NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR
Holl, R.J.; Klecker, R.W.; Graham, C.B.
1962-05-15
A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor
NASA Astrophysics Data System (ADS)
Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason
2014-10-01
Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labrousse, M.; Lerouge, B.; Dupuy, G.
1978-04-01
THERMOS is a water reactor designed to provide hot water up to 120/sup 0/C for district heating or for desalination applications. It is a 100-MW reactor based on proven technology: oxide fuel plate elements, integrated primary circuit, and reactor vessel located in the bottom of a pool. As in swimming pool reactors, the pool is used for biological shielding, emergency core cooling, and fission product filtering (in case of an accident). Before economics, safety is the main characteristic of the concept: no fuel failure admitted, core under water in any accidental configuration, inspection of every ''nuclear'' component, and double-wall containment.
NASA Astrophysics Data System (ADS)
Kumar, B. Ramesh; Gangradey, R.
2012-11-01
Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.
Explosive Joining for Nuclear-Reactor Repair
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bailey, J. W.
1983-01-01
In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-03-14
A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less
Nuclear reactor construction with bottom supported reactor vessel
Sharbaugh, John E.
1987-01-01
An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.
Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun
2014-06-01
The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.
NASA Astrophysics Data System (ADS)
Übeyli, Mustafa
2006-12-01
Evaluating radiation damage characteristics of structural materials considered to be used in fusion reactors is very crucial. In fusion reactors, the highest material damage occurs in the first wall because it will be exposed to the highest neutron, gamma ray and charged particle currents produced in the fusion chamber. This damage reduces the lifetime of the first wall material and leads to frequent replacement of this material during the reactor operation period. In order to decrease operational cost of a fusion reactor, lifetime of the first wall material should be extended to reactor's lifetime. Using a protective flowing liquid wall between the plasma and first wall can decrease the radiation damage on first wall and extend its lifetime to the reactor's lifetime. In this study, radiation damage characterization of various low activation materials used as first wall material in a magnetic fusion reactor blanket using a liquid wall was made. Various coolants (Flibe, Flibe + 4% mol ThF 4, Flibe + 8% mol ThF 4, Li 20Sn 80) were used to investigate their effect on the radiation damage of first wall materials. Calculations were carried out by using the code Scale4.3 to solve Boltzmann neutron transport equation. Numerical results brought out that the ferritic steel with Flibe based coolants showed the best performance with respect to radiation damage.
Chaotic dynamics in premixed hydrogen/air channel flow combustion
NASA Astrophysics Data System (ADS)
Pizza, Gianmarco; Frouzakis, Christos E.; Mantzaras, John
2012-04-01
The complex oscillatory behaviour observed in fuel-lean premixed hydrogen/air atmospheric pressure flames in an open planar channel with prescribed wall temperature is investigated by means of direct numerical simulations, employing detailed chemistry descriptions and species transport, and nonlinear dynamics analysis. As the inflow velocity is varied, the sequence of transitions includes harmonic single frequency oscillations, intermittency, mixed mode oscillations, and finally a period-doubling cascade leading to chaotic dynamics. The observed modes are described and characterised by means of phase-space portraits and next amplitude maps. It is shown that the interplay of chemistry, transport, and wall-bounded developing flow leads to considerably richer dynamics compared to fuel-lean hydrogen/air continuously stirred tank reactor studies.
High internal inductance for steady-state operation in ITER and a reactor
Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...
2015-06-26
Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, Douglas E.; Orr, Richard
1993-01-01
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.
Nuclear reactor having a polyhedral primary shield and removable vessel insulation
Ekeroth, D.E.; Orr, R.
1993-12-07
A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Kosa, E-mail: hirota-kousa@sme.hitachi-hitec.com; Itabashi, Naoshi; Tanaka, Junichi
2014-11-01
The variation in polysilicon plasma etching rates caused by Ti residue on the reactor walls was investigated. The amount of Ti residue was measured using attenuated total reflection Fourier transform infrared spectroscopy with the HgCdTe (MCT) detector installed on the side of the reactor. As the amount of Ti residue increased, the number of fluorine radicals and the polysilicon etching rate increased. However, a maximum limit in the etching rate was observed. A mechanism of rate variation was proposed, whereby F radical consumption on the quartz reactor wall is suppressed by the Ti residue. The authors also investigated a plasma-cleaningmore » method for the removal of Ti residue without using a BCl{sub 3} gas, because the reaction products (e.g., boron oxide) on the reactor walls frequently cause contamination of the product wafers during etching. CH-assisted chlorine cleaning, which is a combination of CHF{sub 3} and Cl{sub 2} plasma treatment, was found to effectively remove Ti residue from the reactor walls. This result shows that CH radicals play an important role in deoxidizing and/or defluorinating Ti residue on the reactor walls.« less
Sultan, Tipu
2016-07-01
This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.Y.
1978-10-01
Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
Flow duct for nuclear reactors
Straalsund, Jerry L.
1978-01-01
Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.
Monitoring of Double Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
Monitoring of Double-Stud Wall Moisture Conditions in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.
Cost-Effective Systems for Atomic Layer Deposition
ERIC Educational Resources Information Center
Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.
2014-01-01
Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…
Rapid solar-thermal decarbonization of methane
NASA Astrophysics Data System (ADS)
Dahl, Jaimee Kristen
Due to the ever-increasing demand for energy and the concern over the environmental impact of continuing to produce energy using current methods, there is interest in developing a hydrogen economy. Hydrogen is a desirable energy source because it is abundant in nature and burns cleanly. One method for producing hydrogen is to utilize a renewable energy source to obtain high enough temperatures to decompose a fossil fuel into its elements. This thesis work is directed at developing a solar-thermal aerosol flow reactor to dissociate methane to carbon black and hydrogen. The technology is intended as a "bridge" between current hydrogen production methods, such as conventional steam-methane reformers, and future "zero emission" technology for producing hydrogen, such as dissociating water using a renewable heating source. A solar furnace is used to heat a reactor to temperatures in excess of 2000 K. The final reactor design studied consists of three concentric vertical tubes---an outer quartz protection tube, a middle solid graphite heating tube, and an inner porous graphite reaction tube. A "fluid-wall" is created on the inside wall of the porous reaction tube in order to prevent deposition of the carbon black co-product on the reactor tube wall. The amorphous carbon black produced aids in heating the gas stream by absorbing radiation from the reactor wall. Conversions of 90% are obtained at a reactor wall temperature of 2100 K and an average residence time of 0.01 s. Computer modeling is also performed to study the gas flow and temperature profiles in the reactor as well as the kinetics of the methane dissociation reaction. The simulations indicate that there is little flow of the fluid-wall gas through the porous wall in the hot zone region, but this can be remedied by increasing the inlet temperature of the fluid-wall gas and/or increasing the tube permeability only in the hot zone region of the wall. The following expression describes the kinetics of methane dissociation in a solar-thermal fluid-wall reactor: dXdt=5.8x108 exp-155,600RT 1-X 7.2s-1. The experimental and theoretical work reported in this thesis is the groundwork that will be utilized in scaling up the reactor to produce hydrogen in distributed or centralized facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-03-01
Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.
Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming
NASA Astrophysics Data System (ADS)
Kramer, Michelle; McKelvie, Millie; Watson, Matthew
2018-01-01
Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).
Coliform culturability in over- versus undersaturated drinking waters.
Grandjean, D; Fass, S; Tozza, D; Cavard, J; Lahoussine, V; Saby, S; Guilloteau, H; Block, J-C
2005-05-01
The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pH
First wall for polarized fusion reactors
Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.
1988-01-01
Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.
An Idealized Direct-Contact Biomass Pyrolysis Reactor Model
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1996-01-01
A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Technical Reports Server (NTRS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
1988-01-01
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
Transmission loss of double wall panels containing Helmholtz resonators
NASA Astrophysics Data System (ADS)
Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.
Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However,more » cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.« less
Apparatus for observing a hostile environment
Nance, Thomas A.; Boylston, Micah L.; Robinson, Casandra W.; Sexton, William C.; Heckendorn, Frank M.
2000-01-01
An apparatus is provided for observing a hostile environment, comprising a housing and a camera capable of insertion within the housing. The housing is a double wall assembly with an inner and outer wall with an hermetically sealed chamber therebetween. A housing for an optical system used to observe a hostile environment is provided, comprising a transparent, double wall assembly. The double wall assembly has an inner wall and an outer wall with an hermetically sealed chamber therebetween. The double wall assembly has an opening and a void area in communication with the opening. The void area of the housing is adapted to accommodate the optical system within said void area. An apparatus for protecting an optical system used to observe a hostile environment is provided comprising a housing; a tube positioned within the housing; and a base for supporting the housing and the tube. The housing comprises a double wall assembly having an inner wall and an outerwall with an hermetically sealed chamber therebetween. The tube is adapted to house the optical system therein.
Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process
NASA Astrophysics Data System (ADS)
Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya
2017-06-01
The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).
Neutronic Reactor Design to Reduce Neutron Loss
Miles, F. T.
1961-05-01
A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ALONG EAST WALL, WITH REACTOR PADS BEHIND FRAMED AND SCREENED CAGE, AND PORCELAIN-LINED CABLE DUCTS VISIBLE IN WALL NEAR FLOOR AT REAR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
Wang, Yongjiang; Niu, Wenjuan; Ai, Ping
2016-12-01
Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.
Double-clad nuclear fuel safety rod
McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan
1984-01-01
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Double-clad nuclear-fuel safety rod
McCarthy, W.H.; Atcheson, D.B.
1981-12-30
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Pumera, Martin; Smíd, Bretislav
2007-10-01
Double wall carbon nanotubes are noncovalently functionalized with redox protein and such assembly is used for construction of electrochemical binder-less glucose biosensor. Redox protein glucose oxidase performs as biorecognition element and double wall carbon nanotubes act both as immobilization platform for redox enzyme and as signal transducer. The double carbon nanotubes are characterized by cyclic voltammetry and specific surface area measurements; the redox protein noncovalently functionalized double wall carbon nanotubes are characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, amperometry, and transmission electron microscopy.
PBF Reactor Building (PER620). Cubicle 10 detail. Camera facing west ...
PBF Reactor Building (PER-620). Cubicle 10 detail. Camera facing west toward brick shield wall. Valve stems against wall penetrate through east wall of cubicle. Photographer: John Capek. Date: August 19, 1970. INEEL negative no. 70-3469 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
HVI Ballistic Performance Characterization of Non-Parallel Walls
NASA Technical Reports Server (NTRS)
Bohl, William; Miller, Joshua; Christiansen, Eric
2012-01-01
The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.
Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti
2018-03-01
This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CORRIDOR ALONG WEST WALL OF BUILDING, WHICH IS AT RIGHT OF VIEW. AUDIO ALARM IS ALONG WALL AT RIGHT. CAMERA FACES SOUTH. INL NEGATIVE NO. HD46-30-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors
NASA Astrophysics Data System (ADS)
Şahin, Sümer; Übeyli, Mustafa
2008-12-01
Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.
First wall for polarized fusion reactors
Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.
1985-01-29
A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.
Reinforcement mechanism of multi-anchor wall with double wall facing
NASA Astrophysics Data System (ADS)
Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo
2017-10-01
The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.
Two-dimensional over-all neutronics analysis of the ITER device
NASA Astrophysics Data System (ADS)
Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi
1993-07-01
The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...
PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL ...
FAST CHOPPER BUILDING, TRA-665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL NEGATIVE NO. HD42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Nuclear reactor neutron shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaker, Daniel P; Neeley, Gary W; Inman, James B
A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less
First-wall structural analysis of the self-cooled water blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.; Steiner, D.; Embrechts, M.J.
1986-01-01
A novel blanket concept recently proposed utilizes water with small amounts of dissolved lithium compound as both coolant and breeder. The inherent simplicity of this idea should result in an attractive breeding blanket for fusion reactors. In addition, the available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate this concept. First-wall and blanket designs have been developed first for the tandem mirror reactor (TMR) due to the obvious advantages of this geometry. First-wall and blanket designs will also be developed for toroidal reactors. A simple plate designmore » with coolant tubes welded on the back (side away from plasma) was chosen as the first wall for the TMR application. Dimensions and materials were chosen to minimize temperature differences and thermal stresses. A finite element code (STRAW), originally developed for the analysis of core components subjected to high-pressure transients in the fast breeder program, was utilized to evaluate stresses in the first wall.« less
Circulation system for flowing uranium hexafluoride cavity reactor experiments
NASA Technical Reports Server (NTRS)
Jaminet, J. F.; Kendall, J. S.
1976-01-01
Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
Sahu, Atanu; Bhattacharya, Partha; Niyogi, Arup Guha; Rose, Michael
2017-06-01
Double-wall panels are known for their superior sound insulation properties over single wall panels as a sound barrier. The sound transmission phenomenon through a double-wall structure is a complex process involving vibroacoustic interaction between structural panels, the air-cushion in between, and the secondary acoustic domain. It is in this context a versatile and a fully coupled technique based on the finite-element-boundary element model is developed that enables estimation of sound transfer through a double-wall panel into an adjacent enclosure while satisfying the displacement compatibility across the interface. The contribution of individual components in the transmitted energy is identified through numerical simulations.
NASA Astrophysics Data System (ADS)
Avramenko, M. V.; Roshal, S. B.
2016-05-01
A continuous model has been constructed for low-frequency dynamics of a double-walled carbon nanotube. The formation of the low-frequency part of the phonon spectrum of a double-walled nanotube from phonon spectra of its constituent single-walled nanotubes has been considered in the framework of the proposed approach. The influence of the environment on the phonon spectrum of a single double-walled carbon nanotube has been analyzed. A combined method has been proposed for estimating the coefficients of the van der Waals interaction between the walls of the nanotube from the spectroscopic data and the known values of the elastic moduli of graphite. The low-temperature specific heat has been calculated for doublewalled carbon nanotubes, which in the field of applicability of the model ( T < 35 K) is substantially less than the sum of specific heats of two individual single-walled nanotubes forming it.
Application of ECT inspection to the first wall of a fusion reactor with wavelet analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.; Yoshida, Y.; Miya, K.
1994-12-31
The first wall of a fusion reactor will be subjected to intensive loads during fusion operations. Since these loads may cause defects in the first wall, nondestructive evaluation techniques of the first wall should be developed. In this paper, we try to apply eddy current testing (ECT) technique to the inspection of the first wall. A method based on current vector potential and wavelet analysis is proposed. Owing to the use of wavelet analysis, a new theory developed recently, the accuracy of the present method is shown to be better than a conventional one.
Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-04-29
The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.
ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...
ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM
Dickinson, R.W.
1963-03-01
This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)
[The use of a prolene double mesh for orbital wall reconstruction].
Junceda-Moreno, J; Suárez-Suárez, E; Dos-Santos-Bernardo, V
2005-08-01
Patient with a recurrent carcinoma of the nasal fossae affecting the internal orbital wall. The intraorbital content was not affected. The orbital wall was reconstructed with a prolene double mesh anchored to the periosteum. Prolene mesh as a substitute of the orbital wall. Good stability and isolation of the intraorbital structures were observed. Ocular motility was completely normal after surgery without prolene mesh displacements. The prolene double mesh is a good surgical option to replace missing bone in the reconstruction of the internal orbital wall.
Process for making silicon from halosilanes and halosilicons
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1988-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1987-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanne, Jr, W R
1988-01-01
A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.
NASA Astrophysics Data System (ADS)
Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid
2018-02-01
Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.
Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.
Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G
2018-06-19
The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.
NASA Astrophysics Data System (ADS)
Patel, Ajay M.; Joshi, Anand Y.
2016-10-01
This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.
PBF Reactor Building (PER620). Camera faces south along west wall. ...
PBF Reactor Building (PER-620). Camera faces south along west wall. Gap between native lava rock and concrete basement walls is being backfilled and compacted. Wire mesh protects workers from falling rock. Note penetrations for piping that will carry secondary coolant water to Cooling Tower. Photographer: Holmes. Date: June 15, 1967. INEEL negative no. 67-3665 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF (PER620) interior, basement level. Concrete wall shows outline of ...
PBF (PER-620) interior, basement level. Concrete wall shows outline of reactor basin. Sign says, "Flashing Light - Reactor On - Evacuate Area." Date: May 2004. INEEL negative no. HD-41-5-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...
NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
30. Miscellaneous gauges and recorders on the wall opposite the ...
30. Miscellaneous gauges and recorders on the wall opposite the Panellit gauges in a typical control room, 105-F Reactor in this case in February 1945. The temperature recorder for the 2,004 process tubes is at the far right side. D-8308 - B Reactor, Richland, Benton County, WA
VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS
Furgerson, W.T.
1963-12-17
A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)
Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, H.; Pettit, B.
2015-06-01
This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve amore » durable, high performance wall.« less
Characterisation of MR reactor pond in nNRC 'Kurchatov institute' before dismantling work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Alexey; Simirsky, Yury; Semin, Ilya
2013-07-01
In this work complex α-, β-, γ-spectrometric research of water, bottom slimes and deposits on walls of the reactor pond and the storage pond of the MR reactor was made. Identify, that the main dose forming radionuclide, during dismantling work on the reactor MR, is Cs-137. It is shown, that specific activity of radionuclides in bottom slimes considerably exceed specific activity of radionuclides in water from ponds, and near to high level radioactive waste. It is detected that decreasing the water level in reactor ponds on 1 m, increase the exposure dose rate at a distance 1 m from themore » pond in 2 times. The observed increase in exposure dose rate can be explained by contribution on dose rate the cesium-137 deposed on walls of the storage pond. Effectiveness of cleaning of walls of the pool of storage from deposits by a water jet of high pressure is investigated. (authors)« less
Davy, John L
2010-02-01
This paper presents a revised theory for predicting the sound insulation of double leaf cavity walls that removes an approximation, which is usually made when deriving the sound insulation of a double leaf cavity wall above the critical frequencies of the wall leaves due to the airborne transmission across the wall cavity. This revised theory is also used as a correction below the critical frequencies of the wall leaves instead of a correction due to Sewell [(1970). J. Sound Vib. 12, 21-32]. It is found necessary to include the "stud" borne transmission of the window frames when modeling wide air gap double glazed windows. A minimum value of stud transmission is introduced for use with resilient connections such as steel studs. Empirical equations are derived for predicting the effective sound absorption coefficient of wall cavities without sound absorbing material. The theory is compared with experimental results for double glazed windows and gypsum plasterboard cavity walls with and without sound absorbing material in their cavities. The overall mean, standard deviation, maximum, and minimum of the differences between experiment and theory are -0.6 dB, 3.1 dB, 10.9 dB at 1250 Hz, and -14.9 dB at 160 Hz, respectively.
The finite layer method for modelling the sound transmission through double walls
NASA Astrophysics Data System (ADS)
Díaz-Cereceda, Cristina; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio
2012-10-01
The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.
LOFT. Reactor support apparatus inside containment building (TAN650). Camera is ...
LOFT. Reactor support apparatus inside containment building (TAN-650). Camera is on crane rail level and facing northerly. View shows top two banks of round conduit openings on wall for electrical and other connections to control room. Ladders and platforms provide access to reactor instrumentation. Note hatch in floor and drain at edge of floor near wall. Date: 1974. INEEL negative no. 74-219 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Improvement in transmission loss of aircraft double wall with resonators
NASA Astrophysics Data System (ADS)
Sun, Jincai; Shi, Liming; Ye, Xining
1991-08-01
A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.
Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, RB; Bader, R; Lipinski, W
2015-06-01
Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element.more » Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.« less
Double wall vacuum tubing and method of manufacture
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1989-01-01
An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.
2012-07-11
Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.
NEUTRONIC REACTOR MANIPULATING DEVICE
Ohlinger, L.A.
1962-08-01
A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)
ETR, TRA642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL ...
ETR, TRA-642. WALL SECTION DETAILS. METAL SIDING JOINS TO ELECTRICAL BUILDING, OFFICE BUILDING, AND ROOF. KAISER ETR-5528-MTR-A-13, 11/1955. INL INDEX NO. 532-0642-00-486-100920, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SOUTH WING, MTR661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA ...
SOUTH WING, MTR-661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA FACING NORTHEAST. NOTE CONCRETE BLOCK WALLS. SAFETY SHOWER AND EYE WASHER AT REAR WALL. INL NEGATIVE NO. HD46-7-2. Mike Crane, Photographer, 2/2005. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...
COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
Starlight: A stationary inertial-confinement-fusion reactor with nonvaporizing walls
NASA Astrophysics Data System (ADS)
Pitts, John H.
1989-09-01
The Starlight concept for an inertial-confinement-fusion (ICF) reactor utilizes a softball-sized solid-lithium x ray and debris shield that surrounds each fuel pellet as it is injected into the reactor. The shield is sacrificial and vaporizes as it absorbs x ray and ion-debris energy emanating from the fusion reactions in the fuel pellets. However, the energy deposition time at the surface if the first wall is lengthened by four orders of magnitude (to greater than 100 microns) which allows the energy to be conducted into the wall fast enough to prevent vaporization. Starlight operates at 5 Hz with 300-MJ-yield fuel pellets. It features a stationary, nonvaporizing first wall that eliminates erosion and shock waves which can destroy the wall; also, it allows arbitrary fuel pellet illumination geometries so that efficient coupling of either laser or heavy ion beam driver energy to the fuel pellet can be achieved. When neutrons penetrate the shield, the wall experiences neutron damage that limits its lifetime. Hence, we must choose wall materials that have ab economic lifetime. We describe the general concept and a specific design for laser drivers using a 6-m-radius, 2 1/4 Cr 1 Mo steel first wall. We include heat transfer calculations used to establish the radius and structural analysis that shows stresses are within allowable limits. A wall lifetime of over six years is predicted.
HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...
HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS
Mills, F.T.
1961-05-01
A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-12-01
By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.
Purified silicon production system
Wang, Tihu; Ciszek, Theodore F.
2004-03-30
Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, H.; Pettit, B.
2015-06-22
This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durablemore » high-performance wall.« less
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, A.; Boardman, C.E.
1995-04-11
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, Anstein; Boardman, Charles E.
1995-01-01
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.
Strange bedfellows: The curious case of STAR and Moata
NASA Astrophysics Data System (ADS)
Smith, A. M.; Levchenko, V. A.; Malone, G.
2013-01-01
The 2 MV tandem accelerator named ‘STAR’ was installed at ANSTO in 2003 and commissioned in 2004. It is used for ion beam analysis (IBA) and for radiocarbon measurements by accelerator mass spectrometry (AMS). Convenient space for the accelerator was found in the same building occupied by the decommissioned Argonaut-class nuclear reactor ‘Moata’; the name derives from the aboriginal word for ‘fire stick’ or ‘gentle fire’, appropriate for a 100 kW research reactor. This reactor operated between 1961 and 1995. In 2007 ANSTO’s Engineering Division assembled a team to dismantle and remove the reactor structure, along with its 12.1 tonnes of graphite reflector. The removal and remediation was completed in November 2010 and has won the team a number of prestigious awards. The entire operation was conducted inside a negatively-pressurised double-walled vinyl tent. An air curtain was positioned around the reactor core. The exhaust air from the tent passed through 2-stage HEPA filters before venting through an external stack. Neither ANSTO staff nor contractors received any significant radiation dose during the operation. Given the sensitivity of STAR for detection of 14C/12C (∼10-16) and the numerous routes for production of 14C in the reactor such as 13C(n, γ)14C, 14N(n, p)14C and 17O(n, α)14C there was the potential to directly contaminate the STAR environment with 14C. Furthermore, there was concern that reactor-14C could find its way from this building into the building where the radiocarbon sample preparation laboratories are located. This necessitated restrictions on staff movement between the buildings. We report on 14C control measurements made during and after the operation. These involved direct measurements on the reactor graphite and concrete bioshield, blank targets that were exposed in the building, swipe samples taken inside the tent and around the building and aerosol samples that were collected inside the building throughout the operation.
88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...
88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Apparatus and method to keep the walls of a free-space reactor free from deposits of solid materials
NASA Technical Reports Server (NTRS)
Yamakawa, K. A. (Inventor)
1985-01-01
An apparatus and method is disclosed for keeping interior walls of a reaction vessel free of undesirable deposits of solid materials in gas-to-solid reactions. The apparatus includes a movable cleaning head which is configured to be substantially complementary to the interior contour of the walls of the reaction vessel. The head ejects a stream of gas with a relatively high velocity into a narrow space between the head and the walls. The head is moved substantially continuously to at least intermittently blow the stream of gas to substantially the entire surface of the walls wherein undesirable solid deposition is likely to occur. The disclosed apparatus and process is particularly useful for keeping the walls of a free-space silane-gas-to-solid-silicon reactor free of undesirable silicon deposits.
NASA Technical Reports Server (NTRS)
Ryason, P. R. (Inventor)
1977-01-01
Hydrogen is produced by the solar photolysis of water in a first photooxidation vessel with a transparent wall in the presence of a water soluble photooxidizable reagent and an insoluble hydrogen recombination catalyst. Simultaneously oxygen is produced in a second photoreduction reactor with a transparent wall in the presence of an insoluble photoreduction reagent catalyst. When spent, the solution from the first reactor is fed into the second reactor. A reaction occurs in the dark in which the redox reagents are regenerated, and the regenerated photooxidation reagent solution is recycled to the first reactor. The photoreduction-catalyst is a bifunctional reagent catalyst including a transition metal salt together with a hydroxyl or chlorohydroxyl decomposition catalyst of high area.
Purification and deposition of silicon by an iodide disproportionation reaction
Wang, Tihu; Ciszek, Theodore F.
2002-01-01
Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.
Double Chooz and a history of reactor θ 13 experiments
Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago
2016-04-11
This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less
Double Chooz and a history of reactor θ 13 experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suekane, Fumihiko; Junqueira de Castro Bezerra, Thiago
This is a contribution paper from the Double Chooz (DC) experiment to the special issue of Nuclear Physics B on the topics of neutrino oscillations, celebrating the recent Nobel prize to Profs. T. Kajita and A.B. McDonald. DC is a reactor neutrino experiment which measures the last neutrino mixing angle θ 13. In addition, the DC group presented an indication of disappearance of the reactor neutrinos at a baseline of similar to 1 km for the first time in 2011 and is improving the measurement of θ 13. DC is a pioneering experiment of this research field. In accordance withmore » the nature of this special issue, physics and history of the reactor-θ 13 experiments, as well as the Double Chooz experiment and its neutrino oscillation analyses, are reviewed.« less
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Technology Solutions Case Study: Hygrothermal Performance of a Double-Stud Cellulose Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
Moisture problems within the building shell can be caused by a number of factors including excess interior moisture that is transported into the wall through air leakage and vapor drive, bulk water intrusion from leaks and wind-driven rain, capillary action from concrete to wood connections, and through wetted building materials such as siding wetted from rain splash back. With the increasing thickness of walls, moisture issues could increase. Several builders have successfully used “double-wall” systems to more practically achieve higher R-values in thicker framed walls. A double wall typically consists of a load-bearing external frame wall constructed with 2 ×more » 4 framing at 16 in. on center using conventional methods. After the building is enclosed, an additional frame wall is constructed several inches inside the load-bearing wall. Several researchers have used moisture modeling software to conduct extensive analysis of these assemblies; however, little field research has been conducted to validate the results. In this project, the Building America research team Consortium for Advanced Residential Buildings monitored a double-stud assembly in climate zone 5A to determine the accu¬racy of moisture modeling and make recommendations to ensure durable and efficient assemblies.« less
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
NASA Astrophysics Data System (ADS)
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
Heat transfer in a fissioning uranium plasma reactor cavity
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1973-01-01
Two schemes are investigated by which a fission-heated uranium plasma located in the central cavity of a test reactor could be insulated to keep its temperature above condensation in a neutron flux of 10 to the 15th power neutrons/(sq cm)(sec) or less. The first scheme was to use a mirrored cavity wall to reflect the thermal radiation back into the plasma. The second scheme was to seed the transpirational cavity wall coolant so as to make it opaque to thermal radiation, thus insulating the hot plasma from the cold wall. The analysis showed that a mirrored cavity wall must have a reflectivity of over 95 percent or that seeded argon must be used as the wall coolant to give an acceptable operating margin above fuel condensation conditions.
Study of noise reduction characteristics of double-wall panels
NASA Technical Reports Server (NTRS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-01-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Study of noise reduction characteristics of double-wall panels
NASA Astrophysics Data System (ADS)
Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.
1983-05-01
The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.
Measurement of theta13 in the double Chooz experiment
NASA Astrophysics Data System (ADS)
Yang, Guang
Neutrino oscillation has been established for over a decade. The mixing angle theta13 is one of the parameters that is most difficult to measure due to its small value. Currently, reactor antineutrino experiments provide the best knowledge of theta13, using the electron antineutrino disappearance phenomenon. The most compelling advantage is the high intensity of the reactor antineutrino rate. The Double Chooz experiment, located on the border of France and Belgium, is such an experiment, which aims to have one of the most precise theta 13 measurements in the world. Double Chooz has a single-detector phase and a double-detector phase. For the single-detector phase, the limit of the theta 13 sensitivity comes mostly from the reactor flux. However, the uncertainty on the reactor flux is highly suppressed in the double-detector phase. Oscillation analyses for the two phases have different strategies but need similar inputs, including background estimation, detection systematics evaluation, energy reconstruction and so on. The Double Chooz detectors are filled with gadolinium (Gd) doped liquid scintillator and use the inverse beta decay (IBD) signal so that for each phase, there are two independent theta13 measurements based on different neutron capturer (Gd or hydrogen). Multiple oscillation analyses are performed to provide the best 13 results. In addition to the 13 measurement, Double Chooz is also an excellent \\playground" to do diverse physics research. For example, a 252Cf calibration source study has been done to understand the spontaneous decay of this radioactive source. Further, Double Chooz also has the ability to do a sterile neutrino search in a certain mass region. Moreover, some new physics ideas can be tested in Double Chooz. In this thesis, the detailed methods to provide precise theta13 measurement will be described and the other physics topics will be introduced.
Fission-suppressed fusion breeder on the thorium cycle and nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R. W.
2012-06-19
Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less
Persistence in a single species CSTR model with suspended flocs and wall attached biofilms.
Mašić, Alma; Eberl, Hermann J
2012-04-01
We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.
Conceptual design of BNCT facility based on the TRR medical room
NASA Astrophysics Data System (ADS)
Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.
2017-10-01
This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.
Conceptual design of fast-ignition laser fusion reactor FALCON-D
NASA Astrophysics Data System (ADS)
Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.
2009-07-01
A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.
Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module
NASA Astrophysics Data System (ADS)
Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.
1984-05-01
A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.
Protective interior wall and attaching means for a fusion reactor vacuum vessel
Phelps, R.D.; Upham, G.A.; Anderson, P.M.
1985-03-01
The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.
Double Mine Building (N) wall showing clerestory slot windows opening ...
Double Mine Building (N) wall showing clerestory slot windows opening above level of main roof. Note structure is built on poured concrete foundation partly buried in hillside; view in southeast - Fort McKinley, Double Mine Building, East side of East Side Drive, approximately 125 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki
2006-07-01
The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less
24. ARAIII Reactor building ARA608 interior. Camera facing south. Chalk ...
24. ARA-III Reactor building ARA-608 interior. Camera facing south. Chalk marks on wall indicate presence or absence of spot contamination. Ineel photo no. 3-2. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
HOT CELL BUILDING, TRA632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT ...
HOT CELL BUILDING, TRA-632, INTERIOR. WINDOWED ROOM IS OFFICE; NEXT DOOR WAS DARKROOM, AND THIRD DOOR LED TO ANOTHER OFFICE. ALL ARE ALONG NORTH WALL OF BUILDING (ETR EXTENSION OF 1958). CAMERA FACES NORTHEAST. PUMICE BLOCK WALLS. INL NEGATIVE NO. HD46-29-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar
2010-01-01
The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.
Double-walled structure of anodic TiO2 nanotubes in H3PO4/NH4F mixed electrolyte
NASA Astrophysics Data System (ADS)
Chen, Siyu; Chen, Ying; Li, Chengyuan; Ouyang, Huijun; Qin, Shuai; Song, Ye
2018-04-01
Normally, the well-ordered anodic TiO2 nanotubes (ATNTs) are obtained in NH4F electrolyte, after annealing, the double-walled structure of nanotubes will appear. Here, after adding H3PO4 into NHF4 electrolyte, we got the double-walled structure of nanotubes by anodizing without annealing, which means the direct existence of anion-contaminated layer in ATNTs. Influence of H3PO4 content on anodizing voltage and morphology of ATNTs were compared in detail. The XRD pattern illustrated that the crystallinity decreases with increasing H3PO4 concentration, and the anion-contaminated layer thickens with the increase of H3PO4 concentration. Meanwhile, the existence of the anion-contaminated layer also proved the limitations of the filed-assisted dissolution theory, while the double-walled structure can be explained by oxygen bubble model and plastic flow model.
NASA Astrophysics Data System (ADS)
Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu
2018-04-01
The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.
Energy transmission through a double-wall curved stiffened panel using Green's theorem
NASA Astrophysics Data System (ADS)
Ghosh, Subha; Bhattacharya, Partha
2015-04-01
It is a common practice in aerospace and automobile industries to use double wall panels as fuselage skins or in window panels to improve acoustic insulation. However, the scientific community is yet to develop a reliable prediction method for a suitable vibro-acoustic model for sound transmission through a curved double-wall panel. In this quest, the present work tries to delve into the modeling of energy transmission through a double-wall curved panel. Subsequently the radiation of sound power into the free field from the curved panel in the low to mid frequency range is also studied. In the developed model to simulate a stiffened aircraft fuselage configuration, the outer wall is provided with longitudinal stiffeners. A modal expansion theory based on Green's theorem is implemented to model the energy transmission through an acoustically coupled double-wall curved panel. An elemental radiator approach is implemented to calculate the radiated energy from the curved surface in to the free field. The developed model is first validated with various numerical models available. It has been observed in the present study that the radius of curvature of the surface has a prominent effect on the behavior of radiated sound power into the free field. Effect of the thickness of the air gap between the two curved surfaces on the sound power radiation has also been noted.
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
Laroia, N; Phelps, D L; Roy, J
2007-04-18
Studies have shown improved survival of newborn infants maintained in the thermoneutral range. The concept of an incubator with additional insulation, a double plexiglass wall, is appealing for very low birth weight infants as it may help to provide a thermoneutral environment. To assess the effects of double walled incubator versus a single wall incubator on insensible water loss, rate of oxygen consumption, episodes of hypothermia, time to regain birth weight, duration of hospitalization and infant mortality in premature infants. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2006), MEDLINE (1966 - 2006), EMBASE, previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants in all published languages, and CINAHL (1982 - 2006). Only studies using random or quasi-random methods of allocation were considered for this review. Eligible studies assessed at least one of the outcome variables identified as important to this topic. Independent data extraction and quality assessment of included trials was conducted by the review authors. Data were analyzed using generic inverse variance methodology and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Three studies met the criteria. Four other studies were excluded, as they did not compare double versus single wall incubators (details of the studies are given in the included and excluded studies section). Double wall incubators have the advantage of decreasing heat loss, decreasing heat production and decreasing radiant heat loss when compared to single wall incubators. There is also the advantage of reduced oxygen consumption. A minimal increase in conductive heat loss was noted when compared to single wall incubators. All of these effects are small and do not support the proposition that double wall incubators have a beneficial effect on long term outcomes including mortality or the duration of hospitalization. Although it appears that caring for extremely small infants in double wall incubators may theoretically result in shorter hospitalization and may have metabolic advantages, this review was unable to find any data in the literature to support or refute this hypothesis. The studies do not provide any evidence that the small decrease in heat loss improves clinical outcome. Therefore, the available data is insufficient to directly guide clinical practice.
POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.
Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-03-07
The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.
Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph
2016-01-01
Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309
NASA Astrophysics Data System (ADS)
Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.
2014-11-01
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
Wigner, E.P.
1960-11-22
A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.
NASA Astrophysics Data System (ADS)
Günay, M.; Şarer, B.; Kasap, H.
2014-08-01
In the present investigation, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa ferritic steel structural material and 99-95 % Li20Sn80-1-5 % SFG-Pu, 99-95 % Li20Sn80-1-5 % SFG-PuF4, 99-95 % Li20Sn80-1-5 % SFG-PuO2 the molten salt-heavy metal mixtures, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium zone with the width of 3 cm was used for the neutron multiplicity between liquid first wall and blanket. The contributions of each isotope in fluids on the nuclear parameters of a fusion-fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, heat deposition rate were computed in liquid first wall, blanket and shield zones. Three-dimensional analyses were performed by using Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
Gas-core reactor power transient analysis
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1972-01-01
The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.
Long, E.; Ashby, J.W.
1958-09-16
ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.
Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver
NASA Astrophysics Data System (ADS)
Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of
2006-06-01
We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.
Decommissioning the physics laboratory, building 777-10A, at the Savannah River Site (SRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musall, John C.; Cope, Jeff L.
2008-01-15
SRS recently completed a four year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers, who face similar decommissioning challenges. Building 777-10A, located at the south end of SRS's A/M-Area, was built in 1953 and had a gross area of {approx}48,000 ft{sup 2}. Building 777-10A had two main areas: a west wing, which housed four experimental reactors and associated equipment; and an east wing, which housed laboratories, and shops, offices. The reactors were located in two separate areas: one area housed the Process Development Pile (PDP) reactor and the Lattice Test Reactor (LTR), while the second area housed the Standard Pile (SP) and the Sub-critical Experiment (SE) reactors. The west wing had five levels: three below and three above grade (floor elevations of -37', -28', -15', 0', +13'/+16' and +27' (roof elevation of +62')), while the east wing had two levels: one below and one above grade (floor elevations of -15' and 0' (roof elevation of +16')). Below-grade exterior walls were constructed of reinforced concrete, {approx}1' thick. In general, above-grade exterior walls were steel frames covered by insulation and corrugated, asbestos-cement board. The two interior walls around the PDP/LTR were reinforced concrete {approx}5' thick and {approx}30' high, while the SP/SE reactors resided in a reinforced, concrete cell with 3.5'-6' thick walls/roof. All other interior walls were constructed of metal studs covered with either asbestos-cement or gypsum board. In general, the floors were constructed of reinforced concrete on cast-in-place concrete beams below-grade and concrete on metal beams above-grade. The roofs were flat concrete slabs on metal beams. Building 777-10A was an important SRS research and development location. The reactors helped determine safe operational limits and loading patterns for fuel used in the SRS production reactors, and supported various low power reactor physics studies. All four reactors were shut down and de-inventoried in the 1970's. The building was DD and R 2007, Chattanooga, Tennessee, September 16-19, 2007 169 subsequently used by various SRS organizations for office space, audio/visual studio, and computer network hub. SRS successfully decommissioned Building 777-10A over a thirty month period at a cost of {approx}more » $$14 M ({approx}$$290/ft{sup 2}). The decommissioning was a complex and difficult effort due to the building's radiological contamination, height, extensive basement, and thick concrete walls. Extensive planning and extensive hazard analysis (e.g. of structural loads/modifications leading to unplanned collapse) ensured the decommissioning was completed safely and without incident. The decommissioning met contract standards for residual contamination and physical/chemical hazards, and was the last in a series of decommissioning projects that prepared the lower A/M-Area for SRS's environmental restoration program.« less
Steam conversion of liquefied petroleum gas and methane in microchannel reactor
NASA Astrophysics Data System (ADS)
Dimov, S. V.; Gasenko, O. A.; Fokin, M. I.; Kuznetsov, V. V.
2018-03-01
This study presents experimental results of steam conversion of liquefied petroleum gas and methane in annular catalytic reactor - heat exchanger. The steam reforming was done on the Rh/Al2O3 nanocatalyst with the heat applied through the microchannel gap from the outer wall. Concentrations of the products of chemical reactions in the outlet gas mixture are measured at different temperatures of reactor. The range of channel wall temperatures at which the ratio of hydrogen and carbon oxide in the outlet mixture grows substantially is determined. Data on the composition of liquefied petroleum gas conversion products for the ratio S/C = 5 was received for different GHVS.
Hydraulic balancing of a control component within a nuclear reactor
Marinos, D.; Ripfel, H.C.F.
1975-10-14
A reactor control component includes an inner conduit, for instance containing neutron absorber elements, adapted for longitudinal movement within an outer guide duct. A transverse partition partially encloses one end of the conduit and meets a transverse wall within the guide duct when the conduit is fully inserted into the reactor core. A tube piece extends from the transverse partition and is coaxially aligned to be received within a tubular receptacle which extends from the transverse wall. The tube piece and receptacle cooperate in engagement to restrict the flow and pressure of coolant beneath the transverse partition and thereby minimize upward forces tending to expel the inner conduit.
Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He
2014-01-13
A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng
2013-03-01
At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.
Pressurizer tank upper support
Baker, Tod H.; Ott, Howard L.
1994-01-01
A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.
Free-radical solution-polymerization of trifluoronitrosomethane with tetrafluoroethylene
NASA Technical Reports Server (NTRS)
Gdickman, S. A.
1972-01-01
Heavy-walled glass reactor, equipped with aerosol-compatible couplings and needle valve and charged with solvent and initiator, is utilized for polymerization. Polymer conversions and reactor/vessel operation are discussed.
Weld monitor and failure detector for nuclear reactor system
Sutton, Jr., Harry G.
1987-01-01
Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...
ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Double-wall tubing for oil recovery
NASA Technical Reports Server (NTRS)
Back, L. H.; Carroll, W. F.; Jaffee, L. D.; Stimpson, L. D.
1980-01-01
Insulated double-wall tubing designed for steam injection oil recovery makes process more economical and allows deeper extension of wells. Higher quality wet steam is delivered through tubing to oil deposits with significant reductions in heat loss to surrounding rock allowing greater exploitation of previously unworkable reservoirs.
PBF Reactor Building (PER620). Camera faces south toward verticallift door, ...
PBF Reactor Building (PER-620). Camera faces south toward vertical-lift door, which is closed. Note crane and its trolley positioned near door; its rails along side walls. Reactor vessel and lifting beams are positioned above reactor pit. Photographer: John Capek. Date: January 9, 1970. INEEL negative no. 70-132 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.
2017-05-09
Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.
Apollo - An advanced fuel fusion power reactor for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcinski, G.L.; Emmert, G.A.; Blanchard, J.P.
1989-03-01
A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented. A low aspect ratio (A=2-4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m/sup 2/) allows a permanent first wall to be designed and the low nuclear decay heat enablesmore » the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.« less
NASA Astrophysics Data System (ADS)
Castillo, Matias Soto
Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site was found using a stochastic approach and with an adsorption energy higher than other values in the literature.
Prediction of the Reactor Antineutrino Flux for the Double Chooz Experiment
NASA Astrophysics Data System (ADS)
Jones, Chirstopher LaDon
This thesis benchmarks the deterministic lattice code, DRAGON, against data, and then applies this code to make a prediction for the antineutrino flux from the Chooz Bl and B2 reactors. Data from the destructive assay of rods from the Takahama-3 reactor and from the SONGS antineutrino detector are used for comparisons. The resulting prediction from the tuned DRAGON code is then compared to the first antineutrino event spectra from Double Chooz. Use of this simulation in nuclear nonproliferation studies is discussed. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
90. ARAIII. GCRE reactor building (ARA608) mechanical loop pit. Shows ...
90. ARA-III. GCRE reactor building (ARA-608) mechanical loop pit. Shows nitrogen gas compressor in foreground, piping installations on walls of pit, and other details. February 24, 1959. Ineel photo no. 59-880. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosny, Dr. Jan; Asiz, Andi; Shrestha, Som S
2015-01-01
Double wall technologies utilizing wood framing have been well-known and used in North American buildings for decades. Most of double wall designs use only natural materials such as wood products, gypsum, and cellulose fiber insulation, being one of few building envelope technologies achieving high thermal performance without use of plastic foams or fiberglass. Today, after several material and structural design modifications, these technologies are considered as highly thermally efficient, sustainable option for new constructions and sometimes, for retrofit projects. Following earlier analysis performed for U.S. Department of Energy by Fraunhofer CSE, this paper discusses different ways to build double wallsmore » and to optimize their thermal performance to minimize the space conditioning energy consumption. Description of structural configuration alternatives and thermal performance analysis are presented as well. Laboratory tests to evaluate thermal properties of used insulation and whole wall system thermal performance are also discussed in this paper. Finally, the thermal loads generated in field conditions by double walls are discussed utilizing results from a joined project performed by Zero Energy Building Research Alliance and Oak Ridge National Laboratory (ORNL), which made possible evaluation of the market viability of low-energy homes built in the Tennessee Valley. Experimental data recorded in two of the test houses built during this field study is presented in this work.« less
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
DEMINERALIZER BUILDING,TRA608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL ...
DEMINERALIZER BUILDING,TRA-608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL BOARD IS IN RIGHT HALF OF VIEW, WITH FOUR PUMPS BEYOND. SMALLER PUMPS FILL DEMINERALIZED WATER TANK ON SOUTH SIDE OF BUILDING. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3997A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Modeling a Packed Bed Reactor Utilizing the Sabatier Process
NASA Technical Reports Server (NTRS)
Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.
2017-01-01
A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.
NASA Astrophysics Data System (ADS)
Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.
2012-06-01
Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.
Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre
2016-09-01
Radiant heat loss is high in low-birth-weight (LBW) neonates. Double-wall or single-wall incubators with an additional double-wall roof panel that can be removed during phototherapy are used to reduce Radiant heat loss. There are no data on how the incubators should be used when this second roof panel is removed. The aim of the study was to assess the heat exchanges in LBW neonates in a single-wall incubator with and without an additional roof panel. To determine the optimal thermoneutral incubator air temperature. Influence of the additional double-wall roof was assessed by using a thermal mannequin simulating a LBW neonate. Then, we calculated the optimal incubator air temperature from a cohort of human LBW neonate in the absence of the additional roof panel. Twenty-three LBW neonates (birth weight: 750-1800g; gestational age: 28-32 weeks) were included. With the additional roof panel, R was lower but convective and evaporative skin heat losses were greater. This difference can be overcome by increasing the incubator air temperature by 0.15-0.20°C. The benefit of an additional roof panel was cancelled out by greater body heat losses through other routes. Understanding the heat transfers between the neonate and the environment is essential for optimizing incubators. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Pressurizer tank upper support
Baker, T.H.; Ott, H.L.
1994-01-11
A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.
Heat exchanger with leak detecting double wall tubes
Bieberbach, George; Bongaards, Donald J.; Lohmeier, Alfred; Duke, James M.
1981-01-01
A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill
1988-01-01
A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.
Improving Station Performance by Building Isolation Walls in the Tunnel
NASA Astrophysics Data System (ADS)
Jia, Yan; Horn, Nikolaus; Leohardt, Roman
2014-05-01
Conrad Observatory is situated far away from roads and industrial areas on the Trafelberg in Lower Austria. At the end of the seismic tunnel, the main seismic instrument of the Observatory with a station code CONA is located. This station is one of the most important seismic stations in the Austrian Seismic Network (network code OE). The seismic observatory consists of a 145m long gallery and an underground laboratory building with several working areas. About 25 meters away from the station CONA, six temporary seismic stations were implemented for research purposes. Two of them were installed with the same equipment as CONA, while the remaining four stations were set up with digitizers having lower noise and higher resolution (Q330HR) and sensors with the same type (STS-2). In order to prevent possible disturbances by air pressure and temperature fluctuation, three walls were built inside of the tunnel. The first wall is located ca 63 meters from the tunnel entrance, while a set of double walls with a distance of 1.5 meters is placed about 53 meters from the first isolation wall but between the station CONA and the six temporary stations. To assess impact of the isolation walls on noise reduction and detection performance, investigations are conducted in two steps. The first study is carried out by comparing the noise level and detection performance between the station CONA behind the double walls and the stations in front of the double walls for verifying the noise isolation by the double walls. To evaluate the effect of the single wall, station noise level and detection performance were studied by comparing the results before and after the installation of the wall. Results and discussions will be presented. Additional experiment is conducted by filling insulation material inside of the aluminium boxes of the sensors (above and around the sensors). This should help us to determine an optimal insulation of the sensors with respect to pressure and temperature fluctuations.
Pilot plant operation of a nonadiabatic methanation reactor. [15 refs. ; Raney nickel catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schehl, R.R.; Pennline, H.W.; Strakey, J.P.
The design and operation of a pilot plant scale hybrid methanation reactor is discussed. The hybrid methanator, utilizing a finned, Raney nickel coated insert, consolidates features of the tube-wall and hot-gas-recycle methanation reactors. Data are presented from four tests lasting from 3/sup 1///sub 2/ weeks to three months. Topics discussed include conversion, product yields, catalyst properties, and reactor temperature profiles. A one-dimensional mathematical model capable of explaining reactor performance trends is employed.
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar
2017-10-01
We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.
Coultas, Thomas A.
1977-01-01
Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.
Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber
NASA Astrophysics Data System (ADS)
Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.
2008-05-01
The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.
Current status of the Double Chooz experiment
NASA Astrophysics Data System (ADS)
Haser, J.; Double Chooz Collaboration
2016-04-01
The Double Chooz reactor antineutrino experiment aims for a precision measurement of the neutrino mixing angle θ13. Located at the Chooz nuclear power plant in France, it observes an energy dependent deficit in the electron antineutrino spectrum, currently with one detector filled with gadolinium-loaded liquid scintillator at a baseline of 1.05 km. The Double Chooz analysis utilizes different approaches to extract θ13: A combined rate and spectral shape fit as well as a background-model-independent analysis based on reactor power variations are performed, giving consistent results. Among the recent reactor-based oscillation experiments with comparable baseline it was the only one to observe reactor shutdown phases, during which all reactors are turned off. These enabled to measure the backgrounds solely, allowing to crosscheck the background models used in the oscillation analysis. At present an improved analysis was put forward with twice as much data statistics collected compared to the last publication. Revised selection criteria and background studies enhance the signal to background ratio while a decrease in the corresponding uncertainties is achieved. Along with an improved energy calibration the overall systematic uncertainty on θ13 is reduced, preparing for a two detector analysis. The new analysis obtains from 467.90 live days with 66.5 GW-ton-years of exposure (reactor power × detector mass × live time) a value of sin2 2θ13 =0.090-0.029+0.032(stat + syst).
Beryllium processing technology review for applications in plasma-facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, R.G.; Jacobson, L.A.; Stanek, P.W.
1993-07-01
Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less
Method and apparatus for a catalytic firebox reactor
Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.
2001-01-01
A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.
Apparatus to recover tritium from tritiated molecules
Swansiger, William A.
1988-01-01
An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.
Collecting and recirculating condensate in a nuclear reactor containment
Schultz, Terry L.
1993-01-01
An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.
Collecting and recirculating condensate in a nuclear reactor containment
Schultz, T.L.
1993-10-19
An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.
Ultrasonic probe for inspecting double-wall tube
Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.
1983-01-01
An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.
Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.
1994-01-01
This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.
Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
Shenai, Prathamesh Mahesh; Zhao, Yang
2010-08-01
The performance of nanobearings constructed from double walled carbon nanotubes is considered to be crucially dependent on the initial rotational speed. Wearless rotation ceases for a nanobearing operating beyond a certain angular velocity. We propose a new design of nanobearings by manipulation of double walled carbon nanotubes leading to a flanged structure which possesses a built-in hindrance to the intertube oscillation without obstructing rotational motion. Through blocking the possible leakage path for rotational kinetic energy to the intertube oscillatory motion, the flanged bearing lowers its dissipative tendency when set into motion. Using molecular dynamics, it is shown that on account of its distinctive structure, the flanged bearing has superior operating characteristics and a broader working domain.
Study of the reaction of atomic oxygen with aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1975-01-01
The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.
NASA Astrophysics Data System (ADS)
Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.
2012-12-01
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.
2012-09-15
The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate biasmore » reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.« less
Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan
2016-05-01
HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG
2018-03-01
A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S
2011-05-01
The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.
NASA Astrophysics Data System (ADS)
Carr, Rachel; Double Chooz Collaboration
2015-04-01
In 2011, Double Chooz reported the first evidence for θ13-driven reactor antineutrino oscillation, derived from observations of inverse beta decay (IBD) events in a single detector located ~ 1 km from two nuclear reactors. Since then, the collaboration has honed the precision of its sin2 2θ13 measurement by reducing backgrounds, improving detection efficiency and systematics, and including additional statistics from IBD events with neutron captures on hydrogen. By 2014, the overwhelmingly dominant contribution to sin2 2θ13 uncertainty was reactor flux uncertainty, which is irreducible in a single-detector experiment. Now, as Double Chooz collects the first data with a near detector, we can begin to suppress that uncertainty and approach the experiment's full potential. In this talk, we show quality checks on initial data from the near detector. We also present our two-detector sensitivity to both sin2 2θ13 and sterile neutrino mixing, which are enhanced by analysis strategies developed in our single-detector phase. In particular, we discuss prospects for the first two-detector results from Double Chooz, expected in 2015.
PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. CAMERA IS IN ...
PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. CAMERA IS IN SOUTHEAST CORNER AND FACES NORTHWEST. CONTROL ROOM AT RIGHT. CRANE MONORAIL IS OVER FLOOR HATCHES AND FLOOR OPENINGS. SIX VALVE HANDWHEELS ALONG FAR WALL IN LEFT CENTER VIEW. SEAL TANK IS ON OTHER SIDE OF WALL; PROCESS WATER PIPES ARE BELOW VALVE WHEELS. NOTE CURBS AROUND FLOOR OPENINGS. INL NEGATIVE NO. HD46-26-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAST CHOPPER DETECTOR HOUSE, TRA665. FIRST FLOOR, PLAN AND SECTION, ...
FAST CHOPPER DETECTOR HOUSE, TRA-665. FIRST FLOOR, PLAN AND SECTION, AS PROPOSED FOR MODIFICATION IN 1962. CONCRETE WALLS THREE FEET THICK. EXISTING WINDOWS IN MTR AND DETECTOR HOUSE WALLS WERE TO BE FILLED IN WITH HIGH-DENSITY BRICK. NOTE 20-METER MARK, WHERE THE FAST CHOPPER DETECTOR HAD BEEN LOCATED. F.C. TORKELSON 842-MTR-665-S-2, 4/1962. INL INDEX NO. 531-0665-60-851-150996, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Tinck, S.; Boullart, W.; Bogaerts, A.
2011-08-01
In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.
Inner- and outer-wall sorting of double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
Inner- and outer-wall sorting of double-walled carbon nanotubes.
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
Imaging Fukushima Daiichi reactors with muons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.
2013-05-15
A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi tomore » make this determination in the near future.« less
Imaging Fukushima Daiichi reactors with muons
NASA Astrophysics Data System (ADS)
Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.
2013-05-01
A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.
Ultrasonic probe for inspecting double-wall tube. [Patent application
Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.
1981-05-29
An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.
Sterile Neutrino Search with the Double Chooz Experiment
NASA Astrophysics Data System (ADS)
Hellwig, D.; Matsubara, T.;
2017-09-01
Double Chooz is a reactor antineutrino disappearance experiment located in Chooz, France. A far detector at a distance of about 1 km from reactor cores is operating since 2011; a near detector of identical design at a distance of about 400 m is operating since begin 2015. Beyond the precise measurement of θ 13, Double Chooz has a strong sensitivity to so called light sterile neutrinos. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. In this paper, we present an analysis method to search for sterile neutrinos and the expected sensitivity with the baselines of our detectors.
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION ...
EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION FOR MTR CANAL. CAISSONS FLANK EACH SIDE. COUNTERFORT (SUPPORT PERPENDICULAR TO WHAT WILL BE THE LONG WALL OF THE CANAL) RESTS ATOP LEFT CAISSON. IN LOWER PART OF VIEW, DRILLERS PREPARE TRENCHES FOR SUPPORT BEAMS THAT WILL LIE BENEATH CANAL FLOOR. INL NEGATIVE NO. 739. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Dynamics of heat-pipe reactors
NASA Technical Reports Server (NTRS)
Niederauer, G. F.
1971-01-01
A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.
Integrated head package cable carrier for a nuclear power plant
Meuschke, Robert E.; Trombola, Daniel M.
1995-01-01
A cabling arrangement is provided for a nuclear reactor located within a containment. Structure inside the containment is characterized by a wall having a near side surrounding the reactor vessel defining a cavity, an operating deck outside the cavity, a sub-space below the deck and on a far side of the wall spaced from the near side, and an operating area above the deck. The arrangement includes a movable frame supporting a plurality of cables extending through the frame, each connectable at a first end to a head package on the reactor vessel and each having a second end located in the sub-space. The frame is movable, with the cables, between a first position during normal operation of the reactor when the cables are connected to the head package, located outside the sub-space proximate the head package, and a second position during refueling when the cables are disconnected from the head package, located in the sub-space. In a preferred embodiment, the frame straddles the top of the wall in a substantially horizontal orientation in the first position, pivots about an end distal from the head package to a substantially vertically oriented intermediate position, and is guided, while remaining about vertically oriented, along a track in the sub-space to the second position.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.
2018-04-01
In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.
Liquid metal reactor air cooling baffle
Hunsbedt, Anstein
1994-01-01
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.
Liquid metal reactor air cooling baffle
Hunsbedt, A.
1994-08-16
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.
Experience gained in France on heat recovery from nuclear plants for agriculture and pisciculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balligand, P.; Le Gouellec, P.; Dumont, M.
1978-04-01
Since 1972, the Commissariat a l'Energie Atomique, Electricite de France, and the French Ministry of Agriculture have jointly examined the possibility of using thermal wastes from nuclear power plants for the benefit of agricultural production. A new process to heat greenhouses with water at 303 K using a double-wall plastic mulching laid directly on the soil has been successfully used for a few years on several hectares. When necessary, heat pumps are utilized. Very good results have been obtained for tomatoes, cucumbers, flowers, and strawberries, etc. Outdoor soil heating with buried pipes has been tested in Cadarache near an experimentalmore » pressurized water reactor for market garden crops and forestry. Gains in precocity and yield have been excellent, especially for asparagus, strawberries, and potatoes. Growing of eels has been four times faster in warm water over one year.« less
Self locking drive system for rotating plug of a nuclear reactor
Brubaker, James E.
1979-01-01
This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...
MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...
ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The importance of Soret transport in the production of high purity silicon for solar cells
NASA Technical Reports Server (NTRS)
Srivastava, R.
1985-01-01
Temperature-gradient-driven diffusion, or Soret transport, of silicon vapor and liquid droplets is analyzed under conditions typical of current production reactors for obtaining high purity silicon for solar cells. Contrary to the common belief that Soret transport is negligible, it is concluded that some 15-20 percent of the silicon vapor mass flux to the reactor walls is caused by the high temperature gradients that prevail inside such reactors. Moreover, since collection of silicon is also achieved via deposition of silicon droplets onto the walls, the Soret transport mechanism becomes even more crucial due to size differences between diffusing species. It is shown that for droplets in the 0.01 to 1 micron diameter range, collection by Soret transport dominates both Brownian and turbulent mechanisms.
Reactor ν̄ e disappearance in the Double Chooz experiment
Abe, Y.; Aberle, C.; dos Anjos, J. C.; ...
2012-09-18
The Double Chooz experiment has observed 8249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power×detector mass×live time) exposure using a 10.3 m³ fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of θ₁₃=0 is 8937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin²2θ₁₃=0.109±0.030(stat)±0.025(syst). The data exclude the no-oscillation hypothesis at 99.8% CL (2.9σ).
Using Additive Manufacturing to Optimize FLiBe Coolant Blanket in Fusion Reactors
NASA Astrophysics Data System (ADS)
Fry, Vincent Michael
Fusion reactors have often been hailed as the holy grail of clean energy generation, though a power-generating reactor has never been built due to a multitude of limiting factors. One such factor is the immense 12-15 MW/m2 heat fluxes experienced by the inner wall of the reactor. Multiple groups have proposed the use of tungsten swirl tubes to withstand the heat generated within the reactor core. The primary focus of this investigation is to parameterize this 'first wall' interior structure to determine the highest achievable heat transfer coefficient given the many tungsten configurations enabled via additive manufacturing. Two general tube structures were considered: an orthogonal three-dimensional mesh of various diameters and spacings, as well as a swirl tube geometry with varying 'tape' thicknesses. The coolant liquid proposed is FLiBe (2LiF-BeF2) due to its high specific heat capacity as well as its ability to breed tritium, the fuel for the reactor. This was accomplished using theoretical calculations; computational fluid dynamics and conjugate heat transfer simulations in ANSYS Workbench; as well as an experimental setup to confirm tube pressure drop along the pipe. It was determined that heat transfer coefficients between upwards of 60,000 W/m 2K were readily achievable, keeping the first wall temperature around 1300 K. A multitude of designs proved to be feasible given the pumping power restrictions, though the suggested design going forward is a swirl tube with 2 mm 'tape' thickness and 3 m/s inlet velocity. Simulated pressure drop with water was accurate to within 30% of experimentally measured values, giving confidence in the credibility of the results.
LOFT. Interior view of entry to reactor building, TAN650. Camera ...
LOFT. Interior view of entry to reactor building, TAN-650. Camera is inside entry (TAN-624) and facing north. At far end of domed chamber are penetrations in wall for electrical and other connections. Reactor and other equipment has been removed. Date: March 2004. INEEL negative no. HD-39-5-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Process of forming catalytic surfaces for wet oxidation reactions
NASA Technical Reports Server (NTRS)
Jagow, R. B. (Inventor)
1977-01-01
A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.
REACTOR SERVICE BUILDING, TRA635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR ...
REACTOR SERVICE BUILDING, TRA-635, INTERIOR. CAMERA FACES NORTHWEST TOWARDS INTERIOR WALL ENCLOSING STORAGE AND OFFICE SPACE ALONG THE WEST SIDE. AT RIGHT EDGE IS DOOR TO MTR BUILDING. FROM RIGHT TO LEFT, SPACE WAS PLANNED FOR A LOCKER ROOM, MTR ISSUE ROOM, AND STORAGE AREAS AND RELATED OFFICES. NOTE SECOND "MEZZANINE" FLOOR ABOVE. INL NEGATIVE NO. 10227. Unknown Photographer, 3/23/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Three-dimensional Monte Carlo calculation of some nuclear parameters
NASA Astrophysics Data System (ADS)
Günay, Mehtap; Şeker, Gökmen
2017-09-01
In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Berthoud, L.; McCulloch, Y.; Bowman, P.; Holt, J.; Bridges, J.; Bennett, A.; Gaubert, F.; Duvet, L.
2018-04-01
The need for biocontainment from Planetary Protection Policy and the need for cleanliness for scientific investigation requires that the samples returned from Mars by the Mars Sample Return (MSR) mission must be handled in a Double Walled Isolator (DWI).
Double Retort System for Materials Compatibility Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. Munne; EV Carelli
2006-02-23
With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contaminationmore » has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.« less
Heckman, T.P.
1961-05-01
A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)
Design of a tokamak fusion reactor first wall armor against neutral beam impingement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, R.A.
1977-12-01
The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Gould, R. K.; Srivastava, R.
1979-01-01
Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.
A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems.
Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H Henry
2016-11-01
Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO 2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO 2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO 2 -NH 3 -MgCl 2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH 3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.
Structural and electronic properties of double-walled boron nitride nanocones
NASA Astrophysics Data System (ADS)
Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.
2018-01-01
First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.
Wave propagation of carbon nanotubes embedded in an elastic medium
NASA Astrophysics Data System (ADS)
Natsuki, Toshiaki; Hayashi, Takuya; Endo, Morinobu
2005-02-01
This paper presents analytical models of wave propagation in single- and double-walled carbon nanotubes, as well as nanotubes embedded in an elastic matrix. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The double-walled nanotubes are coupled together through the van der Waals force between the inner and outer nanotubes. For carbon nanotubes embedded in an elastic matrix, the surrounding elastic medium can be described by a Winkler model. Tube wave propagation of both symmetrical and asymmetrical modes can be analyzed based on the present elastic continuum model. It is found that the asymmetrical wave behavior of single- and double-walled nanotubes is significantly different. The behavior is also different from that in the surrounding elastic medium.
Simulation of chemical-vapor-deposited silicon carbide for a cold wall vertical reactor
NASA Astrophysics Data System (ADS)
Lee, Y. L.; Sanchez, J. M.
1997-07-01
The growth rate of silicon carbide obtained by low-pressure chemical vapor deposition from tetramethylsilane is numerically simulated for a cold wall vertical reactor. The transport equations for momentum, heat, and mass transfer are simultaneously solved by employing the finite volume method. A model for reaction rate is also proposed in order to predict the measured growth rates [A. Figueras, S. Garelik, J. Santiso, R. Rodroguez-Clemente, B. Armas, C. Combescure, R. Berjoan, J.M. Saurel and R. Caplain, Mater. Sci. Eng. B 11 (1992) 83]. Finally, the effects of thermal diffusion on the growth rate are investigated.
MTR WING, TRA604. ONE OF THE LABORATORY UNITS ALONG THE ...
MTR WING, TRA-604. ONE OF THE LABORATORY UNITS ALONG THE SOUTH SIDE WALL. NOTE SINK, CABINET, TABLE, AND HOOD UNITS. DUCT ABOVE RECEIVES CONTAMINATED AIR AND SENDS IT TO FAN HOUSE AND STACK. NOTE PARTITION WALL BEHIND WORK UNITS. THE HEALTH PHYSICS LAB WAS SIMILARLY EQUIPPED. WINDOW AT LEFT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 4225. Unknown Photographer, 2/13/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corwin, W.R.; Broadhead, B.L.; Suzuki, M.
1997-02-01
There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Arena
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window andmore » door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.« less
Vibrations and structureborne noise in space station
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.
1987-01-01
Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.
Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arena, Lois B.
High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super-insulated homes. The information is applicable to both new construction and gut-rehabilitation projects in Climate Zones 5 and higher.« less
PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...
PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAN HOUSE INTERIOR. THREE MOTOR DRIVES FOR POSITIVE DISPLACEMENT BLOWERS ...
FAN HOUSE INTERIOR. THREE MOTOR DRIVES FOR POSITIVE DISPLACEMENT BLOWERS LINE UP ON NORTH WALL. CONCRETE PEDESTALS. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 4291. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Pulsed eddy current inspection of broach support plates in steam generators
NASA Astrophysics Data System (ADS)
Mokros, Sarah Gwendolyn
Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. Currently, conventional Eddy Current Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed Eddy Current (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.
ETR, TRA642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF ...
ETR, TRA-642. CONSOLE FLOOR. CAMERA IS ON WEST SIDE OF FLOOR AND FACES NORTH. OUTER WALL OF STORAGE CANAL IS AT RIGHT. SHIELDING IS THICKER AT LOWER LEVEL, WHERE SPENT FUEL ELEMENTS WILL COOL AFTER REMOVAL FROM REACTOR. INL NEGATIVE NO. 56-1401. Jack L. Anderson, Photographer, 5/1/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C W; Reisman, D B; McLean, H S
2007-05-30
A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less
System and method for determining coolant level and flow velocity in a nuclear reactor
Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd
2013-09-10
A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)
1991-01-01
A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
ETR ELECTRICAL BUILDING, TRA648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. ...
ETR ELECTRICAL BUILDING, TRA-648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. METAL ROOF AND PUMICE BLOCK WALLS. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. 56-3708. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT ...
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT OF MTR BUILDING, TRA-603. WOOD PLANKS REST ON CANAL WALL OBSERVABLE IN FOREGROUND. INL NEGATIVE NO. 11745. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Means for supporting fuel elements in a nuclear reactor
Andrews, Harry N.; Keller, Herbert W.
1980-01-01
A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively
A Course in Chemical Reactor Design.
ERIC Educational Resources Information Center
Takoudis, Christos G.
1983-01-01
Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)
Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes
NASA Astrophysics Data System (ADS)
Adhikari, Kapil
A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different curvature has also been investigated. The curvature of the nanotubes affects the nature of the interaction between the nanotubes and the transition teal atoms. Our study of functionalized SiCNTs by 3d transition metal atoms indicates that these nanostructures can have possible applications in spintronics and nano-magnetic storage.
Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel
NASA Astrophysics Data System (ADS)
Liu, Yu; Sebastian, Alexis
2015-05-01
This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, L.D.
1964-12-07
The altitudes and times of ablation have been determined for the SNAP-10A, SS-316 vessel wall reentering under various conditions. The results are confined to one typical location on the reactor and to one typical reentry trajectory. The location is the side wall of the vessel and the trajectory is the one used in NAA-SR-8303.
Heating performances of a IC in-blanket ring array
NASA Astrophysics Data System (ADS)
Bosia, G.; Ragona, R.
2015-12-01
An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.
Heating performances of a IC in-blanket ring array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosia, G., E-mail: gbosia@to.infn.it; Ragona, R.
2015-12-10
An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) basedmore » on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.« less
Rathnayake, Samira; Mongan, John; Torres, Andrew S.; Colborn, Robert; Gao, Dong-Wei; Yeh, Benjamin M; Fu, Yanjun
2016-01-01
To assess the ability of dual-energy CT (DECT) to separate intravenous contrast of bowel wall from intraluminal contrast, we scanned 16 rabbits on a clinical DECT scanner: n=3 using only iodinated intravenous contrast; and n=13 double-contrast enhanced scans using iodinated intravenous contrast and experimental enteric non-iodinated contrast agents in the bowel lumen (5 bismuth-, 4 tungsten-, and 4 tantalum-based). Representative image pairs from conventional CT images and DECT iodine density maps of small bowel (116 pairs from 232 images) were viewed by four abdominal imaging attending radiologists to independently score each comparison pair on a visual analog scale (−100 to +100%) for: 1) preference in small bowel wall visualization; and 2) preference in completeness of intraluminal enteric contrast subtraction. Median small bowel wall visualization was scored 39 and 42 percentage points (95% CI: 30–44% and 36–45%, p<0.001 both) higher at double-contrast DECT than at conventional CT with enteric tungsten and tantalum contrast, respectively. Median small bowel wall visualization at double-contrast DECT was scored 29 and 35 percentage points (95% CI: 20–35% and 33–39%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Median completeness of intraluminal enteric contrast subtraction in double-contrast DECT iodine density maps was scored 28 and 29 percentage points (95% CI: 15–31% and 28–33%, p<0.001 both) higher with enteric tungsten and tantalum, respectively, than with bismuth contrast. Results suggest that in vivo double-contrast DECT with iodinated intravenous and either tantalum- or tungsten-based enteric contrast provide better visualization of small bowel than conventional CT. PMID:26892945
ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. INSIDE UTILITY CORRIDOR ALONG ...
ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. INSIDE UTILITY CORRIDOR ALONG SOUTH PERIMETER WALL (COMMON TO ELECTRICAL BUILDING, TRA-648). CAMERA FACES WEST. INL NEGATIVE NO. HD46-16-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Ortho-positronium observation in the Double Chooz experiment
Abe, Y.; dos Anjos, J. C.; Barriere, J. C.; ...
2014-10-01
The Double Chooz experiment measures the neutrino mixing angle θ13 by detecting reactor ν¯e via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PBF Reactor Building (PER620). Camera facing southeast in second basement. ...
PBF Reactor Building (PER-620). Camera facing southeast in second basement. Round form and reinforcing steel surround reactor vessel pit, which will be heavily shielded by several feet of concrete. Block-out is for door to sub-pile room. Rectangular form and rebar beyond pit is for canal wall. Photographer: John Capek. Date: March 10, 1967. INEEL negative no. 67-1643 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Gravity Scaling of a Power Reactor Water Shield
NASA Technical Reports Server (NTRS)
Reid, Robert S.; Pearson, J. Boise
2007-01-01
A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).
NASA Astrophysics Data System (ADS)
Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.
2006-05-01
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, R.; Ihmann, K.; Ihmann, J.
2006-05-15
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecularmore » beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
Film cooling: case of double rows of staggered jets.
Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L
2001-05-01
An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.
Noise control prediction for high-speed, propeller-driven aircraft
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Rennison, D. C.; Wilby, E. G.; Marsh, A. H.
1980-01-01
An analytical study is described which explores add-on treatments and advanced concepts for the reduction of noise levels in three high-speed aircraft driven by propellers. Noise reductions of 25 to 28 dB are required to achieve a goal of an A-weighted sound level not greater than 80 dB. It is found that only a double-wall system, with a limp inner wall or trim panel, can achieve the required noise reductions. Weight penalties are estimated for the double-wall treatments. These penalties are 0.75% to 1.51% of the aircraft takeoff weight for the particular baseline designs selected.
Count-doubling time safety circuit
Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.
1981-01-01
There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.
Effect of shear stress on cell cultures and other reactor problems
NASA Technical Reports Server (NTRS)
Schleier, H.
1981-01-01
Anchorage dependent cell cultures in fluidized beds are tested. Feasibility calculations indicate the allowed parameters and estimate the shear stresses therein. In addition, the diffusion equation with first order reaction is solved for the spherical shell (double bubble) reactor with various constraints.
Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.
NASA Astrophysics Data System (ADS)
Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.
2016-10-01
The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP
NASA Astrophysics Data System (ADS)
Thind, Harwinder
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.
PBF (PER620) interior. Detail view of door in north wall ...
PBF (PER-620) interior. Detail view of door in north wall of reactor bay. Camera facing north. Note tonnage weighting of hatch covers in floor. Date: May 2004. INEEL negative no. HD-41-8-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Bulge-Formed Cooling Channels In A Wall
NASA Technical Reports Server (NTRS)
Mcaninch, Michael D.; Holbrook, Richard L.; Lacount, Dale F.; Kawashige, Chester M.; Crapuchettes, John M.; Scala, James
1996-01-01
Vessels bounded by walls shaped as surfaces of revolution and contain integral cooling channels fabricated by improved method involving combination of welding and bulge forming. Devised to make rocket nozzles; also useful in fabrication of heat exchangers, stationary combustion chambers, and chemical-reactor vessels. Advantages include easier fabrication and greater flexibility of design.
Hu, Rui; Yu, Yiqi
2016-09-08
For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less
Gliding arc in tornado using a reverse vortex flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander
The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less
The role of leak air in a double-wall chimney
NASA Astrophysics Data System (ADS)
Lichtenegger, Klaus; Hebenstreit, Babette; Pointner, Christian; Schmidl, Christoph; Höftberger, Ernst
2015-06-01
In modern buildings with tight shells, often room-independent air supply is required for proper operation of biomass stoves. One possibility to arrange this supply is to use a double-wall chimney with flue gas leaving through the pipe and fresh air entering through the annular gap. A one-dimensional quasi-static model based on balance equations has been developed and compared with experimental data. Inclusion of leak air is crucial for reproduction of the experimental results.
MTR WING, TRA604. BASEMENT FLOOR PLAN. FIREPROOF RECORD ROOM BELOW ...
MTR WING, TRA-604. BASEMENT FLOOR PLAN. FIRE-PROOF RECORD ROOM BELOW COUNTING ROOM. HEATING AND COOLING EQUIPMENT. UNSPECIFIED EXPANSION AREA ALONG WEST WALL. BLAW-KNOX 3150-4-1, 7/1950. INL INDEX NO. 531-0604-00-098-100007, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PROCESS WATER BUILDING, TRA605. CAMERA LOOKING EAST AND TO WEST ...
PROCESS WATER BUILDING, TRA-605. CAMERA LOOKING EAST AND TO WEST WALL NOW ENCLOSING FLASH EVAPORATORS. PIPES IN FOREGROUND WILL CARRY DEMINERALIZED COOLING WATER TO AND FROM THE MTR. INL NEGATIVE NO. 2937. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
FAST CHOPPER BUILDING, TRA665. DETAIL SHOWS UPPER AND LOWER LEVEL ...
FAST CHOPPER BUILDING, TRA-665. DETAIL SHOWS UPPER AND LOWER LEVEL WALLS OF DIFFERING MATERIALS. NOTE DOORWAY TO MTR TO RIGHT OF CHOPPER BUILDING'S CLIPPED CORNER. CAMERA FACING WEST. INL NEGATIVE NO. HD42-1. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.
2015-09-01
The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with an intricately shaped cross section simulating the flow pass sections for liquid-metal coolants cooling the core of nuclear reactors.
EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Reigel, M.
2011-02-28
The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less
Nuclear reactor vessel fuel thermal insulating barrier
Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.
2013-03-19
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.
Nuclear component horizontal seismic restraint
Snyder, Glenn J.
1988-01-01
A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.
Helium trapping in aluminium near the critical dose on blister formation
NASA Astrophysics Data System (ADS)
Fukahori, T.; Kanda, Y.; Mori, K.; Tobimatsu, H.
1985-08-01
Blistering and flaking caused by energetic He ions emitted from the plasma in fusion reactors possibly contribute to first-wall erosion. In order to study their characteristics, the numbers of He atoms trapped in He-ion-irradiated Al samples have been measured by a He atom measurement system and every sample has been observed by a scanning electron microscope. The samples have been prepared from a polycrystalline plate and irradiated with 20 keV He ions at room temperature. The saw-tooth like variation of the trapped He atoms with the dose has three edges corresponding to the blistering, flaking and double flaking, respectively. The critical doses for the three events are found to be 4 × 10 21, 7 × 10 21, 12 × 10 21 He atoms m -2, respectively. The average number of He atoms included in an event is 5.4 × 10 10 He atoms in the case of the blistering and 2.1 × 10 11 He atoms in the case of flaking.
Reactor design for uniform chemical vapor deposition-grown films without substrate rotation
Wanlass, M.
1985-02-19
A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.
Reactor design for uniform chemical vapor deposition-grown films without substrate rotation
Wanlass, Mark
1987-01-01
A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.
Silicon Carbide as a tritium permeation barrier in tungsten plasma-facing components
NASA Astrophysics Data System (ADS)
Wright, G. M.; Durrett, M. G.; Hoover, K. W.; Kesler, L. A.; Whyte, D. G.
2015-03-01
The control of tritium inventory is of great importance in future fusion reactors, not only from a safety standpoint but also to maximize a reactor's efficiency. Due to the high mobility of hydrogenic species in tungsten (W) one concern is the loss of tritium from the system via permeation through the tungsten plasma-facing components (PFC). This can lead to loss of tritium through the cooling channels of the wall thereby mandating tritium monitoring and recovery methods for the cooling system of the first wall. The permeated tritium is then out of the fuel cycle and cannot contribute to energy production until it is recovered and recycled into the system.
Protective interior wall and attach8ing means for a fusion reactor vacuum vessel
Phelps, Richard D.; Upham, Gerald A.; Anderson, Paul M.
1988-01-01
An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.
Vaidyanathan, Swaminathan; Adamson, Martyn G.
1986-01-01
An improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.
Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor
Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas
2017-01-01
The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869
Schreiber, R.B.; Fero, A.H.; Sejvar, J.
1997-12-16
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.
Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James
1997-01-01
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming
The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the bestmore » of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.« less
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...
2017-05-08
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.
2017-05-01
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
NASA Astrophysics Data System (ADS)
Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.
2017-11-01
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.
Status report on the fusion breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1980-12-12
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost lessmore » than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.« less
Fuel leak detection apparatus for gas cooled nuclear reactors
Burnette, Richard D.
1977-01-01
Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.
Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.
Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei
2012-08-25
Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.
Klingl, Andreas
2014-01-01
The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.
47. ARAI. Interior view of operating wall of hot cell ...
47. ARA-I. Interior view of operating wall of hot cell in ARA-626. Note stands for operators at viewing windows. Manipulators with hand grips extend cables and other controls into hot cell through ducts above windows. Ineel photo no. 81-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Prediction of radial breathing-like modes of double-walled carbon nanotubes with arbitrary chirality
NASA Astrophysics Data System (ADS)
Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad
2014-10-01
The radial breathing-like modes (RBLMs) of double-walled carbon nanotubes (DWCNTs) with arbitrary chirality are investigated by a simple analytical model. For this purpose, DWCNT is considered as double concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential and a molecular mechanics model are used to calculate the vdW forces and to predict the mechanical properties, respectively. The validity of these theoretical results is confirmed through the comparison of the experimental results. Finally, a new approach is proposed to determine the diameters and the chiral indices of the inner and outer tubes of the DWCNTs with high precision.
NASA Astrophysics Data System (ADS)
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-02-01
A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.
PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...
PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...
PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Pressurized water reactor flow skirt apparatus
Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.
2016-04-05
A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.
Recovery of tritium from tritiated molecules
Swansiger, William A.
1987-01-01
A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.
NASA Technical Reports Server (NTRS)
Anghaie, S.; Chen, G.
1996-01-01
A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and radiation heat fluxes for the gas core reactors. The maximum value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with higher wall temperature. This behavior is due to the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that at temperature close to 3500 K the radiative heat flux is comparable with the convective heat flux in a uranium fluoride failed gas core reactor.
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Fusion reactor blanket/shield design study
NASA Astrophysics Data System (ADS)
Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.
1979-07-01
A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.
Solar gasification of biomass: design and characterization of a molten salt gasification reactor
NASA Astrophysics Data System (ADS)
Hathaway, Brandon Jay
The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus containing the molten salt to maximize utilization of absorbed solar energy, resulting in a predicted utilization efficiency of 70%. Finite element analysis was used to finalize the design to achieve acceptable thermal stresses less than 34.5 MPa to avoid material creep.
Nuclear reactor composite fuel assembly
Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.
1980-01-01
A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.
Vaidyanathan, S.; Adamson, M.G.
1986-01-28
Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.
Vaidyanathan, S.; Adamson, M.G.
1983-12-16
An improved fuel pin cladding, particularly adapted for use in breeder reactors, is described which consist of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel an/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients.
Systems and methods for processing irradiation targets through a nuclear reactor
Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.
2016-05-03
Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.
Computer-controlled wall servicing robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefkowitz, S.
1995-03-01
After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants duringmore » fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.« less
Shielded fluid stream injector for particle bed reactor
Notestein, John E.
1993-01-01
A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.
Nuclear design of a very-low-activation fusion reactor
NASA Astrophysics Data System (ADS)
Cheng, E. T.; Hopkins, G. R.
1983-06-01
The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.
NASA Astrophysics Data System (ADS)
Mufti Azis, Muhammad; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni
2018-03-01
Indonesia is aiming to produce 30 million tones/year of crude palm oil (CPO) by 2020. As a result, 90 million tones/year of POME will be produced. POME is highly polluting wastewater which may cause severe environmental problem due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Due to the limitation of open pond treatment, the use of AFBR has been considered as a potential technology to treat POME. This study aims to develop mathematical models of lab-sized Anaerobic Fluidized Bed Reactor (AFBR) in batch and continuous processes. In addition, the AFBR also utilized natural zeolite as an immobilized media for microbes. To initiate the biomass growth, biodiesel waste has been used as an inoculum. In the first part of this study, a batch AFBR was operated to evaluate the COD, VFA, and CH4 concentrations. By comparing the batch results with and without zeolite, it showed that the addition of 17 g/gSCOD zeolite gave larger COD decrease within 20 days of operation. In order to elucidate the mechanism, parameter estimations of 12 kinetic parameters were proposed to describe the batch reactor performance. The model in general could describe the batch experimental data well. In the second part of this study, the kinetic parameters obtained from batch reactor were used to simulate the performance of double column AFBR where the acidogenic and methanogenic biomass were separated. The simulation showed that a relatively long residence time (Hydraulic Residence Time, HRT) was required to treat POME using the proposed double column AFBR. Sensitivity analyses was conducted and revealed that μm1 appeared to be the most sensitive parameter to reduce the HRT of double column AFBR.
the 29th International Cosmic Ray Conference, Pune India, August 10, 2005 Reactor Searches for Theta Rings, Bombay India, August 2, 2005 NOvA Presentation at the Workshop on Physics of Atmospheric Neutrinos and Neutrinos from Muon Storage Rings, Bombay India, August 2, 2005 The Double Chooz Double Fast
NASA Astrophysics Data System (ADS)
Campolina, Bruno L.
The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are identified in the 100 Hz to 10 kHz frequency range for double-walls under diffuse acoustic field and under point-force excitations. Non-resonant transmission is higher at low frequencies (frequencies lower than 1 kHz) while the structure-borne and the airborne paths dominate at mid- and high-frequencies, around 1 kHz and higher, respectively. An experimental validation on double-walls shows that the model is able to predict changes in the overall transmission caused by different structural couplings (rigid coupling, coupling via isolators and structurally uncoupled). Noise reduction means adapted to each transmission path, such as absorption, dissipation and structural decoupling, may be then derived. Keywords: Statistical energy analysis, Vibration isolator, Double-wall, Transfer path analysis, Transmission Loss.
Intrinsic phonon properties of double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.
2017-03-01
Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.
ERIC Educational Resources Information Center
Field, Christopher Ryan
2009-01-01
Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1962-12-01
An arrangement is described for nuclear power plants including a reactor and at least one heat exchanger having primary and secondary circuits through which are passed heat-conveying fluids. Pressure-resisting walls about the heat exchangers and the reactor are either integral with or rigidly connected to one another. The heat exchangers are arranged so that their casings tend to shield withdrawn control rods from damage by radiation. (R.J.S.)
PBF Reactor Building (PER620). Construction view shows native lava rock ...
PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...
ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Alternative approaches to plasma confinement
NASA Technical Reports Server (NTRS)
Roth, J. R.
1977-01-01
The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.
PROCESS WATER BUILDING, TRA605. FLASH EVAPORATORS ARE PLACED ON UPPER ...
PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATORS ARE PLACED ON UPPER LEVEL OF EAST SIDE OF BUILDING. WALLS WILL BE FORMED AROUND THEM. WORKING RESERVOIR BEYOND. CAMERA FACING EASTERLY. EXHAUST AIR STACK IS UNDER CONSTRUCTION AT RIGHT OF VIEW. INL NEGATIVE NO. 2579. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DEMINERALIZER BUILDING, TRA608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES ...
DEMINERALIZER BUILDING, TRA-608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES DEMINERALIZER UNITS ALONG NORTH WALL. CAMERA FACES EAST. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3996A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Real-time monitoring of enzyme activity in a mesoporous silicon double layer
Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.
2009-01-01
A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Behzad, Somayeh; Moradian, Rostam; Chegel, Raad
2010-12-01
The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.
2010-02-01
approximately 3.0-acre site. The facility would include retail gasoline sales through the installation of three 20,000-gallon double -walled tanks; 16 multi...construction activities; soil erosion control methods and best management practices would reduce potential for effects; additional impervious surfaces...through the installation of three 20,000-gallon, double -walled tanks; 16 multi- product dispensers with 32 fuel dispenser nozzles; a canopy roofing
Complex Dynamic Development of Poliovirus Membranous Replication Complexes
Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie
2012-01-01
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780
Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G
2017-01-01
Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair. PMID:29051810
Combustion synthesis continuous flow reactor
Maupin, G.D.; Chick, L.A.; Kurosky, R.P.
1998-01-06
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.
Combustion synthesis continuous flow reactor
Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.
1998-01-01
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.
Ohlinger, L.A.; Seitz, F.; Young, G.J.
1959-02-17
Test-hole construction in a reactor to facilitate inserting and removing test specimens from the reactor for irradiation therein is discussed. An elongated chamber extends from the outer face of the reactor shield into the reactor. A shield box, having an open end, is sealed to thc outer face of the reactor shield by its open end surrounding the outer end of the chamber. A removable door is provided in the side wall of the shield box for inscrtion and removal of test specimens. A means operable from thc exterior of the shield box is provided for transferring test specimens between the shield box and the irradiation position within the chamber and consists of an elongated rod having a specimen tray engaging member on its inner end, which may be manipulated by the operator.
MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILELIKE STEPS) PROJECTS ...
MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILE-LIKE STEPS) PROJECTS FROM THE SOUTHEAST CORNER OF THE MTR TOWARD SOUTHEAST CORNER OF BUILDING, WHERE SHIELDING BLOCKS BEGIN TO SURROUND THE TUNNEL AS IT NEARS DETECTING INSTRUMENTS NEAR THE BUILDING WALL. GEAR RELATED TO CRYSTAL NEUTRON SPECTROMETER IS IN FOREGROUND SURROUNDED BY SHIELDING. DATA CONSOLES ARE AT MID-LEVEL OF EAST FACE. OTHER WORK PROCEEDS ON TOP OF AND ELSEWHERE AROUND REACTOR. NOTE TOOLS HANGING AGAINST SOUTHEAST CORNER, USED TO CHANGE FUEL ELEMENTS AND OTHER REACTOR ITEMS DURING REFUELING CYCLES. INL NEGATIVE NO. 10439. Unknown Photographer, 4/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai
2018-05-01
In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.
5. Double crib barn, main floor, 4th room from northeast, ...
5. Double crib barn, main floor, 4th room from northeast, southeast and southwest walls - Wilkins Farm, Barn, South side of Dove Hollow Road, 6000 feet east of State Route 259, Lost City, Hardy County, WV
24. WEST CONFEDERATE AVENUE, DOUBLE CULVERT APPEARS TO BE "BOX", ...
24. WEST CONFEDERATE AVENUE, DOUBLE CULVERT APPEARS TO BE "BOX", BUT IS PIPE WITH SQUARE HEAD WALL OPENING. NOTE ARCHED TOP STYLE USED BY CCC. VIEW SE. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA
Improvements in Production of Single-Walled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Balzano, Leandro; Resasco, Daniel E.
2009-01-01
A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.
Microfabricated alkali vapor cell with anti-relaxation wall coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straessle, R.; Pétremand, Y.; Briand, D.
2014-07-28
We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominques, Jesus A.
2012-01-01
The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
PBF Cooling Tower under construction. Cold water basin is five ...
PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DOE requests waiver on double containment for HLW canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobsenz, G.
1994-02-22
The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement.
Charge Transfer in Saturation Doping of Double-Wall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Tchernatinsky, Alexander; Jayanthi, Chakram; Sumanasekera, Gamini; Wu, Shi-Yu
2004-03-01
Recent experimental evidences suggest that the outer tube of a double-wall carbon nanotube (DWCNT) may serve as a 'Faraday' cage (G. Chen, et al., Phys. Rev. Lett., 90, 257403 (2003)). In this presentation, we report the result of our systematic study of the effect of saturation doping of a (10,10) single-wall carbon nanotube, a (5,5)@(10,10) DWCNT, and a C_60@(10,10) peapod using DFT-based VASP computational package (G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)). By comparing the resulting charge transfer of the above mentioned cases we shall provide the physics underlying the Faraday cage behavior of DWCNTs. Acknowledgments: This work was supported by the NSF (DMR-0112824) and the U.S.DOE (DE-FG02-00ER45832).
Baba, H; Onizuka, Y; Nakao, M; Fukahori, M; Sato, T; Sakurai, Y; Tanaka, H; Endo, S
2011-02-01
In this study, microdosimetric energy distributions of secondary charged particles from the (10)B(n,α)(7)Li reaction in boron-neutron capture therapy (BNCT) field were calculated using the Particle and Heavy Ion Transport code System (PHITS). The PHITS simulation was performed to reproduce the geometrical set-up of an experiment that measured the microdosimetric energy distributions at the Kyoto University Reactor where two types of tissue-equivalent proportional counters were used, one with A-150 wall alone and another with a 50-ppm-boron-loaded A-150 wall. It was found that the PHITS code is a useful tool for the simulation of the energy deposited in tissue in BNCT based on the comparisons with experimental results.
Glow discharge plasma deposition of thin films
Weakliem, Herbert A.; Vossen, Jr., John L.
1984-05-29
A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.
Experimental investigation into fast pyrolysis of biomass using an entrained-flow reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, M.; Benham, C.
1981-02-01
Pyrolysis experiments were performed using 30 and 90cm entrained-flow reactors, with steam as a carrier gas and two different feedstocks - wheat straw and powdered material drived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 700/sup 0/ to 1400/sup 0/C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II aremore » due to the presence of plastics in the feedstock. Batch experiments were run on wheat straw using a Pyroprobe/sup TM/. The samples were heated at a high rate (20,000/sup 0/ C/sec) to 1000/sup 0/ and held at 1000/sup 0/C for a variable period of time from 0.05 to 4.95s. For times up to 0.15s volume fractions of ethylene, propylene, and methane increase while that of carbon dioxide decreases. Subsequently, only carbon monoxide and hydrogen are produced. The change may be related to poor thermal contact and suggests caution in using the Pyroprobe.« less
Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor
Merrill, Brad J.
2015-03-25
The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less
Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke
2017-11-16
Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.
CONTROL RODS FOR NUCLEAR REACTOR CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1961-11-15
A reactor control rod is designed which has increased effectiveness as compared with the width of the aperture in the pressure vessel through which it passes. The control rod carries six fins, three on each side, and two of the fins are fixed while the other, being adjustable, is capable of movement from between the fixed fins to an extended position. Thus, the control rod assembly can be arranged so that the parts within the core form a substantially complete shell around the reactor central axis, while the apertures on the pressure vessel wall are well spaced for strength. (D.L.C.)
Dynamic analysis of gas-core reactor system
NASA Technical Reports Server (NTRS)
Turner, K. H., Jr.
1973-01-01
A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.
TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
Bandura, Andrei V; Evarestov, Robert A
2014-02-15
Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Membranes with functionalized carbon nanotube pores for selective transport
Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil
2015-01-27
Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.
Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang
2013-09-15
A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya
2009-02-01
The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.
Ajori, S; Ansari, R; Darvizeh, M
2016-03-01
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.
Double-walled silicon nanotubes: an ab initio investigation
NASA Astrophysics Data System (ADS)
Lima, Matheus P.
2018-02-01
The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.
van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M
2007-10-01
The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.
Bayramoglu, Gulay; Arica, M Yakup; Genc, Aysenur; Ozalp, V Cengiz; Ince, Ahmet; Bicak, Niyazi
2016-06-01
A novel method was developed for facile immobilization of enzymes on silica surfaces. Herein, we describe a single-step strategy for generating of reactive double bonds capable of Michael addition on the surfaces of silica particles. This method was based on reactive thin film generation on the surfaces by heating of impregnated self-curable polymer, alpha-morpholine substituted poly(vinyl methyl ketone) p(VMK). The generated double bonds were demonstrated to be an efficient way for rapid incorporation of enzymes via Michael addition. Catalase was used as model enzyme in order to test the effect of immobilization methodology by the reactive film surface through Michael addition reaction. Finally, a plug flow type immobilized enzyme reactor was employed to estimate decomposition rate of hydrogen peroxide. The highly stable enzyme reactor could operate continuously for 120 h at 30 °C with only a loss of about 36 % of its initial activity.
Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Wong, Jia Haur; Wu, Kan; Liu, Huan Huan; Ouyang, Chunmei; Wang, Honghai; Aditya, Sheel; Shum, Ping; Fu, Songnian; Kelleher, E. J. R.; Chernov, A.; Obraztsova, E. D.
2011-04-01
Polarization Rotation Locked Vector Solitons (PRLVSs) are experimentally observed for the first time in a fiber ring laser passively mode-locked by a single-wall carbon nanotube (SWCNT) saturable absorber. Period-doubling of these solitons at certain birefringence values has also been observed. We show that fine adjustment to the intracavity birefringence can swing the PRLVSs from period-doubled to period-one state without simultaneous reduction in the pump strength. The timing jitter for both states has also been measured experimentally and discussed analytically using the theoretical framework provided by the Haus model.
NASA Astrophysics Data System (ADS)
Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng
2003-11-01
Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.
NASA Astrophysics Data System (ADS)
Storch, Joel A.; Elishakoff, Isaac
2013-11-01
We calculate the natural frequencies and mode shapes of a cantilevered double-walled carbon nanotube carrying a rigid body—representative of a bacterium or virus—at the tip of the outer nanotube. By idealizing the nanotubes as Bernoulli-Euler beams, we are able to obtain exact expressions for both the mode shapes and characteristic frequency equation. Separate analyses are performed for the special case of a concentrated tip mass and the more complicated situation where the tip body also exhibits inertia and mass center offset from the beam tip.
Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina
Aune, Jan Arthur; Johansen, Kai
2004-10-19
A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.
Capuder, F.C.; Dearwater, J.R.
1959-02-10
An improved nozzle assembly useful in a process for the direct reduction of uranium hexafluoride to uranium tetrafluoride by means of dissociated ammonia in a heated reaction vessel is descrlbed. The nozzle design provides for intimate mixing of the two reactants and at the same time furnishes a layer of dissociated ammonia adjacent to the interior wall of the reaction vessel, thus preventing build-up of the reaction product on the vessel wall.
113. ARAI Hot cell (ARA626) Building wall sections and details ...
113. ARA-I Hot cell (ARA-626) Building wall sections and details of radio chemistry lab. Shows high-bay roof over hot cells and isolation rooms below grade storage pit for fuel elements. Norman Engineering Company: 961-area/SF-626-A-4. Date: January 1959. Ineel index code no. 068-0626-00-613-102724. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Observation of nuclear reactors on satellites with a balloon-borne gamma-ray telescope
NASA Technical Reports Server (NTRS)
O'Neill, Terrence J.; Kerrick, Alan D.; Ait-Ouamer, Farid; Tumer, O. Tumay; Zych, Allen D.
1989-01-01
Four Soviet nuclear-powered satellites flying over a double Compton gamma-ray telescope resulted in the detection of gamma rays with 0.3-8.0 MeV energies on April 15, 1988, as the balloonborne telescope searched, from a 35-km altitude, for celestial gamma-ray sources. The satellites included Cosmos 1900 and 1932. The USSR is the only nation currently employing moderated nuclear reactors for satellite power; reactors in space may cause significant problems for gamma-ray astronomy by increasing backgrounds, especially in the case of gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Rajput, Mayank; Vala, Sudhirsinh; Srinivasan, R.; Abhangi, M.; Subhash, P. V.; Pandey, B.; Rao, C. V. S.; Bora, D.
2018-01-01
Chromium is an important alloying element of stainless steel (SS) and SS is the main constituent of structural material proposed for fusion reactors. Energy and double differential cross section data will be required to estimate nuclear responses in the materials used in fusion reactors. There are no experimental data of energy and double differential cross section, available for neutron induced reactions on natural chromium at 14 MeV neutron energy. In this study, energy and double differential cross section data of (n,p) and (n,α) reactions for all the stable isotopes of chromium have been estimated, using appropriate nuclear models in TALYS code. The cross section data of stable isotopes are later converted into the energy and double differential cross section data of natural Cr using the isotopic abundance. The contribution from compound, pre-equilibrium and direct nuclear reaction to total reaction have also been calculated for 52,50Cr(n,p) and 52Cr(n,α). The calculation of energy differential cross section shows that most of emitted protons and alpha particles are of 3 and 8 MeV respectively. The calculated data is compared with the data from EXFOR data library and is found to be in good agreement.
Clearing of ventilating emissions in low temperature environment of plasma
NASA Astrophysics Data System (ADS)
Mansurov, R. Sh; Rafalskaya, T. A.
2017-11-01
The method of high-temperature processing of streams of the ventilating air which is a subject clearing from organic pollutions is developed. Data about its efficiency, including on a number of economic parameters are obtained. Results of work are recommended for use, first of all, by development clearing plasma-thermal reactors (CPTR) for clearing air, especially from toxic substances, and also for large technological clearing installations, containing organic ventilating emissions (OVE). It is created experimental CPTR. Laws of the expiration of a plasma jet in stream of OVE limited by cylindrical walls, water-cooled channel are experimentally investigated. Dependences of a trajectory and long-range the plasma jet blown radially in stream of OVE are received. Heat exchange of stream of OVE with walls of CPTR after blowing a plasma jet is experimentally investigated; dependences of distribution of temperatures on length of a reactor and a thermal stream in a wall of channel of CPTR are received. Are investigated chemical compound of OVE after plasma-thermal clearing, some experimental data by formation of oxides of nitrogen and mono-oxide of carbon during clearing are received.
ETR, TRA642 AND TRA647. FLOOR PLANS FOR FIRST AND SECOND ...
ETR, TRA-642 AND TRA-647. FLOOR PLANS FOR FIRST AND SECOND FLOORS OF THE OFFICE AND CONTROL BUILDING ALONG THE NORTH WALL OF THE ETR BUILDING. HEALTH PHYSICS, OPERATIONS, AND CONTROL ROOM. AIRLOCK DOOR. OFFICES. STAIRWAY LOCATIONS. KAISER ETR-5528-MTR-642-A-3, 10/1955. INL INDEX NO. 532-0642-00-100911, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS ...
ETR BUILDING, TRA-642, INTERIOR. BASEMENT. CAMERA FACES SOUTH AND LOOKS AT DOOR TO M-3 CUBICLE. CUBICLE WALLS ARE MADE OF LEAD SHIELDING BRICKS. VALVE HANDLES AND STEMS PERTAIN TO SAMPLING. METAL SHIELDING DOOR. NOTE GLOVE BOX TO RIGHT OF CUBICLE DOOR. INL NEGATIVE NO. HD-46-21-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR HEAT EXCHANGER BUILDING, TRA644. SOUTH SIDE. CAMERA FACING NORTH. ...
ETR HEAT EXCHANGER BUILDING, TRA-644. SOUTH SIDE. CAMERA FACING NORTH. NOTE POURED CONCRETE WALLS. ETR IS AT LEFT OF VIEW. NOTE DRIVEWAY INSET AT RIGHT FORMED BY DEMINERALIZER WING AT RIGHT. SOUTHEAST CORNER OF ETR, TRA-642, IN VIEW AT UPPER LEFT. INL NEGATIVE NO. HD46-36-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
PROCESS WATER BUILDING, TRA605. FLOOR AND ROOF PLANS FOR SECOND ...
PROCESS WATER BUILDING, TRA-605. FLOOR AND ROOF PLANS FOR SECOND FLOOR. DETAILS OF CONCRETE ROOF SLABS. FLASH EVAPORATOR SUPPORTS AND PIPE OPENINGS TO TANKS BELOW. NOTE SPECIFIES THAT EQUIPMENT IS TO BE INSTALLED BEFORE ERECTION OF ROOF AND WALLS. BLAW-KNOX 3150-805-4, 1/1951. INL INDEX NO. 531-0605-62-098-100660, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR BUILDING, TRA642, INTERIOR. CONSOLE FLOOR, NORTH HALF. CAMERA IS ...
ETR BUILDING, TRA-642, INTERIOR. CONSOLE FLOOR, NORTH HALF. CAMERA IS NEAR NORTHWEST CORNER AND FACING SOUTH ALONG WEST CORRIDOR. STORAGE CANAL IS ALONG LEFT OF VIEW; PERIMETER WALL, ALONG RIGHT. CORRIDOR WAS ONE MEANS OF WALKING FROM NORTH TO SOUTH SIDE OF CONSOLE FLOOR. INL NEGATIVE NO. HD46-18-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures
NASA Astrophysics Data System (ADS)
Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian
2015-05-01
To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, H.; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585; Yamaguchi, T., E-mail: tyamag@riken.jp
We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots withmore » serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.« less
Bharti, Gaurav; Groves, Leslie; Sanger, Claire; Thompson, James; David, Lisa; Marks, Malcolm
2013-05-01
Transverse rectus abdominus muscle flaps (TRAM) can result in significant abdominal wall donor-site morbidity. We present our experience with bilateral pedicle TRAM breast reconstruction using a double-layered polypropylene mesh fold over technique to repair the rectus fascia. A retrospective study was performed that included patients with bilateral pedicle TRAM breast reconstruction and abdominal reconstruction using a double-layered polypropylene mesh fold over technique. Thirty-five patients met the study criteria with a mean age of 49 years old and mean follow-up of 7.4 years. There were no instances of abdominal hernia and only 2 cases (5.7%) of abdominal bulge. Other abdominal complications included partial umbilical necrosis (14.3%), seroma (11.4%), partial wound dehiscence (8.6%), abdominal weakness (5.7%), abdominal laxity (2.9%), and hematoma (2.9%). The TRAM flap is a reliable option for bilateral autologous breast reconstruction. Using the double mesh repair of the abdominal wall can reduce instances of an abdominal bulge and hernia.
Interchangeable whole-body and nose-only exposure system
Cannon, W.C.; Allemann, R.T.; Moss, O.R.; Decker, J.R. Jr.
1992-03-31
An exposure system for experimental animals includes a container for a single animal which has a double wall. The animal is confined within the inner wall. Gaseous material enters a first end, flows over the entire animal, then back between the walls and out the first end. The system also includes an arrangement of valve-controlled manifolds for supplying gaseous material to, and exhausting it from, the containers. 6 figs.
Interchangeable whole-body and nose-only exposure system
Cannon, William C.; Allemann, Rudolph T.; Moss, Owen R.; Decker, Jr., John R.
1992-01-01
An exposure system for experimental animals includes a container for a single animal which has a double wall. The animal is confined within the inner wall. Gaseous material enters a first end, flows over the entire animal, then back between the walls and out the first end. The system also includes an arrangement of valve-controlled manifolds for supplying gaseous material to, and exhausting it from, the containers.
Study of noise transmission through double wall aircraft windows
NASA Technical Reports Server (NTRS)
Vaicaitis, R.
1983-01-01
Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
Ullah, Farman; Zang, Qin; Javed, Salim; Zhou, Aihua; Knudtson, Christopher A.; Bi, Danse; Hanson, Paul R.; Organ, Michael G.
2013-01-01
A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy. PMID:24244871
An assessment for the erosion rate of DEMO first wall
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2018-01-01
In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.
Effect of high Z impurities on the ignition and Lawson conditions for a thermonuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meade, D.M.
1973-06-01
The recent advances in plasma heating and confinement using Tokamak devices have produced plasmas which approach thermonuclear conditions. Substantial amounts (0.1 to 1%) of partially stripped high Z impurities have been observed in these discharges. These high Z impurities (Fe,Mo,W) are presumably due to plasma bombardment of the limiter and vacuum chamber wall. Since the plasma energy will be increasing sharply in the next sequence of experiments from approx. =1kJ in ST tokamak to approx. =3MJ in PLT and up to approx. =100MJ in a feasibility experiment, the bombardment of the wall and limiter will become increasingly important. In thismore » paper, the effects of high Z impurities on the ignition and Lawson conditions for a DT reactor are calculated. 7 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, D.J.; Panitz, J.K.G.; Mattox, D.M.
The erosion of materials by low energy ions is of concern in fusion reactors since high Z impurities in the plasma cause radiation cooling. Ion bombardment of the fusion reactor chamber walls arises from ions of fuel (D, T) material, gaseous impurities (O, C), and impurities from eroded components (Fe, Co, Ni, C, Mo, etc.) being accelerated across the wall sheath potential (0.1 to 1 keV). A Kaufman type ion source has been characterized for use with hydrogen, and subsequently used to determine the relative erosion rates of bulk Mo, C, Cu, coating of TiB/sub 2/, B/sub 4/C, Be, VBe/submore » 12/ and other materials. Ions of hydrogen (Z=1), argon (Z=18), and xenon (Z=54) at acceleration potentials of 250, 500, and 1000 V have been used to determine erosion yields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Qiao, Weiye; Li, Yuliang
The structure stabilities and electronic properties are investigated by using ab initio self-consistent-field crystal orbital method based on density functional theory for the one-dimensional (1D) double-wall nanotubes made of n-gon SiO{sub 2} nanotubes encapsulated inside zigzag carbon nanotubes. It is found that formation of the combined systems is energetically favorable when the distance between the two constituents is around the Van der Waals scope. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. The frontier energy bands (the highest occupied band and the lowest unoccupied band) of double-wall nanotubes are mainly derived frommore » the corresponding carbon nanotubes. The mobilities of charge carriers are calculated to be within the range of 10{sup 2}–10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for the hybrid double-wall nanotubes. Young’s moduli are also calculated for the combined systems. For the comparison, geometrical and electronic properties of n-gon SiO{sub 2} nanotubes are also calculated and discussed. - Graphical abstract: Structures and band structures of the optimum 1D Double walls nanotubes. The optimized structures are 3-gon SiO2@(15,0), 5-gon SiO2@(17,0), 6-gon SiO2@(18,0) and 7-gon SiO2@(19,0). - Highlights: • The structure and electronic properties of the 1D n-gon SiO{sub 2}@(m,0)s are studied using SCF-CO method. • The encapsulation of 1D n-gon SiO{sub 2} tubes inside zigzag carbon nanotubes can be energetically favorable. • The 1D n-gon SiO{sub 2}@(m,0)s are all semiconductors. • The mobility of charge carriers and Young’s moduli are calculated.« less
Narita, Masato; Matsusue, Ryo; Hata, Hiroaki; Yamaguchi, Takashi; Otani, Tetsushi; Ikai, Iwao
2016-03-01
Pancreatoenteric anastomotic failure is the main cause of pancreatic fistula after pancreaticoduodenectomy (PD). Double purse-string telescoped pancreaticogastrostomy, reported by Addeo et al., is an easy and safe procedure.1 The aim of this article was to introduce our technique of pancreaticogastrostomy using an atraumatic self-retaining ring retractor (Alexis Wound Retractor) in a patient undergoing subtotal stomach-preserving PD (SSPPD). An 82-year-old woman presented with pancreatic cancer located in the uncinate process of pancreas. She underwent SSPPD with resection of the superior mesenteric vein (SMV) and double purse-string telescoped pancreaticogastrostomy using an Alexis wound retractor. The pancreas was transected on the portal vein and the remnant pancreas was separated from the splenic vein and artery. After extirpation of specimens and reconstruction of the SMV, two seromuscular purse-string sutures were placed on the posterior wall of the upper stomach. The anterior wall of the upper stomach was incised and opened using an Alexis wound retractor. The remnant pancreas was inserted into the gastric cavity through the posterior wall of the stomach and sutured circumferentially with running stitches to fix on the gastric muco-muscular layer. After closure of the anterior wall of the stomach, purse-string sutures were tightened and pancreaticogastrostomy was completed. The patient's postoperative course was uneventful and a computed tomography imaging study revealed no fluid collection around the pancreaticogastrostomy. This patient was discharged on the 14th postoperative day. Use of an Alexis wound retractor makes it easier to perform a double purse-string telescoped pancreaticogastrostomy by a self-expanding property to allow a wide operative view.
Interior building details of Building A, Room A002: plastered painted ...
Interior building details of Building A, Room A-002: plastered painted west brick wall, four light double-hung wood window with brick arch lintel, east plastered wall (could be granite), wood ceiling; northerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA
17. INTERIOR OF NORTH BEDROOM SHOWING 6LIGHT OVER 1LIGHT, DOUBLEHUNG, ...
17. INTERIOR OF NORTH BEDROOM SHOWING 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG, WOOD-FRAME WINDOWS IN PAIRED ARRANGEMENT ON NORTH WALL AND SINGLY ON EAST WALL. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Bhattacharjee, Saikat; Mondal, Mrinmoy; De, Sirshendu
2017-05-01
Effects of overlapping electric double layer and high wall potential on transport of a macrosolute for flow of a power law fluid through a microchannel with porous walls are studied in this work. The electric potential distribution is obtained by coupling the Poisson's equation without considering the Debye-Huckel approximation. The numerical solution shows that the center line potential can be 16% of wall potential at pH 8.5, at wall potential -73 mV and scaled Debye length 0.5. Transport phenomena involving mass transport of a neutral macrosolute is formulated by species advective equation. An analytical solution of Sherwood number is obtained for power law fluid. Effects of fluid rheology are studied in detail. Average Sherwood number is more for a pseudoplastic fluid compared to dilatant upto the ratio of Poiseuille to electroosmotic velocity of 5. Beyond that, the Sherwood number is independent of fluid rheology. Effects of fluid rheology and solute size on permeation flux and concentration of neutral solute are also quantified. More solute permeation occurs as the fluid changes from pseudoplastic to dilatant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-07-01
Management of power exhaust will be a crucial task for tokamak fusion reactors. Reactor concepts are often proposed with double-null divertors, i.e. having two magnetic separatrices in an up-down symmetric configuration. This arrangement is potentially advantageous since the majority of the tokamak exhaust power tends to flow to the outer pair of divertor legs at large major radius, where the geometry is favorable for spreading the heat over a large surface area and there is more room for advanced divertor configurations. Despite the importance, there have been relatively few studies of divertor power sharing in near double null configurations and no studies at the poloidal magnetic fields and scrape-off layer power widths anticipated for a reactor. Motivated by this need we have undertaken a systematic study on Alcator C-Mod, examining the effect of magnetic flux balance on the power sharing among the four divertor legs in near double-null plasmas. Ohmic L-modes at three values of plasma current and ICRF-heated enhanced D-alpha (EDA) H-modes and I-modes at a single value of plasma current are explored, producing poloidal magnetic fields of 0.42, 0.62 and 0.85 Tesla. For Ohmic L-modes and ICRF-heated EDA H-modes, we find that the point of equal power sharing between upper and lower divertors occurs remarkably close to a balanced double null. Power sharing amongst the outer (upper versus lower) and inner (upper versus lower) pairs of divertors can be described in terms of a logistic function of magnetic flux balance, consistent with heat flux mapping along magnetic field lines to the outer midplane. Power sharing between inner and outer legs is found to follow a Gaussian-like function of magnetic flux balance with non-zero power to the inner divertors at double null. The overall behavior of H-modes operated near double null and for I-modes operating to within one heat flux e-folding of double null are found similar to Ohmic L-modes, with a significant reduction of power on the inner divertor legs. The results are encapsulated in terms of empirically-informed analytic functions of magnetic flux balance. When combined with magnetic equilibrium control system specifications, these relationships can be used to specify the power flux handling requirements for each of the four divertor target plates.
Double product and end-organ damage in African and Caucasian men: the SABPA study.
Schultz, A J; Schutte, A E; Schutte, R
2013-08-10
Increasing urbanisation in sub-Saharan African countries is causing a rapid increase in cardiovascular disease. Evidence suggests that Africans have higher blood pressures and a higher prevalence of hypertension-related cardiovascular morbidity and mortality, compared to Caucasians. We investigated double product (systolic blood pressure × heart rate), a substantial measure of cardiac workload, as a possible cardiovascular risk factor in African and Caucasian men. The study consisted of 101 urbanised African and 101 Caucasian male school teachers. We measured 24h ambulatory blood pressure and the carotid cross-sectional wall area, and determined left ventricular hypertrophy electrocardiographically by means of the Cornell product. Urinary albumin and creatinine were analysed to obtain the albumin-to-creatinine ratio. Africans had higher 24h, daytime and nighttime systolic- and diastolic blood pressure, heart rate and resultant double product compared to the Caucasians. In addition, markers of end-organ damage, albumin-to-creatinine ratio and left ventricular hypertrophy were higher in the Africans while cross-sectional wall area did not differ. In Africans after single partial and multiple regression analysis, 24h systolic blood pressure, but not double product or heart rate, correlated positively with markers of end-organ damage (cross-sectional wall area: β=0.398, P=0.005; left ventricular hypertrophy: β=0.455, P<0.001; albumin-to-creatinine ratio: β=0.280, P=0.012). No associations were evident in Caucasian men. Double product may not be a good marker of increased cardiovascular risk when compared to systolic blood pressure in African and Caucasian men. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
1988-01-01
the reactor Duties: The Process Engineers rotate with the Lead Operator to monitor the process at the top of the reactor through the site glass...pant cuffs and coverhoods of coveralls, will be attached to gloves, boots and coveralls, using duct tape. * IF AMBIENT WORK STATIONS TEMPERATURE IS...L of the sample fortification solution (Section ýý8) containing 1C 12-2,3,7,8-TCDD at a concentration of 0.5 ng/1,Land C14-2,3,7,8-TCDD at a
TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR
Ohlinger, L.A.; Seitz, F.; Young, G.J.
1959-02-17
Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.
Generic Stellarator-like Magnetic Fusion Reactor
NASA Astrophysics Data System (ADS)
Sheffield, John; Spong, Donald
2015-11-01
The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.
Synchronized fusion development considering physics, materials and heat transfer
NASA Astrophysics Data System (ADS)
Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.
2017-12-01
Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q = 10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.
2014-01-01
Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2013-09-01
A collaboration with Building America team Building Science Corporation helped this builder win a 2013 Housing Innovation Award in 2013—a 2,508-ft2 home built on speculation in the Devens, MA, subdivision. For the above-grade walls, the super-insulated building shell starts with 12 inch thick double walls composed of two 2x4 16-inch on-center walls spaced 5 inches apart. The space between the walls is filled with low-density (open-cell) spray foam for an insulation value of R-45.
Built-up outer wall and roofing sections for double walled envelope homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodhead, B.
1980-01-01
A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.
WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...
WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
GAMMA FACILITY, TRA611, INTERIOR. WITH HELP OF OVERHEAD CHAIN AND ...
GAMMA FACILITY, TRA-611, INTERIOR. WITH HELP OF OVERHEAD CHAIN AND HOOK, SCIENTIST GUIDES METAL CONTAINER (HOLDING POTATOES, IN THIS CASE) INTO RECEIVING "COLUMN" IN THE GAMMA CANAL. NOTE OTHER COLUMNS AT RIGHT AND LEFT WALLS OF CANAL. NEAR BOTTOM OF CANAL, SPENT MTR FUEL WILL IRRADIATE POTATOES. INL NEGATIVE NO. 56-439. R.G. Larsen, Photographer, 2/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Machining Test Specimens from Harvested Zion RPV Segments for Through Wall Attenuation Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosseel, Thomas M; Sokolov, Mikhail A; Nanstad, Randy K
2015-01-01
The decommissioning of the Zion Units 1 and 2 Nuclear Generating Station (NGS) in Zion, Illinois presents a special opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing Nuclear Power Plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, the selective procurement of materials, structures, and componentsmore » from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), the cutting of these segments into sections and blocks from the beltline and upper vertical welds and plate material, the current status of machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for chemical and microstructural (TEM, APT, SANS, and nano indention) characterization, as well as the current test plans and possible collaborative projects. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models (Rosseel et al. (2012) and Rosseel et al. (2015)).« less
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
A study of the Coriolis effect on the fluid flow profile in a centrifugal bioreactor.
Detzel, Christopher J; Thorson, Michael R; Van Wie, Bernard J; Ivory, Cornelius F
2009-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR), which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This article focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore, a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated, the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results are confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
A Study of the Coriolis Effect on the Fluid Flow Profile in a Centrifugal Bioreactor
Detzel, Christopher J.; Thorson, Michael R.; Van Wie, Bernard J.; Ivory, Cornelius F.
2011-01-01
Increasing demand for tissues, proteins, and antibodies derived from cell culture is necessitating the development and implementation of high cell density bioreactors. A system for studying high density culture is the centrifugal bioreactor (CCBR) which retains cells by increasing settling velocities through system rotation, thereby eliminating diffusional limitations associated with mechanical cell retention devices. This paper focuses on the fluid mechanics of the CCBR system by considering Coriolis effects. Such considerations for centrifugal bioprocessing have heretofore been ignored; therefore a simpler analysis of an empty chamber will be performed. Comparisons are made between numerical simulations and bromophenol blue dye injection experiments. For the non-rotating bioreactor with an inlet velocity of 4.3 cm/s, both the numerical and experimental results show the formation of a teardrop shaped plume of dye following streamlines through the reactor. However, as the reactor is rotated the simulation predicts the development of vortices and a flow profile dominated by Coriolis forces resulting in the majority of flow up the leading wall of the reactor as dye initially enters the chamber, results confirmed by experimental observations. As the reactor continues to fill with dye, the simulation predicts dye movement up both walls while experimental observations show the reactor fills with dye from the exit to the inlet. Differences between the simulation and experimental observations can be explained by excessive diffusion required for simulation convergence, and a slight density difference between dyed and un-dyed solutions. Implications of the results on practical bioreactor use are also discussed. PMID:19455639
Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation
2014-01-01
We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT–polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics. PMID:24735347
Marinova, Polina; Lippert, Stephan; von Estorff, Otto
2017-10-01
Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.
Sahu, Prashant; Kashaw, Sushil K; Jain, Sanyog; Sau, Samaresh; Iyer, Arun K
2017-05-10
Penetration enhancers coated biodegradable polymeric nanogels loaded with cytotoxic drugs applied via the topical route, can be a promising strategy for improving the chemotherapeutic efficiency of skin cancers. The major objective of proposed research was to investigate the in vitro and ex vivo chemotherapeutic potential of double walled PLGA-chitosan biodegradable nanogel entrapped with 5-fluororuacil (5-FU) coated with eucalyptus oil, topically applied onto the skin. 5-FU was first entrapped in PLGA core by solvent evaporation technique followed by coating with cationic chitosan for ionic interaction with anionic skin cancer cell membrane. A surface coating of eucalyptus oil (1%) was employed to improve the penetration efficacy of the nanogel into stratum corneum. The surface modified biodegradable double walled nanogel was characterized for particle size, charge and thermal properties followed by pH dependent in vitro analysis. Human keratinocyte (HaCaT) cell line was employed for the bio- and cyto-compatibility testing prior to the hemolysis assay and coagulation assessment. A porcine skin ex vivo screening was performed for assessing the penetration potential of the nanogels. DLS and TEM revealed a particle size about 170nm for the double walled nanogels. The nanogels also exhibited high thermal stability as analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). The drug entrapment efficacy was about ~40%. The drug release showed sustained release pattern noted up to 24h. The low hemolysis of 2.39% with short prothrombin time (PT) and activated partial thromboplastin time (APTT) of 14.2 and 35.5s respectively, revealed high biocompatibility of the nanogels. The cellular uptake and localization was assessed by confocal microscopy. The cytotoxicity (MTT assay) on HaCaT cell line demonstrated high cytocompatibilty of the nanogels. An ex vivo evaluation using porcine skin displayed efficient and steady state flux of 5-FU from the biodegradable nanogles into the skin, while the histology of the porcine skin revealed enhanced penetration potential of eucalyptus oil coated PLGA-chitosan double walled nanogels. Taken together the in vivo and ex vivo results portend promising potential for the utility of the biodegradable nanogels for treating skin cancers. Copyright © 2017. Published by Elsevier B.V.
6. Workers laying up the graphite core of the 105B ...
6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.; ...
2018-03-20
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
Modification of UASB reactor by using CFD simulations for enhanced treatment of municipal sewage.
Das, Suprotim; Sarkar, Supriya; Chaudhari, Sanjeev
2018-02-01
Up-flow anaerobic sludge blanket (UASB) has been in use since last few decades for the treatment of organic wastewaters. However, the performance of UASB reactor is quite low for treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. In the present research work, a modification was done in the design of UASB to improve mixing of reactor liquid which is important to enhance the reactor performance. The modified UASB (MUASB) reactor was designed by providing a slanted baffle along the height of the reactor having an angle of 5.7° with the vertical wall. A two-dimensional computational fluid dynamics (CFD) simulation of three phase gas-liquid-solid flow in MUASB reactor was performed and compared with conventional UASB reactor. The CFD study indicated better mixing in terms of vorticity magnitude in MUASB reactor as compared to conventional UASB, which was reflected in the reactor performance. The performance of MUASB was compared with conventional UASB reactor for the onsite treatment of domestic sewage as LSW. Around 16% higher total chemical oxygen demand removal efficiency was observed in MUASB reactor as compared to conventional UASB during this study. Therefore, this MUASB model demonstrates a qualitative relationship between mixing and performance during the treatment of LSW. From the study, it seems that MUASB holds promise for field applications.
Davy, John L
2012-08-01
The author has published equations for predicting the air borne sound transmission of double leaf cavity walls due to the structure borne sound transmission across the air cavity via (possibly resilient) line connections, but has never published the full derivation of these equations. The author also derived equations for the case when the connections are rigid point connections but has never used them or published them or their derivations. This paper will present the full derivation of the author's theory of the air borne sound transmission of double leaf cavity walls due to the structure borne sound transmission across the air cavity via point or line connections which are modeled as four pole networks. The theoretical results will be compared with experimental results on wooden stud cavity walls from the National Research Council of Canada because the screw spacing is given for these results. This enables connections via studs and screws to be modeled as point connections and avoids the need to make any assumptions about the compliance of the equivalent point or line connections.
A study of the structural-acoustic response and interior noise levels of fuselage structures
NASA Technical Reports Server (NTRS)
Koval, L. R.
1978-01-01
Models of both flat and curved fuselage panels were tested for their sound transmission characteristics. The effect of external air flow on transmission loss was simulated in a subsonic wind-tunnel. By numerically evaluating the known equations for field-incidence transmission loss of single-walled panels in a computer program, a comparison of the theory with the test results was made. As a further extension to aircraft fuselage simulation, equations for the field-incidence transmission loss of a double-walled panel were derived. Flow is shown to provide a small increase in transmission loss for a flat panel. Curvature is shown to increase transmission loss for low frequencies, while also providing a sharp decrease in transmission loss at the ring frequency of the cylindrical panel. The field-incidence transmission loss of a double-walled panel was found to be approximately twice that for a single-walled panel, with the addition of dips in the transmission loss at the air gap resonances and at the critical frequency of the internal panel.
Electron kinetics at the plasma interface
NASA Astrophysics Data System (ADS)
Bronold, Franz Xaver; Fehske, Holger; Pamperin, Mathias; Thiessen, Elena
2018-05-01
The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the object's negative charge arising from the accumulation of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The laboratory impacts at Idaho National Lab consist of neutron radiography reactor doubles throughput; electric vehicle wireless charging; assessing chemical weapons in Panama; hot cell window replacement; developing better batteries and other impacts.
Mei, Ling; Chen, Jin; Zong, Liang; Zhu, Yan; Liang, Chun; Jones, Raleigh O; Zhao, Hong-Bo
2017-12-01
Digenic Connexin26 (Cx26, GJB2) and Cx30 (GJB6) heterozygous mutations are the second most frequent cause of recessive deafness in humans. However, the underlying deafness mechanism remains unclear. In this study, we created different double Cx26 and Cx30 heterozygous (Cx26 +/- /Cx30 +/- ) mouse models to investigate the underlying pathological changes and deafness mechanism. We found that double Cx26 +/- /Cx30 +/- heterozygous mice had hearing loss. Endocochlear potential (EP), which is a driving force for hair cells producing auditory receptor current, was reduced. However, unlike Cx26 homozygous knockout (Cx26 -/- ) mice, the cochlea in Cx26 +/- /Cx30 +/- mice displayed normal development and had no apparent hair cell degeneration. Gap junctions (GJs) in the cochlea form two independent networks: the epithelial cell GJ network in the organ of Corti and the connective tissue GJ network in the cochlear lateral wall. We further found that double heterozygous deletion of Cx26 and Cx30 in the epithelial cells did not reduce EP and had normal hearing, suggesting that Cx26 +/- /Cx30 +/- may mainly impair gap junctional functions in the cochlear lateral wall and lead to EP reduction and hearing loss. Most of Cx26 and Cx30 in the cochlear lateral wall co-expressed in the same gap junctional plaques. Moreover, sole Cx26 +/- or Cx30 +/- heterozygous mice had no hearing loss. These data further suggest that digenic Cx26 and Cx30 mutations may impair heterozygous coupling of Cx26 and Cx30 in the cochlear lateral wall to reduce EP, thereby leading to hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselyov, V.A.; Sokov, L.M.
The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it hasmore » been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.« less
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
Flowing gas, non-nuclear experiments on the gas core reactor
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Suckling, D. H.; Copper, C. G.
1972-01-01
Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.
MTR WING A, TRA604, INTERIOR. BASEMENT. DETAIL OF A19 LAB ...
MTR WING A, TRA-604, INTERIOR. BASEMENT. DETAIL OF A-19 LAB AREA ALONG SOUTH WALL. SIGN ON FLOOR DIRECTS WORKERS TO OBTAIN WHOLE BODY FRISK UPON LEAVING AREA. SIGN ON EQUIPMENT IN CENTER OF VIEW REQUESTS WORKERS TO "NOTIFY HEALTH PHYSICS BEFORE WORKING ON THIS SYSTEM." CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-13-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube-3
2017-12-14
however, several universal and intrinsic problems remain. First, since the dewetting of a thin catalyst film into particles upon heating is a... heated to 800 °C in 15 minutes under Ar atmosphere, maintained for various times, and cooled down to room temperature. - Annealing of Fe-implanted...located 12 cm downstream from the middle of the tube reactor. Then the reactor was heated to 820 °C over 15 min with flowing Ar gas. During the ramping
HOT CELL BUILDING, TRA632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL ...
HOT CELL BUILDING, TRA-632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL NO. 2 FROM STAIRWAY ALONG NORTH WALL. OBSERVATION WINDOW ALONG WEST SIDE BENEATH "CELL 2" SIGN. DOORWAY IN LEFT OF VIEW LEADS TO CELL 1 WORK AREA OR TO EXIT OUTDOORS TO NORTH. RADIATION DETECTION MONITOR TO RIGHT OF DOOR. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-28-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2014-06-02
thick-walled glass reactors fitted with ACE-threads under an argon atmosphere. The reactors were dried under vacuum then refilled with argon five times...were settled in individual dishes containing 10 ml of suspension at ~20°C on the laboratory benches. After 2 h the slides were exposed to a submerged ...and D20). This was done in order to see how the surfaces rearranged themselves after prolonged periods submerged in water, as would be the case on
Wang, Zeng-Guang; Chai, Guo-Hua; Wang, Zhi-Yao; Tang, Xian-Feng; Sun, Chang-Jiang; Zhou, Gong-Ke; Ma, San-Mei
2013-05-01
Bioactive gibberellins (GAs) are a type of important plant growth regulators, which play the key roles in multiple processes, such as seed germination, leaf expansion, flowering, fruit bearing, and stem development. Its biosynthesis is regulated by a variety of enzymes including gibberellin 3-oxidase that is a key rate-limiting enzyme. In Arabidopsis, gibberellin 3-oxidase consists of four members, of which AtGA3OX1 and AtGA3OX2 are highly expressed in stems, suggesting the potential roles in the stem development played by the two genes. To date, there are few studies on AtGA3OX1 and AtGA3OX2 regulating secondary wall thickening in stems. In this study, we used the atga3ox1atga3ox2 double mutant as the materials to study the effects of AtGA3OX1 and AtGA3OX2 genes on secondary wall thickening in stems. The results indicated that simulations repression of AtGA3OX1 and AtGA3OX2 genes resulted in significantly reduction of secondary wall thickening of fiber cells, but not that of vessel cells. Three main components (cellulose, hemicelluloses, and lignin) were also dramatically suppressed in the double mutants. qRT-PCR analysis demonstrated that the expressions of secondary wall biosynthetic genes and the associated transcription factors were obviously affected in AtGA3OX1 and AtGA3OX2 double mutant. Therefore, we presume that Arabidopsis AtGA3OX1 and AtGA3OX2 genes might activate the expression of these transcription factors, thus regulate secondary wall thickening in stems. Together, our results provide a theoretical basis for enhancing the lodging resistance of food crops and improving the biomass of energy plants by genetically engineering Arabidopsis AtGA3OX homologs.
Wang, Qiang; Cha, Chuan-Sin; Lu, Juntao; Zhuang, Lin
2009-01-28
The nature and properties of Pt surfaces in contact with pure water in PEM-H2O reactors were mimetically studied by employing CV measurements with microelectrode techniques. These "Pt/water" interfaces were found to be electrochemically polarizable, and the local interfacial potential relative to reversible hydrogen electrode (RHE) potential in pure water is numerically the same as the potential value measured against a RHE in contact with PEM as the reference electrode. However, the structural parameters of the electric double layer at the "Pt/water" interfaces can be quite different from those at the "Pt/PEM" interfaces, and the kinetics of electrode processes could be seriously affected by the structure of electric double layer in pure water media. Besides, there is active diffusional flow of intermediates of electrode reactions between the "Pt/water" and the "Pt/PEM" interfaces, thus facilitating the active involvement of the "Pt/water" interfaces in the current-generation mechanism of PEM fuel cells and other types of PEM-H2O reactors.
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
Modification and characterization of a high-energy photon irradiation facility using nitrogen-16
NASA Astrophysics Data System (ADS)
Roy, Tapash Kumar
This work involves fabrication and characterization of a reactor source of high energy (˜7 MeV) nitrogen-16 photons for application in evaluation of dosimetric responses of personnel devices and portable instruments. The N-16 source has been established by continuously flowing coolant water from the core of a 1 MW research reactor through a cylindrical thin walled aluminium chamber. Dose measurements have been made at selected distances of interest along the depth axis both for with and without a near-air equilibrium wall of polymethyl methacrylate (PMMA) in place. Photon dose and exposure measurements were done using condenser-R ionization chambers with sufficiently thick walls to yield an approximate transient charged particle equilibrium (TCPE) condition. Field areal uniformity was defined using large area Kodak Readypack RP films along with lead foil radiators. Dosimetric quantities of interest include skin dose, eye (lens) dose, and 1 cm deep dose. Measurements were made at selected depths of 7, 300, and 1000 mg cm-2 for specific evaluation of these respective quantities. Photon spectral analysis was performed with a NaI(Tl) scintillation spectrometry system. Additionally, beta radiation measurements, and evaluation of neutron dose contributions to the radiation field were completed.
The role of the reactor wall in hydrothermal biomass conversions.
Fábos, Viktória; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas
2012-11-01
The processing of renewable feedstocks to platform chemicals and, to a lesser degree, fuels is a key part of sustainable development. In particular, the combination of lignocellulosic biomass with hydrothermal upgrading (HTU), using high temperature and pressure water (HTPW), is experiencing a renaissance. One of the many steps in this complicated process is the in-situ hydrogenation of intermediate compounds. As formic acid and related low-molecular-weight oxygenates are among the species generated, it is conceivable that they act as a hydrogen source. Such hydrogenations have been suggested to be catalyzed by water, by bases like NaOH, and/or to involve "reactive/nascent hydrogen". To achieve the temperatures and pressures required for HTU, it is necessary to conduct the reactions in high-pressure vessels. Metals are typical components of their walls and/or internal fittings. Here, using cyclohexanone as a model compound for more complex biomass-derived molecules, iron in the wall of high-pressure stainless steel reactors is shown to be responsible for the hydrogenation of ketones with low-molecular-weight oxygenates acting as a hydrogen source in combination with water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of frequency on the uniformity of symmetrical RF CCP discharges
NASA Astrophysics Data System (ADS)
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-05-01
A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15–45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions.
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
NUCLEAR REACTOR UNLOADING APPARATUS
Leverett, M.C.; Howe, J.P.
1959-01-20
An unloading device is described for a heterogeneous reactor of the type wherein the fuel elements are in the form of cylindrical slugs and are disposed in horizontal coolant tubes which traverse the reactor core, coolant fluid being circulated through the tubes. The coolant tubes have at least two inwardly protruding ribs from their lower surfaces to support the slugs in spaced relationship to the inside walls of the tubes. The unloading device consists of a ribbon-like extractor member insertable into the coolant tubes in the space between the ribs and adapted to slide under the fuel slugs thereby raising them off of the ribs and forming a slideway for removing them from the reactor. The fuel slugs are ejected by being forced out of the tubes by incoming new fuel slugs or by a push rod insentable through the inlet end of the fuel tubes.
Zinn, W.H.
1958-07-01
A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.
Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition
Vermerris, Wilfred; Sherman, Debra M.; McIntyre, Lauren M.
2010-01-01
The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants did not develop into mature plants, unlike the triple mutants bm1-bm2-bm3 and bm1-bm3-bm4. PMID:20410320
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Bureau of School Planning.
A floor plan accompanies each of six chronologically arranged schemes for housing educational programs. Scheme A represents the in-line corridor plan whose main characteristics are--(1) double loaded corridors with fixed bearing walls, (2) single window walls providing minimal light and ventilation, and (3) small classrooms with fixed desks and…
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P. (Inventor); Grosveld, Ferdinand M. W. A. (Inventor)
1991-01-01
An apparatus is disclosed for reducing acoustic transmission from mechanical or acoustic sources by means of a double wall partition, within which an acoustic pressure field is generated by at least one secondary acoustic source. The secondary acoustic source is advantageously placed within the partition, around its edges, or it may be an integral part of a wall of the partition.
Tank Remote Repair System Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.
2002-12-06
This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.
General aviation aircraft interior noise problem: Some suggested solutions
NASA Technical Reports Server (NTRS)
Roskam, J.; Navaneethan, R.
1984-01-01
Laboratory investigation of sound transmission through panels and the use of modern data analysis techniques applied to actual aircraft is used to determine methods to reduce general aviation interior noise. The experimental noise reduction characteristics of stiffened flat and curved panels with damping treatment are discussed. The experimental results of double-wall panels used in the general aviation industry are given. The effects of skin panel material, fiberglass insulation and trim panel material on the noise reduction characteristics of double-wall panels are investigated. With few modifications, the classical sound transmission theory can be used to design the interior noise control treatment of aircraft. Acoustic intensity and analysis procedures are included.
2013-01-01
Carbon nanotube (CNT) membranes allow the mimicking of natural ion channels for applications in drug delivery and chemical separation. Double-walled carbon nanotube membranes were simply functionalized with dye in a single step instead of the previous two-step functionalization. Non-faradic electrochemical impedance spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic the protein channel under bias. This functional chemistry was proven by a highly efficient ion rectification, wherein the highest experimental rectification factor of ferricyanide was up to 14.4. One-step functionalization by electrooxidation of amine provides a simple and promising functionalization chemistry for the application of CNT membranes. PMID:23758999
Design and installation of a ferromagnetic wall in tokamak geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics andmore » overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.« less
Plasma-resistivity-induced strong damping of the kinetic resistive wall mode.
He, Yuling; Liu, Yueqiang; Liu, Yue; Hao, Guangzhou; Wang, Aike
2014-10-24
An energy-principle-based dispersion relation is derived for the resistive wall mode, which incorporates both the drift kinetic resonance between the mode and energetic particles and the resistive layer physics. The equivalence between the energy-principle approach and the resistive layer matching approach is first demonstrated for the resistive plasma resistive wall mode. As a key new result, it is found that the resistive wall mode, coupled to the favorable average curvature stabilization inside the resistive layer (as well as the toroidal plasma flow), can be substantially more stable than that predicted by drift kinetic theory with fast ion stabilization, but with the ideal fluid assumption. Since the layer stabilization becomes stronger with decreasing plasma resistivity, this regime is favorable for reactor scale, high-temperature fusion devices.
Light sterile neutrinos and neutrinoless double-beta decay
NASA Astrophysics Data System (ADS)
Giunti, Carlo
2017-10-01
The LSND, Gallium and reactor neutrino anomalies can be explained by short-baseline neutrino oscillations due to the mixing of the active neutrinos with sterile neutrinos at the eV scale. I review the results of a 3+1 global fit of short-baseline neutrino oscillation data that includes the recent measurements of the MINOS, IceCube, and NEOS experiments, and I discuss the implications for neutrinoless double-beta decay.
FEM simulation of a sono-reactor accounting for vibrations of the boundaries.
Louisnard, O; Gonzalez-Garcia, J; Tudela, I; Klima, J; Saez, V; Vargas-Hernandez, Y
2009-02-01
The chemical effects of acoustic cavitation are obtained in sono-reactors built-up from a vessel and an ultrasonic source. In this paper, simulations of an existing sono-reactor are carried out, using a linear acoustics model, accounting for the vibrations of the solid walls. The available frequency range of the generator (19-21 kHz) is systematically scanned. Global quantities are plotted as a function of frequency in order to obtain response curves, exhibiting several resonance peaks. In absence of the precise knowledge of the bubbles size distribution and spatial location, the attenuation coefficient of the wave is taken as a variable, but spatially uniform parameter, and its influence is studied. The concepts of acoustic energy, intensity, active power, and source impedance are recalled, along with the general balance equation for acoustic energy, which is used as a convergence check of the simulations. It is shown that the interface between the liquid and the solid walls cannot be correctly represented by the simple approximations of either infinitely soft, or infinitely hard boundaries. Moreover, the liquid-solid coupling allows the cooling jacket to receive a noticeable part of the input power, although it is not in direct contact with the sonotrode. It may therefore undergo cavitation and this feature opens the perspective to design sono-reactors which avoid direct contact between the working liquid and the sonotrode. Besides, the possibility to shift the main pressure antinode far from the sonotrode area by exciting a resonance of the system is examined.
Tom, Asha P; Pawels, Renu; Haridas, Ajit
2016-03-01
Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph
2015-06-24
Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Rapid starting methanol reactor system
Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.
1984-01-01
The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.
Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System
NASA Astrophysics Data System (ADS)
Acır, Adem; Altunok, Taner
2010-10-01
HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.
Ab initio study of edge effect on relative motion of walls in carbon nanotubes
NASA Astrophysics Data System (ADS)
Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.
2013-01-01
Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.
Experimental evidence of a double layer in a large volume helicon reactor.
Sutherland, O; Charles, C; Plihon, N; Boswell, R W
2005-11-11
The self-consistently generated current-free electric double layer (DL) is shown to scale up with the source tube diameter and appears not to be affected by rf driving frequency and changes in reactor geometry. This Letter presents the first simultaneous measurements of local plasma potential and beam energy as a function of axial position. The DL is shown to be no more than 5 mm thick (20 D lengths) and positioned just downstream of the maximum in the magnetic field gradient. Furthermore, its position relative to the magnetic field is observed to be invariant as the magnetic field is translated axially. Measurements of the potential drop across the DL are presented for pressures down to 0.09 mTorr and the DL strength (phiDL/T(e)) is determined to be between 5 and 7.
Gou, P.F.; Townsend, H.E.; Barbanti, G.
1994-04-05
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.
Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo
1994-01-01
A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.
Parkinson, William J.
1987-01-01
A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.
King, L.D.P.
1960-11-22
As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.
Integrated seat frame and back support
Martin, Leo
1999-01-01
An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.
Phillips, J.A.; Suydam, R.; Tuck, J.L.
1961-07-01
BS>A plasma confining and heating reactor is described which has the form of a torus with a B/sub 2/ producing winding on the outside of the torus and a helical winding of insulated overlapping tunns on the inside of the torus. The inner helical winding performs the double function of shielding the plasma from the vitreous container and generating a second B/sub z/ field in the opposite direction to the first B/sub z/ field after the pinch is established.
The MSFR as a flexible CR reactor: the viewpoint of safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorina, C.; Cammi, A.; Franceschini, F.
2013-07-01
In this paper, the possibility has first been discussed of using the liquid-fuelled Molten Salt Fast Reactor (MSFR) as a flexible conversion ratio (CR) reactor without design modification. By tuning the reprocessing rate it is possible to determine the content of fission products in the core, which in turn can significantly affect the neutron economy without incurring in solubility problems. The MSFR can thus be operated as U-233 breeder (CR>1), iso-breeder (CR=1) and burner reactor (CR<1). In particular a 40 year doubling time can be achieved, as well as a considerable Transuranics and MA (minor actinide) burning rate equal tomore » about 150 kg{sub HN}/GWE-yr. The safety parameters of the MSFR have then been evaluated for different fuel cycle strategies. Th use and a softer spectrum combine to give a strong Doppler coefficient, one order of magnitude higher compared to traditional fast reactors (FRs). The fuel expansion coefficient is comparable to the Doppler coefficient and is only mildly affected by core compositions, thus assisting the fuel cycle flexibility of the MSFR. βeff and generation time are comparable to the case of traditional FRs, if a static fuel is assumed. A notable reduction of βeff is caused by salt circulation, but a low value of this parameter is a limited concern in the MSFR thanks to the lack of a burnup reactivity swing and of positive feedbacks. A simple approach has also been developed to evaluate the MSFR capabilities to withstand all typical double-fault accidents, for different fuel cycle options.« less
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Lee, Hyeong Jae; Sherrit, Stewart; Freeman, David; Campos, Sergio
2017-04-01
The potential return of samples back to Earth in a future NASA mission would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. In order to ensure this does not happen, it would be necessary to "break the chain of contact (BTC)", where any material reaching Earth would have to be inside a container that is sealed with extremely high confidence. Therefore, it would be necessary to contain the acquired samples and destroy any potential biological materials that may contaminate the external surface of their container while protecting the sample itself for further analysis. A novel synchronous separation, seaming, sealing and sterilization (S4) process for sample containerization and planetary protection has been conceived and demonstrated. A prototype double wall container with inner and outer shells and Earth clean interstitial space was used for this demonstration. In a potential future mission, the double wall container would be split into two halves and prepared on Earth, while the potential on-orbit execution would consist of inserting the sample into one of the halves and then mating to the other half and brazing. The use of brazing material that melts at temperatures higher than 500°C would assure sterilization of the exposed areas since all carbon bonds are broken at this temperature. The process would be executed in two-steps, Step-1: the double wall container halves would be fabricated and brazed on Earth; and Step-2: the containerization and sterilization process would be executed on-orbit. To prevent potential jamming during the process of mating the two halves of the double wall container and the extraction of the brazed inner container, a cone-within-cone approach has been conceived and demonstrated. The results of this study will be described and discussed.
Cheng, Christopher P; Parker, David; Taylor, Charles A
2002-09-01
Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2017-12-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels
NASA Astrophysics Data System (ADS)
Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.
2018-02-01
FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.
Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi
2017-11-01
To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Measuring θ13 in the Double Chooz experiment
NASA Astrophysics Data System (ADS)
Crum, Keith
2013-04-01
Double Chooz measures θ13 by searching for the disappearance of reactor electron antineutrinos (νe) interacting via inverse beta decay (IBD) in a liquid scintillator-based detector. The signature of IBD is the coincidence of positron annihilation followed by the capture of a neutron. Although Double Chooz was primarily designed to detect νe by searching for neutron capture on gadolinium, we can also search for neutron capture on hydrogen. We developed separate analyses for neutron capture on hydrogen and gadolinium as the two elements have different capture energies, capture lifetimes, and spatial distributions within our detector.
Repetition rates in heavy ion beam driven fusion reactors
NASA Astrophysics Data System (ADS)
Peterson, Robert R.
1986-01-01
The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Cheung, H.; Farrier, E. G.; Morihara, H.
1977-01-01
A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity.
Tokamak reactor for treating fertile material or waste nuclear by-products
Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.
2012-10-02
Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.
Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion
NASA Technical Reports Server (NTRS)
Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.
2005-01-01
A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.
Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials
NASA Astrophysics Data System (ADS)
Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang
2018-06-01
A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.
Ultrasound wall-sign in pulmonary echinococcosis (new application).
El Fortia, M; El Gatit, A; Bendaoud, M
2006-12-01
We report our experience in diagnosing pulmonary cystic echinococcosis using an ultrasound sign related to the cystic wall. 40 patients with 46 cysts, suspected of pulmonary echinococcosis, based on plain chest radiographs and clinical findings, were examined by ultrasound over a 9-year period (1996 - 2004), and followed up until discharge. We applied our long experience with echinococcal cysts utilising the wall sign (WS) to diagnose pulmonary hydatid disease. All cysts were subject to surgical removal, and postoperative histopathology was the gold standard. There were 34 (74 %) unilocular and 12 (26 %) multivesicular echinococcal cysts. In the univesicular cysts, the WS was found in 20 cases (66.7 %) while it was present in all multivesicular cysts (100 %). Following surgical removal, echinococcosis was confirmed by histopathology in all cases. We conclude that a double layered border in univesicular and double layered internal septum in multivesicular pulmonary echinococcal cysts is a reliable indicator of pulmonary echinococcosis, with a specificity of 66 % and 100 %, respectively.
26. A typical outer rod room, or rack room, showing ...
26. A typical outer rod room, or rack room, showing the racks for the nine horizontal control rods (HCRs) that would be inserted or withdrawn from the pile to control the rate of reaction. In this case, it is the 105-F Reactor in February 1945. The view is looking away from the pile, which is out of the picture on the left. Several of the cooling water hose reels for the rods can be seen at the end of the racks near the wall. D-8323 - B Reactor, Richland, Benton County, WA
Solar-thermal fluid-wall reaction processing
Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
Solar-Thermal Fluid-Wall Reaction Processing
Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.
2006-04-25
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...
ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Apparatus for detecting leakage of liquid sodium
Himeno, Yoshiaki
1978-01-01
An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.
NASA Astrophysics Data System (ADS)
Ligrani, P. M.
2018-03-01
A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.
Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios
NASA Astrophysics Data System (ADS)
Garoz, D.; Páramo, A. R.; Rivera, A.; Perlado, J. M.; González-Arrabal, R.
2016-12-01
The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.
NASA Technical Reports Server (NTRS)
Heid, G.; Stanislas, M.
1986-01-01
The tridimensional character of the flow around a profile placed between walls is demonstrated and the incidence induced with the assistance of measurements of velocities by double exposure holography is evaluated. The values obtained by the theory of Menard are compared satisfactorily to the values obtained by this experiment.
Viza, N. D.; Harding, D. R.
2017-12-20
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viza, N. D.; Harding, D. R.
Fluid properties and the geometry of lab-on-chip (LOC) designs together affect the formation of double emulsions for making inertial confinement fusion targets. Critical fluid properties include the fluids’ velocities and interfacial tension—a coupled effect that is best characterized by the capillary number (Ca)—and the relative volumetric flow rates (φ). The important geometry of the LOC is the orientation of the channels where they intersect (junction) and the spacing between successive junctions. T-junctions and focus-flow devices were tested. The latter geometry of a double cross (focus flow) performed better: single-emulsion droplets were formed over a wide range of fluid parameters (0.03more » < φ < 0.17 and 0.0003 < Ca < 0.001) at the first junction, and double emulsions were formed over a more limited range (φ > 0.5 and Ca < 0.4) at the second junction. A LOC design using the focus-flow design formed water–oil–water (W/O/W) double emulsions with the oil phase containing polystyrene. The double emulsions yielded shells with an outer dimension ranging from 2.3±0.07 mm to 4.3±0.23 mm and a wall thickness ranging from 30 μm to 1.6 mm. Thus, the value of the flow-rate ratio at the second junction provided the most-effective parameter for controlling the inner diameter, outer diameter, and wall thickness of the shell.« less
Experimental investigation of internal short circuits in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Poramapojana, Poowanart
With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is found to be a sinusoidal waveform.
NASA Astrophysics Data System (ADS)
Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi
1994-07-01
Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.
Chamber wall materials response to pulsed ions at power-plant level fluences
NASA Astrophysics Data System (ADS)
Renk, T. J.; Provencio, P. P.; Tanaka, T. J.; Olson, C. L.; Peterson, R. R.; Stolp, J. E.; Schroen, D. G.; Knowles, T. R.
2005-12-01
Candidate dry-wall materials for the reactor chambers of future laser-driven Inertial Fusion Energy (IFE) power plants have been exposed to ion pulses from RHEPP-1, located at Sandia National Laboratories. These pulses simulate the MeV-level ion pulses with fluences of up to 20 J/cm 2 that can be expected to impinge on the first wall of such future plants. Various forms of tungsten and tungsten alloy were subjected to up to 1600 pulses, usually while being heated to 600 °C. Other metals were exposed as well. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Powder-metallurgy (PM) tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. This roughening is worse than for other metals, and worse than for either tungsten alloyed with rhenium (W25Re), or for CVD and single-crystal forms of tungsten. Carbon, particularly the form used in composite material, appears to suffer material loss well below its sublimation point. Some engineered materials were also investigated. It appears that some modification to PM tungsten is required for its successful use in a reactor environment.
Effect of high surface area activated carbon on thermal degradation of jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gergova, K.; Eser, S.; Arumugam, R.
1995-05-01
Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less
Laboratory-scale uranium RF plasma confinement experiments
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.
Radioactivity measurements of ITER materials using the TFTR D-T neutron field
NASA Astrophysics Data System (ADS)
Kumar, A.; Abdou, M. A.; Barnes, C. W.; Kugel, H. W.
1994-06-01
The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials, for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc, zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.
Blanket activation and afterheat for the Compact Reversed-Field Pinch Reactor
NASA Astrophysics Data System (ADS)
Davidson, J. W.; Battat, M. E.
A detailed assessment has been made of the activation and afterheat for a Compact Reversed-Field Pinch Reactor (CRFPR) blanket using a two-dimensional model that included the limiter, the vacuum ducts, and the manifolds and headers for cooling the limiter and the first and second walls. Region-averaged, multigroup fluxes and prompt gamma-ray/neutron heating rates were calculated using the two-dimensional, discrete-ordinates code TRISM. Activation and depletion calculations were performed with the code FORIG using one-group cross sections generated with the TRISM region-averaged fluxes. Afterheat calculations were performed for regions near the plasma, i.e., the limiter, first wall, etc. assuming a 10-day irradiation. Decay heats were computed for decay periods up to 100 minutes. For the activation calculations, the irradiation period was taken to be one year and blanket activity inventories were computed for decay times to 4 x 10 years. These activities were also calculated as the toxicity-weighted biological hazard potential (BHP).
Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules
NASA Astrophysics Data System (ADS)
Fradera, J.; Sedano, L.; Mas de les Valls, E.; Batet, L.
2011-10-01
Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phenomena in liquid Pb17.5Li and EUROFER is proposed. In a first approximation, it has been considered that He bubbles can be represented as a passive scalar. The nucleation model is based on the classical theory and includes a simplified bubble growth model. The model captures the interaction of tritium with bubbles and tritium diffusion through walls. Results show the influence of helium cavitation on tritium inventory and the importance of simulating the system walls instead of imposing fixed boundary conditions.
NASA Astrophysics Data System (ADS)
Beklemishev, A. D.; Tajima, T.
1994-02-01
The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.
The effect of radiation screens on Nordic time series of mean temperature
NASA Astrophysics Data System (ADS)
Nordli, P. Ø.; Alexandersson, H.; Frich, P.; Førland, E. J.; Heino, R.; Jónsson, T.; Tuomenvirta, H.; Tveito, O. E.
1997-12-01
A short survey of the historical development of temperature radiation screens is given based upon research in the archives of the Nordic meteorological institutes. In the middle of the nineteenth century most thermometer stands were open shelters, free-standing or fastened to a window or wall. Most of these were soon replaced by wall or window screens, i.e. small wooden or metal cages. Large free-standing screens were also introduced in the nineteenth century, but it took to the 1980s before they had replaced the wall screens completely in all Nordic countries. During recent years, small cylindrical screens suitable for automatic weather stations have been introduced. At some stations they have replaced the ordinary free-standing screen as part of a gradual move towards automation.The first free-standing screens used in the Nordic countries were single louvred. They were later improved by double louvres. Compared with observations from ventilated thermometers the monthly mean temperatures in the single louvred screens were 0.2-0.4°C higher during May-August, whereas in the double louvred screens the temperatures were unbiased. Unless the series are adjusted, this improvement may lead to inhomogeneities in long climatic time series.The change from wall screen to free-standing screen also involved a relocation from the microclimatic influence of a house to a location free from obstacles. Tests to evaluate the effect of relocation by parallel measurements yielded variable results. However, the bulk of the tests showed no effect of the relocation in winter, whereas in summer the wall screen tended to be slightly warmer (0.0-0.3°C) than the double louvred screen. At two Norwegian sites situated on steep valley slopes, the wall screen was ca. 0.5°C colder in midwinter.The free-standing Swedish shelter, which was used at some stations up to 1960, seems to have been overheated in spring and summer (maximum overheating of about 0.4°C in early summer). The new screen for automatic sensors appears to be unbiased compared with the ordinary free-standing screen concerning monthly mean temperature.
LPT. Elevations of low power test building (TAN640 and 641). ...
LPT. Elevations of low power test building (TAN-640 and -641). West and south elevations show stepped shield wall. South and east elevations show pumice block passageway on south side. Reactor cell walls are concrete. One-story parts are pumice block. Metal rollup doors. Ralph M. Parsons 1229-12 ANP/GE-7-640-A-2. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0640-00-693-107275 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, R.; Malekian, C.; Meessen, O.
The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports inmore » the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.« less
Inverse Beta Decay Reconstruction in the Double Chooz Monte Carlo
NASA Astrophysics Data System (ADS)
Norrick, Anne
2010-02-01
The Double Chooz Experiment will search for neutrino oscillations using the ``Inverse Beta-Decay'' (IBD) interactions of electron antineutrinos from a nuclear reactor in Chooz, France. The experiment needs to isolate IBD events by detecting and reconstructing the positions and deposited energies of the outgoing positron and neutron. Methods for isolating this process will be described. In addition, results of simulation studies of two different reconstruction algorithms will be presented and their performances compared. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya
Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for themore » present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)« less