the SWG length, we could reduce the optical losses due to two-photon absorption and pulse propagation. In addition, for efficient coupling between the laser pulse and waveguide, we fabricated a two-step inverse taper at both ends of the SWG. Using a 600-nm-wide SWG, we were able to generate a broadband SC spectrum at wavelengths from 1060 to 2200 nm at a -40 dB level with only 50-pJ laser energy from an Er-doped fiber laser oscillator. We found that we can generate an on-chip broadband SC spectrum with an SWG with a length even as small as 1.7 mm.
A nanowaveguide platform for collective atom-light interaction
NASA Astrophysics Data System (ADS)
Meng, Y.; Lee, J.; Dagenais, M.; Rolston, S. L.
2015-08-01
We propose a nanowaveguide platform for collective atom-light interaction through evanescent field coupling. We have developed a 1 cm-long silicon nitride nanowaveguide can use evanescent fields to trap and probe an ensemble of 87Rb atoms. The waveguide has a sub-micrometer square mode area and was designed with tapers for high fiber-to-waveguide coupling efficiencies at near-infrared wavelengths (750 nm to 1100 nm). Inverse tapers in the platform adiabatically transfer a weakly guided mode of fiber-coupled light into a strongly guided mode with an evanescent field to trap atoms and then back to a weakly guided mode at the other end of the waveguide. The coupling loss is -1 dB per facet (˜80% coupling efficiency) at 760 nm and 1064 nm, which is estimated by a propagation loss measurement with waveguides of different lengths. The proposed platform has good thermal conductance and can guide high optical powers for trapping atoms in ultra-high vacuum. As an intermediate step, we have observed thermal atom absorption of the evanescent component of a nanowaveguide and have demonstrated the U-wire mirror magneto-optical trap that can transfer atoms to the proximity of the surface.
Tri-functional cannula for retinal endovascular surgery
Weiss, Jonathan D [Albuquerque, NM
2010-07-27
A tri-functional cannula combines the functions of tissue Plasminogen Activator (tPA) solution delivery, illumination and venous pressure measurement. The cannula utilizes a tapered hollow-core optical fiber having an inlet for tPA solution, an attached fiber optic splitter configured to receive illumination light from an optical source such and a LED. A window in the cannula transmits the light to and from a central retinal vein. The return light is coupled to an optical detector to measure the pressure within the vein and determine whether an occlusion has been removed.
Morphological characterization of the antennal sensilla of the dogwood borer (Lepidoptera: Sesiidae)
USDA-ARS?s Scientific Manuscript database
The external morphology of the dogwood borer antennae and their sensilla was investigated using light and scanning electron microscopy. Male and female antennaes were clavate before tapering to an apical point and consisted of three main segments; the scape, pedicel, and flagellum. Although, there...
Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi
2014-05-01
A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach.
Optimization of freeform lightpipes for light-emitting-diode projectors.
Fournier, Florian; Rolland, Jannick
2008-03-01
Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
Optimization of freeform lightpipes for light-emitting-diode projectors
NASA Astrophysics Data System (ADS)
Fournier, Florian; Rolland, Jannick
2008-03-01
Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.
Portable fiber-optic taper coupled optical microscopy platform
NASA Astrophysics Data System (ADS)
Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping
2017-04-01
The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.
Taking a look at the calibration of a CCD detector with a fiber-optic taper
Alkire, R. W.; Rotella, F. J.; Duke, Norma E. C.; ...
2016-02-16
At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistributionmore » of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. As a result, the degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.« less
Wu, Juhao; Hu, Newman; Setiawan, Hananiel; ...
2016-11-20
There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out in this paper employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance inmore » the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Finally, analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.« less
NASA Astrophysics Data System (ADS)
Tiwari, Divya; Mullaney, Kevin; Korposh, Serhiy; James, Stephen W.; Lee, Seung-Woo; Tatam, Ralph P.
2016-05-01
The development of an ammonia sensor, formed by the deposition of a functionalised titanium dioxide film onto a tapered optical fibre is presented. The titanium dioxide coating allows the coupling of light from the fundamental core mode to a lossy mode supported by the coating, thus creating lossy mode resonance (LMR) in the transmission spectrum. The porphyrin compound that was used to functionalise the coating was removed from the titanium dioxide coating upon exposure to ammonia, causing a change in the refractive index of the coating and a concomitant shift in the central wavelength of the lossy mode resonance. Concentrations of ammonia as small as 1ppm was detected with a response time of less than 1min.
Vignudelli, Elisabetta; Castellani, Dario; Pagliani, Luca; Rea, Massimiliano; Modena, Claudio; Sandri, Giulio; Longhi, Carlo
2017-01-01
Purpose To evaluate the survival, success, and complication rates of tapered double-lead threads single implants, placed in fresh extraction sockets and healed sites of the posterior jaws. Methods The enrolled patients were randomly divided into 2 groups: in the test group (TG), all implants were inserted at the time of tooth extraction; in the control group (CG), all implants were placed 3 months after extraction. The implants were followed for a period of 1 to 3 years after loading. The main outcomes were implant survival, complications, and implant-crown success. Results Ninety-two patients had 97 installed implants (49 in the TG, 48 in the CG). Only two implants failed, in the TG; the survival rates were therefore 95.9% (47/49) and 100% (48/48) for TG and CG, respectively. In the surviving implants, no complications were reported, for an implant-crown success of 100%. Conclusions Although a significant difference was found in the levels of primary stability between TG and CG, single implants placed in fresh extraction sockets and healed sites of the posterior jaws had similar survival and complication rates. Crestal bone levels and peri-implant bone resorption showed similar values. A longer follow-up period is however required, to confirm these positive outcomes. PMID:29057266
Cucchi, Alessandro; Vignudelli, Elisabetta; Franco, Simonetta; Levrini, Luca; Castellani, Dario; Pagliani, Luca; Rea, Massimiliano; Modena, Claudio; Sandri, Giulio; Longhi, Carlo
2017-01-01
To evaluate the survival, success, and complication rates of tapered double-lead threads single implants, placed in fresh extraction sockets and healed sites of the posterior jaws. The enrolled patients were randomly divided into 2 groups: in the test group (TG), all implants were inserted at the time of tooth extraction; in the control group (CG), all implants were placed 3 months after extraction. The implants were followed for a period of 1 to 3 years after loading. The main outcomes were implant survival, complications, and implant-crown success. Ninety-two patients had 97 installed implants (49 in the TG, 48 in the CG). Only two implants failed, in the TG; the survival rates were therefore 95.9% (47/49) and 100% (48/48) for TG and CG, respectively. In the surviving implants, no complications were reported, for an implant-crown success of 100%. Although a significant difference was found in the levels of primary stability between TG and CG, single implants placed in fresh extraction sockets and healed sites of the posterior jaws had similar survival and complication rates. Crestal bone levels and peri-implant bone resorption showed similar values. A longer follow-up period is however required, to confirm these positive outcomes.
NASA Astrophysics Data System (ADS)
She, Xuan; Li, Bei; Chen, Kan; Li, Ke; Shu, Xiaowu; Liu, Cheng
2017-02-01
We present a design of a laterally tapered optical waveguide mode-size converter from super luminescent diode (SLD) to silica-based planar lightwave circuit (PLC). The mode-size converter is based on silica-based PLC. By using three dimensional semi-vectorial beam propagation methods, laterally tapered waveguides with different boundaries are simulated and compared with each other, where the factors of polarization-dependent loss and coupling loss are mainly focused on. The results show that the most influential factor for polarization-dependent loss is the ratio of the divergence angle of SLD in the horizontal direction and the vertical direction. The refractive index difference Δ between core layer and cladding layer, core width of endface and taper length influence coupling loss mostly, while the effect of all side boundaries is within 0.05 dB. We also investigate the SLD misalignment tolerance and wavelength bandwidth's impact on coupling loss. Furthermore, we examine the performance of the mode-size converter based on a particular SLD which has a divergence angle of 30°×45°. By optimizing the parameters of the tapered waveguide, the coupling efficiency is increased to 62.4% and the polarization-dependent loss is reduced to 0.035 dB. Meanwhile, it eΔnables us to reduce the coupling loss variation to 0.05dB with core width of endface fabrication tolerance of ±0.5 μm and taper length tolerance of ±0.5 mm. The proposed mode-size converter has been demonstrated to be well performed, implying its application in the optical transceiver module using SLD as light source and hybrid integration of III-V semiconductor waveguiding devices and PLCs.
Celik, Davut; Taşdemir, Tamer; Er, Kürşat
2013-02-01
Some improvements have been developed with new generations of nickel-titanium (NiTi) rotary instruments that led to their successful and extensive application in clinical practice. The purpose of this in vitro study was to compare the root canal preparations performed by using GT Series X and Twisted File systems produced by innovative manufacturing process with Revo-S, RaCe, Mtwo, and ProTaper Universal systems manufactured directly from conventional nitinol and with stainless steel K-Flexofile instruments. The mesiobuccal root canals of 140 maxillary first permanent molars that had between 30°-40° curvature angle and 4- to 9-mm curvature radius of the root canal were used. After root canal preparations made by using GT Series X, Twisted File, Revo-S, RaCe, Mtwo, and ProTaper Universal NiTi rotary systems and stainless steel K-Flexofile instruments, transportation occurred in the root canal, and alteration of working length (WL) was assessed by using a modified double-digital radiographic technique. The data were compared by the post hoc Tukey honestly significant difference test. NiTi rotary systems caused less canal transportation and alteration of WL than K-Flexofile instruments (P < .05). There was no significant difference between NiTi rotary system groups at any levels (P > .05) except 2.5 mm from the WL. At this level ProTaper Universal system caused significant canal transportation (P < .05). GT Series X and Twisted File rotary systems produced with innovative process were concluded to shape the curved canals to result in minimal canal transportation, similar to Revo-S, RaCe, Mtwo, and ProTaper Universal rotary systems manufactured by traditional methods. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Importance of Standardized DXA Protocol for Assessing Physique Changes in Athletes.
Nana, Alisa; Slater, Gary J; Hopkins, Will G; Halson, Shona L; Martin, David T; West, Nicholas P; Burke, Louise M
2016-06-01
The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated. Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD). The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2-3%) were approximately double those observed in the Best (1-2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively). An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.
1999-01-01
Short, length about 0.5 mm; widest at base, tapering distally; index 2.5-3.3 (width mea- sured at base); lightly and evenly tanned. Pecten with 3-9...compressed and expanded distally, with hooked tip. Segment X: Saddle incomplete; lightly tanned; length about 0.25 mm, siphon/saddle index about...cylindrical; index about 3.6 (2.5-4.1) (width measured at midlength). Ab- domen: Lightly tanned, anterior margins of sterna II-VI noticeably darker; length
Particle trapping in 3-D using a single fiber probe with an annular light distribution.
Taylor, R; Hnatovsky, C
2003-10-20
A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.
Attosecond nanoscale near-field sampling
Forg, B.; Schotz, J.; SuBmann, F.; ...
2016-05-31
The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. Furthermore, by comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.
Side-pumping combiner for high-power fiber laser based on tandem pumping
NASA Astrophysics Data System (ADS)
Gu, Yanran; Lei, Chengmin; Liu, Jun; Li, Ruixian; Liu, Le; Xiao, Hu; Chen, Zilun
2017-11-01
We investigate a (2+1)×1 side-pumping combiner numerically and experimentally for high-power fiber laser based on tandem pumping for the first time. The influence of taper ratio and launch mode on the 1018-nm pump coupling efficiency and the leakage power into the coating of the signal fiber (LPC) is analyzed numerically. A side-pumping combiner is developed successfully by tapered-fused splicing technique based on the numerical analysis, consisting of two pump fibers (220/242 μm, NA=0.22) and a signal fiber (40/400 μm, NA=0.06/0.46). The total 1018-nm pump efficiency of the combiner is 98.1%, and the signal light insertion loss is <3%. The results show that, compared with laser diodes pumping, the combiner appears to have a better LPC performance and power handling capability when using 1018-nm fiber as the pump light. Meanwhile, an all-fiber MOPA laser based on tandem pumping with 1080-nm output of 2533 W and the slope efficiency of 82.8% is achieved based on the home-made combiner.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.
Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-10-21
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array
Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan
2013-01-01
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637
Innovative FEL schemes using variable-gap undulators
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2017-06-01
We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Brinkmann, Kai-Thomas; Drexler, Peter; Dormenev, Valery; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg;
2017-11-01
The electromagnetic calorimeter (EMC) of the PANDA detector at the future FAIR facility comprises more than 15,000 lead tungstate (PWO) crystals. The barrel part will consist of 11 crystal geometries with different degree of tapering, which causes a non-uniformity in light collection as an interplay between the focusing and the internal absorption of the light. For the most tapered crystals the detected light is enhanced by 40%, if the scintillation process is created in the front part of the crystal. Due to the shower development and its fluctuations the non-uniformity leads to a reduction of the energy resolution. To reduce this effect, one lateral crystal side face has been de-polished to a roughness of 0.3 μm. Measurements confirm an increase of the light yield in the rear part of the crystal. In contrast, only a slight decrease can be observed in the front part. The overall non-uniformity is significantly reduced below 5%. This paper will discuss the experimental studies based on GEANT4 and optical simulations to understand the impact of a de-polished side face on the light collection. For consequences on the future performance, a 3×3 sub-array of de-polished crystals was directly studied using a tagged photon beam in the energy range from 50 MeV up to 800 MeV, respectively, performed at the tagged photon facility at MAMI, Mainz. The comparison to an array composed of polished crystals confirms a significant improvement of the constant term of the energy resolution from above 2 % down to 0.5 % and only a small increase of the statistical term. The results can be reproduced in GEANT4 simulations.
The point-spread function of fiber-coupled area detectors
Holton, James M.; Nielsen, Chris; Frankel, Kenneth A.
2012-01-01
The point-spread function (PSF) of a fiber-optic taper-coupled CCD area detector was measured over five decades of intensity using a 20 µm X-ray beam and ∼2000-fold averaging. The ‘tails’ of the PSF clearly revealed that it is neither Gaussian nor Lorentzian, but instead resembles the solid angle subtended by a pixel at a point source of light held a small distance (∼27 µm) above the pixel plane. This converges to an inverse cube law far from the beam impact point. Further analysis revealed that the tails are dominated by the fiber-optic taper, with negligible contribution from the phosphor, suggesting that the PSF of all fiber-coupled CCD-type detectors is best described as a Moffat function. PMID:23093762
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
Gao, Yang; Shi, Tielin; Tan, Xianhua; Liao, Guanglan
2014-06-01
We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar to an effective gradient-index antireflective surface, resulting in a broadband antireflective combining super-hydrophobic behavior. The mechanism of the method was simulated by rigorous coupled wave analysis algorithms. Then coherent diffraction lithography by use of suitable mask, in which periodic micro-scale circular opaque patters were distributed, was realized on the traditional aligner. Due to coherent diffraction, we obtained enough light intensity for photoresist exposure under the center of the opaque area in the mask together with transparent areas. The tapered line profiles and hollow photoresist gratings over large areas could be fabricated on the silicon wafer after development. The dry etching process was carried out, and high aspect ratio silicon tubular gratings with deep tapered profiles at the top were fabricated. The optical property and wettability of the structure were verified, proving that the proposed method and obtained micro/nano structure provide application potential in the future.
Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets
NASA Astrophysics Data System (ADS)
Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar
2013-01-01
Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koptev, M Yu; Anashkina, E A; Lipatov, D S
2015-05-31
We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
Simple taper: Taper equations for the field forester
David R. Larsen
2017-01-01
"Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...
Parabolic tapers for overmoded waveguides
Doane, J.L.
1983-11-25
A waveguide taper with a parabolic profile, in which the distance along the taper axis varies as the square of the tapered dimension, provides less mode conversion than equal length linear tapers and is easier to fabricate than other non-linear tapers.
Attosecond nanoscale near-field sampling
Förg, B.; Schötz, J.; Süßmann, F.; Förster, M.; Krüger, M.; Ahn, B.; Okell, W. A.; Wintersperger, K.; Zherebtsov, S.; Guggenmos, A.; Pervak, V.; Kessel, A.; Trushin, S. A.; Azzeer, A. M.; Stockman, M. I.; Kim, D.; Krausz, F.; Hommelhoff, P.; Kling, M. F.
2016-01-01
The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted. PMID:27241851
Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force
NASA Astrophysics Data System (ADS)
Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min
2017-01-01
Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.
Glass light pipes for solar concentration
NASA Astrophysics Data System (ADS)
Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.
2018-02-01
Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.
Rainbow Trapping in Hyperbolic Metamaterial Waveguide
Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang
2013-01-01
The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240
Demonstration of a memory for tightly guided light in an optical nanofiber.
Gouraud, B; Maxein, D; Nicolas, A; Morin, O; Laurat, J
2015-05-08
We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium. The decay of efficiency with storage time is also measured and related to concurrent decoherence mechanisms. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.
Microwave Photonics Systems Based on Whispering-gallery-mode Resonators
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.
2013-01-01
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358
Microwave photonics systems based on whispering-gallery-mode resonators.
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K
2013-08-05
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.
Barclay, Paul; Srinivasan, Kartik; Painter, Oskar
2005-02-07
A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.
Supercontinuum generation in a tapered tellurite microstructured optical fiber
NASA Astrophysics Data System (ADS)
Yan, X.; Ohishi, Y.
2014-07-01
Supercontinuum generation (SCG) was investigated in tapered tellurite microstructured optical fibers (MOFs) for various taper profiles. We emphasize on the procedure for finding the dispersion profile that achieve the best width of the SC spectra. An enhancement of the SCG is achieved by varying the taper waist diameter along its length in a carefully designed, and an optimal degree of tapering is found to exist for tapers with an axially uniform waist. We also show the XFROG spectrograms of the pulses propagating through different tapered fibers, confirming the optimized taper conditions.
Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M
2005-10-01
To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. ProTaper instruments created more regular canal diameters.
Performance study of winglets on tapered wing with curved trailing edge
NASA Astrophysics Data System (ADS)
Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul
2017-06-01
Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.
Krull, Annika; Morlock, Michael M; Bishop, Nicholas E
2017-10-01
Intraoperative interface contamination of modular head-stem taper junctions of hip implants can lead to poor fixation strength, causing fretting and crevice corrosion or even stem taper fracture. Careful cleaning before assembly should help to reduce these problems. The purpose of this study was to determine the effect of cleaning (with and without drying) contaminated taper interfaces on the taper fixation strength. Metal or ceramic heads were impacted onto titanium alloy stem tapers with cleaned or contaminated (fat or saline solution) interfaces. The same procedure was performed after cleaning and drying the contaminated interfaces. Pull-off force was used to determine the influence of contamination and cleaning on the taper strength. Pull-off forces after contamination with fat were significantly lower than those for uncontaminated interfaces for both head materials. Pull-off forces after application of saline solution were not significantly different from those for uncontaminated tapers. However, a large variation in taper strength was observed, pull-off forces for cleaned and dried tapers were similar to those for uncontaminated tapers for both head materials. Intraoperative contamination of taper interfaces may be difficult to detect but has a major influence on taper fixation strength. Cleaning of the stem taper with saline solution and drying with gauze directly before assembly allows the taper strength of the pristine components to be achieved. Not drying the taper results in a large variation in pull-off forces, emphasizing that drying is essential for sufficient and reproducible fixation strength. Copyright © 2017 Elsevier Inc. All rights reserved.
1985-08-01
o10 ------- --------- tx] (26) t 5 t bE ho 2(h0+tx) 2 and as before 12 9 1 p ho + tx 2ho + 3tx bend3 + bE ho 2(ho+tX)2 txcos2 At the limit, as t...h0+tx) 2tx Therefore P 1 x P x lim 6 bend3 n2 -(-) - 4 -(;) t+o bE 3ho bE h 22 which, except for the sign, is the same as that arrived at in Eq. (9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.; Ikuta, R.; Imoto, N.
We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er{sup 3+}) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed inmore » the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.« less
High brightness fully coherent x-ray amplifier seeded by a free-electron laser oscillator
NASA Astrophysics Data System (ADS)
Li, Kai; Yan, Jiawei; Feng, Chao; Zhang, Meng; Deng, Haixiao
2018-04-01
X-ray free-electron laser oscillator (XFELO) is expected to be a cutting-edge tool for fully coherent x-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current, as well as residual energy chirp from chicane compressor, are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent x-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.
Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun
2012-01-16
A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.
Salzman, Gary C.; Mullaney, Paul F.
1976-01-01
The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.
Photonic Crystals from Order to Disorder: Perturbative Methods in Nanophotonics
Johnson, Steven G. [MIT, Cambridge, Massachusetts, United States
2017-12-09
Photonic crystals are periodic dielectric structures in which light can behave much differently than in a homogeneous medium. This talk gives an overview of some of the interesting properties and applications of these media, from switching in subwavelength microcavities to slow-light devices, to guiding light in air. However, some of the most interesting and challenging problems occur when the periodicity is disturbed, either by design or by inevitable fabrication imperfections. The talk focuses especially on small perturbations that have important effects, from slow-light tapers to surface roughness disorder, and will show that many classic perturbative approaches must be rethought for high-contrast nanophotonics. The combination of strong periodicity with large field discontinuities at interfaces causes standard methods to fail, but succumbs to new generalizations, while some problems remain open.
Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu
2011-10-10
We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America
Merk, Susanne; Wagner, Christina; Stock, Veronika; Eichberger, Marlis; Schmidlin, Patrick R; Roos, Malgorzata; Stawarczyk, Bogna
2016-11-08
This study investigates the retention load (RL) between ZrO₂ primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO₂ crowns were fabricated with three different tapers: 0°, 1°, and 2° ( n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé's post-hoc test were used for data analysis ( p < 0.05). Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.
Review: Adjunctive pharmacologic approaches for benzodiazepine tapers.
Welsh, Justine W; Tretyak, Valeria; McHugh, R Kathryn; Weiss, Roger D; Bogunovic, Olivera
2018-05-31
Many patients require discontinuation of benzodiazepines due to a reduction in drug efficacy over time, the development of a sedative use disorder, or unwanted side effects. Benzodiazepine discontinuation can pose a significant challenge for prescribing clinicians due to potential withdrawal symptoms and a recurrence of psychiatric complaints. A PubMed literature search was conducted using the medical subject heading of benzodiazepines in combination with the following key words: discontinuation, withdrawal, detoxification, cessation, dependence, addiction, substance use disorders, or long term. Twenty-one studies met the search criteria. Few medications facilitated the successful discontinuation of benzodiazepines or relief from benzodiazepine withdrawal symptoms. Studies were heterogeneous with respect to sample selection, sample size, and outcome measures. Medications targeting insomnia yielded mixed results. Similarly, studies of agents targeting anxiety symptoms demonstrated inconsistent findings in the reduction of anxiety, improvement in withdrawal symptoms, or enhancement of benzodiazepine completion rates. Anticonvulsants have supporting evidence from small case reports; carbamazepine shows some potential in assisting taper completion and reducing withdrawal severity. These conclusions should be considered in light of a number of inconsistencies across studies in the literature. The results of this review article highlight the need for additional research on optimal strategies for facilitating successful benzodiazepine tapers. Copyright © 2018 Elsevier B.V. All rights reserved.
Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel
2015-08-24
We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively.
Blendl, C; Buhr, E
2001-12-01
The effects of different film processing conditions on light and x-ray sensitometric responses were compared for a variety of double-emulsion x-ray films. The processing conditions were altered by changes of the developer temperature. Three different exposure variants were applied: x-ray sensitometry using two stepped neutral density attenuators between film and screens, simultaneous double-sided light sensitometry, and single-sided light sensitometry. 13 different types of double-emulsion x-ray films were investigated, among them three asymmetric films. In the special case of exposing the asymmetric films with the single-sided light sensitometer, a method was investigated where each side of the film is exposed at different locations and the sum effect is analyzed. From each sensitometric curve shape two parameters, the logarithmic speed (logS) and the average gradient (G), were evaluated. The results of this study can be summarized as follows: (1) Single-sided and double-sided light sensitometers revealed almost equal changes of logS when the processing conditions are altered. Thus, single-sided light sensitometers can serve as a substitute for double-sided light sensitometers provided that suited exposure methods are used and appropriate sensitometric parameters are evaluated. (2) Light sensitometry quantitatively indicated changes of the film processing that affect the x-ray speed. Hence, light sensitometry is a useful method to monitor changes in film processing.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.
Park, Doo Jae; Piglosiewicz, Bjoern; Schmidt, Slawa; Kollmann, Heiko; Mascheck, Manfred; Lienau, Christoph
2012-12-14
We report a strong, laser-field induced modification of the propagation direction of ultrashort electron pulses emitted from nanometer-sized gold tapers. Angle-resolved kinetic energy spectra of electrons emitted from such tips are recorded using ultrafast near-infrared light pulses of variable wavelength and intensity for excitation. For sufficiently long wavelengths, we observe a pronounced strong-field acceleration of electrons within the field gradient at the taper apex. We find a distinct narrowing of the emission cone angle of the fastest electrons. We ascribe this to the field-induced steering of subcycle electrons as opposed to the diverging emission of quiver electrons. Our findings are corroborated by simulations based on a modified Simpleman model incorporating the curved, vectorial field gradient in the vicinity of the tip. Our results indicate new pathways for designing highly directional nanometer-sized ultrafast electron sources.
[Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].
Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong
2006-08-01
To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P < 0.05). The mean degree of straightening in stainless steel K files group was significantly bigger than in ProTaper group (P < 0.05). The canals prepared by ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.
Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico
2012-01-01
Summary The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type® implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations. PMID:23087785
Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico
2012-04-01
The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type(®), WinSix(®), BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface(®)), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI implant, with a hexagonal internal connection, and TTX implant, with a hexagonal external connection. SEM analysis showed that the Torque Type(®) implant is characterized by a truncated cone shape with tapered tips. The implant body showed a double loop thread and double pitch with blunt tips. For both types of connection, the implant neck was 0.7 mm in height with a 3% taper. This implant design may be able to guarantee osteotomic properties at the time of insertion in a surgical site suitably prepared, a facilitated screwing, thanks to the thread pitch and to the broad and deep draining grooves, thereby ensuring a good primary stability. The different connection design appears defined and precise, in order to ensure a good interface between the fixture and the prosthetic components. Therefore, this design appears to be particularly suitable in cases where a good primary stability is necessary and a precise coupling between endosseous and prosthetic components, as it allows an easy insertion of the fixture even in conditions of reduced bone availability, and in cases of immediately loaded full-arch rehabilitations.
Where science meets practice: Olympic coaches' crafting of the tapering process.
Ritchie, Darren; Allen, Justine B; Kirkland, Andrew
2018-05-01
Although there is research providing physiologically-based guidance for the content of the taper, this study was the first to examine how coaches actually implement the taper. The purpose of this study was to examine the taper planning and implementation processes of successful Olympic coaches leading up to major competitions and how they learned about tapering. Seven track and field coaches participated in semi-structured interviews exploring their tapering processes. To be considered for inclusion, coaches were required to have coached one or more athletes to an Olympic or Paralympic medal. Through a process of axial and open coding interview transcripts were analysed and lower and higher order themes developed describing the coaches' tapering processes. Our findings indicate that the strategies employed to achieve the desired physiological adaptions of the taper were consistent with research (e.g., reduction in volume whilst maintaining intensity and frequency). However, our findings also suggest that tapering is far from a straight forward "textbook" process. The taper was not restricted to physiological outcomes with coaches considering athletes' psychological as well as physical state. Coaches also involved the athlete in the process, adapted the taper to the athlete, continually monitored its progress, and adapted it further as required.
Tapering Practices of Croatian Open-Class Powerlifting Champions.
Grgic, Jozo; Mikulic, Pavle
2017-09-01
Grgic, J and Mikulic, P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res 31(9): 2371-2378, 2017-The aim of this study was to explore tapering practices among 10 Croatian open-class powerlifting champions (mean ± SD: age 29.2 ± 3.2 years; Wilks coefficient 355.1 ± 54.8). The athletes were interviewed about their tapering practices using a semi-structured interview after which the audio content was transcribed. The athletes reported decreasing training volume during the taper by 50.5 ± 11.7% using a step type or an exponential type of taper with a fast decay. Training intensity was maintained or increased during the taper, and it reached its highest values 8 ± 3 days before the competition. Training frequency was reduced or maintained during the taper. The final week included a reduction in training frequency by 47.9 ± 17.5% with the last training session performed 3 ± 1 days before the competition. The participants typically stated that the main reasons for conducting the taper were maintaining strength and reducing the amount of fatigue. They also stated that (a) the taper was structured identically for the squat, bench press, and the deadlift; (b) the training during the taper was highly specific, the assistance exercises were removed, and the same equipment was used as during competition; (c) the source of information for tapering was their coach, and training fluctuated based on the coach's feedback; and (d) nutrition, foam rolling, static stretching, and massage were all given extra attention during the taper. These results may aid athletes and coaches in strength sports in terms of the optimization of tapering variables.
In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.
2013-01-01
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947
Critical Coupling Between Optical Fibers and WGM Resonators
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy
2009-01-01
Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:
NASA Astrophysics Data System (ADS)
Ilev, Ilko K.; Waynant, Ronald W.
2001-01-01
We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.
Tapering Practices of Strongman Athletes.
Winwood, Paul W; Dudson, Mike K; Wilson, Daniel; Mclaren-Harrison, Justice K H; Redjkins, Vladislav; Pritchard, Hayden J; Keogh, Justin W L
2018-05-01
Winwood, PW, Dudson, MK, Wilson, D, Mclaren-Harrison, JKH, Redjkins, V, Pritchard, HJ, and Keogh, JWL. Tapering practices of strongman athletes. J Strength Cond Res 32(5): 1181-1196, 2018-This study provides the first empirical evidence of how strongman athletes taper for strongman competitions. Strongman athletes (n = 454) (mean ± SD: 33.2 ± 8.0 years, 178.1 ± 10.6 cm, 108.6 ± 27.9 kg, 12.6 ± 8.9 years general resistance training, 5.3 ± 5.0 years strongman implement training) completed a self-reported 4-page internet survey on tapering practices. Analysis by sex (male and female), age (≤30 and >30 years), body mass (≤105 and >105 kg), and competitive standard (local/regional amateur, national amateur and professional) was conducted. Eighty-seven percent (n = 396) of strongman athletes reported that they used a taper. Athletes stated that their typical taper length was 8.6 ± 5.0 days, with the step taper the most commonly performed taper (52%). Training volume decreased during the taper by 45.5 ± 12.9%, and all training ceased 3.9 ± 1.8 days out from competition. Typically, athletes reported that training frequency and training duration stayed the same or decreased and training intensity decreased to around 50% in the last week. Athletes generally stated that tapering was performed to achieve recovery, rest, and peak performance; the deadlift, yoke walk, and stone lifts/work took longer to recover from than other lifts; assistance exercises were reduced or removed in the taper; massage, foam rolling, nutritional changes, and static stretching were strategies used in the taper; and, poor tapering occurred when athletes trained too heavy/hard or had too short a taper. These data will assist strongman athletes and coaches in the optimization of tapering variables leading to more peak performances. Future research could investigate the priming and preactivation strategies strongman athletes use on competition day.
Coupled tapering/uptapering of Thirring type soliton pair in nonlinear media
NASA Astrophysics Data System (ADS)
Prasad, Shraddha; Dutta, Manoj Kumar; Sarkar, Ram Krishna
2018-03-01
The paper investigates coupled tapering/uptapering of Thirring type soliton pair, employing Beam Propagation Method. It is seen that, the pair uptapers in presence of losses and tapers in presence of gain. When the first beam has gain and the second one has losses in the nonlinear medium, the second beam induces uptapering in the first beam, while, first beam induces tapering in the second beam. When the medium provides gain/losses to only one of the two beams, the beam undergoes tapering/uptapering and also induces tapering/uptapering to the other loss less beam; however, magnitude of tapering/uptapering are different.
NASA Astrophysics Data System (ADS)
Lee, Hui Jing; Abdullah, Fairuz; Ismail, Aiman
2017-11-01
This paper presents finite numerical modelling on the cross-sectional region of tapered single mode fiber and graphene-clad tapered fiber. Surface acoustic wave propagation across the tapered surface region on tapered single mode fiber has a high threshold power at 61.87 W which is challenging to overcome by the incident pump wave. Surface acoustic wave propagation of fiber surface however made tapered wave plausible in the optical sensor application. This research introduces graphene as the cladding layer on tapered fiber, acoustic confinement occurs due to the graphene cladding which lowers the threshold power from 61.87 W to 2.17 W.
Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji
2006-03-15
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.
Buprenorphine tapering schedule and illicit opioid use
Ling, Walter; Hillhouse, Maureen; Domier, Catherine; Doraimani, Geetha; Hunter, Jeremy; Thomas, Christie; Jenkins, Jessica; Hasson, Albert; Annon, Jeffrey; Saxon, Andrew; Selzer, Jeffrey; Boverman, Joshua; Bilangi, Richard
2011-01-01
Aims To compare the effects of a short or long taper schedule after buprenorphine stabilization on participant outcomes as measured by opioid-free urine tests at the end of each taper period. Design This multi-site study sponsored by Clinical Trials Network (CTN, a branch of the US National Institute on Drug Abuse) was conducted from 2003 to 2005 to compare two taper conditions (7 days and 28 days). Data were collected at weekly clinic visits to the end of the taper periods, and at 1-month and 3-month post-taper follow-up visits. Setting Eleven out-patient treatment programs in 10 US cities. Intervention Non-blinded dosing with Suboxone® during the 1-month stabilization phase included 3 weeks of flexible dosing as determined appropriate by the study physicians. A fixed dose was required for the final week before beginning the taper phase. Measurements The percentage of participants in each taper group providing urine samples free of illicit opioids at the end of the taper and at follow-up. Findings At the end of the taper, 44% of the 7-day taper group (n = 255) provided opioid-free urine specimens compared to 30% of the 28-day taper group (n = 261; P = 0.0007). There were no differences at the 1-month and 3-month follow-ups (7-day = 18% and 12%; 28-day = 18% and 13%, 1 month and 3 months, respectively). Conclusion For individuals terminating buprenorphine pharmacotherapy for opioid dependence, there appears to be no advantage in prolonging the duration of taper. PMID:19149822
FACILITY 72, INTERIOR. 15LIGHT DOUBLE DOORS WITH 15LIGHT SIDELIGHTS AND ...
FACILITY 72, INTERIOR. 15-LIGHT DOUBLE DOORS WITH 15-LIGHT SIDELIGHTS AND 2-LIGHT TRANSOM. LIVING ROOM BEYOND. VIEW FACING NORTH-NORTHEAST. - U.S. Naval Base, Pearl Harbor, Naval Housing Area Makalapa, Senior Officers' Quarters Type C, North end of Makalapa Drive, Pearl City, Honolulu County, HI
Monitoring the fabrication of tapered optical fibres
NASA Astrophysics Data System (ADS)
Mullaney, K.; Correia, R.; Staines, S. E.; James, S. W.; Tatam, R. P.
2017-04-01
A variety of optical methods to enhance the process of making optical fibre tapers are explored. A thermal camera was used to both refine the alignment of the optical components and optimize the laser power profile during the tapering process. The fibre transmission was measured to verify that the tapers had the requisite optical characteristics while the strain experienced by the fibre while tapering was assessed using an optical fibre Bragg grating. Using these techniques, adiabatic tapers were fabricated with a 2% insertion loss.
NASA Astrophysics Data System (ADS)
Picard, Marie-Josée.; Latrasse, Christine; Larouche, Carl; Painchaud, Yves; Poulin, Michel; Pelletier, François; Guy, Martin
2016-03-01
One of the biggest challenges of silicon photonics is the efficient coupling of light between the sub-micron SiP waveguides and a standard optical fiber (SMF-28). We recently proposed a novel approach based on a spot-size converter (SSC) that fulfills this need. The SSC integrates a tapered silicon waveguide and a superimposed structure made of a plurality of rods of high index material, disposed in an array-like configuration and embedded in a cladding of lower index material. This superimposed structure defines a waveguide designed to provide an efficient adiabatic transfer, through evanescent coupling, to a 220 nm thick Si waveguide tapered down to a narrow tip on one side, while providing a large mode overlap to the optical fiber on the other side. An initial demonstration was made using a SSC fabricated with post-processing steps. Great coupling to a SMF-28 fiber with a loss of 0.6 dB was obtained for TEpolarized light at 1550 nm with minimum wavelength dependence. In this paper, SSCs designed for operation at 1310 and 1550 nm for TE/TM polarizations and entirely fabricated in a CMOS fab are presented.
Pseudo-circulator implemented as a multimode fiber coupler
NASA Astrophysics Data System (ADS)
Bulota, F.; Bélanger, P.; Leduc, M.; Boudoux, C.; Godbout, N.
2016-03-01
We present a linear all-fiber device exhibiting the functionality of a circulator, albeit for multimode fibers. We define a pseudo-circulator as a linear three-port component that transfers most of a multimode light signal from Port 1 to Port 2, and from Port 2 to Port 3. Unlike a traditional circulator which depends on a nonlinear phenomenon to achieve a non-reciprocal behavior, our device is a linear component that seemingly breaks the principle of reciprocity by exploiting the variations of etendue of the multimode fibers in the coupler. The pseudo-circulator is implemented as a 2x2 asymmetric multimode fiber coupler, fabricated using the fusion-tapering technique. The coupler is asymmetric in its transverse fused section. The two multimode fibers differ in area, thus favoring the transfer of light from the smaller to the bigger fiber. The desired difference of area is obtained by tapering one of the fiber before the fusion process. Using this technique, we have successfully fabricated a pseudo-circulator surpassing in efficiency a 50/50 beam-splitter. In all the visible and near-IR spectrum, the transmission ratio exceeds 77% from Port 1 to Port 2, and 80% from Port 2 to Port 3. The excess loss is less than 0.5 dB, regardless of the entry port.
7. INTERIOR OF LIVING ROOM SHOWING DISTINCTIVE 6LIGHT THREEPANEL DOOR, ...
7. INTERIOR OF LIVING ROOM SHOWING DISTINCTIVE 6-LIGHT THREE-PANEL DOOR, ONE OF THE NARROW 4-LIGHT OVER 4-LIGHT, DOUBLE-HUNG WINDOWS FRAMING THE FRONT DOOR, AND THE PAIRED 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
NASA Technical Reports Server (NTRS)
1979-01-01
Graphite/polyimide (Gr/PI) bolted and bonded joints were investigated. Possible failure modes and the design loads for the four generic joint types are discussed. Preliminary sizing of a type 1 joint, bonded and bolted configuration is described, including assumptions regarding material properties and sizing methodology. A general purpose finite element computer code is described that was formulated to analyze single and double lap joints, with and without tapered adherends, and with user-controlled variable element size arrangements. An initial order of Celion 6000/PMR-15 prepreg was received and characterized.
Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners
NASA Astrophysics Data System (ADS)
Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan
2015-03-01
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
NASA Astrophysics Data System (ADS)
Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan
In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Savaliya, Priten; Dhawan, Anuj
2016-10-01
Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng
2017-11-01
A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.
[Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].
Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong
2008-01-01
To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P < 0.05) at the same tip size. The inner and outer wall of the canals were evenly prepared by ProTaper combined with Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.
Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.
Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J
2011-04-01
An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.
Komasawa, Nobuyasu; Mihara, Ryosuke; Imagawa, Kentaro; Hattori, Kazuo; Minami, Toshiaki
2015-01-01
The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP) and taper-shaped (taper) cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n = 20; HVLP group) or taper-shaped (n = 20; Taper group) cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119. PMID:26509152
2006-04-15
was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier
Optical microfiber-based photonic crystal cavity
NASA Astrophysics Data System (ADS)
Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei
2016-01-01
Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.
Sigmon, Stacey C.; Strain, Eric C.; Heil, Sarah H.; Higgins, Stephen T.
2011-01-01
Background The association between buprenorphine taper duration and treatment outcomes is not well understood. This review evaluated whether duration of outpatient buprenorphine taper is significantly associated with treatment outcomes. Methods Studies that were published in peer-reviewed journals, administered buprenorphine as an outpatient taper to opioid-dependent participants, and provided data on at least one of three primary treatment outcome measures (opioid abstinence, retention, peak withdrawal severity) were reviewed. Primary treatment outcomes were evaluated as a function of taper duration using hierarchical linear regressions using pre-taper maintenance as a cofactor. Results Twenty-eight studies were reviewed. Taper duration significantly predicted percent of opioid-negative samples provided during treatment, however pre-taper maintenance period predicted percent participants abstinent on the final day of treatment. High rates of relapse were reported. No significant association between taper duration and retention in treatment or peak withdrawal severity was observed. Conclusion The data reviewed here suggest taper duration is associated with opioid abstinence achieved during detoxification but not with other markers of treatment outcome. The reviewed studies varied widely on several parameters (e.g., frequency of urinalysis testing, provision of ancillary medications) that may influence treatment outcome and thus could have interfered with the ability to identify relationships between taper duration and outcomes. Future studies evaluating opioid detoxification should utilize rigorous experimental methods and report a wider range of outcome measures in order to help advance our understanding of the association between taper duration and treatment outcomes. PMID:21741781
Improvements to tapered semiconductor MOPA laser design and testing
NASA Astrophysics Data System (ADS)
Beil, James A.; Shimomoto, Lisa; Swertfeger, Rebecca B.; Misak, Stephen M.; Campbell, Jenna; Thomas, Jeremy; Renner, Daniel; Mashanovitch, Milan; Leisher, Paul O.; Liptak, Richard W.
2018-02-01
This paper expands on previous work in the field of high power tapered semiconductor amplifiers and integrated master oscillator power amplifier (MOPA) devices. The devices are designed for watt-class power output and single-mode operation for free-space optical communication. This paper reports on improvements to the fabrication of these devices resulting in doubled electrical-to-optical efficiency, improved thermal properties, and improved spectral properties. A newly manufactured device yielded a peak power output of 375 mW continuous-wave (CW) at 3000 mA of current to the power amplifier and 300 mA of current to the master oscillator. This device had a peak power conversion efficiency of 11.6% at 15° C, compared to the previous device, which yielded a peak power conversion efficiency of only 5.0% at 15° C. The new device also exhibited excellent thermal and spectral properties, with minimal redshift up to 3 A CW on the power amplifier. The new device shows great improvement upon the excessive self-heating and resultant redshift of the previous device. Such spectral improvements are desirable for free-space optical communications, as variation in wavelength can degrade signal quality depending on the detectors being used and the medium of propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com
By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less
Design Optimization and Analysis of a Composite Honeycomb Intertank
NASA Technical Reports Server (NTRS)
Finckenor, Jeff; Spurrier, Mile
1999-01-01
Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed follow up analysis and testing of a 96 in. diameter, 77 in. tall intertank. The structure has composite face sheets with an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted splice joint interface. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in. Optimization is by Genetic Algorithm and minimizes weight by varying core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of design cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling; face stresses (normal, shear, wrinkling and dimpling); bolt stress; and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of elasticity solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. This analysis and testing resulted in several small changes to the optimized design. The equation used for hole bearing strength was found to be inadequate, resulting in thicker ends. The core thickness increased 0.05", and potting compound was added in the taper to strengthen the facesheet bond. The intertank has undergone a 250,000 lb limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Ibrahim, Fowzia; Lorente-Cánovas, Beatriz; Doré, Caroline J; Bosworth, Ailsa; Ma, Margaret H; Galloway, James B; Cope, Andrew P; Pande, Ira; Walker, David; Scott, David L
2017-11-01
RA patients receiving TNF inhibitors (TNFi) usually maintain their initial doses. The aim of the Optimizing Treatment with Tumour Necrosis Factor Inhibitors in Rheumatoid Arthritis trial was to evaluate whether tapering TNFi doses causes loss of clinical response. We enrolled RA patients receiving etanercept or adalimumab and a DMARD with DAS28 under 3.2 for over 3 months. Initially (months 0-6) patients were randomized to control (constant TNFi) or two experimental groups (tapering TNFi by 33 or 66%). Subsequently (months 6-12) control subjects were randomized to taper TNFi by 33 or 66%. Disease flares (DAS28 increasing ⩾0.6 with at least one additional swollen joint) were the primary outcome. Two hundred and forty-four patients were screened, 103 randomized and 97 treated. In months 0-6 there were 8/50 (16%) flares in controls, 3/26 (12%) with 33% tapering and 6/21 (29%) with 66% tapering. Multivariate Cox analysis showed time to flare was unchanged with 33% tapering but was reduced with 66% tapering compared with controls (adjusted hazard ratio 2.81, 95% CI: 0.99, 7.94; P = 0.051). Analysing all tapered patients after controls were re-randomized (months 6-12) showed differences between groups: there were 6/48 (13%) flares with 33% tapering and 14/39 (36%) with 66% tapering. Multivariate Cox analysis showed 66% tapering reduced time to flare (adjusted hazard ratio 3.47, 95% CI: 1.26, 9.58; P = 0.016). Tapering TNFi by 33% has no impact on disease flares and appears practical in patients in sustained remission and low disease activity states. EudraCT, https://www.clinicaltrialsregister.eu, 2010-020738-24; ISRCTN registry, https://www.isrctn.com, 28955701. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.
Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses
Witt, Florian; Gührs, Julian; Morlock, Michael M.; Bishop, Nicholas E.
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914
Lorente-Cánovas, Beatriz; Doré, Caroline J; Bosworth, Ailsa; Ma, Margaret H; Galloway, James B; Cope, Andrew P; Pande, Ira; Walker, David; Scott, David L
2017-01-01
Abstract Objectives RA patients receiving TNF inhibitors (TNFi) usually maintain their initial doses. The aim of the Optimizing Treatment with Tumour Necrosis Factor Inhibitors in Rheumatoid Arthritis trial was to evaluate whether tapering TNFi doses causes loss of clinical response. Methods We enrolled RA patients receiving etanercept or adalimumab and a DMARD with DAS28 under 3.2 for over 3 months. Initially (months 0–6) patients were randomized to control (constant TNFi) or two experimental groups (tapering TNFi by 33 or 66%). Subsequently (months 6–12) control subjects were randomized to taper TNFi by 33 or 66%. Disease flares (DAS28 increasing ⩾0.6 with at least one additional swollen joint) were the primary outcome. Results Two hundred and forty-four patients were screened, 103 randomized and 97 treated. In months 0–6 there were 8/50 (16%) flares in controls, 3/26 (12%) with 33% tapering and 6/21 (29%) with 66% tapering. Multivariate Cox analysis showed time to flare was unchanged with 33% tapering but was reduced with 66% tapering compared with controls (adjusted hazard ratio 2.81, 95% CI: 0.99, 7.94; P = 0.051). Analysing all tapered patients after controls were re-randomized (months 6–12) showed differences between groups: there were 6/48 (13%) flares with 33% tapering and 14/39 (36%) with 66% tapering. Multivariate Cox analysis showed 66% tapering reduced time to flare (adjusted hazard ratio 3.47, 95% CI: 1.26, 9.58; P = 0.016). Conclusion Tapering TNFi by 33% has no impact on disease flares and appears practical in patients in sustained remission and low disease activity states. Trail registration EudraCT, https://www.clinicaltrialsregister.eu, 2010-020738-24; ISRCTN registry, https://www.isrctn.com, 28955701 PMID:28968858
Refractive index sensors based on the fused tapered special multi-mode fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong
2016-01-01
In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Xueyong; Li Hongfan; Lv Zhensu
Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…
Kwon, Young-Min
2016-07-01
Although dual taper modular-neck total hip arthroplasty (THA) design with additional neck-stem modularity has the potential to optimize hip biomechanical parameters by facilitating adjustments of leg length, femoral neck version and offset, there is increasing concern regarding this stem design as a result of the growing numbers of adverse local tissue reactions due to fretting and corrosion at the neck-stem taper junction. Implant factors such as taper cone angle, taper surface roughness, taper contact area, modular neck taper metallurgy, and femoral head size play important roles in influencing extent of taper corrosion. There should be a low threshold to conduct a systematic clinical evaluation of patients with dual-taper modular-neck stem THA using systematic risk stratification algorithms as early recognition and diagnosis will ensure prompt and appropriate treatment. Although specialized tests such as metal ion analysis and cross-sectional imaging modalities such as metal artifact reduction sequence magnetic resonance imaging (MARS MRI) are useful in optimizing clinical decision-making, overreliance on any single investigative tool in the clinical decision-making process for revision surgery should be avoided. Copyright © 2016 Elsevier Inc. All rights reserved.
Measuring bacterial growth by refractive index tapered fiber optic biosensor.
Zibaii, Mohammad Ismail; Kazemi, Alireza; Latifi, Hamid; Azar, Mahmoud Karimi; Hosseini, Seyed Masoud; Ghezelaiagh, Mohammad Hossein
2010-12-02
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-l-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria. Copyright © 2010 Elsevier B.V. All rights reserved.
Vyavahare, Nishant K; Raghavendra, Srinidhi Surya; Desai, Niranjan N
2016-01-01
Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF.
Effect of reciprocating file motion on microcrack formation in root canals: an SEM study.
Ashwinkumar, V; Krithikadatta, J; Surendran, S; Velmurugan, N
2014-07-01
To compare dentinal microcrack formation whilst using Ni-Ti hand K-files, ProTaper hand and rotary files and the WaveOne reciprocating file. One hundred and fifty mandibular first molars were selected. Thirty teeth were left unprepared and served as controls, and the remaining 120 teeth were divided into four groups. Ni-Ti hand K-files, ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files were used to prepare the mesial canals. Roots were then sectioned 3, 6 and 9 mm from the apex, and the cut surface was observed under scanning electron microscope (SEM) and checked for the presence of dentinal microcracks. The control and Ni-Ti hand K-files groups were not associated with microcracks. In roots prepared with ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files, dentinal microcracks were present. There was a significant difference between control/Ni-Ti hand K-files group and ProTaper hand files/ProTaper rotary files/WaveOne Primary reciprocating file group (P < 0.001) with ProTaper rotary files producing the most microcracks. No significant difference was observed between teeth prepared with ProTaper hand files and WaveOne Primary reciprocating files. ProTaper rotary files were associated with significantly more microcracks than ProTaper hand files and WaveOne Primary reciprocating files. Ni-Ti hand K-files did not produce microcracks at any levels inside the root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
In situ TEM Raman spectroscopy and laser-based materials modification.
Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M
2017-07-01
We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonimaging optics in luminescent solar concentration.
Markman, B D; Ranade, R R; Giebink, N C
2012-09-10
Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.
Spines of the porcupine fish: Structure, composition, and mechanical properties.
Su, Frances Y; Bushong, Eric A; Deerinck, Thomas J; Seo, Kyungah; Herrera, Steven; Graeve, Olivia A; Kisailus, David; Lubarda, Vlado A; McKittrick, Joanna
2017-09-01
This paper explores the structure, composition, and mechanical properties of porcupine fish spines for the first time. The spine was found to be composed of nanocrystalline hydroxyapatite, protein (collagen), and water using X-ray diffraction, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Microstructures have mineralized fibrillar sheets in the longitudinal direction and in a radial orientation in the transverse direction that were observed using light and electron microscopy. Based on the images, the hierarchical structure of the spine shows both concentric and radial reinforcement. Mechanical properties were obtained using cantilever beam and nanoindentation tests. A tapered cantilever beam model was developed and compared to that of a uniform cantilever beam. The tapered beam model showed that while the stresses experienced were similar to those of the uniform beam, the location of the maximum stress was near the distal region of the beam rather than at the base, which allows the porcupine fish to conserve energy and resources if the spine is fractured. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acousto-optical modulation of light at a doubled sound frequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotov, V M; Averin, S V; Shkerdin, G N
2016-02-28
A method of acousto-optical (AO) Bragg diffraction is proposed that provides the amplitude modulation of optical radiation at a doubled acoustic frequency. The method is based on the double transmission of the light through the AO modulator made of a gyrotropic crystal and is experimentally tested by the example of the modulation of light with a wavelength of 0.63 μm, controlled by the paratellurite AO cell. (acoustooptics)
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
In-line optical fiber sensors based on cladded multimode tapered fibers.
Villatoro, Joel; Monzón-Hernández, David; Luna-Moreno, Donato
2004-11-10
The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.
Tapered enlarged ends in multimode optical fibers.
Brenci, M; Falciai, R; Scheggi, A M
1982-01-15
Radiation characteristics of multimode fibers with enlarged tapers were investigated on a number of samples obtained by varying the fiber drawing speed with a given law corresponding to a prefixed taper profile. The characterization of the fibers was made by near- and far-field intensity pattern measurements as well as by measuring the losses introduced by the taper. With a suitable choice of parameters the taper constitutes a reasonable low-loss component useful, for example, for either efficient coupling to large-spot high-power density sources or connecting fibers of different sizes. Conversely at the exit of the fiber the taper can be used for beam shaping which is of interest for mechanical or surgical applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... new shipper review (``NSR'') of the antidumping duty order on tapered roller bearings from the People... The notice announcing the antidumping duty order on tapered roller bearings from the PRC was published...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... on tapered roller bearings (``TRBs'') from the People's Republic of China (``PRC'') meets the... published in the Federal Register on June 15, 1987. See Antidumping Duty Order; Tapered Roller Bearings and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... tapered roller bearings (``TRBs'') from the People's Republic of China (``PRC'') meets the statutory and... Register on June 15, 1987. See Antidumping Duty Order; Tapered Roller Bearings and Parts Thereof, Finished...
Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides
Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.
2015-08-16
In this paper, simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a2 to a1, with a11a 2/λ. Here, λ is the wavelength of radiation. The fractional loss of the HE 11 mode in an optimized taper is 0.0293(a 2-a 1) 4/amore » $$2\\atop{1}$$1a$$2\\atop{2}$$. These formulae are accurate when a2≲2a 1. Slightly more complex formulae, accurate for a 2≤4a 1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a 2≤2.12a 1 and less than 0.1 % when a 2≤1.53a 1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Finally, parabolic tapers may provide lower loss, but linear tapers with moderate values of a 2/a 1 may be attractive because of their simplicity of fabrication.« less
Molindone and haloperidol in tardive dyskinesia.
Glazer, W M; Hafez, H M; Benarroche, C L
1985-08-01
Preliminary results are described from a study of 11 outpatients manifesting exacerbated tardive dyskinesia after tapering and withdrawal of neuroleptic medications. Patients were randomly assigned to molindone or haloperidol under double-blind placebo-controlled conditions to compare the masking effects of the two drugs. Haloperidol treatment masked withdrawal-exacerbated tardive dyskinesia more than molindone did; this difference (measured by percent change in AIMS scores) was significant (p = .04) when the dose was 200% but not 100% of the prestudy neuroleptic dose. Despite several limitations to the study, the results suggest that molindone may have less dyskinetogenic potential than haloperidol. Further research in the area of site-specificity of molindone is indicated.
NASA Astrophysics Data System (ADS)
Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.
The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.
Vyavahare, Nishant K.; Raghavendra, Srinidhi Surya; Desai, Niranjan N.
2016-01-01
Background: Complete cleaning of the root canal is the goal for ensuring success in endodontics. Removal of debris plays an important role in achieving this goal. In spite of advancements in instrument design, apical extrusion of debris remains a source of inflammation in the periradicular region. Aim: To comparatively evaluate the amount of apically extruded debris with V-Taper, ProTaper Next, and the self-adjusting File (SAF) system. Materials and Methods: Sixty-four extracted human mandibular teeth with straight root canals were taken. Access openings were done and working length determined. The samples were randomly divided into three groups: Group I - V-Taper files (n = 20), Group II - ProTaper Next (n = 20), Group III - SAF (n = 20). Biomechanical preparation was completed and the debris collected in vials to be quantitatively determined. The data obtained was statistically analyzed using ANOVA and post hoc Tukey's test. Results: All the specimens showed apical debris extrusion. SAF showed significantly less debris extrusion compared to V-Taper and ProTaper Next (P < 0.001). Among Groups I and II, ProTaper Next showed lesser debris extrusion as compared to V-Taper, but it was not significant (P = 0.124). Conclusion: The SAF showed least amount of apical debris extrusion when compared to newer rotary endodontic instruments. This indicates that the incidence of inter-treatment flare-ups due to debris extrusion would be less with the SAF. PMID:27217636
Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng
2008-05-01
Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel-titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Twenty-three fourth-year dental students attending China Medical University Dental School prepared 46 simulated curved canals in resin blocks with two types of NiTi rotary systems: hand and motor ProTaper files. Composite images were prepared for estimation. Material removed, canal width and canal deviation were measured at five levels in the apical 4 mm of the simulated curved canals using AutoCAD 2004 software. Data were analyzed using Wilcoxon's rank-sum test. The hand ProTaper group cut significantly wider than the motor rotary ProTaper group in the outer wall, except for the apical 0 mm point. The total canal width was cut significantly larger in the hand group than in the motor group. There was no significant difference between the two groups in centering canal shape, except at the 3 mm level. These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.
Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo
2017-01-01
Background One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. Material and Methods 60 human mandibular premolars with curvatures between 30–49° and radii between 2–4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Results Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) (P<0.05). The ProTaper Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system (P<0.05). Conclusions Rotary instrumentation systems often generate root defects, but the ProTaper NEXT system generated fewer dentinal defects than the ProTaper Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words:Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture. PMID:29167712
Double-heterojunction nanorod light-responsive LEDs for display applications.
Oh, Nuri; Kim, Bong Hoon; Cho, Seong-Yong; Nam, Sooji; Rogers, Steven P; Jiang, Yiran; Flanagan, Joseph C; Zhai, You; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Cho, Youn Kyoung; Hur, Gyum; Zhang, Jieqian; Trefonas, Peter; Rogers, John A; Shim, Moonsub
2017-02-10
Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light, would enable enhanced user interfaces and device-to-device interactivity. We demonstrate that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. These dual-functioning, all-solution-processed double-heterojunction nanorod light-responsive light-emitting diodes open feasible routes to a variety of advanced applications, from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. Copyright © 2017, American Association for the Advancement of Science.
Soliton propagation in tapered silicon core fibers.
Peacock, Anna C
2010-11-01
Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications.
Monitoring techniques for the manufacture of tapered optical fibers.
Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P
2015-10-01
The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.
Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun
2016-02-01
Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.
The fabrication of a tapered fiber connector and its coupling efficiency
NASA Astrophysics Data System (ADS)
Qinggui, Hu; Chengzhong, Li
2017-11-01
In order to reduce the adverse influence of transversal displacement of the optical fiber connector, we propose the directional tapered communication fiber connector, in which the fiber head is tapered according to the signal transmission direction to improve efficiency. We used a flame-brush technique to produce the tapered fiber successfully. In the next step, two experiments in different environments were performed; one in a static environment and the other in a vibration environment. The first experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same transversal displacement. The second experiment shows that the efficiency of the tapered connector is higher than that of the common connector in the same frequency and amplitude.
Multiple-taper spectral analysis: A stand-alone C-subroutine
NASA Astrophysics Data System (ADS)
Lees, Jonathan M.; Park, Jeffrey
1995-03-01
A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.
Compact RGBY light sources with high luminance for laser display applications
NASA Astrophysics Data System (ADS)
Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther
2018-02-01
Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.
ERIC Educational Resources Information Center
Toal, Vincent; Mihaylova, Emilia M.
2009-01-01
This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…
Toward jet injection by continuous-wave laser cavitation
NASA Astrophysics Data System (ADS)
Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben
2017-10-01
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.
Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites
NASA Astrophysics Data System (ADS)
Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei
2017-12-01
The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.
Singla, Mamta; Aggarwal, Vivek; Logani, Ajay; Shah, Naseem
2010-03-01
The purpose of this in vitro study was to evaluate the effect of various root canal instrumentation techniques with different instrument tapers on cleaning efficacy and resultant vertical root fracture (VRF) strength of the roots. Fifty human mandibular first premolar roots were enlarged to ISO size 20, inoculated with Enterococcus faecalis [ATCC2912] for 72 hours and divided into 5 groups: group I: prepared with .02 taper hand instruments ISO size 40; group II: Profile .04 taper size 40; group III: Profile .06 taper size 40; group IV: ProTaper size F4; and group V (control group) further divided into: Va: with bacterial inoculation and no mechanical instrumentation; and Group Vb: neither bacterial inoculation nor mechanical instrumentation. Cleaning efficacy was evaluated in terms of reduction of colony forming units (CFUs). The VRF strength was evaluated using D11 spreader as wedge in an Instron testing machine. Root canals instrumented with ProTaper and 6% Profile instruments showed maximum reduction in CFUs, with statistically insignificant difference between them. The VRF resistance decreased in all instrumented groups. The difference of VRF between 2% and 4% taper Profile groups was statistically insignificant (P = .195). One-way analysis of variance showed that canals instrumented with ProTaper F4 showed maximum reduction in VRF resistance compared with control uninstrumented group. Profile 6% taper instruments offer the advantage of maximum debridement without significant reduction in root fracture resistance. Copyright 2010 Mosby, Inc. All rights reserved.
Mann, Charles J; Costi, John J; Stanley, Richard M; Dobson, Peter J
2005-10-01
The effect of screw geometry on the pullout strength of an anterior cruciate ligament reconstruction is well documented. The effect of a truly tapered screw has not been previously investigated. Thirty bovine knees in right and left knee pairs were collected. Superficial digital flexors from the hind legs of sheep were harvested to form a quadruple tendon graft. For each knee pair, one tendon graft was fixed using a tapered screw (n=15) and the other with a non-tapered screw (n=15). Interference screws were manufactured from stainless steel, and apart from the tapered or non-tapered profile were identical. The screws were inserted into a tibial tunnel already containing the tendon graft. The interference fit was tested by extensile load to failure tests. The insertion torque of the screws and first sign of load to failure (by pullout) of the interference fit were recorded. Results were analysed using paired t-tests. The results indicated that tapered screws have significantly higher resistance to interference failure (p=0.007) and insertion torque (p<0.001) than non-tapered screws. The improved biomechanical performance of tapered screws demonstrated in this study may translate into superior clinical results, particularly at the tibial attachment of hamstring anterior cruciate ligament reconstruction, and also of hamstring fixation to the medial femoral condyle for patella instability.
Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.
Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman
2013-03-25
We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Kazemi, A.; Latifi, H.; Karimi Azar, M.; Hosseini, S. M.; Ghezelaiagh, M. H.
2010-09-01
A single-mode tapered fiber optic biosensor was utilized for real-time monitoring of the Escherichia coli (E. coli K-12) growth in an aqueous medium. The applied fiber tapers were fabricated using heat-pulling method with waist diameter and length of 6-7μm and 3mm, respectively. The bacteria were immobilized on the tapered surface using Poly-L-Lysine. By providing the proper condition, bacterial population growth on the tapered surface increases the average surface density of the cells and consequently the refractive index (RI) of the tapered region would increase. The adsorption of the cells on the tapered fiber leads to changes in the optical characteristics of the taper. This affects the evanescent field leading to changes in optical throughput. The bacterial growth rate was monitored at room temperature by transmission of a 1558.17nm distributed feedback (DFB) laser through the tapered fiber. At the same condition, after determining the growth rate of E. coli by means of colony counting method, we compared the results with that obtained from the fiber sensor measurements. This novel sensing method, promises new application such as rapid analysis of the presence of bacteria.
Ceramic Heads Decrease Metal Release Caused by Head-taper Fretting and Corrosion.
Kocagoz, Sevi B; Underwood, Richard J; MacDonald, Daniel W; Gilbert, Jeremy L; Kurtz, Steven M
2016-04-01
Metal release resulting from taper fretting and corrosion is a clinical concern, because wear and corrosion products may stimulate adverse local tissue reactions. Unimodular hip arthroplasties have a conical taper between the femoral head (head bore taper) and the femoral stem (stem cone taper). The use of ceramic heads has been suggested as a way of reducing the generation of wear and corrosion products from the head bore/stem cone taper junction. A previous semiquantitative study found that ceramic heads had less visual evidence of fretting-corrosion damage compared with CoCr heads; but, to our knowledge, no studies have quantified the volumetric material loss from the head bore and stem cone tapers of a matched cohort of ceramic and metal heads. We asked: (1) Do ceramic heads result in less volume of material loss at the head-stem junction compared with CoCr heads; (2) do stem cone tapers have less volumetric material loss compared with CoCr head bore tapers; (3) do visual fretting-corrosion scores correlate with volumetric material loss; and (4) are device, patient, or intraoperative factors associated with volumetric material loss? A quantitative method was developed to estimate volumetric material loss from the head and stem taper in previously matched cohorts of 50 ceramic and 50 CoCr head-stem pairs retrieved during revision surgery for causes not related to adverse reactions to metal particles. The cohorts were matched according to (1) implantation time, (2) stem flexural rigidity, and (3) lateral offset. Fretting corrosion was assessed visually using a previously published four-point, semiquantitative scoring system. The volumetric loss was measured using a precision roundness machine. Using 24 equally spaced axial traces, the volumetric loss was estimated using a linear least squares fit to interpolate the as-manufactured surfaces. The results of this analysis were considered in the context of device (taper angle clearance, head size, head offset, lateral offset, stem material, and stem surface finish) and patient factors that were obtained from the patients' operative records (implantation time, age at insertion, activity level, and BMI). The cumulative volumetric material losses estimated for the ceramic cohort had a median of 0.0 mm(3) per year (range, 0.0-0.4 mm(3)). The cumulative volumetric material losses estimated for the CoCr cohort had a median of 0.1 mm(3) per year (range, 0.0-8.8 mm(3)). An order of magnitude reduction in volumetric material loss was found when a ceramic head was used instead of a CoCr head (p < 0.0001). In the CoCr cohort, the femoral head bore tapers had a median material loss of 0.02 mm(3) (range, 0.0-8.7 mm(3)) and the stem cone tapers had a median material loss of 0.0 mm(3) (range, 0.0-0.32 mm(3)/year). There was greater material loss from femoral head bore tapers compared with stem cone tapers in the CoCr cohort (p < 0.001). There was a positive correlation between visual scoring and volumetric material loss (Spearman's ρ = 0.67, p < 0.01). Although visual scoring was effective for preliminary screening to separate tapers with no or mild damage from tapers with moderate to severe damage, it was not capable of discriminating in the large range of material loss observed at the taper surfaces with moderate to severe fretting-corrosion damage, indicated with a score of 3 or 4. We observed no correlations between volumetric material loss and device and patient factors. The majority of estimated material loss from the head bore-stem cone junctions resulting from taper fretting and corrosion was from the CoCr head bore tapers as opposed to the stem cone tapers. Additionally, the total material loss from the ceramic cohort showed a reduction in the amount of metal released by an order of magnitude compared with the CoCr cohort. We found that ceramic femoral heads may be an effective means by which to reduce metal release caused by taper fretting and corrosion at the head bore-stem cone modular interface in THAs.
NASA Astrophysics Data System (ADS)
Müller, André; Zink, Christof; Fricke, Jörg; Bugge, Frank; Erbert, Götz; Sumpf, Bernd; Tränkle, Günther
2018-02-01
1030 nm DBR tapered diode lasers with different lateral layouts are presented. The layout comparison includes lasers with straight waveguide and grating, tapered waveguide and straight grating, and straight waveguide and tapered grating. The lasers provide narrowband emission and optical output powers up to 15 W. The highest diffraction-limited central lobe output power of 10.5 W is obtained for lasers with tapered gratings only. Small variations in central lobe output power with RW injection current density also indicate the robustness of that layout. For lasers with tapered waveguides, high RW injection current densities up to 150 A/mm2 have to be applied in order to obtain high central lobe output powers. Lasers with straight waveguide and grating operate best at low RW injection current densities, 50 A/mm2 applied in this study. Using the layout optimizations discussed in this study may help to increase the application potential of DBR tapered diode lasers.
Pasqualini, Damiano; Scotti, Nicola; Tamagnone, Lorenzo; Ellena, Federica; Berutti, Elio
2008-03-01
The aim of this study was to compare the effective shaping time and number of rotations required by an endodontist working with hand and rotary ProTaper instruments to completely shape simulated root canals. Eighty Endo Training Blocks (curved canal shape) were used. Manual preflaring was performed with K-Flexofiles #08-10-12-15-17 and #20 Nitiflex at a working length of 18 mm. Specimens were then randomly assigned to 2 different groups (n = 40); group 1 was shaped by using hand ProTaper and group 2 with ProTaper rotary. The number of rotations made in the canal and the effective time required to achieve complete canal shaping were recorded for each instrument. Differences between groups were analyzed with the nonparametric Mann-Whitney U test (P < .05). Hand ProTaper required significantly fewer rotations (P < .001) than rotary ProTaper, whereas the effective working time to fully shape the simulated canal was significantly higher (P < .001) with hand ProTaper.
Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng
2017-09-01
We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.
Ultra-low-loss optical fiber nanotapers.
Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David
2004-05-17
Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.
1987-09-01
porphyries with olivine phenocrysts. Individual flows may be about 50 feet thick around Pisgah Crater but taper out to a few feet thick at the flow’s...Pleistocene in age (Dibblee, 1966b). SUNSHINE PEAK The dominant rock of Sunshine Peak is dacite porphyry , a gray-white to light greenish- gray rock, with 40...northwest-trending andesite porphyry dikes. 14 ’-WC TP 6747 Roof pendants of biotite quartz monzonite and quartz monzonite occur in the dacite porphyry . The
Excitation of short-wavelength spin waves in magnonic waveguides
NASA Astrophysics Data System (ADS)
Demidov, V. E.; Kostylev, M. P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S. O.
2011-08-01
By using phase-resolved micro-focus Brillouin light scattering spectroscopy, we demonstrate experimentally a phenomenon of wavelength conversion of spin waves propagating in tapered Permalloy waveguides. We show that this phenomenon enables efficient excitation of spin waves with sub-micrometer wavelengths being much smaller than the width of the microstrip antenna used for the excitation. The proposed excitation mechanism removes restrictions on the spin-wave wavelength imposed by the size of the antenna and enables improvement of performances of integrated magnonic devices.
Dwarf mistletoe does not increase trunk taper in released red firs in California
Robert F. Scharpf
1977-01-01
Dwarf mistletoe had no noticeable effect on trunk taper of young, dominant and codominant red firs 4 to 22 inches (10.2 to 55.9 cm) d.b.h. Also, taper was not influenced by live crown ratio of infected and uninfected trees. Trees less than 7 inches d.b.h. had significantly more taper than larger trees, irrespective of dwarf mistletoe.
Comparison of the fracture resistance of dental implants with different abutment taper angles.
Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei
2016-06-01
To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (P<0.05). In 4.0 mm-diameter abutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (P<0.05). The FEA results showed that stress values varied in implants with different abutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.
Cyclic fatigue resistance of two nickel-titanium rotary instruments in interrupted rotation.
Pedullà, E; Lizio, A; Scibilia, M; Grande, N M; Plotino, G; Boninelli, S; Rapisarda, E; Lo Giudice, G
2017-02-01
To investigate the influence of interrupted rotation on cyclic fatigue of two nickel-titanium rotary instruments. Cyclic fatigue of 300 new ProTaper Next size X1; X2 and Mtwo size 10, .04 taper; size 15, .05 taper; size 20, .06 taper and size 25, .06 taper instruments was tested in continuous or interrupted rotation. Fifty files of the same brand and size were randomly assigned to five groups (n = 10). Group 1 instruments were tested in continuous rotation; groups 2 and 3 in paused rotation for 1 s every 10 or 20 s, respectively; groups 4 and 5 in interrupted rotation for 5 s every 10 or 20 s, respectively. Cyclic fatigue was expressed in time to fracture (TtF) in an artificial canal with 60° angle and 5 mm radius of curvature. The fracture surface was examined with a scanning electron microscope (SEM). Data were evaluated by two-way analysis of variance. Cyclic fatigue of groups 2 and 4 of ProTaper Next X2 and Mtwo size 25, .06 taper was significantly lower than that of group 1 of the same instruments (P < 0.01). ProTaper Next X2 had significantly reduced cyclic fatigue in groups 3 and 5 (P < 0.05). No differences were found by interrupting the rotation for 1 or 5 s in all instruments (P > 0.05). Fatigue of other instruments was not affected by interrupted rotation (P > 0.05). Interrupted rotation reduced cyclic fatigue resistance of ProTaper Next X2 and Mtwo size 25, .06 taper, especially when a higher number of interruptions was performed. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Castellini, Iacopo; Andreani, Lorenzo; Parchi, Paolo Domenico; Bonicoli, Enrico; Piolanti, Nicola; Risoli, Francesca; Lisanti, Michele
2016-01-01
Total hip arthroplasty could fail due to many factors and one of the most common is the aseptic loosening. In order to achieve an effective osseointegration and reduce risk of lossening, the use of cemented implant, contact porous bearing surface and organic coating were developed. Aim of this study was to evaluate clinical and radiological mid-term outcomes of a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem applied with "plasma spray" technique and to demonstrate the possibility to use this stem in different types of femoral canals. Between January 2008 and December 2012, 240 consecutive primary total hip arthroplasties (THAs) were performed using a porous titanium alloy/hydroxyapatite double coating manufactured cementless femoral stem. 182 patients were examined: 136 were females (74.7%) and 46 males (25.2%); average age was 72 years old (ranging from 26 to 92 years old). For each patient, Harris Hip Scores (HHS) and Womac Scores were collected. All X-ray images were analyzed in order to demonstrate stem survival rate and subsidence. Harris Hip Score was good or excellent in 85% of the cases (average 90%) and mean WOMAC score was 97.5 (ranging from 73.4 to 100). No cases of early/late infection or periprosthetic fracture were noticed, with an excellent implant survival rate (100%) in a mean period of 40 months (ranging from 24 and 84 months). 5 cases presented acute implant dislocation, 2 due to wrong cup positioning in a dysplastic acetabulum and 3 after ground level fall. Dorr classification of femoral geometry was uses and the results were: 51 type A bone, 53 type B bone and 78 type C bone. Stem subsidence over 2 mm was considered as a risk factor of future implant loosening and was evidenced in 3 female patients with type C of Dorr classification. No radiolucencies signs around the proximally coated portion of stem or proximal reabsorption were visible during the radiographic follow-up. Concerning the use of porous titanium alloy/hydroxyapatite double coating, this study reported an excellent implant survival rate in a mid-term period with a rate of 1,64% of subsidence in patients with type C of femoral canal but with an optimal HHS and Womac Score results. Regarding this stem, primary stability is guaranteed by trapezoid shape of proximal region and tapering in frontal plane through press-fit technique. Radiological absence of pedestal has been accepted as sign of no excessive stress transmission to distal cortex due to its tapered diaphyseal region. Thanks to the reported data, Authors can consider this double coating a valid choice with an excellent medium-term survival and encouraging subsidence results. Further studies are needed to ensure these results can be replicated.
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
Logani, Ajay; Shah, Naseem
2008-01-01
To comparatively evaluate the amount of apically extruded debris when ProTaper hand, ProTaper rotary and ProFile systems were used for the instrumentation of root canals. Thirty minimally curved, mature, human mandibular premolars with single canals were randomly divided into three groups of ten teeth each. Each group was instrumented using one of the three instrumentation systems: ProTaper hand, ProTaper rotary and ProFile. Five milliliters of sterile water were used as an irrigant. Debris extruded was collected in preweighed polyethylene vials and the extruded irrigant was evaporated. The weight of the dry extruded debris was established by comparing the pre- and postinstrumentation weight of polyethylene vials for each group. The Kruskal-Wallis nonparametric test and Mann-Whitney U test were applied to determine if significant differences existed among the groups ( P< 0.05). All instruments tested produced a measurable amount of debris. No statistically significant difference was observed between ProTaper hand and ProFile system ( P > 0.05). Although ProTaper rotary extruded a relatively higher amount of debris, no statistically significant difference was observed between this type and the ProTaper hand instruments ( P > 0.05). The ProTaper rotary extruded significantly more amount of debris compared to the ProFile system ( P< 0.05). Within the limitations of this study, it can be concluded that all instruments tested produced apical extrusion of debris. The ProTaper rotary extruded a significantly higher amount of debris than the ProFile.
Stability of tapered and parallel-walled dental implants: A systematic review and meta-analysis.
Atieh, Momen A; Alsabeeha, Nabeel; Duncan, Warwick J
2018-05-15
Clinical trials have suggested that dental implants with a tapered configuration have improved stability at placement, allowing immediate placement and/or loading. The aim of this systematic review and meta-analysis was to evaluate the implant stability of tapered dental implants compared to standard parallel-walled dental implants. Applying the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, randomized controlled trials (RCTs) were searched for in electronic databases and complemented by hand searching. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool and data were analyzed using statistical software. A total of 1199 studies were identified, of which, five trials were included with 336 dental implants in 303 participants. Overall meta-analysis showed that tapered dental implants had higher implant stability values than parallel-walled dental implants at insertion and 8 weeks but the difference was not statistically significant. Tapered dental implants had significantly less marginal bone loss compared to parallel-walled dental implants. No significant differences in implant failure rate were found between tapered and parallel-walled dental implants. There is limited evidence to demonstrate the effectiveness of tapered dental implants in achieving greater implant stability compared to parallel-walled dental implants. Superior short-term results in maintaining peri-implant marginal bone with tapered dental implants are possible. Further properly designed RCTs are required to endorse the supposed advantages of tapered dental implants in immediate loading protocol and other complex clinical scenarios. © 2018 Wiley Periodicals, Inc.
Analysis of bonded joints. [shear stress and stress-strain diagrams
NASA Technical Reports Server (NTRS)
Srinivas, S.
1975-01-01
A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
Supercontinuum generation in an imaging fiber taper
NASA Astrophysics Data System (ADS)
Shi, Kebin; Omenetto, Fiorenzo G.; Liu, Zhiwen
2006-12-01
We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 μm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.
UEZU, Mary Kinue Nakamune; BRITTO, Maria Leticia Borges; NABESHIMA, Cleber K.; PALLOTTA, Raul Capp
2010-01-01
Objective The aim of this study was to evaluate the in vitro action of ProTaper retreatment files and ProTaper Universal in the retreatment of mandibular premolars. Material and methods The amount of debris extruded apically was measured and the time to reach the working length and to complete the removal of gutta-percha was observed. Thirty teeth had their canals prepared using ProTaper Universal files and were obturated by the single cone technique. The teeth were then stored at 37ºC in a humid environment for 7 days. During the use of the rotary instruments for root canal filling removal, the apical portions of the teeth were attached to the open end of a resin tube to collect the apically extruded debris. Results ProTaper Universal files were significantly faster (p=0.0011) than the ProTaper retreatment files to perform gutta-percha removal, but no significant difference was found between the files regarding the time to reach the working length or the amount of apical extrusion. Conclusions ProTaper Universal rotary had better results for endodontic retreatment, and both techniques promote similar apical extrusion of debris. PMID:21308282
Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; Obrien, T. K.
1990-01-01
A tapered composite laminate subjected to tension load was analyzed using the finite-element method. The glass/epoxy laminate has a (+ or - 45)sub 3 group of plies dropped in three distinct steps, each 20 ply-thicknesses apart, thus forming a taper angle of 5.71 degrees. Steep gradients of interlaminar normal and shear stress on a potential delamination interface suggest the existence of stress singularities at the points of material and geometric discontinuities created by the internal plydrops. The delamination was assumed to initiate at the thin end of the taper on a -45/+45 interface and the delamination growth was simulated in both directions, i.e., along the taper and into the thin region. The strain-energy-release rate for a delamination growing into the thin laminate consisted predominantly of mode I (opening) component. For a delamination growing along the tapered region, the strain-energy-release rate was initially all mode I, but the proportion of mode I decreased with increase in delamination size until eventually total G was all mode II. The total G for both delamination tips increased with increase in delamination size, indicating that a delamination initiating at the end of the taper will grow unstably along the taper and into the thin laminate simultaneously.
NASA Astrophysics Data System (ADS)
Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang
2018-01-01
We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.
Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.
Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut
2015-09-15
We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers.
Welding-fume-induced transmission loss in tapered optical fibers
NASA Astrophysics Data System (ADS)
Yi, Ji-Haeng
2015-09-01
This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.
Ultra-low-loss tapered optical fibers with minimal lengths
NASA Astrophysics Data System (ADS)
Nagai, Ryutaro; Aoki, Takao
2014-11-01
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.
The Double-Anchoring Theory of Lightness Perception: A Comment on Bressan (2006)
ERIC Educational Resources Information Center
Howe, Piers D. L.; Sagreiya, Hersh; Curtis, Dwight L.; Zheng, Chengjie; Livingstone, Margaret S.
2007-01-01
Comments on an article by Bressan. Recently, a double-anchoring theory (DAT) of lightness perception was proposed (P. Bressan, 2006), which offers explanations for all the data explained by the original anchoring theory (A. Gilchrist et al., 1999), as well as a number of additional lightness phenomena. Consequently, DAT can account for an…
NASA Astrophysics Data System (ADS)
Desnijder, Karel; Hanselaer, Peter; Meuret, Youri
2016-04-01
A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.
Dennis J. Shaw; Ralph S. Meldahl; John S. Kush; Greg L. Somers
2003-01-01
We used data from 322 natural longleaf pine (Pinus palustris Mill.) trees to include crown ratio as a continuous variable in taper equations. The data were divided into 10 crown-ratio classes and fitted taper equations into each class to detect trends in the coefficients. For application to longleaf pine, we replaced coefficients that exhibited a...
STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials
2016-11-02
STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2013-02-01
Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.
Pulse compression using a tapered microstructure optical fiber.
Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J
2006-05-01
We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.
Trial of Tocilizumab in Giant-Cell Arteritis.
Stone, John H; Tuckwell, Katie; Dimonaco, Sophie; Klearman, Micki; Aringer, Martin; Blockmans, Daniel; Brouwer, Elisabeth; Cid, Maria C; Dasgupta, Bhaskar; Rech, Juergen; Salvarani, Carlo; Schett, Georg; Schulze-Koops, Hendrik; Spiera, Robert; Unizony, Sebastian H; Collinson, Neil
2017-07-27
Giant-cell arteritis commonly relapses when glucocorticoids are tapered, and the prolonged use of glucocorticoids is associated with side effects. The effect of the interleukin-6 receptor alpha inhibitor tocilizumab on the rates of relapse during glucocorticoid tapering was studied in patients with giant-cell arteritis. In this 1-year trial, we randomly assigned 251 patients, in a 2:1:1:1 ratio, to receive subcutaneous tocilizumab (at a dose of 162 mg) weekly or every other week, combined with a 26-week prednisone taper, or placebo combined with a prednisone taper over a period of either 26 weeks or 52 weeks. The primary outcome was the rate of sustained glucocorticoid-free remission at week 52 in each tocilizumab group as compared with the rate in the placebo group that underwent the 26-week prednisone taper. The key secondary outcome was the rate of remission in each tocilizumab group as compared with the placebo group that underwent the 52-week prednisone taper. Dosing of prednisone and safety were also assessed. Sustained remission at week 52 occurred in 56% of the patients treated with tocilizumab weekly and in 53% of those treated with tocilizumab every other week, as compared with 14% of those in the placebo group that underwent the 26-week prednisone taper and 18% of those in the placebo group that underwent the 52-week prednisone taper (P<0.001 for the comparisons of either active treatment with placebo). The cumulative median prednisone dose over the 52-week period was 1862 mg in each tocilizumab group, as compared with 3296 mg in the placebo group that underwent the 26-week taper (P<0.001 for both comparisons) and 3818 mg in the placebo group that underwent the 52-week taper (P<0.001 for both comparisons). Serious adverse events occurred in 15% of the patients in the group that received tocilizumab weekly, 14% of those in the group that received tocilizumab every other week, 22% of those in the placebo group that underwent the 26-week taper, and 25% of those in the placebo group that underwent the 52-week taper. Anterior ischemic optic neuropathy developed in one patient in the group that received tocilizumab every other week. Tocilizumab, received weekly or every other week, combined with a 26-week prednisone taper was superior to either 26-week or 52-week prednisone tapering plus placebo with regard to sustained glucocorticoid-free remission in patients with giant-cell arteritis. Longer follow-up is necessary to determine the durability of remission and safety of tocilizumab. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT01791153 .).
History and current status of strontium iodide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
History and current status of strontium iodide scintillators
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.; ...
2017-09-15
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
Rao, M S Rama; Shameem, Abdul; Nair, Rashmi; Ghanta, Sureshbabu; Thankachan, Rekha P; Issac, Johnson K
2013-07-01
The aim of the present study was to compare the remaining dental thickness (RDT) in the mesiobuccal root of mandibular first molars at 3 and 7 mm from the anatomic apex after instrumentation with ProTaper, light speed LSX, K3 and M2 and to compare with that of K-files. In this study, 60 extracted, untreated human mandibular first molars with fully formed apices, with curvature less than 35° and no root resorption were used. Prepared specimens were cut horizontally at 3 and 7 mm short of anatomic apex. The least dentin thickness from canal to external root surface was observed under 3× magnification and recorded using Clemax measuring tool and the sections were reassembled. Group I-instrumentation with ProTaper, group II-instrumentation with K3, group III-instrumentation with Light Speed LSX, group IV-instrumentation with M2 and group V- instrumentation with K-files and RDT was measured. Results showed that group V removed lesser amount of dentin compared to all other groups while all the three instrumentation techniques removed almost equal amount of dentin apically. Cleaning and shaping of the root canal space involves the elimination of pathogenic contents as well as attaining a uniform specific shape. However, the RDT following the use of various intraradicular procedures is an important factor to be considered as an iatrogenic cause that may result in root fracture. To avoid this, newer rotary instruments are being introduced.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
Yang, Xiupei; Qian, Fan; Xie, Linxiang; Yang, Xiaocui; Cheng, Xiumei; Choi, Martin M F
2014-03-01
This paper proposes a novel strategy to enhance detection of doxorubicin in human plasma, using homemade CE combined with normal stacking mode (NSM). The detection system of CE named as in-column tapered optic-fiber light-emitting diode induced fluorescence detection system is economic and more sensitive that has been demonstrated in our previous work. The influence of sample matrix, BGE, applied voltage, and injection time on the efficiency of NSM were systematically investigated. The clean extracts were subjected to CE separation with optimal experimental conditions: Ethanol-water (1:1, v/v) was used as sample matrix, pH 4.12 15 mM sodium phosphate buffer solution containing 70% v/v ACN, applied voltage 23 kV and 45 s hydrodynamic injection at a height of 20 cm. The detection system displayed linear dynamic range from 6.4 to 1.13 × 10(3) ng/mL with a correlation coefficient of 0.9990 and LOD 2.2 ng/mL for doxorubicin (DOX). The proposed CE method has been successfully applied to determine DOX in human plasma which the recoveries of standard DOX added to human plasma were found to been the range of 93.8-104.6%. The results obtained demonstrate that our detection system combined with NSM is a good idea to enhance sensitivity in CE for routine determination of DOX in some biological specimens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tapering strategies in elite British endurance runners.
Spilsbury, Kate L; Fudge, Barry W; Ingham, Stephen A; Faulkner, Steve H; Nimmo, Myra A
2015-01-01
The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = -0.70 and R = -0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Structural Efficiency of Composite Struts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Wu, K. Chauncey; McKenney, Martin J.; Oremont, Leonard
2011-01-01
The structural efficiency of carbon-epoxy tapered struts is considered through trade studies, detailed analysis, manufacturing and experimentation. Since some of the lunar lander struts are more highly loaded than struts used in applications such as satellites and telescopes, the primary focus of the effort is on these highly loaded struts. Lunar lander requirements include that the strut has to be tapered on both ends, complicating the design and limiting the manufacturing process. Optimal stacking sequences, geometries, and materials are determined and the sensitivity of the strut weight to each parameter is evaluated. The trade study results indicate that the most efficient carbon-epoxy struts are 30 percent lighter than the most efficient aluminum-lithium struts. Structurally efficient, highly loaded struts were fabricated and loaded in tension and compression to determine if they met the design requirements and to verify the accuracy of the analyses. Experimental evaluation of some of these struts demonstrated that they could meet the greatest Altair loading requirements in both tension and compression. These results could be applied to other vehicles requiring struts with high loading and light weight.
Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber.
Liu, Zhengyong; Tse, Ming-Leung Vincent; Zhang, A Ping; Tam, Hwa-Yaw
2014-10-15
A novel microfluidic flowmeter integrated with microfiber Bragg grating (µFBG) is presented. Two glass capillaries and a short length of high-light-absorption Co²⁺-doped optical fiber were stacked inside a larger outer capillary tube. The stack was then drawn into a tapered device. Two microchannels with the diameter of ~50 μm were formed inside the capillaries for flowing of microfluidics. An FBG was inscribed in the tapered Co²⁺-doped fiber with waist diameter of ~70 μm, and acts as a flow-rate sensor. A pump laser with wavelength of 1480 nm was utilized to locally heat the µFBG, rendering the µFBG as miniature "hot-wire" flowmeter. The flow rate of the liquid in the microchannels is determined by the induced wavelength shift of the µFBG. The experimental results achieve a minimum detectable change of ~16 nL/s in flow rate, which is very promising in the use as part of biochips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhshayesh, A.M., E-mail: bakhshayesh@alum.sharif.edu
2016-01-15
Highlights: • A new architecture of double-layered TiO{sub 2} electrodes is presented. • The electrode contains two alternate layers of TiO{sub 2} nanoparticles and aggregates. • The aggregates layers are deposited onto the nanocrystalline layer. • The new design showed improved efficiency compared to conventional cells. - Abstract: This study presents a new double-layered TiO{sub 2} film containing a nanocrystalline under-layer and a uniform, sponge-like light scattering over-layer for dye-sensitized solar cells (DSCs) application. The over-layer is composed of 2-μm-diameter uniform aggregates, containing small nanoparticles with the average grain size of 20 nm. X-ray diffraction reveals that the light scatteringmore » layer has a mixture of anatase and rutile phases, whereas the nanocrystalline layer has a pure anatase phase. Ultraviolet–visible (UV–vis) spectra show that the light scattering layer has lower band gap energy than the nanocrystalline under-layer, extending the absorption of TiO{sub 2} into visible region. Diffuse reflectance spectroscopy demonstrates that the double-layered electrode enjoyed better light scattering ability. The double-layered DSC shows the highest power conversion efficiency of 7.69% and incident photon-to-current efficiency of 88% as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy.« less
Cameron, Stephen M; Morris, W Jack; Keesee, Stephen M; Barsky, Todd B; Parker, M Harry
2006-06-01
Clinicians have used resistance form as a basis for determining guidelines for preparation design to ensure clinical success of cemented cast restorations. Disagreement on whether clinical success follows the on-off or linear nature of resistance form continues. The purpose of this study was to evaluate the number of cycles required to dislodge a cemented complete crown casting under a cyclic lateral load as a function of taper and to compare this relationship for the resistive and nonresistive ranges of taper. Three dies were milled from stainless steel at each of the following tapers: 4, 8, 12, 16, 20, 24, 28, and 32 degrees. A gold-palladium metal-ceramic alloy crown was fabricated for each die, cemented, and subjected to lateral cyclic loading until failure or 1,000,000 cycles. The limiting taper for the dies with their given height and base was 26.6 degrees. Dies with taper less than 26.6 degrees had resistance form, whereas dies with taper larger than 26.6 degrees did not. A linear regression (alpha=.05) was used to evaluate the relation of cycles at dislodgement to taper. The average number of cycles to crown dislodgement or completion for each taper (SD), in units of 10,000, was as follows: 4 degrees, 100 (0); 8 degrees, 100 (0); 12 degrees, 93.54 (16.56); 16 degrees, 61.33 (38.47); 20 degrees, 25.73 (34.67); 24 degrees, 4.33 (7.36); 28 degrees, 0.06 (0.08); and 32 degrees, 0.05 (0.09). The crowns in the resistive area less than 26.6 degrees that demonstrated failure showed a linear regression with a correlation coefficient of -0.995 between the average number of cycles to dislodge the crown and the taper. The slope was significantly different from zero (P=.0048), with a value of -7.58 and a standard error of 0.53. The number of cycles required to cause crown dislodgement was linear after 12 degrees in the resistive area and nearly zero for preparations in the nonresistive area. The limiting taper concept closely predicted the transition point where the slope of the graph of cycles to dislodgement as a function of taper abruptly changed.
Effects of taper and space settings of telescopic Ce-TZP/A crowns on retentive force and settling.
Nakagawa, Shusuke; Torii, Katsunori; Tanaka, Masahiro
2017-03-31
The aim of this study was to investigate the effect of the taper and space setting of using Ce-TZP/A on retentive force and secondary crown settling. The taper were 2°, 4°, and 6°, and the space settings were 0 and 10 μm. The applied loads were 50 and 100 N. The taper had a significant effect on retentive force and settling at both loads (p<0.05). The space settings did not have a significant effect on retentive force or settling at either load (p<0.05). The taper of the telescopic crowns and the load affected the retentive force and the settling.
Zou, Weiwen; Jiang, Wenning; Chen, Jianping
2013-03-11
This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Neutrinoless double beta decay in type I+II seesaw models
NASA Astrophysics Data System (ADS)
Borah, Debasish; Dasgupta, Arnab
2015-11-01
We study neutrinoless double beta decay in left-right symmetric extension of the standard model with type I and type II seesaw origin of neutrino masses. Due to the enhanced gauge symmetry as well as extended scalar sector, there are several new physics sources of neutrinoless double beta decay in this model. Ignoring the left-right gauge boson mixing and heavy-light neutrino mixing, we first compute the contributions to neutrinoless double beta decay for type I and type II dominant seesaw separately and compare with the standard light neutrino contributions. We then repeat the exercise by considering the presence of both type I and type II seesaw, having non-negligible contributions to light neutrino masses and show the difference in results from individual seesaw cases. Assuming the new gauge bosons and scalars to be around a TeV, we constrain different parameters of the model including both heavy and light neutrino masses from the requirement of keeping the new physics contribution to neutrinoless double beta decay amplitude below the upper limit set by the GERDA experiment and also satisfying bounds from lepton flavor violation, cosmology and colliders.
Influence of resonance tube geometry shape on performance of thermoacoustic engine.
Bao, Rui; Chen, Guobang; Tang, Ke; Jia, Zhengzhong; Cao, Weihua
2006-12-22
Based on the linear thermoacoustics, a symmetrical standing-wave thermoacoustic engine is simulated with a cylindrical tube and a tapered one as the resonance tube, respectively. The experiments with both cylindrical and tapered tubes are carried out. The suppression of nonlinear effects due to tapered tube as the resonance tube is discussed. Both simulation and experimental results show that the performance of the tapered tube is better than cylindrical one as the resonance tube.
NASA Astrophysics Data System (ADS)
Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming
2017-10-01
In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.
Shankarappa, Pushpa; Misra, Abhinav; Sawhney, Asheesh; Sridevi, Nandamuri; Singh, Anu
2016-01-01
Introduction. The aim of the present study was to evaluate the dentinal cracks after root canal preparation with rotary files: Gates Glidden, ProTaper Universal, ProTaper Next, and HyFlex CM at different instrumentation lengths. Methodology. Sixty-five mandibular premolars were mounted in the acrylic tube with simulated periodontal ligaments and the apex was exposed. The root canals were instrumented with different rotary files, namely, ProTaper Universal, ProTaper Next, and HyFlex CM, to the major apical foramen (AF), short AF, and beyond AF. The root apex was stained with 1% methylene blue dye and digital images of apical surface of every tooth were taken and development of dentinal defects was determined by using stereomicroscope. Multinomial logistic regression test was performed to identify influencing factors. Results. Instrumentation with rotary files terminated 2 mm short AF and did not cause any cracks. Significantly less cracks were seen when instrumentation with rotary files terminated 1 mm short apical foramen when compared with the instrumentation terminated at or beyond apical foramen (p < 0.05). Conclusion. ProTaper Universal rotary files caused more dentinal cracks than ProTaper Next and HyFlex CM. Instrumentation short AF reduced the risk of dentinal defects. PMID:27446636
Damage Patterns at the Head-Stem Taper Junction Helps Understand the Mechanisms of Material Loss.
Hothi, Harry S; Panagiotopoulos, Andreas C; Whittaker, Robert K; Bills, Paul J; McMillan, Rebecca A; Skinner, John A; Hart, Alister J
2017-01-01
Material loss at the taper junction of metal-on-metal total hip arthroplasties has been implicated in their early failure. The mechanisms of material loss are not fully understood; analysis of the patterns of damage at the taper can help us better understand why material loss occurs at this junction. We mapped the patterns of material loss in a series of 155 metal-on-metal total hip arthroplasties received at our center by scanning the taper surface using a roundness-measuring machine. We examined these material loss maps to develop a 5-tier classification system based on visual differences between different patterns. We correlated these patterns to surgical, implant, and patient factors known to be important for head-stem taper damage. We found that 63 implants had "minimal damage" at the taper (material loss <1 mm 3 ), and the remaining 92 implants could be categorized by 4 distinct patterns of taper material loss. We found that (1) head diameter and (2) time to revision were key significant variables separating the groups. These material loss maps allow us to suggest different mechanisms that dominate the cause of the material loss in each pattern: (1) corrosion, (2) mechanically assisted corrosion, or (3) intraoperative damage or poor size tolerances leading to toggling of trunnion in taper. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less
The phototransduction machinery in the rod outer segment has a strong efficacy gradient
Mazzolini, Monica; Facchetti, Giuseppe; Andolfi, Laura; Proietti Zaccaria, Remo; Tuccio, Salvatore; Treu, Johannes; Altafini, Claudio; Di Fabrizio, Enzo M.; Lazzarino, Marco; Rapp, Gert; Torre, Vincent
2015-01-01
Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5–10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. PMID:25941368
Freeway work zone lane capacity.
DOT National Transportation Integrated Search
2009-01-01
The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 : tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. : Work Zone throughput was analyz...
Tapered structure construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.
Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.
Properties and Frequency Conversion of High-Brightness Diode-Laser Systems
NASA Astrophysics Data System (ADS)
Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard
An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.
Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham
2017-08-01
There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.
Dimagno, Matthew J; Wamsteker, Erik-Jan; Rizk, Rafat S; Spaete, Joshua P; Gupta, Suraj; Sahay, Tanya; Costanzo, Jeffrey; Inadomi, John M; Napolitano, Lena M; Hyzy, Robert C; Desmond, Jeff S
2014-03-01
There are many published clinical guidelines for acute pancreatitis (AP). Implementation of these recommendations is variable. We hypothesized that a clinical decision support (CDS) tool would change clinician behavior and shorten hospital length of stay (LOS). Observational study, entitled, The AP Early Response (TAPER) Project. Tertiary center emergency department (ED) and hospital. Two consecutive samplings of patients having ICD-9 code (577.0) for AP were generated from the emergency department (ED) or hospital admissions. Diagnosis of AP was based on conventional Atlanta criteria. The Pre-TAPER-CDS-Tool group (5/30/06-6/22/07) had 110 patients presenting to the ED with AP per 976 ICD-9 (577.0) codes and the Post-TAPER-CDS-Tool group (5/30/06-6/22/07) had 113 per 907 ICD-9 codes (7/14/10-5/5/11). The TAPER-CDS-Tool, developed 12/2008-7/14/2010, is a combined early, automated paging-alert system, which text pages ED clinicians about a patient with AP and an intuitive web-based point-of-care instrument, consisting of seven early management recommendations. The pre- vs. post-TAPER-CDS-Tool groups had similar baseline characteristics. The post-TAPER-CDS-Tool group met two management goals more frequently than the pre-TAPER-CDS-Tool group: risk stratification (P<0.0001) and intravenous fluids >6L/1st 0-24 h (P=0.0003). Mean (s.d.) hospital LOS was significantly shorter in the post-TAPER-CDS-Tool group (4.6 (3.1) vs. 6.7 (7.0) days, P=0.0126). Multivariate analysis identified four independent variables for hospital LOS: the TAPER-CDS-Tool associated with shorter LOS (P=0.0049) and three variables associated with longer LOS: Japanese severity score (P=0.0361), persistent organ failure (P=0.0088), and local pancreatic complications (<0.0001). The TAPER-CDS-Tool is associated with changed clinician behavior and shortened hospital LOS, which has significant financial implications.
Toward jet injection by continuous-wave laser cavitation.
Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben
2017-10-01
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ∼1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Signore, Antonio; Benedicenti, Stefano; Kaitsas, Vassilios; Barone, Michele; Angiero, Francesca; Ravera, Giambattista
2009-02-01
This retrospective study investigated the clinical effectiveness over up to 8 years of parallel-sided and of tapered glass-fiber posts, in combination with either hybrid composite or dual-cure composite resin core material, in endodontically treated, maxillary anterior teeth covered with full-ceramic crowns. The study population comprised 192 patients and 526 endodontically treated teeth, with various degrees of hard-tissue loss, restored by the post-and-core technique. Four groups were defined based on post shape and core build-up materials, and within each group post-and-core restorations were assigned randomly with respect to root morphology. Inclusion criteria were symptom-free endodontic therapy, root-canal treatment with a minimum apical seal of 4mm, application of rubber dam, need for post-and-core complex because of coronal tooth loss, and tooth with at least one residual coronal wall. Survival rate of the post-and-core restorations was determined using Kaplan-Meier statistical analysis. The restorations were examined clinically and radiologically; mean observation period was 5.3 years. The overall survival rate of glass-fiber post-and-core restorations was 98.5%. The survival rate for parallel-sided posts was 98.6% and for tapered posts was 96.8%. Survival rates for core build-up materials were 100% for dual-cure composite and 96.8% for hybrid light-cure composite. For both glass-fiber post designs and for both core build-up materials, clinical performance was satisfactory. Survival was higher for teeth retaining four and three coronal walls.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
Modeling and simulation performance of sucker rod beam pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com; Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption provedmore » non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.« less
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Detection of internal fields in double-metal terahertz resonators
Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...
2017-02-06
(THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.
Combined raman and IR fiber-based sensor for gas detection
Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris
2014-06-24
A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.
5 CFR 353.303 - Restoration rights of TAPER employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Restoration rights of TAPER employees... Restoration rights of TAPER employees. An employee serving in the competitive service under a temporary... she left or an equivalent one in the same commuting area. ...
Merging taper lengths for short duration lane closure : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
The Utility Industry has requested that the Florida Department of Transportation provide for the use of merging taper lengths that are significantly shorter than the lengths computed using the taper length equations published in the MUTCD Section 6C....
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel
1998-06-01
Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.
Fabrication of longitudinally arbitrary shaped fiber tapers
NASA Astrophysics Data System (ADS)
Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.
2018-02-01
We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.
Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal.
Kang, Ying; Yang, Suhui; Brunel, Marc; Cheng, Lijun; Zhao, Changming; Zhang, Haiyang
2017-04-10
A dual-frequency CW laser at a wavelength of 1.064 μm is frequency doubled in a MgO:PPLN nonlinear crystal. The fundamental dual-frequency laser has a tunable beat note from 125 MHz to 175 MHz. A laser-diode pumped fiber amplifier is used to amplify the dual-frequency fundamental output to a maximum power of 50 W before frequency doubling. The maximum output power of the green light is 1.75 W when the input fundamental power is 12 W, corresponding to a frequency doubling efficiency of 14.6%. After frequency doubling, green light with modulation frequencies in two bands from 125 MHz to 175 MHz and from 250 MHz to 350 MHz is achieved simultaneously. The relative intensities of the beat notes at the two bands can be adjusted by changing the relative intensities at different frequencies of the fundamental light. The spectral width and frequency stabilities of the beat notes in fundamental wave and green light are also measured, respectively. The modulated green light has potential applications in underwater ranging, communication, and imaging.
Effect of Instrumentation Techniques and Preparation Taper on Apical Extrusion of Bacteria.
Aksel, Hacer; Küçükkaya Eren, Selen; Çakar, Aslı; Serper, Ahmet; Özkuyumcu, Cumhur; Azim, Adham A
2017-06-01
The aim of this in vitro study was to evaluate the effects of different root canal instrumentation techniques and preparation tapers on the amount of apically extruded bacteria. The root canals of 98 extracted human mandibular incisors were contaminated with Enterococcus faecalis suspension. After incubation at 37°C for 24 hours, the root canals were instrumented with K3 rotary files in a crown-down (CD) or full-length linear instrumentation technique (FL) by using 3 different root canal tapers (0.02, 0.04, and 0.06). During instrumentation, apically extruded bacteria were collected into vials containing saline solution. The microbiological samples were taken from the vials and incubated in brain-heart agar medium for 24 hours, and the numbers of colony-forming units (CFUs) were determined. The obtained results were analyzed with t test and one-way analysis of variance for the comparisons between the instrumentation techniques (CD and FL) and the preparation tapers (0.02, 0.04, and 0.06), respectively. Tukey honestly significant difference test was used for pairwise comparisons. The preparation taper had no effect on the number of CFUs when a FL instrumentation technique was used (P > .05). There was a statistically significant difference in the CFUs between FL and CD techniques when the preparation taper was 0.02 (P < .05). There was no statistically significant difference between the 0.04 and 0.06 preparation tapers in any of the instrumentation techniques (P > .05). Using a 0.02 taper in a CD manner results in the least amount of bacterial extrusion. The instrumentation technique did not seem to affect the amount of bacterial extrusion when 0.04 and 0.06 taper instruments were used for cleaning and shaping the root canal space. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
He, J. R.; Xu, S. L.; Xue, L.
2017-11-01
Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Tapered GRIN fiber microsensor.
Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B
2014-12-15
The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
Ozsu, Damla; Karatas, Ertugrul; Arslan, Hakan; Topcu, Meltem C.
2014-01-01
Objectives: The aim of this study was to compare the amount of apically extruded debris during preparation with ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Next (Dentsply Maillefer), a reciprocating single-file (WaveOne; VDW GmbH, Munich, Germany), and a self-adjusting file (SAF; ReDent Nova, Ra’anna, Israel). Materials and Methods: Fifty-six intact mandibular premolar teeth were randomly assigned to four groups. The root canals were prepared according to the manufacturers’ instructions using the ProTaper Universal, ProTaper Next, WaveOne, and SAF. Apically extruded debris was collected in preweighted Eppendorf tubes during instrumentation. The net weight of the apically extruded debris was determined by subtracting the preweights and postweights of the tubes. The data were statistically analyzed using the one-way analysis of variance and the least significant difference tests at a significance level of P < 0.05. Results: A measurable amount of debris was apically extruded in all groups, and the amounts of debris extrusion in the groups were statistically significant (P < 0.001). The ProTaper Next and WaveOne groups resulted in less debris extrusion than the ProTaper Universal group (P < 0.05), and the SAF group resulted in the least debris extrusion. Conclusions: Within the limitations of the present study, it can be concluded that all systems extruded debris beyond the apical foramen. PMID:25512732
Effect of blade planform variation on the forward-flight performance of small-scale rotors
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.; Althoff, Susan L.; Samak, Dhananjay K.; Green, Michael D.
1992-01-01
An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients.
Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2005-01-01
The tapered implant-abutment interface is becoming more popular due to the mechanical reliability of retention it provides. Consequently, understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. This paper focuses on the tapered implant-abutment interface with a screw integrated at the bottom of the abutment. The tightening and loosening torques are the main factors in determining the reliability and the stability of the attachment. Analytical formulas are developed to predict tightening and loosening torque values by combining the equations related to the tapered interface with screw mechanics equations. This enables the identification of the effects of the parameters such as friction, geometric properties of the screw, the taper angle, and the elastic properties of the materials on the mechanics of the system. In particular, a relation between the tightening torque and the screw pretension is identified. It was shown that the loosening torque is smaller than the tightening torque for typical values of the parameters. Most of the tightening load is carried by the tapered section of the abutment, and in certain combinations of the parameters the pretension in the screw may become zero. The calculations performed to determine the loosening torque as a percentage of tightening torque resulted in the range 85-137%, depending on the values of taper angle and the friction coefficient.
Supercompensation Kinetics of Physical Qualities During a Taper in Team-Sport Athletes.
Marrier, Bruno; Robineau, Julien; Piscione, Julien; Lacome, Mathieu; Peeters, Alexis; Hausswirth, Christophe; Morin, Jean-Benoît; Le Meur, Yann
2017-10-01
Peaking for major competition is considered critical for maximizing team-sport performance. However, there is little scientific information available to guide coaches in prescribing efficient tapering strategies for team-sport players. To monitor the changes in physical performance in elite team-sport players during a 3-wk taper after a preseason training camp. Ten male international rugby sevens players were tested before (Pre) and after (Post) a 4-wk preseason training camp focusing on high-intensity training and strength training with moderate loads and once each week during a subsequent 3-wk taper. During each testing session, midthigh-pull maximal strength, sprint-acceleration mechanical outputs, and performance, as well as repeated-sprint ability (RSA), were assessed. At Post, no single peak performance was observed for maximal lower-limb force output and sprint performance, while RSA peaked for only 1 athlete. During the taper, 30-m-sprint time decreased almost certainly (-3.1% ± 0.9%, large), while maximal lower-limb strength and RSA, respectively, improved very likely (+7.7% ± 5.3%, small) and almost certainly (+9.0% ± 2.6%, moderate). Of the peak performances, 70%, 80%, and 80% occurred within the first 2 wk of taper for RSA, maximal force output, and sprint performance, respectively. These results show the sensitivity of physical qualities to tapering in rugby sevens players and suggest that an ~1- to 2-wk tapering time frame appears optimal to maximize the overall physical-performance response.
1983-01-01
experiments of (aggerneier ( rvf . 44). The observed, pronounced reduction in the available traction coefficient with just a few degrees of misalinement...Co., 1979. (AFAPL-TR-79-2007, AD-A069440.) 6. Crecelius, W. J.; and Milke , D. R,: Dynamic and Thermal Analysis of High Speed Tapered Roller Bearings...appearance of milk . When the narrow band of intense light crossed the fan of white oil, a bright line of it was illuminated so that it could be L GRIT BEAM
Hirschfeld, T.B.
1985-09-24
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.
Multimode fiber devices with single-mode performance
NASA Astrophysics Data System (ADS)
Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.
2005-10-01
A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1993-10-01
For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.
Hirschfeld, Tomas B.
1985-01-01
Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.
ERIC Educational Resources Information Center
Bressan, Paola
2007-01-01
Replies to comments mad by Howe et al. on the current author's original article. The double-anchoring theory of lightness (P. Bressan, 2006b) assumes that any given region belongs to a set of frameworks, created by Gestalt grouping principles, and receives a provisional lightness within each of them; the region's final lightness is a weighted…
Catalog of Window Taper Functions for Sidelobe Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.
Liao, Yen-Nung; Liu, Ching-Shen; Tsai, Tong-Rong; Hung, Yu-Chiang; Chang, Shun-Jen; Lin, Hong-Long; Chen, Ying-Chou; Lai, Han-Ming; Yu, Shan-Fu; Chen, Chung-Jen
2011-07-01
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. Prolonged complete remission is rare. Most patients with SLE need long-term treatment with glucocorticoid and immunomodulators. However, side effects because of the above medications are common. We evaluated the effect of adding-on Dan-Chi-Liu-Wei combination (DCLWC) on SLE patients with conventional therapy in tapering steroid and preventing disease flare-up. This was a double-blind and randomized controlled trial. Sixty-six SLE patients were recruited into this study and 53 patients who fulfilled the 1997 revised criteria for the classification of SLE with an SLE disease activity index (SLEDAI) score of 2-12 and a steroid (measured with prednisolone) daily dose of less than 20mg/d were enrolled. The patients were randomized into either an experimental or control group. We checked the urine analysis, hemogram, liver function, renal function, C3, C4, erythrocyte sedimentation rate, and anti-dsDNA, evaluated the SLEDAI score, and recorded the steroid dose at 0 months, 3 months, and 6 months, respectively. After 6 months of study, the C4 and blood urea nitrogen level revealed a statistically significant difference in either group. There was a tendency toward a decreased SLEDAI score in the experimental group (p=0.083) but not in the control group (p=0.867). The steroid dose was not statistically significant in either group. Renal function and liver function revealed no statistically significant statistics changes in either group. Adding-on DCLWC to conventional therapy for the treatment of SLE was safe and might have a borderline effect in decreasing disease activity, but it was not possible to taper the dosage of steroid after 6 months of clinical trial. Therefore, a long-term follow-up and a large-scale study are necessary to confirm the effect of DCLWC. Copyright © 2011 Elsevier Taiwan LLC. All rights reserved.
Shock-wave facility at Tokyo Institute of Technology
NASA Astrophysics Data System (ADS)
Sawaoka, A.; Kondo, K.
1982-04-01
The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.
Optically driven self-oscillations of a silica nanospike at low gas pressures
NASA Astrophysics Data System (ADS)
Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.
2016-09-01
We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
Nanowire-based single-cell endoscopy
NASA Astrophysics Data System (ADS)
Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong
2012-03-01
One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.
77 FR 12326 - Tapered Roller Bearings From China; Scheduling of a Full Five-Year Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-344 (Third Review)] Tapered Roller Bearings From China; Scheduling of a Full Five- Year Review AGENCY: United States International Trade... whether revocation of the antidumping duty order on tapered roller bearings from China would be likely to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... new shipper review (``NSR'') of the antidumping duty order on tapered roller bearings (``TRBs'') from... from Zhejiang Zhengda Bearing Co., Ltd. (``Zhejiang Zhengda''). Zhejiang Zhengda's request was made in...
Polymer optical fiber tapering using hot water
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro
2017-06-01
We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.
Free torsional vibrations of tapered cantilever I-beams
NASA Astrophysics Data System (ADS)
Rao, C. Kameswara; Mirza, S.
1988-08-01
Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.
CORROSION RESISTANT JACKETED METAL BODY
Brugmann, E.W.
1958-08-26
Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.
Racetrack resonator as a loss measurement platform for photonic components.
Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Starbuck, Andrew; Pomerene, Andrew T S; Norwood, Robert A
2015-11-02
This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.
Vaughn, Norman L.; Lowden, Richard A.
2003-04-15
The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.
Twist-induced tuning in tapered fiber couplers.
Birks, T A
1989-10-01
The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.
Racetrack resonator as a loss measurement platform for photonic components
Jones, Adam M.; Univ. of Arizona, Tucson, AZ; DeRose, Christopher T.; ...
2015-10-27
This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. Furthermore, the work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.
Fretting-corrosion at the modular tapers interface: Inspection of standard ASTM F1875-98.
Bingley, Rachel; Martin, Alan; Manfredi, Olivia; Nejadhamzeeigilani, Mahdiyar; Oladokun, Abimbola; Beadling, Andrew Robert; Siddiqui, Sohail; Anderson, James; Thompson, Jonathan; Neville, Anne; Bryant, Michael
2018-05-01
Interest in the degradation mechanisms at the modular tapers interfaces has been renewed due to increased reported cases of adverse reactions to metal debris and the appearance of wear and corrosion at the modular tapers interfaces at revision. Over the past two decades, a lot of research has been expended to understand the degradation mechanisms, with two primary implant loading procedures and orientations used consistently across the literature. ASTM F1875-98 is often used as a guide to understand and benchmark the tribocorrosion processes occurring within the modular tapers interface. This article presents a comparison of the two methods outlined in ASTM F1875-98 as well as a critique of the standard considering the current paradigm in pre-clinical assessment of modular tapers.
NASA Astrophysics Data System (ADS)
Grobnic, D.; Mihailov, S. J.; Ding, H.; Bilodeau, F.; Smelser, C. W.
2006-05-01
Multimode sapphire fibre Bragg gratings (SFBG) made with an ultrafast Ti:sapphire 800 nm laser and a phase mask were probed using a tapered single mode fibre of different taper diameters to produce single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fibre and multimode silica fibre used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C with no detectable degradation in the grating strength or hysteresis in the Bragg resonance.
Buckling analysis of non-prismatic columns based on modified vibration modes
NASA Astrophysics Data System (ADS)
Rahai, A. R.; Kazemi, S.
2008-10-01
In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.
Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.
Kim, Sun-Woong; Choi, Dong-You
2016-01-01
In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.
Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.
Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun
2013-05-06
We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Yu, Da-Peng
2009-08-01
Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.
Yin, Xingzhe; Cheung, Gary Shun-Pan; Zhang, Chengfei; Masuda, Yoshiko Murakami; Kimura, Yuichi; Matsumoto, Koukichi
2010-04-01
The purpose of this study was to assess the efficacy of instrumentation of C-shaped canals with ProTaper rotary system and traditional instruments by using micro-computed tomography (micro-CT). Twenty-four mandibular molars with C-shaped canals were selected in pairs and sorted equally into 2 groups, which were assigned for instrumentation by ProTaper rotary system (ProTaper group) or by K-files and Gates-Glidden burs (Hand Instrument group). Three-dimensional images were constructed by micro-CT. The volume of dentin removed, uninstrumented canal area, time taken for instrumentation, and iatrogenic error of instrumentation were investigated. Hand Instrument group showed greater amount of volumetric dentin removal and left less uninstrumented canal area than ProTaper group (P < .01). The time needed for instrumentation was shorter for ProTaper group than for Hand Instrument group (P < .05). No instrument breakage occurred in both groups, but more conspicuous procedural errors were detected in Hand Instrument group than for ProTaper group. It was concluded that ProTaper rotary system maintained the canal curvature with speediness and few procedural errors, whereas traditional instrumentation can clean more canal surface. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Apical extrusion of debris in primary molar root canals using mechanical and manual systems.
Buldur, B; Hascizmeci, C; Aksoy, S; Nur Aydin, M; Guvendi, O N
2018-03-01
Apical extrusion of debris in primary root canal treatment has not been well elucidated. The purpose of this study is to compare the amount of apically extruded debris during the preparation of primary molar root canals using ProTaper, ProTaper Next, Self-adjusting File (SAF) and hand files. One hundred sixty extracted primary mandibular molar teeth were assigned to 2 groups: Group 1: Resorbed (n=80) and Group 2: Non-resorbed (n=80) and randomly to four subgroups (n=20 teeth for each subgroup) according to the instruments used, ProTaper, ProTaper Next, SAF, and hand file. The apically extruded debris was collected and dried in preweighed Eppendof tubes. The dry weight was calculated by subtracting the preoperative weight from the postoperative weight. Data were analysed statistically using the ANOVA and the Bonferroni post hoc t-test. The amount of apically extruded debris was significantly less for the non-resorbed group compared to the resorbed group (P<0.05). Regardless of the resorption groups, ProTaper Next and SAF extruded significantly less debris than did the ProTaper and hand files (P<0.05), while no statistically significant difference was found between ProTaper Next and SAF (P>0.05). All instruments caused apically extruded debris in primary teeth.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
Singh, Kunwarjeet; Gupta, Nidhi
2012-01-01
To suggest a custom bar supported overdenture treatment modality for prosthodontic management of patients with severe gag reflex. Some patients have a severe gag reflex and cannot tolerate conventional maxillary complete dentures with maximum palatal coverage and extensions of all borders. The condition further gets complicated in patients suffering from respiratory problems along with severe gag reflex. Severe gagging acts as a barrier to treat such patients with accepted clinical procedures and prevent patients from wearing the prosthesis. By saving some of the remaining natural teeth and fabricating, a horse shoe shape palateless simple tooth or bar supported overdenture can be successfully used for treating such patients. The remaining maxillary right and left canines were prepared with the tapered round end diamond bur to receive copings of custom bar after intentional root canal treatment of same teeth. Impression was made with light body and putty of the polyvinyl siloxane elastomer with double step putty wash technique. Impression was poured with die stone. Wax pattern of copings with bar was fabricated with inlay wax which was invested and casted. After retrieving the bar, it was finished and its fit was evaluated. The coping-bar assembly was finally cemented with the glass ionomer cement. Palateless overdenture was fabricated by conventional technique used for the fabrication of complete denture. Palateless custom bar supported overdenture procedure can be successfully used for the management of patients with severe gag reflex with improved denture retention, stability, chewing efficiency and comfort of the patient.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...
9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Cunningham, Julie L; Evans, Michele M; King, Susan M; Gehin, Jessica M; Loukianova, Larissa L
2016-09-01
Despite current guideline recommendations against the use of opioids for the treatment of fibromyalgia pain, opioid use is reported in approximately 30% of the patient population. There is a lack of information describing the process and results of tapering of chronic opioids. The purpose of this study is to describe opioid tapering and withdrawal symptoms in fibromyalgia patients on opioids. This retrospective research study included a baseline analysis of 159 patients consecutively admitted to the Mayo Clinic Pain Rehabilitation Center from 2006 through 2012 with a pain diagnosis of fibromyalgia completing a 3-week outpatient interdisciplinary pain rehabilitation program. Opioid tapering analysis included 55 (35%) patients using daily opioids. Opioid tapering was individualized to each patient based on interdisciplinary pain rehabilitation team determination. Opioid withdrawal symptoms were assessed daily, utilizing the Clinical Opioid Withdrawal Scale. Patients taking daily opioids had a morphine equivalent mean dose of 99 mg/day. Patients on < 100 mg/day were tapered off over a mean of 10 days compared with patients on > 200 mg/day over a mean of 28 days (P < 0.001). Differences in peak withdrawal symptoms were not statistically significant based on the mean equivalent dose (P = 22). Patients taking opioids for <2 years did not differ in length of tapering (P =0.63) or peak COWS score (P =0.80) compared with >2 years duration. Patients had significant improvements in pain-related measures including numeric pain scores, depression catastrophizing, health perception, interference with life, and perceived life control at program completion. Fibromyalgia patients on higher doses of opioids were tapered off over a longer period of time but no differences in withdrawal symptoms were seen based on opioid dose. Duration of opioid use did not affect the time to complete opioid taper or withdrawal symptoms. Despite opioid tapering, pain-related measures improved at the completion of the rehabilitation program. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K
2006-01-01
The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop with just a 50-60% reduction in anterior fiber taper. In lenses with Y sutures (mice and cattle), fiber width taper is only 25-40%. However, in all cases, while the taper of the posterior end width of fibers is just slightly less (approx. 15-20%) than that of anterior ends, posterior end thickness is only reduced by one half that of anterior thickness. In humans, the mechanism of accommodation at the fiber level involves the controlled realignment of very flattened and flared, rather than tapered fiber-ends at sutures. In this manner, the simultaneous increase in lens thickness and surface curvature in the accommodated state is the result of fiber-ends being overlapped along multiple (9-12) suture branches covering the majority of the anterior and posterior surfaces. The results of this animal study strongly suggest that accommodative range is directly related to quantitative differences in fiber structure and organization in the different suture types. The very broad accommodative range in birds is made possible, at least in part, by the almost complete tapering of fiber-ends at umbilical sutures. In contrast, the essentially negligible accommodative range of animals that have line- and Y-suture lenses is at least partially the result of the fact that these lenses have fibers with very little end taper. Thus, the blunt ends of fibers in line- and Y-suture lenses precludes any significant overlap of end segments to effect accommodation.
Grant, Tanner W; Lovro, Luke R; Licini, David J; Warth, Lucian C; Ziemba-Davis, Mary; Meneghini, Robert M
2017-03-01
Femoral component stability and resistance to subsidence is critical for osseointegration and clinical success in cementless total hip arthroplasty. The purpose of this study was to radiographically evaluate the anatomic fit and subsidence of 2 different proximally tapered, porous-coated modern cementless femoral component designs. A retrospective cohort study of 126 consecutive cementless total hip arthroplasties was performed. Traditional fit-and-fill stems were implanted in the first 61 hips with the remaining 65 receiving morphometric tapered wedge stems. Preoperative bone morphology was radiographically assessed by the canal flare index. Canal fill in the coronal plane, subsidence, and the sagittal alignment of stems was measured digitally on immediate and 1-month postoperative radiographs. Demographics and canal flare indices were similar between groups. The percentage of femoral canal fill was greater in the tapered wedge compared to the fit-and-fill stem (P = .001). There was significantly less subsidence in the tapered wedge design (0.3 mm) compared to the fit-and-fill design (1.1 mm) (P = .001). Subsidence significantly increased as body mass index (BMI) increased in the fit-and-fill stems, a finding not observed in the tapered wedge design (P = .013). An anatomically designed morphometric tapered wedge femoral stem demonstrated greater axial stability and decreased subsidence with increasing BMI than a traditional fit-and-fill stem. The resistance to subsidence, irrespective of BMI, is likely due to the inherent axial stability of a tapered wedge design and may be the optimal stem design for obese patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Bowton, David L; Hite, R Duncan; Martin, R Shayn; Sherertz, Robert
2013-10-01
Aspiration of colonized oropharyngeal secretions is a major factor in the pathogenesis of ventilator-associated pneumonia (VAP). A tapered-cuff endotracheal tube (ETT) has been demonstrated to reduce aspiration around the cuff. Whether these properties are efficacious in reducing VAP is not known. This 2-period, investigator-initiated observational study was designed to assess the efficacy of a tapered-cuff ETT to reduce the VAP rate. All intubated, mechanically ventilated patients over the age of 18 were included. During the baseline period a standard, barrel-shaped-cuff ETT (Mallinckrodt Hi-Lo) was used. All ETTs throughout the hospital were then replaced with a tapered-cuff ETT (TaperGuard). The primary outcome variable was the incidence of VAP per 1,000 ventilator days. We included 2,849 subjects, encompassing 15,250 ventilator days. The mean ± SD monthly VAP rate was 3.29 ± 1.79/1,000 ventilator days in the standard-cuff group and 2.77 ± 2.00/1,000 ventilator days in the tapered-cuff group (P = .65). While adherence to the VAP prevention bundle was high throughout the study, bundle adherence was significantly higher during the standard-cuff period (96.5 ± 2.7%) than in the tapered-cuff period (90.3 ± 3.5%, P = .01). In the setting of a VAP rate very near the average of ICUs in the United States, and where there was high adherence to a VAP prevention bundle, the use of a tapered-cuff ETT was not associated with a reduction in the VAP rate.
The effects of tapering on strength performance in trained athletes.
Gibala, M J; MacDougall, J D; Sale, D G
1994-11-01
The optimum pre-competition taper procedure for "strength athletes" is not known. We examined voluntary strength and evoked contractile properties of the elbow flexors over a 10 day rest only (ROT) and a 10 day reduced volume taper (RVT) in 8 resistance trained males (23 +/- 2.1 years). Following 3 wks of standardized training of the elbow flexors, subjects were randomly assigned to one of the tapers. Upon completion, they resumed training for 3 wks and completed the other taper. No arm training was performed during the ROT, while high intensity, low volume training was done every second day during the RVT. Maximum isometric (MVC), low (0.52 rad.s-1; LV) and high velocity (3.14 rad.s-1; HV) concentric peak torque, and evoked isometric twitch contractile properties were measured before and after each training phase and every 48 h during each taper. ANOVA comparison of the tapers revealed that MVC increased (p < or = 0.05) over pre-taper values throughout the RVT (measurement days 2, 4, 6, 8 and 10), as did LV at 2, 4, 6, and 8 d. MVC did not change over the ROT but LV was significantly higher on day 2 and lower on days 8 and 10. LV was also greater on days 4, 6, 8 and 10 during the RVT compared to the ROT. The evoked contractile properties remained largely unchanged. The data indicate that resistance-trained athletes can improve low velocity concentric strength for at least 8 days by greatly reducing training volume, but maintaining training intensity.
Arnholt, Christina M; MacDonald, Daniel W; Underwood, Richard J; Guyer, Eric P; Rimnac, Clare M; Kurtz, Steven M; Mont, Michael A; Klein, Gregg R; Lee, Gwo-Chin; Chen, Antonia F; Hamlin, Brian R; Cates, Harold E; Malkani, Arthur L; Kraay, Matthew J
2017-04-01
Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were 2 groups of 60 heads each, mated with either smooth or microgrooved stem tapers. A high-precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head-neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads were analyzed for the maximum depth of material loss and focused ion beam cross-sectioned to view oxide and base metal. Fretting corrosion damage was not different between the 2 cohorts at the femoral head (P = .14, Mann-Whitney) or stem tapers (P = .35). There was no difference in the maximum depths of material loss between the cohorts (P = .71). Cross-sectioning revealed contact damage, signs of micro-motion, and chromium-rich oxide layers in both cohorts. Microgroove imprinting did not appear to have a different effect on the fretting corrosion behavior. The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with microgrooved stems exhibit increased in vivo fretting corrosion damage or material release. Copyright © 2016 Elsevier Inc. All rights reserved.
Thompson, A; Madan, N; Hesselink, J R; Weinstein, G; Munoz del Rio, A; Haughton, V
2016-04-01
The cause of syringomyelia in patients with Chiari I remains uncertain. Cervical spine anatomy modifies CSF velocities, flow patterns, and pressure gradients, which may affect the spinal cord. We tested the hypothesis that cervical spinal anatomy differs between Chiari I patients with and without syringomyelia. We identified consecutive patients with Chiari I at 3 institutions and divided them into groups with and without syringomyelia. Five readers measured anteroposterior cervical spinal diameters, tonsillar herniation, and syrinx dimensions on cervical MR images. Taper ratios for C1-C7, C1-C4, and C4-C7 spinal segments were calculated by linear least squares fitting to the appropriate spinal canal diameters. Mean taper ratios and tonsillar herniation for groups were compared and tested for statistical significance with a Kruskal-Wallis test. Inter- and intrareader agreement and correlations in the data were measured. One hundred fifty patients were included, of which 49 had syringomyelia. C1-C7 taper ratios were smaller and C4-C7 taper ratios greater for patients with syringomyelia than for those without it. C1-C4 taper ratios did not differ significantly between groups. Patients with syringomyelia had, on average, greater tonsillar herniation than those without a syrinx. However, C4-C7 taper ratios were steeper, for all degrees of tonsil herniation, in patients with syringomyelia. Differences among readers did not exceed differences among patient groups. The tapering of the lower cervical spine may contribute to the development of syringomyelia in patients with Chiari I. © 2016 by American Journal of Neuroradiology.
Tapering Practices of Strongman Athletes: Test-Retest Reliability Study
Pritchard, Hayden J; Keogh, Justin WL
2017-01-01
Background Little is currently known about the tapering practices of strongman athletes. We have developed an Internet-based comprehensive self-report questionnaire examining the training and tapering practices of strongman athletes. Objective The objective of this study was to document the test-retest reliability of questions associated with the Internet-based comprehensive self-report questionnaire on the tapering practices of strongman athletes. The information will provide insight on the reliability and usefulness of the online questionnaire for use with strongman athletes. Methods Invitations to complete an Internet questionnaire were sent via Facebook Messenger to identified strongman athletes. The survey consisted of four main areas of inquiry, including demographics and background information, training practices, tapering, and tapering practices. Of the 454 athletes that completed the survey over the 8-week period, 130 athletes responded on Facebook Messenger indicating that they intended to complete, or had completed, the survey. These participants were asked if they could complete the online questionnaire a second time for a test-retest reliability analysis. Sixty-four athletes (mean age 33.3 years, standard deviation [SD] 7.7; mean height 178.2 cm, SD 11.0; mean body mass 103.7 kg, SD 24.8) accepted this invitation and completed the survey for the second time after a minimum 7-day period from the date of their first completion. Agreement between athlete responses was measured using intraclass correlation coefficients (ICCs) and kappa statistics. Confidence intervals (at 95%) were reported for all measures and significance was set at P<.05. Results Test-retest reliability for demographic and training practices items were significant (P<.001) and showed excellent (ICC range=.84 to .98) and fair to almost perfect agreement (κ range=.37-.85). Moderate to excellent agreements (ICC range=.56-.84; P<.01) were observed for all tapering practice measures except for the number of days athletes started their usual taper before a strongman competition (ICC=.30). When the number of days were categorized with additional analyses, moderate reliability was observed (κ=.43; P<.001). Fair to substantial agreement was observed for the majority of tapering practices measures (κrange=.38-.73; P<.001) except for how training frequency (κ=.26) and the percentage and type of resistance training performed, which changed in the taper (κ=.20). Good to excellent agreement (ICC=.62-.93; P<.05) was observed for items relating to strongman events and traditional exercises performed during the taper. Only the time at which the Farmer’s Walk was last performed before competition showed poor reliability (ICC=.27). Conclusions We have developed a low cost, self-reported, online retrospective questionnaire, which provided stable and reliable answers for most of the demographic, training, and tapering practice questions. The results of this study support the inferences drawn from the Tapering Practices of Strongman Athletes Study. PMID:29089292
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-344 (Third Review)] Tapered Roller Bearings From China; Notice of Commission determination To Conduct a Full Five-Year Review AGENCY: United...(c)(5)) to determine whether revocation of the antidumping duty order on tapered roller bearings from...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-601] Tapered Roller Bearings and... Bearing Co., Ltd.'s (Tainai's) request for a new shipper review (NSR) of the antidumping duty order on tapered roller bearings and parts thereof, finished and unfinished (TRBs), from the People's Republic of...
A Volume and Taper Prediction System for Bald Cypress
Bernard R. Parresol; James E. Hotvedt; Quang V. Cao
1987-01-01
A volume and taper prediction system based on d10 and consisting of a total volume equation, two volume ratio equations (one for diameter limits, the other for height limits), and a taper equation was developed for bald cypress using sample tree data collected in Louisiana. Normal diameter (dn), a subjective variable-...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, Chris
For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.
Akbulut, Makbule Bilge; Akman, Melek; Terlemez, Arslan; Magat, Guldane; Sener, Sevgi; Shetty, Heeresh
2016-01-01
The aim of this study was to evaluate the efficacy of Twisted File (TF) Adaptive, Reciproc, and ProTaper Universal Retreatment (UR) System instruments for removing root-canal-filling. Sixty single rooted teeth were decoronated, instrumented and obturated. Preoperative CBCT scans were taken and the teeth were retreated with TF Adaptive, Reciproc, ProTaper UR, or hand files (n=15). Then, the teeth were rescanned, and the percentage volume of the residual root-canal-filling material was established. The total time for retreatment was recorded, and the data was statistically analyzed. The statistical ranking of the residual filling material volume was as follows: hand file=TF Adaptive>ProTaper UR=Reciproc. The ProTaper UR and Reciproc systems required shorter periods of time for retreatment. Root canal filling was more efficiently removed by using Reciproc and ProTaper UR instruments than TF Adaptive instruments and hand files. The TF Adaptive system was advantageous over hand files with regard to operating time.
Asheibi, Fatma; Qualtrough, Alison J E; Mellor, Anthony; Withers, Philip J; Lowe, Tristan
2014-01-01
This study compares the effectiveness of ProTaper rotary files with ProTaper retreatment and K-files in the removal of Resilon or gutta percha (GP) from canals filled either by cold lateral condensation or thermal obturation using micro-CT. Ninety-six teeth were prepared using ProTaper files and allocated into four groups (n=24): Group-1 was filled with GP/AH-Plus and Group-2 with Resilon/RealSeal using cold lateral condensation. Group-3 was filled with GP/AH-Plus and Group-4 with Resilon/RealSeal using System B and Obtura II. The roots were scanned by micro-CT. Each group was divided into two subgroups (n=12): A, retreated using ProTaper files and B, using ProTaper retreatment and K-files. The roots were scanned to calculate the volume of the remaining material. With thermal obturation, roots filled with Resilon had significantly more remaining material than GP. Obturation using thermal technique resulted in significantly less remaining material than cold condensation except Resilon retreated using ProTaper retreatment and K-files.
Flexural-torsional vibration of a tapered C-section beam
NASA Astrophysics Data System (ADS)
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Multitaper spectral analysis of atmospheric radar signals
NASA Astrophysics Data System (ADS)
Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.
2004-11-01
Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.
The shaping effects of three nickel-titanium rotary instruments in simulated S-shaped canals.
Yoshimine, Y; Ono, M; Akamine, A
2005-05-01
The purpose of this study was to compare the shaping effects of three nickel-titanium rotary instruments, ProTaper, K3, and RaCe, with emphasis on canal transportation. Simulated canals with an S-shaped curvature in clear resin blocks were prepared with a torque-control, low-speed engine. Canals were prepared using the crown-down technique to the size of #30. Canal aberrations were assessed by comparing the pre- and postinstrumentation images under a stereomicroscope. ProTaper instruments caused greater widening of canals compared to K3 or RaCe. Furthermore, ProTaper files showed a tendency to ledge or zip formation at the end-point of preparation. These canal aberrations may be caused by ProTaper finishing files, which appear to be less flexible than other files of the same tip-size, because of their greater taper-size. These results suggest that nickel-titanium file systems including less tapered, more flexible instruments, like K3 and RaCe should be used in the apical preparation of canals with a complicated curvature.
Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M
2014-10-01
Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.
2005-05-01
Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.
High pressure, high current, low inductance, high reliability sealed terminals
Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN
2010-03-23
The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.
2018-02-01
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management.
Yang, Peilong; Teng, Hao; Fang, Shaobo; Hu, Zhongqi; Chang, Guoqing; Wang, Junli; Wei, Zhiyi
2018-04-15
We implement an ultrafast Yb-doped all-fiber laser which incorporates tapered single-mode fibers for managing nonlinearity and dispersion. The tapered fiber placed in the oscillator cavity aims to broaden the optical spectrum of the intracavity pulse. At the oscillator output, we use another tapered fiber to perform pulse compression. The resulting 66.1-MHz Yb-doped all-fiber oscillator self-starts and generates 0.4-nJ, 65-fs pulses, which can serve as a compact and robust seed source for subsequent high-power, high-energy amplifiers.
Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF.
Zheng, Ximeng; Debord, Benoît; Vincetti, Luca; Beaudou, Benoît; Gérôme, Frédéric; Benabid, Fetah
2016-06-27
We report for the first time on tapering inhibited coupling (IC) hypocycloid-core shape Kagome hollow-core photonic crystal fibers whilst maintaining their delicate core-contour negative curvature with a down-ratio as large as 2.4. The transmission loss of down-tapered sections reaches a figure as low as 0.07 dB at 1550 nm. The tapered IC fibers are also spliced to standard SMF with a total insertion loss of 0.48 dB. These results show that all-fiber photonic microcells with the ultra-low loss hypocycloid core-contour Kagome fibers is now possible.
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.
Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J
2009-08-01
We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.
2009-01-01
The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property. The as-synthesized high-quality tapered CdS nanobelts and CdSe nanowires may be excellent building blocks for photonic devices. PMID:20596418
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Arslan, Hakan; Yildiz, Ezgi Doganay; Gunduz, Hicran Ates; Sumbullu, Meltem; Bayrakdar, Ibrahim Sevki; Karatas, Ertugrul; Sumbullu, Muhammed Akif
2017-01-01
Aim: The aim of this study is to evaluate the root canal transportation, centering ability, and instrumentation times with the ProTaper Gold (Dentsply Tulsa Dental, Tulsa, OK, USA), Reciproc (VDW, Munich, Germany), and ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) using cone-beam computed tomography (CBCT). Materials and Methods: Thirty mesial root canals of mandibular first molars with curvature angles of 35°–70° and radii of 2–6 mm were included in the study. Root canal instrumentation was performed up to F2 or R25. The instrumentation times were recorded. CBCT scanning was performed both pre- and post-instrumentation. Root canal transportation and the centering ratio were calculated for groups, and the data were analyzed using a one-way ANOVA and least significant difference post hoc tests for the instrumentation time, root canal transportation, and centering ratio at the 95% confidence level (P = 0.05). Results: At 3, 5, and 7 mm levels, there was no significant difference in the root canal transportation and centering ratio among the groups (P > 0.05). There were significant differences between the Reciproc and ProTaper Universal groups in the instrumentation times (P < 0.05). Conclusion: Root canal transportation and the centering ratio with the ProTaper Gold were similar to those obtained with the ProTaper Universal and Reciproc. PMID:29259355
Effects of self-adjusting file, Mtwo, and ProTaper on the root canal wall.
Hin, Ellemieke S; Wu, Min-Kai; Wesselink, Paul R; Shemesh, Hagay
2013-02-01
The purpose of this ex vivo study was to observe the incidence of cracks in root dentin after root canal preparation with hand files, self-adjusting file (SAF), ProTaper, and Mtwo. One hundred extracted mandibular premolars with single canals were randomly selected. Two angulated radiographs were taken for each tooth, and the width of the canal was measured at 9 mm from the apex. Five groups of 20 teeth each were comparable in canal width. The control group was left unprepared. Four experimental groups were instrumented with hand files, ProTaper, Mtwo, and SAF. Roots were then sectioned horizontally and observed under a microscope. The presence of dentinal cracks and their location were noted. The difference between the experimental groups was analyzed with a χ(2) test. No cracks were observed in the control group. In the experimental groups, ProTaper, Mtwo, and SAF caused cracks in 35%, 25%, and 10% of teeth, respectively. The hand-file group did not show any dentinal cracks (P < .0001). ProTaper and Mtwo caused more cracks than hand files (P < .05), but SAF did not (P > .05). Instrumentation of root canals with SAF, Mtwo, and ProTaper could cause damage to root canal dentin. SAF has a tendency to cause less dentinal cracks as compared with ProTaper or Mtwo. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
De-Deus, Gustavo; Brandão, Maria Claudia; Barino, Bianca; Di Giorgi, Karina; Fidel, Rivail Antonio Sergio; Luna, Aderval Severino
2010-09-01
This study was designed to quantitatively evaluate the amount of dentin debris extruded from the apical foramen by comparing the conventional sequence of the ProTaper Universal nickel-titanium (NiTi) files with the single-file ProTaper F2 technique. Thirty mesial roots of lower molars were selected, and the use of different instrumentation techniques resulted in 3 groups (n=10 each). In G1, a crown-down hand-file technique was used, and in G2 conventional ProTaper Universal technique was used. In G3, ProTaper F2 file was used in a reciprocating motion. The apical finish preparation was equivalent to ISO size 25. An apparatus was used to evaluate the apically extruded debris. Statistical analysis was performed using 1-way analysis of variance and Tukey multiple comparisons. No significant difference was found in the amount of the debris extruded between the conventional sequence of the ProTaper Universal NiTi files and the single-file ProTaper F2 technique (P>.05). In contrast, the hand instrumentation group extruded significantly more debris than both NiTi groups (P<.05). The present results yielded favorable input for the F2 single-file technique in terms of apically extruded debris, inasmuch as it is the most simple and cost-effective instrumentation approach. Copyright (c) 2010 Mosby, Inc. All rights reserved.
[Evaluation of preparation of curved root canals using hand-used ProTaper].
Nie, Min; Zhao, Xin-Chen; Peng, Bin; Fan, Ming-Wen; Bian, Zhuan
2009-05-01
To evaluate the shaping ability of hand-used ProTaper on curved canals using Endodontic Cube. Fifty-four curved root canals in vitro were selected and divided into three groups according to the curved degree (alpha), group A: 0 degrees < or = alpha < 25 degrees , group B: 25 degrees < or = alpha < 40 degrees , group C: 40 degrees < or = alpha < 55 degrees . Endodontic Cube was assembled, and each sample was sectioned perpendicular to the axis of the tooth into four sections with Isomer-Buhler in low speed. Then the root canals were prepared with hand-used ProTaper. Before and after shaping, photograph of all the sections were taken under a stereomicroscope. Statistical analyses were performed. The dentin cutting quantity of the whole canal prepared with ProTaper in group B and C was larger than that of group A. The deviation distance of the whole canal prepared by ProTaper in group C was significantly larger than that in group A, and the deviation distance in middle portion larger than that in group B. The maintaining ability in the middle portion of group C by ProTaper was worse than that of group A and B. The curvature of root canal may increase the cutting quantity of the -dentin and reduce the ability of remaining original canal shape prepared by ProTaper.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Larrucea Verdugo, Carlos; Jaramillo Núñez, Guido; Acevedo Avila, Ariel; Larrucea San Martín, Carlo
2014-09-01
This study determined the degree of marginal microleakage of the abutment-implant interface on platforms with Morse taper connection and external connection. For this in vitro study, 42 implants, 21 with external connection and 21 with Morse taper connection, were used, immersed in acrylic resin cylinders. Each implant was joined by a prosthetic abutment screw tightened at different degrees, forming the six study groups: (1) External connection, manual tightening (2) External connection, 20 Newton (N) tightening (3) External connection, 30 N tightening (4) Morse taper connection, manual tightening (5) Morse taper connection, 20 N tightening (6) orse taper connection, 30 N tightening. All samples were subjected to load cycling and thermocycling. Then, they were submerged in a solution of 0.2% methylene blue for 24 h. Finally, the microleakage was measured via 20× optical microscopy in each study group, average was obtained, and Mann-Whitney test was applied. Statistically significant differences (P < 0.001) were found between the levels of microleakage presented in the Morse taper connection implants (1.48) and external connection implants (2.8) in all three types of tightening. Microleakage levels decreases when increasing torque is applied to the screws. Morse taper connection implants showed lower levels of microleakage than external connection implants; also, it was observed that microleakage decreases in the way torque increases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Factors influencing bonding fixed restorations].
Medić, Vesna; Obradović-Djuricić, Kosovka
2008-01-01
Crown displacement often occurs because the features of tooth preparations do not counteract the forces directed against restorations. The purpose of this study was to evaluate the effect of preparation designs on retention and resistance of fixed restorations. The study was performed on 64 differently sized stainless steel dies. Also, caps which were used for evaluated retention were made of stainless steel for each die. After cementing the caps on experimental dies, measuring of necessary tensile forces to separate cemented caps from dies was done. Caps, which were made of a silver-palladium alloy with a slope of 600 to the longitudinal axis formed on the occlusal surface, were used for evaluating resistance. A sudden drop in load pressure recorded by the test machine indicated failure for that cap. A significant difference was found between the tensile force required to remove the caps from the dies with different length (p < 0.05) and different taper (p < 0.01). The greatest retentive strengths (2579.2 N and 2989.8 N) were noticed in experimental dies with the greatest length and smallest taper. No statistically significant (p > 0.05) differences were found between tensile loads for caps cemented on dies with different diameter. Although there was an apparent slight increase in resistance values for caps on dies with smaller tapers, the increase in resistance for those preparation designs was not statistically significant. There was a significant difference among the resistance values for caps on dies with different length (p < 0.01) and diameter (p < 0.05). In the light of the results obtained, it could be reasonably concluded that retention and resistance of the restoration is in inverse proportion to convergence angle of the prepared teeth. But, at a constant convergence angle, retention and resistance increase with rising length and diameter.
Development of a photogrammetric method of measuring tree taper outside bark
David R. Larsen
2006-01-01
A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...
Taper models for commercial tree species in the northeastern United States
James A. Westfall; Charles T. Scott
2010-01-01
A new taper model was developed based on the switching taper model of Valentine and Gregoire; the most substantial changes were reformulation to incorporate estimated join points and modification of a switching function. Random-effects parameters were included that account for within-tree correlations and allow for customized calibration to each individual tree. The...
A Compatible Stem Taper-Volume-Weight System For Intensively Managed Fast Growing Loblolly Pine
Yugia Zhang; Bruce E. Borders; Robert L Bailey
2002-01-01
eometry-oriented methodology yielded a compatible taper-volume-weight system of models whose parameters were estimated using data from intensively managed loblolly pine (Pinus taeda L.) plantations in the lower coastal plain of Georgia. Data analysis showed that fertilization has significantly reduced taper (inside and outside bark) on the upper...
Thin-Ribbon Tapered Couplers For Dielectric Waveguides
NASA Technical Reports Server (NTRS)
Otoshi, Tom Y.; Shimabukuro, Fred I.; Yeh, Cavour
1996-01-01
Thin-ribbon tapered couplers proposed for launching electro-magnetic waves into dielectric waveguides, which include optical fibers. Intended for use with ribbon dielectric waveguides designed for operation at millimeter or submillimeter wavelengths, made of high-relative-permittivity, low-loss materials and thicknesses comparable to or less than free-space design wavelengths. Coupling efficiencies exceeds those of older tapered couplers.
Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric
2017-08-01
We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.
Salivary hormones, IgA, and performance during intense training and tapering in judo athletes.
Papacosta, Elena; Gleeson, Michael; Nassis, George P
2013-09-01
The aims of this study were to identify the time course of change of salivary testosterone (sT), cortisol (sC), and IgA (SIgA); mood state; and performance capacity during a 2-week taper in judo athletes and to examine the diurnal variation in these salivary markers. Eleven male judo athletes completed 5 weeks of training: 1 week of normal training (NORM), 2 weeks of intensified training (INT), and 2 weeks of exponential tapering (TAPER). Once per week subjects completed vertical and horizontal countermovement jump tests, a grip strength test, a Special Judo Fitness Test, a multistage aerobic fitness test, a 3 × 300-m run test, and anthropometric measurement. Subjects also completed questionnaires to assess mood state and muscle soreness. Two daily saliva samples (at 0700 and 1900) were collected at the end of each week during NORM and INT and every day during TAPER. Increased morning sT, decreased evening sC, lower muscle soreness, and enhanced mood state (p < 0.05) were evident by the early phases of TAPER. A significant 7.0% improvement in 3 × 300-m performance time, a 6.9% improvement in the vertical jump (p < 0.05), and increased morning and evening SIgA secretion rate (p < 0.01) were observed during the middle-late phases of TAPER. The higher values of salivary variables were observed in the morning. This study indicates that salivary hormones display diurnal variation. Furthermore, changes in hormonal responses, mood state, and muscle soreness precede enhancements in performance and mucosal immunity, suggesting that judo athletes taper for at least a week before competition.
Arnholt, Christina M.; MacDonald, Daniel W.; Underwood, Richard; Guyer, Eric P.; Rimnac, Clare M.; Kurtz, Steven M.; Mont, Michael A.; Klein, Gregg; Lee, Gwo-Chin; Chen, Antonia F.; Hamlin, Brian; Cates, Harold; Malkani, Arthur; Kraay, Matthew
2017-01-01
Background Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion (MACC). The purpose of this study was to analyze whether micro-grooved stem tapers result in greater fretting corrosion damage than smooth stem tapers. Methods A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size. There were two groups of 60 heads each, mated with either smooth or micro-grooved stem tapers. A high precision roundness machine was used to measure and categorize the surface morphology. Fretting corrosion damage at the head/neck junction was characterized using the Higgs-Goldberg scoring method. Fourteen of the most damaged heads, were analyzed for the maximum depth of material loss and focused ion beam (FIB) cross-sectioned to view oxide and base metal. Results Fretting corrosion damage was not different between the two cohorts at the femoral head (p = 0.14, Mann Whitney) or stem tapers (p = 0.35). There was no difference in the maximum depths of material loss between the cohorts (p = 0.71). Cross sectioning revealed contact damage, signs of micro-motion, and chromium rich oxide layers in both cohorts. Micro-groove imprinting did not appear to have a different effect on the fretting corrosion behavior. Conclusion The results of this matched cohort retrieval study do not support the hypothesis that taper surfaces with micro-grooved stems exhibit increased in vivo fretting corrosion damage or material release. PMID:28111124
Bozkaya, Dinçer; Müftü, Sinan
2004-08-01
A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.
Kim, Yongkwan; Chung, Yunsie; Tsao, Angela; Maboudian, Roya
2014-05-14
We present a fabrication method and friction testing of a gecko-inspired thermoplastic micropillar array with control over the tapering angle of the pillar sidewall. A combination of deep reactive ion etching of vertical silicon pillars and subsequent maskless chemical etching produces templates with various widths and degrees of taper, which are then replicated with low-density polyethylene. As the silicon pillars on the template are chemically etched in a bath consisting of hydrofluoric acid, nitric acid, and acetic acid (HNA), the pillars are progressively thinned, then shortened. The replicated polyethylene pillar arrays exhibit a corresponding increase in friction as the stiffness is reduced with thinning and then a decrease in friction as the stiffness is again increased. The dilution of the HNA bath in water influences the tapering angle of the silicon pillars. The friction of the replicated pillars is maximized for the taper angle that maximizes the contact area at the tip which in turn is influenced by the stiffness of the tapered pillars. To provide insights on how changes in microscale geometry and contact behavior may affect friction of the pillar array, the pillars are imaged by scanning electron microscopy after friction testing, and the observed deformation behavior from shearing is related to the magnitude of the macroscale friction values. It is shown that the tapering angle critically changes the pillar compliance and the available contact area. Simple finite element modeling calculations are performed to support that the observed deformation is consistent with what is expected from a mechanical analysis. We conclude that friction can be maximized via proper pillar tapering with low stiffness that still maintains enough contact area to ensure high adhesion.
Thulium fiber laser lithotripsy using tapered fibers.
Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M
2010-01-01
The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration was delivered through a 2-m-length fiber with 150-microm-core-input-end, 300-microm-core-output-end, and 5-mm-length taper, in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones, ex vivo (n = 10 each). Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for the tapered fiber and compared with conventional fibers. After delivery of 1,800 pulses through the tapered fiber, mass loss measured 12.7+/-2.6 mg for UA and 7.2+/-0.8 mg COM stones, comparable to conventional 100-microm-core fibers (12.6+/-2.5 mg for UA and 6.8+/-1.7 mg for COM stones). No transmission losses or burn-back occurred for the tapered fiber after 36,000 pulses, while a conventional 150-microm fiber experienced significant tip degradation after only 1,800 pulses. High irrigation rates were measured with the tapered fiber inserted through the working port of a flexible ureteroscope without hindering its deflection, mimicking that of a conventional 150 microm fiber. The short tapered distal fiber tip allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional small-core fibers, without compromising fiber bending, stone vaporization efficiency, or irrigation rates.
Fatigue delamination onset prediction in tapered composite laminates
NASA Technical Reports Server (NTRS)
Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin
1989-01-01
Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus
2013-11-07
By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less
NASA Astrophysics Data System (ADS)
Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin
2016-11-01
As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.
Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.
Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira
2018-02-16
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Propagation of atmospheric-pressure ionization waves along the tapered tube
NASA Astrophysics Data System (ADS)
Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao
2018-02-01
Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.
Nunes, Matheus Henrique
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074
Nunes, Matheus Henrique; Görgens, Eric Bastos
2016-01-01
Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.
NASA Astrophysics Data System (ADS)
Ortiz-Ricardo, E.; Bertoni-Ocampo, C.; Ibarra-Borja, Z.; Ramirez-Alarcon, R.; Cruz-Delgado, D.; Cruz-Ramirez, H.; Garay-Palmett, K.; U'Ren, A. B.
2017-09-01
We explore three different mechanisms designed to controllably tune the joint spectrum of photon pairs produced by the spontaneous four-wave mixing (SFWM) process in optical fibres. The first of these is fibre tapering, which exploits the modified optical dispersion resulting from reducing the core radius. We have presented a theory of SFWM for tapered fibres, as well as experimental results for the SFWM coincidence spectra as a function of the reduction in core radius due to tapering. The other two techniques that we have explored are temperature variation and application of longitudinal stress. While the maximum spectral shift observed with these two techniques is smaller than for fibre tapering, they are considerably simpler to implement and have the important advantage that they are based on the use of a single, suitably controlled, fibre specimen.
Linslal, C L; Mohan, P M S; Halder, A; Gangopadhyay, T K
2012-06-01
The core-mode cutoff plays a major role in evanescent field absorption based sensors. A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of a weakly guiding three layer optical waveguide graphically. The variation of normalized waveguide parameter (V) is also calculated with different wavelengths at core-mode cutoff. At the first step, theoretical analysis of tapered fiber parameters has been performed for core-mode cutoff. The taper angle of an adiabatic tapered fiber is also analyzed using the length-scale criterion. Secondly, single-mode tapered fiber has been developed to make a precision sensor element suitable for chemical detection. Finally, the sensor element has been used to detect absorption peak of ethylenediamine. Results are presented in which an absorption peak at 1540 nm is observed.
Wang, Yan; Li, Hanyang; Zhao, Liyuan; Liu, Yongjun; Liu, Shuangqiang; Yang, Jun
2017-01-23
We demonstrate efficient coupling to the optical whispering gallery modes (WGMs) of nematic liquid crystal (NLC) microdroplets immersed in an immiscible aqueous environment. An individual NLC microdroplet, confined at the tip of a microcapillary, was coupled via a tapered optical fiber waveguide positioned correctly within its vicinity. Critical coupling of the taper-microdroplet system was facilitated by adjusting the gap between the taper and the microdroplet to change the overlap of the evanescent electromagnetic fields; efficient and controlled power transfer from the taper waveguide to the NLC microdroplet is indeed possible via the proposed technique. We also found that NLC microdroplets can function as highly sensitive thermal sensors: A maximum temperature sensitivity of 267.6 pm/°C and resolution of 7.5 × 10-2 °C were achieved in a 78-μm-diameter NLC microdroplet.
Multiplexed single-mode wavelength-to-time mapping of multimode light
Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.
2017-01-01
When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1986-01-01
A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.
NASA Astrophysics Data System (ADS)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul; Dahlin, Torleif; Auken, Esben
2016-11-01
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. Two major limitations restrict the extraction of the spectral information of TDIP data in the field: (i) the difficulty of acquiring reliable early-time measurements in the millisecond range and (ii) the self-potential background drift in the measured potentials distorting the shape of the late-time IP responses, in the second range. Recent developments in TDIP acquisition equipment have given access to full-waveform recordings of measured potentials and transmitted current, opening for a breakthrough in data processing. For measuring at early times, we developed a new method for removing the significant noise from power lines contained in the data through a model-based approach, localizing the fundamental frequency of the power-line signal in the full-waveform IP recordings. By this, we cancel both the fundamental signal and its harmonics. Furthermore, an efficient processing scheme for identifying and removing spikes in TDIP data was developed. The noise cancellation and the de-spiking allow the use of earlier and narrower gates, down to a few milliseconds after the current turn-off. In addition, tapered windows are used in the final gating of IP data, allowing the use of wider and overlapping gates for higher noise suppression with minimal distortion of the signal. For measuring at late times, we have developed an algorithm for removal of the self-potential drift. Usually constant or linear drift-removal algorithms are used, but these algorithms often fail in removing the background potentials present when the electrodes used for potential readings are previously used for current injection, also for simple contact resistance measurements. We developed a drift-removal scheme that models the polarization effect and efficiently allows for preserving the shape of the IP responses at late times. Uncertainty estimates are essential in the inversion of IP data. Therefore, in the final step of the data processing, we estimate the data standard deviation based on the data variability within the IP gates and the misfit of the background drift removal Overall, the removal of harmonic noise, spikes, self-potential drift, tapered windowing and the uncertainty estimation allows for doubling the usable range of TDIP data to almost four decades in time (corresponding to four decades in frequency), which will significantly advance the applicability of the IP method.
NASA Astrophysics Data System (ADS)
Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady
2015-06-01
Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.
2016-05-01
Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.
Note on performance of tapered grip tensile loading devices
NASA Technical Reports Server (NTRS)
Jones, M. H.; Brown, W. F., Jr.
1975-01-01
Alignment results are presented in terms of percent bending for a quick release, tapered grip, tensile loading device that has been proposed for testing sharply notched specimens of aluminum and magnesium alloys by a Task Group of the ASTM Committee E-24 on Fracture Testing of Metals. The results show that the bending introduced by the fixtures is strongly dependent on their relative rotational positions in respect to the loading rods which adapt them, to the tensile machine. For one set of tapered grips the highest bending was about 15%. Recommendations are made for improvement in the design of the tapered grips which should reduce the bending stresses substantially.
Development of small bore, high speed tapered roller bearing
NASA Technical Reports Server (NTRS)
Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.
1981-01-01
The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Chan, Chi Chiu; Dong, Xinyong; Poh, C. L.; Li, Tao
2013-03-01
A temperature-independent refractometer by using a tapered photonic crystal fiber (PCF) based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered PCF of 29 mm long between two standard single mode fibers (SMFs) with the fully collapsed air holes of the PCF in the fusion splicing region. It has been found that tapering the PCF greatly enhances the sensitivity of the refractometer. A maximum sensitivity of 1529 nm/RIU (refractive index unit) is achieved within the range from 1.3355 to 1.413. The refractometer is nearly temperature-insensitive due to the ultra low temperature dependence of the used.
Combined tension and bending testing of tapered composite laminates
NASA Astrophysics Data System (ADS)
O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles
1994-11-01
A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Chao; Yu, Shao-Liang; Wang, Hong -Qing
Graphene-doped polymer nanofibers are fabricated by taper drawing of solvated polyvinyl alcohol doped with liquid-phase exfoliated graphene flakes. Nanofibers drawn this way typically have diameters measured in hundreds of nanometers and lengths in tens of millimeters; they show excellent uniformity and surface smoothness for optical waveguiding. Owing to their tightly confined waveguiding behavior, light–matter interaction in these subwavelength-diameter nanofibers is significantly enhanced. Using approximately 1350-nm-wavelength femto-second pulses, we demonstrate saturable absorption behavior in these nanofibers with a saturation threshold down to 0.25 pJ pulse -1 (peak power ~1.3 W). Additionally, using 1064-nm-wavelength nanosecond pulses as switching light, we show all-opticalmore » modulation of a 1550-nm-wavelength signal light guided along a single nanofiber with a switching peak power of ~3.2 W.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van
We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less