Sample records for double-multiple streamtube model

  1. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  2. Double-multiple streamtube model for Darrieus in turbines

    NASA Technical Reports Server (NTRS)

    Paraschivoiu, I.

    1981-01-01

    An analytical model is proposed for calculating the rotor performance and aerodynamic blade forces for Darrieus wind turbines with curved blades. The method of analysis uses a multiple-streamtube model, divided into two parts: one modeling the upstream half-cycle of the rotor and the other, the downstream half-cycle. The upwind and downwind components of the induced velocities at each level of the rotor were obtained using the principle of two actuator disks in tandem. Variation of the induced velocities in the two parts of the rotor produces larger forces in the upstream zone and smaller forces in the downstream zone. Comparisons of the overall rotor performance with previous methods and field test data show the important improvement obtained with the present model. The calculations were made using the computer code CARDAA developed at IREQ. The double-multiple streamtube model presented has two major advantages: it requires a much shorter computer time than the three-dimensional vortex model and is more accurate than multiple-streamtube model in predicting the aerodynamic blade loads.

  3. Double-multiple streamtube model for studying vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  4. Streamtube expansion effects on the Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Fraunie, P.; Beguier, C.

    1985-04-01

    The purpose of the work described in this paper was to determine the aerodynamic loads and performance of a Darrieus wind turbine by including the expansion effects of the streamtubes through the rotor. The double-multiple streamtube model with variable interference factors was used to estimate the induced velocities with a modified CARDAAV computer code. Comparison with measured data and predictions shows that the stream-tube expansion effects are relatively significant at high tip-speed ratios, allowing a more realistic modeling of the upwind/downwind flowfield asymmetries inherent in the Darrieus rotor.

  5. Double multiple streamtube model with recent improvements

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Delclaux, F.

    1983-06-01

    The objective of the present paper is to show the new capabilities of the double multiple streamtube (DMS) model for predicting the aerodynamic loads and performance of the Darrieus vertical-axis turbine. The original DMS model has been improved (DMSV model) by considering the variation in the upwind and downwind induced velocities as a function of the azimuthal angle for each streamtube. A comparison is made of the rotor performance for several blade geometries (parabola, catenary, troposkien, and Sandia shape). A new formulation is given for an approximate troposkien shape by considering the effect of the gravitational field. The effects of three NACA symmetrical profiles, 0012, 0015 and 0018, on the aerodynamic performance of the turbine are shown. Finally, a semiempirical dynamic-stall model has been incorporated and a better approximation obtained for modeling the local aerodynamic forces and performance for a Darrieus rotor.

  6. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  7. Aerodynamic models for a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

    1982-11-01

    Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

  8. Aerodynamics of small-scale vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  9. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.

    1981-12-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity; lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  10. Modeling of Ureolytic Calcite Precipitation for the Remediation of Sr-90 Using a Variable Velocity Streamtube Ensemble

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.

    2009-12-01

    Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.

  11. Assessing the Hydraulic Criticality of Deep Ocean Overflows

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.; Helfrich, K. R.

    2004-12-01

    Two methods for assessing the hydraulic criticality of a modelled or observed deep overflow are discussed. The methods should be of use in determining the position of the control section, which is needed to establish the transport relation helpful for long-term monitoring from upstream. Both approaches are based on a multiple streamtube idealization in which the observed flow at a particular section is divided up into subsections (streamtubes). There are no restrictions on the bottom topography or potential vorticity distribution. The first criteria involves evauation of a generalized Jacobian condition based on the conservation laws for each streamtube; the second involves direct calculation of the long-wave phase speeds. We also comment on the significance of the local Froude number F of the flow and argue that F must pass through unity across a section of hydraulic control. These criteria are applied to some numerically modelled flows and are used in the companion presentation (Girton, et al.) to evaluate the hydraulic criticality of the Faroe Bank Channel.

  12. Aerodynamic analysis of the Darrieus rotor including secondary effects

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  13. Reservoir studies with geostatistics to forecast performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, R.W.; Behrens, R.A.; Emanuel, A.S.

    1991-05-01

    In this paper example geostatistics and streamtube applications are presented for waterflood and CO{sub 2} flood in two low-permeability sandstone reservoirs. Thy hybrid approach of combining fine vertical resolution in cross-sectional models with streamtubes resulted in models that showed water channeling and provided realistic performance estimates. Results indicate that the combination of detailed geostatistical cross sections and fine-grid streamtube models offers a systematic approach for realistic performance forecasts.

  14. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  15. A model for the response of vertical axis wind turbines to turbulent flow: Parts 1 and 2

    NASA Astrophysics Data System (ADS)

    Malcolm, D. R.

    1988-07-01

    This report describes a project intended to incorporate the effects of atmospheric turbulence into the structural response of Darrieus rotor, vertical axis wind turbines. The basis of the technique is the generation of a suitable time series of wind velocities, which are passed through a double multiple streamtube aerodynamic representation of the rotor. The aerodynamic loads are decomposed into components of the real eigenvectors of the rotor and subsequently into full-power and cross-spectral densities. These modal spectra are submitted as input to a modified NASTRAN random load analysis and the power spectra of selected responses are obtained. This procedure appears to be successful. Results at zero turbulence agree with alternative solutions, and when turbulence is included, the predicted stress spectra for the Indal 6400 rotor are in good agreement with field data. The model predicts that the effect of turbulence on harmonic frequency peaks and on all lead-lag bending will not be great. However, it appears that only 11 percent turbulence intensity can almost double the rms of cyclic flatwise blade bending.

  16. Vertical axis wind turbine turbulent response model. Part 2: Response of Sandia National laboratories' 34-meter VAWT with aeroelastic effects

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginn, Timothy R.; Weathers, Tess

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understandingmore » of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” pattern of non-uniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well.« less

  18. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  19. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  20. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    NASA Astrophysics Data System (ADS)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  1. Predicted and experimental aerodynamic forces on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.

    1983-12-01

    The present paper compares the aerodynamic loads predicted by a double-multiple-streamtube model with wind tunnel measurements for a straight-bladed Darrieus rotor. Thus the CARDAA computer code uses two constant-interference factors in the induced velocity for estimating the aerodynamic loads. This code has been improved by considering the variation in the upwind and downwind induced velocities as a function of the blade position, and, in this case, the CARDAAV code is used. The Boeing-Vertol dynamic-stall model is incorporated in both the CARDAA and CARDAAV codes, and a better approach is obtained. The transient normal- and tangential-force coefficients predicted with and without dynamic-stall effects are compared with wind tunnel data for one and two NACA 0018 straight-bladed rotors. The results are given for a rotor with a large solidity (chord-to-radius ratio of 0.20) at two tip-speed ratios (X = 1.5 and 3.0) and at a low Reynolds number of 3.8 x 10 to the 4th. The comparisons between experimental data and theoretical results show the CARDAAV predictions to be more accurate than those estimated by the CARDAA code.

  2. Mixing-controlled reactive transport on travel times in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Luo, J.; Cirpka, O.

    2008-05-01

    Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass-transfer coefficients. In most applications, breakthrough curves of conservative and reactive compounds are measured at only a few locations and models are calibrated by matching these breakthrough curves, which is an ill posed inverse problem. By contrast, travel-time based transport models avoid costly aquifer characterization. By considering breakthrough curves measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the travel-time based framework, the breakthrough curve of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct travel-time value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of travel times which also determines the weights associated to each stream tube. Key issues in using the travel-time based framework include the description of mixing mechanisms and the estimation of the travel-time distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the travel-time distribution, given a breakthrough curve integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases where the true travel-time distribution exhibits multiple peaks or long tails. It is demonstrated that there is freedom for the combinations of mixing parameters and travel-time distributions to fit conservative breakthrough curves and describe the tailing. Reactive transport cases with a bimolecular instantaneous irreversible reaction and a dual Michaelis-Menten problem demonstrate that the mixing introduced by local dispersion and mass transfer may be described by apparent mean mass transfer with coefficients evaluated by local breakthrough curves.

  3. Prediction of Down-Gradient Impacts of DNAPL Source Depletion Using Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Fure, A. D.; Jawitz, J. W.

    2006-12-01

    Four simplified DNAPL source depletion models that have been discussed in the literature recently are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. One of the source depletion models, the equilibrium streamtube model, is shown to be relatively easily parameterized using non-reactive and reactive tracers. Non-reactive tracers are used to characterize the aquifer heterogeneity while reactive tracers are used to describe the mean DNAPL mass and its distribution. This information is then used in a Lagrangian framework to predict source remediation performance. In a Lagrangian approach the source zone is conceptualized as a collection of non-interacting streamtubes with hydrodynamic and DNAPL heterogeneity represented by the variation of the travel time and DNAPL saturation among the streamtubes. The travel time statistics are estimated from the non-reactive tracer data while the DNAPL distribution statistics are estimated from the reactive tracer data. The combined statistics are used to define an analytical solution for contaminant dissolution under natural gradient flow. The tracer prediction technique compared favorably with results from a multiphase flow and transport simulator UTCHEM in domains with different hydrodynamic heterogeneity (variance of the log conductivity field = 0.2, 1 and 3).

  4. Optimal villi density for maximal oxygen uptake in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Brownbill, P; Grebenkov, D S; Filoche, M

    2015-01-07

    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. User manual for Streamtube Curvature Analysis: Analytical method for predicting the pressure distribution about a nacelle at transonic speeds, appendix

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Heck, P. H.

    1973-01-01

    The computer program listing of Streamtube Curvature Analysis is presented. The listing includes explanatory statements and titles so that the program flow is readily discernable. The computer program listing is in CDC FORTRAN 2.3 source language form, except for three subroutines, GETIX, GETRLX, and SAVIX, which are in COMPOSE 1.1 language.

  6. Traveltime-based descriptions of transport and mixing in heterogeneous domains

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Cirpka, Olaf A.

    2008-09-01

    Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass transfer coefficients. In most applications, breakthrough curves (BTCs) of conservative and reactive compounds are measured at only a few locations and spatially explicit models are calibrated by matching these BTCs. A common difficulty in such applications is that the individual BTCs differ too strongly to justify the assumption of spatial homogeneity, whereas the number of observation points is too small to identify the spatial distribution of the decisive parameters. The key objective of the current study is to characterize physical transport by the analysis of conservative tracer BTCs and predict the macroscopic BTCs of compounds that react upon mixing from the interpretation of conservative tracer BTCs and reactive parameters determined in the laboratory. We do this in the framework of traveltime-based transport models which do not require spatially explicit, costly aquifer characterization. By considering BTCs of a conservative tracer measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the traveltime-based framework, the BTC of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct traveltime value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of traveltimes, which also determines the weights associated with each stream tube. Key issues in using the traveltime-based framework include the description of mixing mechanisms and the estimation of the traveltime distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the traveltime distribution, given a BTC integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases wherein the true traveltime distribution exhibits multiple peaks or long tails. It is demonstrated that there is freedom for the combinations of mixing parameters and traveltime distributions to fit conservative BTCs and describe the tailing. A reactive transport case of a dual Michaelis-Menten problem demonstrates that the reactive mixing introduced by local dispersion and mass transfer may be described by apparent mean mass transfer with coefficients evaluated by local BTCs.

  7. Analytical study of laser supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahedo, Eduardo; Merino, Mario

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards ormore » inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.« less

  9. Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media

    NASA Astrophysics Data System (ADS)

    Zahasky, Christopher; Benson, Sally M.

    2018-05-01

    Accurate descriptions of heterogeneity in porous media are important for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems. Application of medical imaging to experimentally quantify these processes has led to significant progress in material characterization and understanding fluid transport behavior at laboratory scales. While widely utilized in cancer diagnosis and management, cardiology, and neurology, positron emission tomography (PET) has had relatively limited applications in earth science. This study utilizes a small-bore micro-PET scanner to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in two heterogeneous Berea sandstone cores. The cores are discretized into axial-parallel streamtubes, and using the reconstructed micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core tracer flux and pore water velocity. Using the flux and velocity measurements, it is possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Second spatial moment analysis enables measurement of sub-core solute dispersion during both single phase and multiphase experiments. A numerical simulation model is developed to verify the assumptions of the streamtube dimension reduction technique. A variation of the reactor ratio is presented as a diagnostic metric to efficiently determine the validity of the streamtube approximation in core and column-scale experiments. This study introduces a new method to quantify sub-core permeability, relative permeability, and dispersion. These experimental and analytical methods provide a foundation for future work on experimental measurements of differences in transport behavior across scales.

  10. Visualizing whole-brain DTI tractography with GPU-based Tuboids and LoD management.

    PubMed

    Petrovic, Vid; Fallon, James; Kuester, Falko

    2007-01-01

    Diffusion Tensor Imaging (DTI) of the human brain, coupled with tractography techniques, enable the extraction of large-collections of three-dimensional tract pathways per subject. These pathways and pathway bundles represent the connectivity between different brain regions and are critical for the understanding of brain related diseases. A flexible and efficient GPU-based rendering technique for DTI tractography data is presented that addresses common performance bottlenecks and image-quality issues, allowing interactive render rates to be achieved on commodity hardware. An occlusion query-based pathway LoD management system for streamlines/streamtubes/tuboids is introduced that optimizes input geometry, vertex processing, and fragment processing loads, and helps reduce overdraw. The tuboid, a fully-shaded streamtube impostor constructed entirely on the GPU from streamline vertices, is also introduced. Unlike full streamtubes and other impostor constructs, tuboids require little to no preprocessing or extra space over the original streamline data. The supported fragment processing levels of detail range from texture-based draft shading to full raycast normal computation, Phong shading, environment mapping, and curvature-correct text labeling. The presented text labeling technique for tuboids provides adaptive, aesthetically pleasing labels that appear attached to the surface of the tubes. Furthermore, an occlusion query aggregating and scheduling scheme for tuboids is described that reduces the query overhead. Results for a tractography dataset are presented, and demonstrate that LoD-managed tuboids offer benefits over traditional streamtubes both in performance and appearance.

  11. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  12. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  13. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  14. Splash flow from a metal plate hit by an electron beam pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M., LLNL

    1997-09-01

    When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less

  15. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  16. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  17. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  18. Simulation of a hydrocarbon fueled scramjet exhaust

    NASA Technical Reports Server (NTRS)

    Leng, J.

    1982-01-01

    Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.

  19. Users manual for Streamtube Curvature Analysis: Analytical method for predicting the pressure distribution about a nacelle at transonic speeds, volume 1

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Heck, P. H.

    1972-01-01

    The computer program, Streamtube Curvature Analysis, is described for the engineering user and for the programmer. The user oriented documentation includes a description of the mathematical governing equations, their use in the solution, and the method of solution. The general logical flow of the program is outlined and detailed instructions for program usage and operation are explained. General procedures for program use and the program capabilities and limitations are described. From the standpoint of the grammar, the overlay structure of the program is described. The various storage tables are defined and their uses explained. The input and output are discussed in detail. The program listing includes numerous comments so that the logical flow within the program is easily followed. A test case showing input data and output format is included as well as an error printout description.

  20. Modifications to the streamtube curvature program. Volume 1: Program modifications and user's manual. [user manuals (computer programs) for transonic flow of nacelles and intake systems of turbofan engines

    NASA Technical Reports Server (NTRS)

    Ferguson, D. R.; Keith, J. S.

    1975-01-01

    The improvements which have been incorporated in the Streamtube Curvature Program to enhance both its computational and diagnostic capabilities are described. Detailed descriptions are given of the revisions incorporated to more reliably handle the jet stream-external flow interaction at trailing edges. Also presented are the augmented boundary layer procedures and a variety of other program changes relating to program diagnostics and extended solution capabilities. An updated User's Manual, that includes information on the computer program operation, usage, and logical structure, is presented. User documentation includes an outline of the general logical flow of the program and detailed instructions for program usage and operation. From the standpoint of the programmer, the overlay structure is described. The input data, output formats, and diagnostic printouts are covered in detail and illustrated with three typical test cases.

  1. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  2. STC-SAB program users manual for the turbulent boundary layer and turbulent separation prediction methods employed in the NASA Langley streamtube curvature computer program

    NASA Technical Reports Server (NTRS)

    Ferguson, D. R.

    1972-01-01

    The streamtube curvature program (STC) has been developed to predict the inviscid flow field and the pressure distribution about nacelles at transonic speeds. The effects of boundary layer are to displace the inviscid flow and effectively change the body shape. Thus, the body shape must be corrected by the displacement thickness in order to calculate the correct pressure distribution. This report describes the coupling of the Stratford and Beavers boundary layer solution with the inviscid STC analysis so that all nacelle pressure forces, friction drag, and incipient separation may be predicted. The usage of the coupled STC-SAB computer program is outlined and the program input and output are defined. Included in this manual are descriptions of the principal boundary layer tables and other revisions to the STC program. The use of the viscous option is controlled by the engineer during program input definition.

  3. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  4. LOX/hydrocarbon fuel carbon formation and mixing data analysis

    NASA Technical Reports Server (NTRS)

    Fang, J.

    1983-01-01

    By applying the Priem-Heidmann Generalized-Length vaporization correlation, the computer model developed by the present study predicts the spatial variation of propellant vaporization rate using the injector cold flow results to define the streamtubes. The calculations show that the overall and local propellant vaporization rate and mixture ratio change drastically as the injection element type or the injector operating condition is changed. These results are compared with the regions of carbon formation observed in the photographic combustion testing. The correlation shows that the fuel vaporization rate and the local mixture ratio produced by the injector element have first order effects on the degree of carbon formation.

  5. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  6. Classic Bernoulli's Principle Derivation and Its Working Hypotheses

    ERIC Educational Resources Information Center

    Marciotto, Edson R.

    2016-01-01

    The Bernoulli's principle states that the quantity p+ pgz + pv[superscript 2]/2 must be conserved in a streamtube if some conditions are matched, namely: steady and irrotational flow of an inviscid and incompressible fluid. In most physics textbooks this result is demonstrated invoking the energy conservation of a fluid material volume at two…

  7. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  8. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  9. A simple tandem disk model for a cross-wind machine

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    The relative power coefficients, area expansion ratio, and crosswind forces for a crosswind tubine, e.g., the Darrieus, were examined with a tandem-disk, single-streamtube model. The upwind disk is assumed to be rectangular and the downwind disk is modeled as filling the wake of the upwind disk. Velocity and force triangles are devised for the factors operating at each blade. Attention was given to the NACA 0012 and 0018, and Go 735 and 420 airfoils as blades, with Reynolds number just under 500,000. The 0018 was found to be the best airfoil, followed by the 0012, the 735, and, very far behind in terms of the power coefficient, the 420. The forces on the two disks were calculated to be equal at low tip speed ratios with symmetrical airfoil, while the Go cambered profiles yielded negative values upwind in the same conditions.

  10. An inverse inviscid method for the design of quasi-three dimensional rotating turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Bonataki, E.; Chaviaropoulos, P.; Papailiou, K. D.

    1991-01-01

    A new inverse inviscid method suitable for the design of rotating blade sections lying on an arbitrary axisymmetric stream-surface with varying streamtube width is presented. The geometry of the axisymmetric stream-surface and the streamtube width variation with meridional distance, the number of blades, the inlet flow conditions, the rotational speed and the suction and pressure side velocity distributions as functions of the normalized arc-length are given. The flow is considered irrotational in the absolute frame of reference and compressible. The output of the computation is the blade section that satisfies the above data. The method solves the flow equations on a (phi 1, psi) potential function-streamfunction plane for the velocity modulus, W and the flow angle beta; the blade section shape can then be obtained as part of the physical plane geometry by integrating the flow angle distribution along streamlines. The (phi 1, psi) plane is defined so that the monotonic behavior of the potential function is guaranteed, even in cases with high peripheral velocities. The method is validated on a rotating turbine case and used to design new blades. To obtain a closed blade, a set of closure conditions were developed and referred.

  11. Effect of interactions between multiple interfaces on the rheological characteristics of double emulsions

    NASA Astrophysics Data System (ADS)

    Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang

    2018-06-01

    In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.

  12. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, becausemore » the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.« less

  13. Analytical study of laser-supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1978-01-01

    Laser supported combustion (LSC) waves are an important ingredient in the fluid mechanics of CW laser propulsion using a hydrogen propellant and 10.6 micron lasers. Therefore, a computer model has been constructed to solve the one-dimensional energy equation with constant pressure and area. Physical processes considered include convection, conduction, absorption of laser energy, radiation energy loss, and accurate properties of equilibrium hydrogen. Calculations for 1, 3, 10 and 30 atm were made for intensities of 10 to the 4th to 10 to the 6th W/sq cm, which gave temperature profiles, wave speed, etc. To pursue the propulsion application, a second computer model was developed to describe the acceleration of the gas emerging from the LSC wave into a variable-pressure, converging streamtube, still including all the above-mentioned physical processes. The results show very high temperatures in LSC waves which absorb all the laser energy, and high radiative losses.

  14. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  15. Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.

    PubMed

    Borchers, D L; Langrock, R

    2015-12-01

    We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson availability models. They include a mark-recapture component arising from the independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop models for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision substantially when estimating the availability model parameters from survey data, and we recommend that these data be gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke whales, and find that double-observer data greatly improve estimator precision here too. © 2015 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  16. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  17. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  18. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  19. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  20. Multiple quay cranes scheduling for double cycling in container terminals

    PubMed Central

    Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen

    2017-01-01

    Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high. PMID:28692699

  1. Multiple quay cranes scheduling for double cycling in container terminals.

    PubMed

    Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen

    2017-01-01

    Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.

  2. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  3. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  4. Modeling radiative transfer with the doubling and adding approach in a climate GCM setting

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.

    2017-12-01

    The nonlinear dependence of multiply scattered radiation on particle size, optical depth, and solar zenith angle, makes accurate treatment of multiple scattering in the climate GCM setting problematic, due primarily to computational cost issues. In regard to the accurate methods of calculating multiple scattering that are available, their computational cost is far too prohibitive for climate GCM applications. Utilization of two-stream-type radiative transfer approximations may be computationally fast enough, but at the cost of reduced accuracy. We describe here a parameterization of the doubling/adding method that is being used in the GISS climate GCM, which is an adaptation of the doubling/adding formalism configured to operate with a look-up table utilizing a single gauss quadrature point with an extra-angle formulation. It is designed to closely reproduce the accuracy of full-angle doubling and adding for the multiple scattering effects of clouds and aerosols in a realistic atmosphere as a function of particle size, optical depth, and solar zenith angle. With an additional inverse look-up table, this single-gauss-point doubling/adding approach can be adapted to model fractional cloud cover for any GCM grid-box in the independent pixel approximation as a function of the fractional cloud particle sizes, optical depths, and solar zenith angle dependence.

  5. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  6. Excitation of the Earth's Chandler wobble by a turbulent oceanic double-gyre

    NASA Astrophysics Data System (ADS)

    Naghibi, S. E.; Jalali, M. A.; Karabasov, S. A.; Alam, M.-R.

    2017-04-01

    We develop a layer-averaged, multiple-scale spectral ocean model and show how an oceanic double-gyre can communicate with the Earth's Chandler wobble. The overall transfers of energy and angular momentum from the double-gyre to the Chandler wobble are used to calibrate the turbulence parameters of the layer-averaged model. Our model is tested against a multilayer quasi-geostrophic ocean model in turbulent regime, and base states used in parameter identification are obtained from mesoscale eddy resolving numerical simulations. The Chandler wobble excitation function obtained from the model predicts a small role of North Atlantic ocean region on the wobble dynamics as compared to all oceans, in agreement with the existing observations.

  7. Modeling distortion of HIT by an Actuator Disk in a periodic domain

    NASA Astrophysics Data System (ADS)

    Ghate, Aditya; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    We study the distortion of incompressible, homogeneous isotropic turbulence (HIT) by a dragging actuator disk with a fixed thrust coefficient (under the large Reynolds number limit), using Large Eddy Simulation (LES). The HIT inflow is tailored to ensure that the largest length scales in the flow are smaller than the actuator disk diameter in order to minimize the meandering of the turbulent wake and isolate the length scales that undergo distortion. The numerical scheme (Fourier collocation with dealiasing) and the SGS closure (anisotropic minimum dissipation model) are carefully selected to minimize numerical artifacts expected due to the inviscid assumption. The LES is used to characterize the following 3 properties of the flow a) distortion of HIT due to the expanding streamtube resulting in strong anisotropy, b) turbulent pressure modulation across the actuator disk, and the c) turbulent wake state. Finally, we attempt to model the initial distortion and the pressure modulation using a WKB variant of RDT solved numerically using a set of discrete Gabor modes. Funding provided by Precourt Institute for Energy at Stanford University.

  8. An Interactive, Design and Educational Tool for Supersonic External-Compression Inlets

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    A workstation-based interactive design tool called VU-INLET was developed for the inviscid flow in rectangular, supersonic, external-compression inlets. VU-INLET solves for the flow conditions from free stream, through the supersonic compression ramps, across the terminal normal shock region and the subsonic diffuser to the engine face. It calculates the shock locations, the capture streamtube, and the additive drag of the inlet. The inlet geometry can be modified using a graphical user interface and the new flow conditions recalculated interactively. Free stream conditions and engine airflow can also be interactively varied and off-design performance evaluated. Flow results from VU-INLET can be saved to a file for a permanent record, and a series of help screens make the simulator easy to learn and use. This paper will detail the underlying assumptions of the models and the numerical methods used in the simulator.

  9. A Thermodynamically General Theory for Convective Circulations and Vortices

    NASA Astrophysics Data System (ADS)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  10. Propulsion and Energetics Panel Working Group 12 on through Flow Calculations in Axial Turbomachines

    DTIC Science & Technology

    1981-10-01

    Determination of the trends of the effect of variables such as streamtube thickness and streamline change of radius in rotors , chordwise losses and turning...prediction which occur near the end walls (particularly at the rotor root) are typical of the effects of secondary flow. They result in large discrepancies...0.4 y/h 0.6 08 1.0 Fig.4.9 Hannover turbine effect of loss distribution at rotor exit L . -k" i ... ... .. . . .. 48 DEVIATION AOL I 26 Iy Fig.4.10

  11. Floc size distributions of suspended kaolinite in an advection transport dominated tank: measurements and modeling

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoteng; Maa, Jerome P.-Y.

    2017-11-01

    In estuaries and coastal waters, floc size and its statistical distributions of cohesive sediments are of primary importance, due to their effects on the settling velocity and thus deposition rates of cohesive aggregates. The development of a robust flocculation model that includes the predictions of floc size distributions (FSDs), however, is still in a research stage. In this study, a one-dimensional longitudinal (1-DL) flocculation model along a streamtube is developed. This model is based on solving the population balance equation to find the FSDs by using the quadrature method of moments. To validate this model, a laboratory experiment is carried out to produce an advection transport-dominant environment in a cylindrical tank. The flow field is generated by a marine pump mounted at the bottom center, with its outlet facing upward. This setup generates an axially symmetric flow which is measured by an acoustic Doppler velocimeter (ADV). The measurement results provide the hydrodynamic input data required for this 1-DL model. The other measurement results, the FSDs, are acquired by using an automatic underwater camera system and the resulting images are analyzed to validate the predicted FSDs. This study shows that the FSDs as well as their representative sizes can be efficiently and reasonably simulated by this 1-DL model.

  12. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE PAGES

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  13. Blade pitch optimization methods for vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  14. Scramjet Tests in a Shock Tunnel at Flight Mach 7, 10, and 15 Conditions

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Shih, A. T.; Tsai, C.-Y.; Foelsche, R. O.

    2001-01-01

    Tests of the Hyper-X scramjet engine flowpath have been conducted in the HYPULSE shock tunnel at conditions duplicating the stagnation enthalpy at flight Mach 7, 10, and 15. For the tests at Mach 7 and 10 HYPULSE was operated as a reflected-shock tunnel; at the Mach 15 condition, HYPULSE was operated as a shock-expansion tunnel. The test conditions matched the stagnation enthalpy of a scramjet engine on an aerospace vehicle accelerating through the atmosphere along a 1000 psf dynamic pressure trajectory. Test parameter variation included fuel equivalence ratios from lean (0.8) to rich (1.5+); fuel composition from pure hydrogen to mixtures of 2% and 5% silane in hydrogen by volume; and inflow pressure and Mach number made by changing the scramjet model mounting angle in the HYPULSE test chamber. Data sources were wall pressures and heat flux distributions and schlieren and fuel plume imaging in the combustor/nozzle sections. Data are presented for calibration of the facility nozzles and the scramjet engine model. Comparisons of pressure distributions and flowpath streamtube performance estimates are made for the three Mach numbers tested.

  15. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    DOE PAGES

    Koehler, Katrina E.; Henzl, Vladimir; Croft, Stephen; ...

    2016-06-29

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. But, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. Here, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, themore » double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We also discuss the role of these corrections across a range of scenarios.« less

  16. Double- and Triple-Duty Caregiving Men: An Examination of Subjective Stress and Perceived Schedule Control.

    PubMed

    DePasquale, Nicole; Zarit, Steven H; Mogle, Jacqueline; Moen, Phyllis; Hammer, Leslie B; Almeida, David M

    2018-04-01

    Based on the stress process model of family caregiving, this study examined subjective stress appraisals and perceived schedule control among men employed in the long-term care industry (workplace-only caregivers) who concurrently occupied unpaid family caregiving roles for children (double-duty child caregivers), older adults (double-duty elder caregivers), and both children and older adults (triple-duty caregivers). Survey responses from 123 men working in nursing home facilities in the United States were analyzed using multiple linear regression models. Results indicated that workplace-only and double- and triple-duty caregivers' appraised primary stress similarly. However, several differences emerged with respect to secondary role strains, specifically work-family conflict, emotional exhaustion, and turnover intentions. Schedule control also constituted a stress buffer for double- and triple-duty caregivers, particularly among double-duty elder caregivers. These findings contribute to the scarce literature on double- and triple-duty caregiving men and have practical implications for recruitment and retention strategies in the health care industry.

  17. Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pu eff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  18. Quantum Double of Yangian of strange Lie superalgebra Qn and multiplicative formula for universal R-matrix

    NASA Astrophysics Data System (ADS)

    Stukopin, Vladimir

    2018-02-01

    Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.

  19. Advanced Doubling Adding Method for Radiative Transfer in Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Liu, Quanhua; Weng, Fuzhong

    2006-12-01

    The doubling adding method (DA) is one of the most accurate tools for detailed multiple-scattering calculations. The principle of the method goes back to the nineteenth century in a problem dealing with reflection and transmission by glass plates. Since then the doubling adding method has been widely used as a reference tool for other radiative transfer models. The method has never been used in operational applications owing to tremendous demand on computational resources from the model. This study derives an analytical expression replacing the most complicated thermal source terms in the doubling adding method. The new development is called the advanced doubling adding (ADA) method. Thanks also to the efficiency of matrix and vector manipulations in FORTRAN 90/95, the advanced doubling adding method is about 60 times faster than the doubling adding method. The radiance (i.e., forward) computation code of ADA is easily translated into tangent linear and adjoint codes for radiance gradient calculations. The simplicity in forward and Jacobian computation codes is very useful for operational applications and for the consistency between the forward and adjoint calculations in satellite data assimilation.

  20. A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site

    NASA Astrophysics Data System (ADS)

    Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.

    2015-12-01

    A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.

  1. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    NASA Astrophysics Data System (ADS)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  2. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  3. Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang

    In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.

  4. Lattice Entertain You: Paper Modeling of the 14 Bravais Lattices on Youtube

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.; Sein, Sarajane E.

    2015-01-01

    A system for the construction of double-sided paper models of the 14 Bravais lattices, and important crystal structures derived from them, is described. The system allows the combination of multiple unit cells, so as to better represent the overall three-dimensional structure. Students and instructors can view the models in use on the popular…

  5. eIF4E/Fmr1 double mutant mice display cognitive impairment in addition to ASD-like behaviors.

    PubMed

    Huynh, Thu N; Shah, Manan; Koo, So Yeon; Faraud, Kirsten S; Santini, Emanuela; Klann, Eric

    2015-11-01

    Autism spectrum disorder (ASD) is a group of heritable disorders with complex and unclear etiology. Classic ASD symptoms include social interaction and communication deficits as well as restricted, repetitive behaviors. In addition, ASD is often comorbid with intellectual disability. Fragile X syndrome (FXS) is the leading genetic cause of ASD, and is the most commonly inherited form of intellectual disability. Several mouse models of ASD and FXS exist, however the intellectual disability observed in ASD patients is not well modeled in mice. Using the Fmr1 knockout mouse and the eIF4E transgenic mouse, two previously characterized mouse models of fragile X syndrome and ASD, respectively, we generated the eIF4E/Fmr1 double mutant mouse. Our study shows that the eIF4E/Fmr1 double mutant mice display classic ASD behaviors, as well as cognitive dysfunction. Importantly, the learning impairments displayed by the double mutant mice spanned multiple cognitive tasks. Moreover, the eIF4E/Fmr1 double mutant mice display increased levels of basal protein synthesis. The results of our study suggest that the eIF4E/Fmr1 double mutant mouse may be a reliable model to study cognitive dysfunction in the context of ASD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Linearized inversion of multiple scattering seismic energy

    NASA Astrophysics Data System (ADS)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.

  7. Numerical simulations of short-mixing-time double-wave-vector diffusion-weighting experiments with multiple concatenations on whole-body MR systems

    NASA Astrophysics Data System (ADS)

    Finsterbusch, Jürgen

    2010-12-01

    Double- or two-wave-vector diffusion-weighting experiments with short mixing times in which two diffusion-weighting periods are applied in direct succession, are a promising tool to estimate cell sizes in the living tissue. However, the underlying effect, a signal difference between parallel and antiparallel wave vector orientations, is considerably reduced for the long gradient pulses required on whole-body MR systems. Recently, it has been shown that multiple concatenations of the two wave vectors in a single acquisition can double the modulation amplitude if short gradient pulses are used. In this study, numerical simulations of such experiments were performed with parameters achievable with whole-body MR systems. It is shown that the theoretical model yields a good approximation of the signal behavior if an additional term describing free diffusion is included. More importantly, it is demonstrated that the shorter gradient pulses sufficient to achieve the desired diffusion weighting for multiple concatenations, increase the signal modulation considerably, e.g. by a factor of about five for five concatenations. Even at identical echo times, achieved by a shortened diffusion time, a moderate number of concatenations significantly improves the signal modulation. Thus, experiments on whole-body MR systems may benefit from multiple concatenations.

  8. How do stars form

    NASA Astrophysics Data System (ADS)

    Tscharnuter, W. M.

    1980-02-01

    Modes and model concept of star formation are reviewed, beginning with the theory of Kant (1755), via Newton's exact mathematical formulation of the laws of motion, his recognition of the universal validity of general gravitation, to modern concepts and hypotheses. Axisymmetric and spherically symmetric collapse models are discussed, and the origin of double and multiple star systems is examined.

  9. Visual performance on detection tasks with double-targets of the same and different difficulty.

    PubMed

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  10. Momentum considerations on the New MEXICO experiment

    NASA Astrophysics Data System (ADS)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  11. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  12. Large neighborhood search for the double traveling salesman problem with multiple stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W; Van Hentenryck, Pascal

    This paper considers a complex real-life short-haul/long haul pickup and delivery application. The problem can be modeled as double traveling salesman problem (TSP) in which the pickups and the deliveries happen in the first and second TSPs respectively. Moreover, the application features multiple stacks in which the items must be stored and the pickups and deliveries must take place in reserve (LIFO) order for each stack. The goal is to minimize the total travel time satisfying these constraints. This paper presents a large neighborhood search (LNS) algorithm which improves the best-known results on 65% of the available instances and ismore » always within 2% of the best-known solutions.« less

  13. Simplified contaminant source depletion models as analogs of multiphase simulators

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-04-01

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  14. Simplified contaminant source depletion models as analogs of multiphase simulators.

    PubMed

    Basu, Nandita B; Fure, Adrian D; Jawitz, James W

    2008-04-28

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  15. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  16. Statistical methods for incomplete data: Some results on model misspecification.

    PubMed

    McIsaac, Michael; Cook, R J

    2017-02-01

    Inverse probability weighted estimating equations and multiple imputation are two of the most studied frameworks for dealing with incomplete data in clinical and epidemiological research. We examine the limiting behaviour of estimators arising from inverse probability weighted estimating equations, augmented inverse probability weighted estimating equations and multiple imputation when the requisite auxiliary models are misspecified. We compute limiting values for settings involving binary responses and covariates and illustrate the effects of model misspecification using simulations based on data from a breast cancer clinical trial. We demonstrate that, even when both auxiliary models are misspecified, the asymptotic biases of double-robust augmented inverse probability weighted estimators are often smaller than the asymptotic biases of estimators arising from complete-case analyses, inverse probability weighting or multiple imputation. We further demonstrate that use of inverse probability weighting or multiple imputation with slightly misspecified auxiliary models can actually result in greater asymptotic bias than the use of naïve, complete case analyses. These asymptotic results are shown to be consistent with empirical results from simulation studies.

  17. Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.

    ERIC Educational Resources Information Center

    Rowell, R. Kevin

    In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…

  18. Monte Carlo approach in assessing damage in higher order structures of DNA

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Schmidt, J. B.; Holley, W. R.

    1994-01-01

    We have developed a computer monitor of nuclear DNA in the form of chromatin fibre. The fibres are modeled as a ideal solenoid consisting of twenty helical turns with six nucleosomes per turn. The chromatin model, in combination with are Monte Carlo theory of radiation damage induces by charged particles, based on general features of tack structure and stopping power theory, has been used to evaluate the influence of DNA structure on initial damage. An interesting has emerged from our calculations. Our calculated results predict the existence of strong spatial correlations in damage sites associated with the symmetries in the solenoidal model. We have calculated spectra of short fragments of double stranded DNA produced by multiple double strand breaks induced by both high and low LET radiation. The spectra exhibit peaks at multiples of approximately 85 base pairs (the nucleosome periodicity), and approximately 1000 base pairs (solenoid periodicity). Preliminary experiments to investigate the fragment distributions from irradiated DNA, made by B. Rydberg at Lawrence Berkeley Laboratory, confirm the existence of short DNA fragments and are in substantial agreement with the predictions of our theory.

  19. Transition from single to multiple double layers. [of plasma

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    Laboratory results are presented to define parameters which allow the boundary conditions to control the characteristics of double layers of plasma. It is shown that multiple double layers arise when the ratio of Debye length to system length decreases, a result which is in line with boundary layer theory. The significance of inclusion of the system length is noted to render BGK treatments of double layers, wherein the length is neglected, invalid.

  20. Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST

    NASA Astrophysics Data System (ADS)

    Bo, SHI; Jinhong, YANG; Cheng, YANG; Desheng, CHENG; Hui, WANG; Hui, ZHANG; Haifei, DENG; Junli, QI; Xianzu, GONG; Weihua, WANG

    2018-07-01

    The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m‑2 flows to the upper divertor target plate and about 6 MW m‑2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.

  1. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  2. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  3. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  4. Infrared laser driven double proton transfer. An optimal control theory study

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Mahmoud K.; Kühn, Oliver

    2010-02-01

    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.

  5. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix

    Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less

  6. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    NASA Astrophysics Data System (ADS)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.

  7. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    DOE PAGES

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; ...

    2018-01-12

    Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less

  8. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.

  9. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.

    2018-05-01

    Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.

  10. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  11. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  12. Strange and non-strange particle production in antiproton-nucleus collisions in the UrQMD model

    NASA Astrophysics Data System (ADS)

    Limphirat, Ayut; Kobdaj, Chinorat; Bleicher, Marcus; Yan, Yupeng; Stöcker, Horst

    2009-06-01

    The capabilities of the ultra-relativistic quantum molecular dynamics (UrQMD) model in describing antiproton-nucleus collisions are presented. The model provides a good description of the experimental data on multiplicities, transverse momentum distributions and rapidity distributions in antiproton-nucleus collisions. Special emphasis is put on the comparison of strange particles in reactions with nuclear targets ranging from 7Li, 12C, 32S, 64Cu to 131Xe because of the important role of strangeness for the exploration of hypernuclei at PANDA-FAIR. The productions of the double strange baryons Ξ- and \\bar{\\Xi}^+ , which may be used to produce double Λ hypernuclei, are predicted in this work for the reactions \\skew2\\bar{p} + 24Mg, 64Cu and 197Au.

  13. Laboratory observation of multiple double layer resembling space plasma double layer

    NASA Astrophysics Data System (ADS)

    Alex, Prince; Arumugam, Saravanan; Sinha, Suraj

    2017-10-01

    Perceptible double layer consisting of more than one layers were produced in laboratory using a double discharge plasma setup. The confinement of oppositely charged particles in each layer with sharply defined luminous boarder is attributed to the self-organization scenario. This structure is generated in front of a positively biased electrode when the electron drift velocity (νd) exceeds 1.3 times the electron thermal velocity (νte) . Stable multiple double layer structures were observed only between 1.3 νte <=νd <= 3 νte. At νd = 1.3 νte, oscillations were excited in the form of large amplitude burst followed by a high frequency stable oscillation. Beyond νd = 3 νte, multiple double layer begins to collapse which is characterized by an emergence in turbulence. Long range dependence in the corresponding electrostatic potential fluctuations indicates the role of self-organized criticality in the emergence of turbulence. The algebraic decaying tale of the autocorrelation function and power law behavior in the power spectrum are consistent with the observation.

  14. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.

    PubMed

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  15. Single, double or multiple-injection techniques for non-ultrasound guided axillary brachial plexus block in adults undergoing surgery of the lower arm.

    PubMed

    Chin, Ki Jinn; Alakkad, Husni; Cubillos, Javier E

    2013-08-08

    Regional anaesthesia comprising axillary block of the brachial plexus is a common anaesthetic technique for distal upper limb surgery. This is an update of a review first published in 2006 and updated in 2011. To compare the relative effects (benefits and harms) of three injection techniques (single, double and multiple) of axillary block of the brachial plexus for distal upper extremity surgery. We considered these effects primarily in terms of anaesthetic effectiveness; the complication rate (neurological and vascular); and pain and discomfort caused by performance of the block. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE, EMBASE and reference lists of trials. We contacted trial authors. The date of the last search was March 2013 (updated from March 2011). We included randomized controlled trials that compared double with single-injection techniques, multiple with single-injection techniques, or multiple with double-injection techniques for axillary block in adults undergoing surgery of the distal upper limb. We excluded trials using ultrasound-guided techniques. Independent study selection, risk of bias assessment and data extraction were performed by at least two investigators. We undertook meta-analysis. The 21 included trials involved a total of 2148 participants who received regional anaesthesia for hand, wrist, forearm or elbow surgery. Risk of bias assessment indicated that trial design and conduct were generally adequate; the most common areas of weakness were in blinding and allocation concealment.Eight trials comparing double versus single injections showed a statistically significant decrease in primary anaesthesia failure (risk ratio (RR 0.51), 95% confidence interval (CI) 0.30 to 0.85). Subgroup analysis by method of nerve location showed that the effect size was greater when neurostimulation was used rather than the transarterial technique.Eight trials comparing multiple with single injections showed a statistically significant decrease in primary anaesthesia failure (RR 0.25, 95% CI 0.14 to 0.44) and of incomplete motor block (RR 0.61, 95% CI 0.39 to 0.96) in the multiple injection group.Eleven trials comparing multiple with double injections showed a statistically significant decrease in primary anaesthesia failure (RR 0.28, 95% CI 0.20 to 0.40) and of incomplete motor block (RR 0.55, 95% CI 0.36 to 0.85) in the multiple injection group.Tourniquet pain was significantly reduced with multiple injections compared with double injections (RR 0.53, 95% CI 0.33 to 0.84). Otherwise there were no statistically significant differences between groups in any of the three comparisons on secondary analgesia failure, complications and patient discomfort. The time for block performance was significantly shorter for single and double injections compared with multiple injections. This review provides evidence that multiple-injection techniques using nerve stimulation for axillary plexus block produce more effective anaesthesia than either double or single-injection techniques. However, there was insufficient evidence for a significant difference in other outcomes, including safety.

  16. Double Star Measurements at the Internationale Amateur Sternwarte (IAS) in Namibia in 2008 and 2009

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2010-04-01

    A 40-cm-Cassegrain telescope in Namibia was used for observing double and multiple systems in the southern sky. Digital images were recorded with a CCD camera at high frame rates via a firewire interface directly in a computer. Measurements of 34 double and multiple systems are presented and compared with literature data. Some noteworthy objects are discussed in more detail.

  17. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  18. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    PubMed Central

    Wienk, Hans; Slootweg, Jack C.; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  19. Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach

    PubMed Central

    Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge

    2015-01-01

    Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102

  20. Auralization of CFD Vorticity Using an Auditory Illusion

    NASA Astrophysics Data System (ADS)

    Volpe, C. R.

    2005-12-01

    One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally, the simple approach of mapping clockwise and counterclockwise rotations to actual pitch increases and decreases, eventually results in sounds that the listener cannot hear. In this alternate presentation using an auditory illusion, repeated rotations of a stream-tube are replaced with continual increases or decreases in apparent pitch. These apparent pitch changes can continue without bound, yet never exceed the range of frequencies that the listener can hear. The effectiveness of this presentation technique has been studied, and empirical results, obtained through formal user testing and statistical analysis, are presented. These results demonstrate that an aural data presentation using an auditory illusion can improve performance in locating key data characteristics, a task that demonstrates a certain level of understanding of the data. The experiments show that this holds true even when the user expresses a subjective preference and greater confidence in a visual presentation. The CFD data used in the research comes from a number of different industrial domains, but the advantages of this technique could be equally applicable to the study of earth sciences involving fluid mechanics, such as atmospheric or ocean sciences. Furthermore, the approach is applicable not only to CFD data, but to any type of data in which a quantity that is cyclic in nature, such as orientation, needs to be presented. Although the techniques and tools were originally developed with scientists and engineers in mind, they can also be used to aid students, particularly those who are visually impaired or who have difficulty interpreting certain spatial relationships visually.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creutz, Michael

    Using the Sigma model to explore the lowest order pseudo-scalar spectrum with SU(3) breaking, this talk considers an additional exact "taste" symmetry to mimic species doubling. Rooting replicas of a valid approach such as Wilson fermions reproduces the desired physical spectrum. In contrast, extra symmetries of the rooted staggered approach leave spurious states and a flavor dependent taste multiplicity.

  2. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  3. Advanced analytical modeling of double-gate Tunnel-FETs - A performance evaluation

    NASA Astrophysics Data System (ADS)

    Graef, Michael; Hosenfeld, Fabian; Horst, Fabian; Farokhnejad, Atieh; Hain, Franziska; Iñíguez, Benjamín; Kloes, Alexander

    2018-03-01

    The Tunnel-FET is one of the most promising devices to be the successor of the standard MOSFET due to its alternative current transport mechanism, which allows a smaller subthreshold slope than the physically limited 60 mV/dec of the MOSFET. Recently fabricated devices show smaller slopes already but mostly not over multiple decades of the current transfer characteristics. In this paper the performance limiting effects, occurring during the fabrication process of the device, such as doping profiles and midgap traps are analyzed by physics-based analytical models and their performance limiting abilities are determined. Additionally, performance enhancing possibilities, such as hetero-structures and ambipolarity improvements are introduced and discussed. An extensive double-gate n-Tunnel-FET model is presented, which meets the versatile device requirements and shows a good fit with TCAD simulations and measurement data.

  4. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  5. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    PubMed

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  6. Experiments in dilution jet mixing effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from 2-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  7. Experiments in dilution jet mixing - Effects of multiple rows and non-circular orifices

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.; Coleman, E. B.; Meyers, G. D.; White, C. D.

    1985-01-01

    Experimental and empirical model results are presented that extend previous studies of the mixing of single-sided and opposed rows of jets in a confined duct flow to include effects of non-circular orifices and double rows of jets. Analysis of the mean temperature data obtained in this investigation showed that the effects of orifice shape and double rows are significant only in the region close to the injection plane, provided that the orifices are symmetric with respect to the main flow direction. The penetration and mixing of jets from 45-degree slanted slots is slightly less than that from equivalent-area symmetric orifices. The penetration from two-dimensional slots is similar to that from equivalent-area closely-spaced rows of holes, but the mixing is slower for the 2-D slots. Calculated mean temperature profiles downstream of jets from non-circular and double rows of orifices, made using an extension developed for a previous empirical model, are shown to be in good agreement with the measured distributions.

  8. Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band.

    PubMed

    Bourlier, Christophe

    2006-08-20

    The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.

  9. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    PubMed

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  10. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  11. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

    PubMed

    Pan, Yude; Melillo, Jerry M; McGuire, A David; Kicklighter, David W; Pitelka, Louis F; Hibbard, Kathy; Pierce, Lars L; Running, Steven W; Ojima, Dennis S; Parton, William J; Schimel, David S

    1998-04-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO 2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO 2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO 2 . In this study, we analyze the responses of net primary production (NPP) to doubled CO 2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO 2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO 2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO 2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO 2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO 2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO 2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO 2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO 2 .

  12. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)

    USGS Publications Warehouse

    Pan, Y.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Pitelka, Louis F.; Hibbard, K.; Pierce, L.L.; Running, S.W.; Ojima, D.S.; Parton, W.J.; Schimel, D.S.; Borchers, J.; Neilson, R.; Fisher, H.H.; Kittel, T.G.F.; Rossenbloom, N.A.; Fox, S.; Haxeltine, A.; Prentice, I.C.; Sitch, S.; Janetos, A.; McKeown, R.; Nemani, R.; Painter, T.; Rizzo, B.; Smith, T.; Woodward, F.I.

    1998-01-01

    Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.

  13. Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.

    PubMed

    Seeboonruang, Uma; Ginn, Timothy R

    2006-03-20

    Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.

  14. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.

    PubMed

    Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June

    2016-05-01

    Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.

  15. Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-01-01

    We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.

  16. Multiple and configurable optical logic systems based on layered double hydroxides and chromophore assemblies.

    PubMed

    Shi, Wenying; Fu, Yi; Li, Zhixiong; Wei, Min

    2015-01-14

    Multiple and configurable fluorescence logic gates were fabricated via self-assembly of layered double hydroxides and various chromophores. These logic gates were operated by observation of different emissions with the same excitation wavelength, which achieve YES, NOT, AND, INH and INHIBIT logic operations, respectively.

  17. Resolving the double tension: Toward a new approach to measurement modeling in cross-national research

    NASA Astrophysics Data System (ADS)

    Medina, Tait Runnfeldt

    The increasing global reach of survey research provides sociologists with new opportunities to pursue theory building and refinement through comparative analysis. However, comparison across a broad array of diverse contexts introduces methodological complexities related to the development of constructs (i.e., measurement modeling) that if not adequately recognized and properly addressed undermine the quality of research findings and cast doubt on the validity of substantive conclusions. The motivation for this dissertation arises from a concern that the availability of cross-national survey data has outpaced sociologists' ability to appropriately analyze and draw meaningful conclusions from such data. I examine the implicit assumptions and detail the limitations of three commonly used measurement models in cross-national analysis---summative scale, pooled factor model, and multiple-group factor model with measurement invariance. Using the orienting lens of the double tension I argue that a new approach to measurement modeling that incorporates important cross-national differences into the measurement process is needed. Two such measurement models---multiple-group factor model with partial measurement invariance (Byrne, Shavelson and Muthen 1989) and the alignment method (Asparouhov and Muthen 2014; Muthen and Asparouhov 2014)---are discussed in detail and illustrated using a sociologically relevant substantive example. I demonstrate that the former approach is vulnerable to an identification problem that arbitrarily impacts substantive conclusions. I conclude that the alignment method is built on model assumptions that are consistent with theoretical understandings of cross-national comparability and provides an approach to measurement modeling and construct development that is uniquely suited for cross-national research. The dissertation makes three major contributions: First, it provides theoretical justification for a new cross-national measurement model and explicates a link between theoretical conceptions of cross-national comparability and a statistical method. Second, it provides a clear and detailed discussion of model identification in multiple-group confirmatory factor analysis that is missing from the literature. This discussion sets the stage for the introduction of the identification problem within multiple-group confirmatory factor analysis with partial measurement invariance and the alternative approach to model identification employed by the alignment method. Third, it offers the first pedagogical presentation of the alignment method using a sociologically relevant example.

  18. Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters

    NASA Astrophysics Data System (ADS)

    Elbisy, Moussa S.

    2017-06-01

    This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient C T; reflection coefficient C R, and energy dissipation coefficient C E coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that C R reaches the maximum value when B/L = 0.46 n while it is smallest when B/L=0.46 n+0.24 ( n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and C R and C T ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced C R, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.

  19. Low-frequency switching in a transistor amplifier.

    PubMed

    Carroll, T L

    2003-04-01

    It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.

  20. An argument for the use of multiple segment stents in curved arteries.

    PubMed

    Kasiri, Saeid; Kelly, Daniel J

    2011-08-01

    Stenting of curved arteries is generally perceived to be more challenging than straight vessels. Conceptually implanting multiple shorter stents rather than a single longer stent into such a curved artery represents a promising concept, but little is known about the impact of such an approach. The objective of this study is to evaluate the effectiveness of using a multiple segment stent rather than a single long stent to dilate a curved artery using the finite element method. A double segment stent (DSS) and a single segment stent (SSS) were modeled. The stents were compared when expanded into a model of a curved artery. The model predicts that the DSS provides higher flexibility, more conformity, and lower recoil in comparison to the SSS. The volume of arterial tissue experiencing high levels of stress due to stent implantation is also reduced for the DSS. It is suggested that a multiple segment stenting system is a potential solution to the problem of higher rates of in-stent restenosis in curved arteries and mechanically challenging environments.

  1. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.

  2. Signature of charge migration in modulations of double ionization

    NASA Astrophysics Data System (ADS)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  3. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  4. Double-Pulsed 2-micron Laser Transmitter for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong

    2002-01-01

    A high energy double-pulsed Ho:Tm:YLF 2-micron laser amplifier has been demonstrated. 600 mJ per pulse pair under Q-switch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.

  5. Prediction of down-gradient impacts of DNAPL source depletion using tracer techniques: Laboratory and modeling validation

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Basu, N.; Chen, X.

    2007-05-01

    Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.

  6. Application of a hybrid model to reduce bias and improve precision in population estimates for elk (Cervus elaphus) inhabiting a cold desert ecosystem

    USGS Publications Warehouse

    Schoenecker, Kathryn A.; Lubow, Bruce C.

    2016-01-01

    Accurately estimating the size of wildlife populations is critical to wildlife management and conservation of species. Raw counts or “minimum counts” are still used as a basis for wildlife management decisions. Uncorrected raw counts are not only negatively biased due to failure to account for undetected animals, but also provide no estimate of precision on which to judge the utility of counts. We applied a hybrid population estimation technique that combined sightability modeling, radio collar-based mark-resight, and simultaneous double count (double-observer) modeling to estimate the population size of elk in a high elevation desert ecosystem. Combining several models maximizes the strengths of each individual model while minimizing their singular weaknesses. We collected data with aerial helicopter surveys of the elk population in the San Luis Valley and adjacent mountains in Colorado State, USA in 2005 and 2007. We present estimates from 7 alternative analyses: 3 based on different methods for obtaining a raw count and 4 based on different statistical models to correct for sighting probability bias. The most reliable of these approaches is a hybrid double-observer sightability model (model MH), which uses detection patterns of 2 independent observers in a helicopter plus telemetry-based detections of radio collared elk groups. Data were fit to customized mark-resight models with individual sighting covariates. Error estimates were obtained by a bootstrapping procedure. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to double-observer modeling. The resulting population estimate corrected for multiple sources of undercount bias that, if left uncorrected, would have underestimated the true population size by as much as 22.9%. Our comparison of these alternative methods demonstrates how various components of our method contribute to improving the final estimate and demonstrates why each is necessary.

  7. SU-F-T-158: Experimental Characterization of Field Size Dependence of Dose and Lateral Beam Profiles of Scanning Proton and Carbon Ion Beams for Empirical Model in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Hsi, W; Zhao, J

    2016-06-15

    Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less

  8. Handling nonresponse in surveys: analytic corrections compared with converting nonresponders.

    PubMed

    Jenkins, Paul; Earle-Richardson, Giulia; Burdick, Patrick; May, John

    2008-02-01

    A large health survey was combined with a simulation study to contrast the reduction in bias achieved by double sampling versus two weighting methods based on propensity scores. The survey used a census of one New York county and double sampling in six others. Propensity scores were modeled as a logistic function of demographic variables and were used in conjunction with a random uniform variate to simulate response in the census. These data were used to estimate the prevalence of chronic disease in a population whose parameters were defined as values from the census. Significant (p < 0.0001) predictors in the logistic function included multiple (vs. single) occupancy (odds ratio (OR) = 1.3), bank card ownership (OR = 2.1), gender (OR = 1.5), home ownership (OR = 1.3), head of household's age (OR = 1.4), and income >$18,000 (OR = 0.8). The model likelihood ratio chi-square was significant (p < 0.0001), with the area under the receiver operating characteristic curve = 0.59. Double-sampling estimates were marginally closer to population values than those from either weighting method. However, the variance was also greater (p < 0.01). The reduction in bias for point estimation from double sampling may be more than offset by the increased variance associated with this method.

  9. Numerical analysis of the effect of side holes of a double J stent on flow rate and pattern.

    PubMed

    Kim, Kyung-Wuk; Choi, Young Ho; Lee, Seung Bae; Baba, Yasutaka; Kim, Hyoung-Ho; Suh, Sang-Ho

    2015-01-01

    A double J stent has been used widely these days for patients with a ureteral stenosis or with renal stones and lithotripsy. The stent has multiple side holes in the shaft, which supply detours for urine flow. Even though medical companies produce various forms of double J stents that have different numbers and positions of side holes in the stent, the function of side holes in fluid dynamics has not been studied well. Here, the flow rate and pattern around the side holes of a double J stent were evaluated in curved models of a stented ureter based on the human anatomy and straight models for comparison. The total flow rate was higher in the stent with a greater number of side holes. The inflow and outflow to the stent through the side holes in the curved ureter was more active than in the straight ureter, which means the flow through side holes exists even in the ureter without ureteral stenosis or occlusion and even in the straight ureter. When the diameter of the ureter changed, the in-stent flow rate in the ureter did not change and the extraluminal flow rate was higher in the ureter with a greater diameter.

  10. Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations

    NASA Astrophysics Data System (ADS)

    Guo, W.; Ma, J.; Yu, Z.

    2017-03-01

    A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.

  11. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  12. Comparison of Pelican single-use multibite biopsy forceps and traditional double-bite forceps: evaluation in a porcine model.

    PubMed

    Zaidman, Jeffrey S; Frederick, William G; Furth, Emma E; Su, Chinyu G; Ginsberg, Gregory G

    2006-10-01

    The multibite biopsy forceps is intended for consecutive acquisition of numerous tissue specimens with a single pass. The Pelican multibite forceps is equipped with a sleeve for tissue retention that allows up to 6 specimens to be obtained with each pass of the device through the accessory channel. Reducing the need for device exchange could decrease the total procedure time for colon cancer surveillance in patients with longstanding inflammatory bowel disease (IBD). The aim of this study was to evaluate a new multibite biopsy forceps in comparison with a standard double-bite forceps. Prospective randomized animal model trial. Multicenter university and community hospitals. By using a live porcine model, multiple colonoscopic biopsy specimens were obtained with both the Pelican multibite forceps and the Radial Jaw 3 (RJ3) double-bite forceps to mimic colorectal cancer surveillance in patients with IBD. Six biopsy specimens were obtained with each of 6 passes when using the Pelican forceps, and 2 biopsy specimens were obtained with each of 18 passes when using the RJ3 forceps. All trials were timed. Two independent pathologists blinded to the forceps used evaluated the specimens. Tissue acquisition when using the Pelican multibite forceps was significantly faster than with a standard double-bite forceps. The devices compared equivalently for specimen retention and quality. The operator could not be blinded to the devices used. This study uses an animal model to extrapolate how the devices might perform in human use. These findings support the evaluation of the Pelican forceps for colon cancer surveillance in patients with longstanding IBD.

  13. Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2013-02-01

    The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.

  14. An Application of Double-Loop Learning to Community College Remedial Education: A New Model of Integrated Supports for Ongoing Student Success

    ERIC Educational Resources Information Center

    Doren, Andrew T.

    2013-01-01

    Community colleges have multiple missions and one of them is to provide open access services to those seeking to further their education. Community colleges provide remedial courses in math, reading, and writing because many of their students do not meet entrance requirements in these core subjects. However, the usual developmental education track…

  15. The Design of Pumpjets for Hydrodynamic Propulsion

    NASA Technical Reports Server (NTRS)

    Bruce, E. P.; Gearhart, W. S.; Ross, J. R.; Treaster, A. L.

    1974-01-01

    A procedure for use in the design of a wake adapted pumpjet mounted on the aft end of a body of revolution is presented. To this end, a pumpjet is designed for the Akron airship. The propulsor mass flow is selected to minimize kinetic energy losses through the duct and in the discharge jet. The shaft speed and disk size are selected to satisfy specified limits of cavitation performance and to provide acceptable blade loading. The streamtubes which pass through a propulsor mounted on a tapered afterbody follow essentially conical surfaces. A method is provided for defining these surfaces as a function of shroud geometry, rotor head distribution, and the energy distribution of the ingested mass flow. The three-dimensional effects to which the conical flow subjects the cylindrical blade design sections are described and a technique is presented which permits incorporation of these effects in the blade design procedure.

  16. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.

    PubMed

    Tsuruta, S; Misztal, I; Strandén, I

    2001-05-01

    Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.

  17. Double and Multiple Star Measurements at the Southern Sky with a 50cm-Cassegrain and a Fast CCD Camera in 2008

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2011-04-01

    Using a 50cm Cassegrain in Namibia, recordings of double and multiple stars were made with a fast CCD camera and a notebook computer. From superpositions of "lucky images", measurements of 149 systems were obtained and compared with literature data. B/W and color images of some remarkable systems are also presented.

  18. Double and Multiple Star Measurements in the Northern Sky with a 10" Newtonian and a Fast CCD Camera in 2006 through 2009

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2010-07-01

    Using a 10" Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of "lucky images", measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented.

  19. Single and multiple ionization of C{sub 60} fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, A. H.; Kadhane, U.; Misra, D.

    2010-10-15

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less

  20. Using large spectroscopic surveys to test the double degenerate model for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Breedt, E.; Steeghs, D.; Marsh, T. R.; Gentile Fusillo, N. P.; Tremblay, P.-E.; Green, M.; De Pasquale, S.; Hermes, J. J.; Gänsicke, B. T.; Parsons, S. G.; Bours, M. C. P.; Longa-Peña, P.; Rebassa-Mansergas, A.

    2017-07-01

    An observational constraint on the contribution of double degenerates to Type Ia supernovae requires multiple radial velocity measurements of ideally thousands of white dwarfs. This is because only a small fraction of the double degenerate population is massive enough, with orbital periods short enough, to be considered viable Type Ia progenitors. We show how the radial velocity information available from public surveys such as the Sloan Digital Sky Survey can be used to pre-select targets for variability, leading to a 10-fold reduction in observing time required compared to an unranked or random survey. We carry out Monte Carlo simulations to quantify the detection probability of various types of binaries in the survey and show that this method, even in the most pessimistic case, doubles the survey size of the largest survey to date (the SPY Survey) in less than 15 per cent of the required observing time. Our initial follow-up observations corroborate the method, yielding 15 binaries so far (eight known and seven new), as well as orbital periods for four of the new binaries.

  1. Interactive High-Relief Reconstruction for Organic and Double-Sided Objects from a Photo.

    PubMed

    Yeh, Chih-Kuo; Huang, Shi-Yang; Jayaraman, Pradeep Kumar; Fu, Chi-Wing; Lee, Tong-Yee

    2017-07-01

    We introduce an interactive user-driven method to reconstruct high-relief 3D geometry from a single photo. Particularly, we consider two novel but challenging reconstruction issues: i) common non-rigid objects whose shapes are organic rather than polyhedral/symmetric, and ii) double-sided structures, where front and back sides of some curvy object parts are revealed simultaneously on image. To address these issues, we develop a three-stage computational pipeline. First, we construct a 2.5D model from the input image by user-driven segmentation, automatic layering, and region completion, handling three common types of occlusion. Second, users can interactively mark-up slope and curvature cues on the image to guide our constrained optimization model to inflate and lift up the image layers. We provide real-time preview of the inflated geometry to allow interactive editing. Third, we stitch and optimize the inflated layers to produce a high-relief 3D model. Compared to previous work, we can generate high-relief geometry with large viewing angles, handle complex organic objects with multiple occluded regions and varying shape profiles, and reconstruct objects with double-sided structures. Lastly, we demonstrate the applicability of our method on a wide variety of input images with human, animals, flowers, etc.

  2. The Doubling Moment: Resurrecting Edgar Allan Poe

    ERIC Educational Resources Information Center

    Minnick, J. Bradley; Mergil, Fernando

    2008-01-01

    This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…

  3. Identification and Multiplicity of Double Vowels in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Kwon, Bomjun J.; Perry, Trevor T.

    2014-01-01

    Purpose: The present study examined cochlear implant (CI) users' perception of vowels presented concurrently (i.e., "double vowels") to further our understanding of auditory grouping in electric hearing. Method: Identification of double vowels and single vowels was measured with 10 CI subjects. Fundamental frequencies (F0s) of…

  4. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less

  5. Study of Double-Weighted Graph Model and Optimal Path Planning for Tourist Scenic Area Oriented Intelligent Tour Guide

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Long, Y.; Wi, X. L.

    2014-04-01

    When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.

  6. Double cusp encounter by Cluster: double cusp or motion of the cusp?

    NASA Astrophysics Data System (ADS)

    Escoubet, C. P.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2012-12-01

    Modeling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern allowed Wing et al. [2001] to model double cusp signatures that were observed by the DMSP spacecraft when the Interplanetary Magnetic Field (IMF) is southward but has a dominant By component (|IMF-By|>|IMF-Bz|). Under these conditions, reconnection between the IMF and the geomagnetic field is predicted to occur both at high latitudes and around the equatorial plane (or subsolar region). This multiple reconnection topology subsequently produces two different injections of plasma into the cusp, hence the observation of the so-called double cusp. However, the two cusps can be very close to each other and a detailed analysis of the dispersion of the precipitating ions is very often required to clearly identify them. We will present a cusp crossing where two cusps are observed, separated by 1° ILAT. Cluster 1 and 2 observed these two cusps within a few minute interval and about 10 and 50 min later, respectively, Cluster 4 and 3 observed a single cusp only. A peculiarity of this event was the fact that the second cusp seen on C1 and C2 was observed at the same time as the first cusp on C4. This would tend to suggest that the two dispersions are spatial features similar to the double cusp. However more detailed analysis of the characteristics of the cusps (ion dispersion, boundaries) and the IMF abrupt changes clearly showed that the double cusp was in fact a single cusp that had moved toward dawn and then back toward dusk following the changes in the IMF direction.

  7. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS

    NASA Astrophysics Data System (ADS)

    Templin, R. J.

    1985-03-01

    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  8. Characterizing SRAM Single Event Upset in Terms of Single and Double Node Charge Collection

    NASA Technical Reports Server (NTRS)

    Black, J. D.; Ball, D. R., II; Robinson, W. H.; Fleetwood, D. M.; Schrimpf, R. D.; Reed, R. A.; Black, D. A.; Warren, K. M.; Tipton, A. D.; Dodd, P. E.; hide

    2008-01-01

    A well-collapse source-injection mode for SRAM SEU is demonstrated through TCAD modeling. The recovery of the SRAM s state is shown to be based upon the resistive path from the p+-sources in the SRAM to the well. Multiple cell upset patterns for direct charge collection and the well-collapse source-injection mechanisms are then predicted and compared to recent SRAM test data.

  9. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  10. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    PubMed

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  11. Entanglement entropy at infinite-randomness fixed points in higher dimensions.

    PubMed

    Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko

    2007-10-05

    The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.

  12. Interferometric Methods of Measuring Refractive Indices and Double-Refraction of Fibres.

    ERIC Educational Resources Information Center

    Hamza, A. A.; El-Kader, H. I. Abd

    1986-01-01

    Presents two methods used to measure the refractive indices and double-refraction of fibers. Experiments are described, with one involving the use of Pluta microscope in the double-beam interference technique, the other employing the multiple-beam technique. Immersion liquids are discussed that can be used in the experiments. (TW)

  13. Double emulsions from a capillary array injection microfluidic device.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.

  14. Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson-Nernst-Planck Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hainan; Thiele, Alexander; Pilon, Laurent

    2013-11-15

    This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |z i| of either ion species. By contrast, the ionmore » diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τ CV and the “RC time scale” τ RC corresponding to the characteristic time of ions’ electrodiffusion. For τ RC ← τ CV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τ RC → τ CV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.« less

  15. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  16. STT Doubles with Large δM - Part VI: Cygnus Multiples

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Nanson, John

    2016-10-01

    The results of visual double star observing sessions suggested a pattern for STT doubles with large delta_M of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Of these objects we found three rather complex multiples in Cygnus of special interest so we decided to write a separate report to have more room to include the non STT components as well. Again like for the other objects covered so far several of the components show parameters quite different from the current WDS data.

  17. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    PubMed

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  18. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.

    PubMed

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2011-01-21

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  19. Strain and deformations engineered germanene bilayer double gate-field effect transistor by first principles

    NASA Astrophysics Data System (ADS)

    Meher Abhinav, E.; Chandrasekaran, Gopalakrishnan; Kasmir Raja, S. V.

    2017-10-01

    Germanene, silicene, stanene, phosphorene and graphene are some of single atomic materials with novel properties. In this paper, we explored bilayer germanene-based Double Gate-Field Effect Transistor (DG-FET) with various strains and deformations using Density Functional Theory (DFT) and Green's approach by first-principle calculations. The DG-FET of 1.6 nm width, 6 nm channel length (Lch) and HfO2 as gate dielectric has been modeled. For intrinsic deformation of germanene bilayer, we have enforced minute mechanical deformation of wrap and twist (5°) and ripple (0.5 Å) on germanene bilayer channel material. By using NEGF formalism, I-V Characteristics of various strains and deformation tailored DG-FET was calculated. Our results show that rough edge and single vacancy (5-9) in bilayer germanene diminishes the current around 47% and 58% respectively as compared with pristine bilayer germanene. In case of strain tailored bilayer DG-FET, multiple NDR regions were observed which can be utilized in building stable multiple logic states in digital circuits and high frequency oscillators using negative resistive techniques.

  20. Dual-circuit, multiple-effect refrigeration system and method

    DOEpatents

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  1. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George J.

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.« less

  2. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.« less

  3. DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys?

    PubMed

    Weterings, Eric; Chen, David J

    2007-10-22

    The DNA-dependent protein kinase (DNA-PK) is one of the central enzymes involved in DNA double-strand break (DSB) repair. It facilitates proper alignment of the two ends of the broken DNA molecule and coordinates access of other factors to the repair complex. We discuss the latest findings on DNA-PK phosphorylation and offer a working model for the regulation of DNA-PK during DSB repair.

  4. Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    Rabus, Dominik Gerhard; Hamacher, Michael; Heidrich, Helmut

    2002-02-01

    A racetrack shaped double ring resonator (DRR) filter is demonstrated with radii of 200 μm. The double ring resonator contains two -3 dB multimode interference (MMI) couplers for I/O coupling and a -13 dB codirectional coupler in between the rings. A free spectral range of 50 GHz has been realized. A simulation model has been developed to describe the DRR. As fabrication tolerances do not allow the realization of two identical rings with required nm-circumference accuracy in the resonator, a frequency alignment of the resonator is indispensable. The resonance frequency tuning is performed thermally using platinum resistors which have been placed on top of the waveguides in both rings. An on-off ratio increase has been achieved of more than 3 dB, resulting in a total on-off ratio larger than 18 dB. The frequency alignment is inevitable in the case of multiple coupled micro ring resonators.

  5. Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment

    NASA Astrophysics Data System (ADS)

    Fiori, A.

    2014-12-01

    Channeling effects in heterogeneous formations are studied through a new quantity denoted as channel density a(x,t). Focusing on advection only, a(x,t) is defined as the relative number of streamtubes (or channels) containing solute between x and x + dx at a given time t, regardless of the mass that they carry. The channel density generally differs from the widely employed longitudinal mass distribution m(x,t), and their difference increases with time and the degree of heterogeneity. The difference between a and m reflects the nonuniformity of mass distribution relative to the plume geometry. In particular, the "fast" channels typically carry a larger fraction of mass than their share in their relative volume, which in turn can be rather small. Detecting such channels by a network of monitoring wells may be a challenging task, which might explain the poor solute recovery of some field experiments at increasing times. After application of the proposed concepts to the simple case of stratified formations, we model the channel density and mass distribution pertaining to the MADE experiment, which exhibited poor mass recovery at large times. The results presented in this study emphasize the possible channeling effects at MADE and the general difficulty in sampling the leading edge of the plume, which in turn may contain a significant fraction of the plume mass.

  6. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on eachmore » end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.« less

  7. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  8. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  9. Parallel algorithm for solving Kepler’s equation on Graphics Processing Units: Application to analysis of Doppler exoplanet searches

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2009-05-01

    We present the results of a highly parallel Kepler equation solver using the Graphics Processing Unit (GPU) on a commercial nVidia GeForce 280GTX and the "Compute Unified Device Architecture" (CUDA) programming environment. We apply this to evaluate a goodness-of-fit statistic (e.g., χ2) for Doppler observations of stars potentially harboring multiple planetary companions (assuming negligible planet-planet interactions). Given the high-dimensionality of the model parameter space (at least five dimensions per planet), a global search is extremely computationally demanding. We expect that the underlying Kepler solver and model evaluator will be combined with a wide variety of more sophisticated algorithms to provide efficient global search, parameter estimation, model comparison, and adaptive experimental design for radial velocity and/or astrometric planet searches. We tested multiple implementations using single precision, double precision, pairs of single precision, and mixed precision arithmetic. We find that the vast majority of computations can be performed using single precision arithmetic, with selective use of compensated summation for increased precision. However, standard single precision is not adequate for calculating the mean anomaly from the time of observation and orbital period when evaluating the goodness-of-fit for real planetary systems and observational data sets. Using all double precision, our GPU code outperforms a similar code using a modern CPU by a factor of over 60. Using mixed precision, our GPU code provides a speed-up factor of over 600, when evaluating nsys > 1024 models planetary systems each containing npl = 4 planets and assuming nobs = 256 observations of each system. We conclude that modern GPUs also offer a powerful tool for repeatedly evaluating Kepler's equation and a goodness-of-fit statistic for orbital models when presented with a large parameter space.

  10. An infrastructure for accurate characterization of single-event transients in digital circuits.

    PubMed

    Savulimedu Veeravalli, Varadan; Polzer, Thomas; Schmid, Ulrich; Steininger, Andreas; Hofbauer, Michael; Schweiger, Kurt; Dietrich, Horst; Schneider-Hornstein, Kerstin; Zimmermann, Horst; Voss, Kay-Obbe; Merk, Bruno; Hajek, Michael

    2013-11-01

    We present the architecture and a detailed pre-fabrication analysis of a digital measurement ASIC facilitating long-term irradiation experiments of basic asynchronous circuits, which also demonstrates the suitability of the general approach for obtaining accurate radiation failure models developed in our FATAL project. Our ASIC design combines radiation targets like Muller C-elements and elastic pipelines as well as standard combinational gates and flip-flops with an elaborate on-chip measurement infrastructure. Major architectural challenges result from the fact that the latter must operate reliably under the same radiation conditions the target circuits are exposed to, without wasting precious die area for a rad-hard design. A measurement architecture based on multiple non-rad-hard counters is used, which we show to be resilient against double faults, as well as many triple and even higher-multiplicity faults. The design evaluation is done by means of comprehensive fault injection experiments, which are based on detailed Spice models of the target circuits in conjunction with a standard double-exponential current injection model for single-event transients (SET). To be as accurate as possible, the parameters of this current model have been aligned with results obtained from 3D device simulation models, which have in turn been validated and calibrated using micro-beam radiation experiments at the GSI in Darmstadt, Germany. For the latter, target circuits instrumented with high-speed sense amplifiers have been used for analog SET recording. Together with a probabilistic analysis of the sustainable particle flow rates, based on a detailed area analysis and experimental cross-section data, we can conclude that the proposed architecture will indeed sustain significant target hit rates, without exceeding the resilience bound of the measurement infrastructure.

  11. An infrastructure for accurate characterization of single-event transients in digital circuits☆

    PubMed Central

    Savulimedu Veeravalli, Varadan; Polzer, Thomas; Schmid, Ulrich; Steininger, Andreas; Hofbauer, Michael; Schweiger, Kurt; Dietrich, Horst; Schneider-Hornstein, Kerstin; Zimmermann, Horst; Voss, Kay-Obbe; Merk, Bruno; Hajek, Michael

    2013-01-01

    We present the architecture and a detailed pre-fabrication analysis of a digital measurement ASIC facilitating long-term irradiation experiments of basic asynchronous circuits, which also demonstrates the suitability of the general approach for obtaining accurate radiation failure models developed in our FATAL project. Our ASIC design combines radiation targets like Muller C-elements and elastic pipelines as well as standard combinational gates and flip-flops with an elaborate on-chip measurement infrastructure. Major architectural challenges result from the fact that the latter must operate reliably under the same radiation conditions the target circuits are exposed to, without wasting precious die area for a rad-hard design. A measurement architecture based on multiple non-rad-hard counters is used, which we show to be resilient against double faults, as well as many triple and even higher-multiplicity faults. The design evaluation is done by means of comprehensive fault injection experiments, which are based on detailed Spice models of the target circuits in conjunction with a standard double-exponential current injection model for single-event transients (SET). To be as accurate as possible, the parameters of this current model have been aligned with results obtained from 3D device simulation models, which have in turn been validated and calibrated using micro-beam radiation experiments at the GSI in Darmstadt, Germany. For the latter, target circuits instrumented with high-speed sense amplifiers have been used for analog SET recording. Together with a probabilistic analysis of the sustainable particle flow rates, based on a detailed area analysis and experimental cross-section data, we can conclude that the proposed architecture will indeed sustain significant target hit rates, without exceeding the resilience bound of the measurement infrastructure. PMID:24748694

  12. Design of LPV fault-tolerant controller for pitch system of wind turbine

    NASA Astrophysics Data System (ADS)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  13. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.

    PubMed

    Parthasarathy, S; Manikandakumar, K

    2007-12-01

    We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.

  14. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  15. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ˜3 and ˜15 kpc. The inner component lies on the mass-size relation of ETGs at z ˜ 0.25-0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  16. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation.

    PubMed

    Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-10-05

    Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

  17. A minimal kinetic model for a viral DNA packaging machine.

    PubMed

    Yang, Qin; Catalano, Carlos Enrique

    2004-01-20

    Terminase enzymes are common to both eukaryotic and prokaryotic double-stranded DNA viruses. These enzymes possess ATPase and nuclease activities that work in concert to "package" a viral genome into an empty procapsid, and it is likely that terminase enzymes from disparate viruses utilize a common packaging mechanism. Bacteriophage lambda terminase possesses a site-specific nuclease activity, a so-called helicase activity, a DNA translocase activity, and multiple ATPase catalytic sites that function to package viral DNA. Allosteric interactions between the multiple catalytic sites have been reported. This study probes these catalytic interactions using enzyme kinetic, photoaffinity labeling, and vanadate inhibition studies. The ensemble of data forms the basis for a minimal kinetic model for lambda terminase. The model incorporates an ADP-driven conformational reorganization of the terminase subunits assembled on viral DNA, which is central to the activation of a catalytically competent packaging machine. The proposed model provides a unifying mechanism for allosteric interaction between the multiple catalytic sites of the holoenzyme and explains much of the kinetic data in the literature. Given that similar packaging mechanisms have been proposed for viruses as dissimilar as lambda and the herpes viruses, the model may find general utility in our global understanding of the enzymology of virus assembly.

  18. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  19. Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.

    PubMed

    Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J

    2015-09-18

    The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.

  20. Modeling antibiotic treatment in hospitals: A systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies.

    PubMed

    Tepekule, Burcu; Uecker, Hildegard; Derungs, Isabel; Frenoy, Antoine; Bonhoeffer, Sebastian

    2017-09-01

    Multiple treatment strategies are available for empiric antibiotic therapy in hospitals, but neither clinical studies nor theoretical investigations have yielded a clear picture when which strategy is optimal and why. Extending earlier work of others and us, we present a mathematical model capturing treatment strategies using two drugs, i.e the multi-drug therapies referred to as cycling, mixing, and combination therapy, as well as monotherapy with either drug. We randomly sample a large parameter space to determine the conditions determining success or failure of these strategies. We find that combination therapy tends to outperform the other treatment strategies. By using linear discriminant analysis and particle swarm optimization, we find that the most important parameters determining success or failure of combination therapy relative to the other treatment strategies are the de novo rate of emergence of double resistance in patients infected with sensitive bacteria and the fitness costs associated with double resistance. The rate at which double resistance is imported into the hospital via patients admitted from the outside community has little influence, as all treatment strategies are affected equally. The parameter sets for which combination therapy fails tend to fall into areas with low biological plausibility as they are characterised by very high rates of de novo emergence of resistance to both drugs compared to a single drug, and the cost of double resistance is considerably smaller than the sum of the costs of single resistance.

  1. Experimente ueber den Einflusse von Metabolites und Antimetaboliten am Modell von Trichomonas Vaginalis. III. Mitteilung: Experimente mit Essentiellen Fettsaeuren (Experiments on the Influence of Metabolites and Antimetabolites on the Model of Trichomonas Vaginalis. III. Communication: Experiments with Essential Fatty Acids),

    DTIC Science & Technology

    The relationship between the double and trifold unsaturated fatty acids and Trichomonas vaginalis was tested. The experiments aimed at testing the...influence of vitamin F, linolic and linoleic acid upon multiplication of Trichomonas vaginalis . Vitamin F exerts trichomonacidal effect upon... Trichomonas vaginalis cultures. Linolic acid alone does not yet show great differences at concentrations of 0,01 to 0.05 mg/ml, as compared to the controls. At

  2. Application of a sediment-transport model to estimate bridge scour at selected sites in Colorado, 1991-93

    USGS Publications Warehouse

    Vaill, J.E.

    1995-01-01

    A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.

  3. Spiraling between qualitative and quantitative data on women's health behaviors: a double helix model for mixed methods.

    PubMed

    Mendlinger, Sheryl; Cwikel, Julie

    2008-02-01

    A double helix spiral model is presented which demonstrates how to combine qualitative and quantitative methods of inquiry in an interactive fashion over time. Using findings on women's health behaviors (e.g., menstruation, breast-feeding, coping strategies), we show how qualitative and quantitative methods highlight the theory of knowledge acquisition in women's health decisions. A rich data set of 48 semistructured, in-depth ethnographic interviews with mother-daughter dyads from six ethnic groups (Israeli, European, North African, Former Soviet Union [FSU], American/Canadian, and Ethiopian), plus seven focus groups, provided the qualitative sources for analysis. This data set formed the basis of research questions used in a quantitative telephone survey of 302 Israeli women from the ages of 25 to 42 from four ethnic groups. We employed multiple cycles of data analysis from both data sets to produce a more detailed and multidimensional picture of women's health behavior decisions through a spiraling process.

  4. Nonlinear dynamics in cardiac conduction

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  5. Generation and Characterization of a Double Recombinant Monkeypox Virus for use in Animal Model Development and Therapeutic Evaluation

    DTIC Science & Technology

    2012-09-27

    time patients could reach a temperature near 103°F. The fever was typically 5     accompanied by headache, backache, vomiting , and prostration. A...were co-housed with prairie dogs . Infected prairie dogs were sold and distributed across multiple states including Wisconsin, Illinois, Indiana...deletion of C3L from the Congo Basin clade virus reduced morbidity and mortality in prairie dogs infected intranasally (29). Since 1986, passive

  6. Brilliant Blue G double staining enhances successful internal limiting membrane peeling with minimal adverse effect by low cellular permeability into live cells.

    PubMed

    Hisatomi, Toshio; Notomi, Shoji; Tachibana, Takashi; Oishi, Seiichiro; Asato, Ryo; Yamashita, Takehiro; Murakami, Yusuke; Ikeda, Yasuhiro; Enaida, Hiroshi; Sakamoto, Taiji; Ishibashi, Tatsuro

    2015-02-01

    Brilliant Blue G is used as a surgical adjuvant for retinal surgery. Although BBG double or multiple staining was reported, the effectiveness and safety of repeated staining is still elusive. To further examine the effectiveness and safety, we examined BBG in clinical cases in vivo, primary cell culture in vitro, and surgically resected specimen ex vivo. A retrospective interventional case series with in vitro and ex vivo studies were performed. Vitrectomy was performed in 28 cases of epiretinal membrane with BBG single to multiple staining. The surgically resected membranes were stained by BBG with or without cellular fixation. Primary cell cultures were examined with BBG and live/death cell markers, such as Calcein AM and TUNEL. Single staining provided satisfactory staining in seven cases. Double or multiple staining substantially visualized internal limiting membrane (21 cases), especially the edges of remaining internal limiting membrane (11 cases). Adverse retinal staining was not noted and the final visual acuity showed no difference with multiple staining. The live cells barely stained with BBG, while some dead cells were stained. Brilliant Blue G multiple staining substantially enhanced the visualization of internal limiting membrane. The absence of abnormal staining supports the safety of repeated BBG staining.

  7. Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.

    2011-08-01

    Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.

  8. Highly Unstable Double-Diffusive Finger Convection in a Hele-Shaw Cell: Baseline Experimental Data for Evaluation of Numerical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRINGLE,SCOTT E.; COOPER,CLAY A.; GLASS JR.,ROBERT J.

    An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapidmore » progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.« less

  9. Particle Identification in Nuclear Emulsion by Measuring Multiple Coulomb Scattering

    NASA Astrophysics Data System (ADS)

    Than Tint, Khin; Nakazawa, Kazuma; Yoshida, Junya; Kyaw Soe, Myint; Mishina, Akihiro; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; E07 Collaboration

    2014-09-01

    We are developing particle identification techniques for single charged particles such as Xi, proton, K and π by measuring multiple Coulomb scattering in nuclear emulsion. Nuclear emulsion is the best three dimensional detector for double strangeness (S = -2) nuclear system. We expect to accumulate about 10000 Xi-minus stop events which produce double lambda hypernucleus in J-PARC E07 emulsion counter hybrid experiment. The purpose of this particle identification (PID) in nuclear emulsion is to purify Xi-minus stop events which gives information about production probability of double hypernucleus and branching ratio of decay mode. Amount of scattering parameterized as angular distribution and second difference is inversely proportional to the momentum of particle. We produced several thousands of various charged particle tracks in nuclear emulsion stack via Geant4 simulation. In this talk, PID with some measuring methods for multiple scattering will be discussed by comparing with simulation data and real Xi-minus stop events in KEK-E373 experiment.

  10. CCD Measurements of Double and Multiple Stars at NAO Rozhen and ASV in 2015

    NASA Astrophysics Data System (ADS)

    Cvetković, Z.; Pavlović, R.; Boeva, S.

    2017-04-01

    Results of CCD observations of 154 double or multiple stars, made with the 2 m telescope of the Bulgarian National Astronomical Observatory at Rozhen over five nights in 2015, are presented. This is the ninth series of measurements of CCD frames obtained at Rozhen. We also present results of CCD observations of 323 double or multiple stars made with the 0.6 m telescope of the Serbian Astronomical Station on the mountain of Vidojevica over 23 nights in 2015. This is the fourth series of measurements of CCD frames obtained at this station. This paper contains the results for the position angle and angular separation for 801 pairs and residuals for 127 pairs with published orbital elements or linear solutions. The angular separations are in the range from 1.″52 to 201.″56, with a median angular separation of 8.″26. We also present eight pairs that are measured for the first time and linear elements for five pairs.

  11. Analytical method for predicting the pressure distribution about a nacelle at transonic speeds

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Merkle, C. L.; Heck, P. H.; Lahti, D. J.

    1973-01-01

    The formulation and development of a computer analysis for the calculation of streamlines and pressure distributions around two-dimensional (planar and axisymmetric) isolated nacelles at transonic speeds are described. The computerized flow field analysis is designed to predict the transonic flow around long and short high-bypass-ratio fan duct nacelles with inlet flows and with exhaust flows having appropriate aerothermodynamic properties. The flow field boundaries are located as far upstream and downstream as necessary to obtain minimum disturbances at the boundary. The far-field lateral flow field boundary is analytically defined to exactly represent free-flight conditions or solid wind tunnel wall effects. The inviscid solution technique is based on a Streamtube Curvature Analysis. The computer program utilizes an automatic grid refinement procedure and solves the flow field equations with a matrix relaxation technique. The boundary layer displacement effects and the onset of turbulent separation are included, based on the compressible turbulent boundary layer solution method of Stratford and Beavers and on the turbulent separation prediction method of Stratford.

  12. Large-eddy simulation of propeller wake at design operating conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2016-11-01

    Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.

  13. Classic Bernoulli’s principle derivation and its working hypotheses

    NASA Astrophysics Data System (ADS)

    Marciotto, Edson R.

    2016-07-01

    The Bernoulli’s principle states that the quantity p+ρ gz+ρ {{v}2}/2 must be conserved in a streamtube if some conditions are matched, namely: steady and irrotational flow of an inviscid and incompressible fluid. In most physics textbooks this result is demonstrated invoking the energy conservation of a fluid material volume at two different positions of a pipe whose cross-section and height vary along its way. Although the final result is correct the right justifications presented in textbooks are usually unclear or absent. The main problem rests on the work done by pressure, which are not found to be fully justified via free-body diagrams as depicted in many general physics textbooks, not to mention plenty of videos on YouTube that incur in similar omissions. In this article I will discuss this issue and how it is solved without resorting to alternative demonstrations. In addition, I discuss the needs of the assumptions to get the Bernoulli’s principle in a way viable to introductory physics courses.

  14. Multiplication Fact Fluency Using Doubles

    ERIC Educational Resources Information Center

    Flowers, Judith M.; Rubenstein, Rheta N.

    2010-01-01

    Not knowing multiplication facts creates a gap in a student's mathematics development and undermines confidence and disposition toward further mathematical learning. Learning multiplication facts is a first step in proportional reasoning, "the capstone of elementary arithmetic and the gateway to higher mathematics" (NRC 2001, p. 242). Proportional…

  15. Formal Uncertainty and Dispersion of Single and Double Difference Models for GNSS-Based Attitude Determination.

    PubMed

    Chen, Wen; Yu, Chao; Dong, Danan; Cai, Miaomiao; Zhou, Feng; Wang, Zhiren; Zhang, Lei; Zheng, Zhengqi

    2017-02-20

    With multi-antenna synchronized global navigation satellite system (GNSS) receivers, the single difference (SD) between two antennas is able to eliminate both satellite and receiver clock error, thus it becomes necessary to reconsider the equivalency problem between the SD and double difference (DD) models. In this paper, we quantitatively compared the formal uncertainties and dispersions between multiple SD models and the DD model, and also carried out static and kinematic short baseline experiments. The theoretical and experimental results show that under a non-common clock scheme the SD and DD model are equivalent. Under a common clock scheme, if we estimate stochastic uncalibrated phase delay (UPD) parameters every epoch, this SD model is still equivalent to the DD model, but if we estimate only one UPD parameter for all epochs or take it as a known constant, the SD (here called SD2) and DD models are no longer equivalent. For the vertical component of baseline solutions, the formal uncertainties of the SD2 model are two times smaller than those of the DD model, and the dispersions of the SD2 model are even more than twice smaller than those of the DD model. In addition, to obtain baseline solutions, the SD2 model requires a minimum of three satellites, while the DD model requires a minimum of four satellites, which makes the SD2 more advantageous in attitude determination under sheltered environments.

  16. Formal Uncertainty and Dispersion of Single and Double Difference Models for GNSS-Based Attitude Determination

    PubMed Central

    Chen, Wen; Yu, Chao; Dong, Danan; Cai, Miaomiao; Zhou, Feng; Wang, Zhiren; Zhang, Lei; Zheng, Zhengqi

    2017-01-01

    With multi-antenna synchronized global navigation satellite system (GNSS) receivers, the single difference (SD) between two antennas is able to eliminate both satellite and receiver clock error, thus it becomes necessary to reconsider the equivalency problem between the SD and double difference (DD) models. In this paper, we quantitatively compared the formal uncertainties and dispersions between multiple SD models and the DD model, and also carried out static and kinematic short baseline experiments. The theoretical and experimental results show that under a non-common clock scheme the SD and DD model are equivalent. Under a common clock scheme, if we estimate stochastic uncalibrated phase delay (UPD) parameters every epoch, this SD model is still equivalent to the DD model, but if we estimate only one UPD parameter for all epochs or take it as a known constant, the SD (here called SD2) and DD models are no longer equivalent. For the vertical component of baseline solutions, the formal uncertainties of the SD2 model are two times smaller than those of the DD model, and the dispersions of the SD2 model are even more than twice smaller than those of the DD model. In addition, to obtain baseline solutions, the SD2 model requires a minimum of three satellites, while the DD model requires a minimum of four satellites, which makes the SD2 more advantageous in attitude determination under sheltered environments. PMID:28230753

  17. Multiple Scenarios of Transition to Chaos in the Alternative Splicing Model

    NASA Astrophysics Data System (ADS)

    Kogai, Vladislav V.; Likhoshvai, Vitaly A.; Fadeev, Stanislav I.; Khlebodarova, Tamara M.

    We have investigated the scenarios of transition to chaos in the mathematical model of a genetic system constituted by a single transcription factor-encoding gene, the expression of which is self-regulated by a feedback loop that involves protein isoforms. Alternative splicing results in the synthesis of protein isoforms providing opposite regulatory outcomes — activation or repression. The model is represented by a differential equation with two delayed arguments. The possibility of transition to chaos dynamics via all classical scenarios: a cascade of period-doubling bifurcations, quasiperiodicity and type-I, type-II and type-III intermittencies, has been numerically demonstrated. The parametric features of each type of transition to chaos have been described.

  18. Multiple Quasi-Equilibria of the ITCZ and the Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.

  19. Landslide: Systematic Dynamic Race Detection in Kernel Space

    DTIC Science & Technology

    2012-05-01

    schedule_in_flight← true; CAUSE_TIMER_INTERRUPT(); end if end function Thread Scheduling Finally, the Landslide scheduler is responsible for managing ...child process vanish() simultaneously. • double_wait: Tests interactions of multiple waiters on a single child. • double_thread_fork: Tests for...conditions using Landslide. We describe them here. • Too many waiters allowed. Using the double_wait test case, Group 1 found a bug in which more threads

  20. Double Star Measurements at the Southern Sky with 50 cm Reflectors and Fast CCD Cameras in 2012

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2014-07-01

    A Cassegrain and a Ritchey-Chrétien reflector, both with 50 cm aperture, were used in Namibia for recordings of double stars with fast CCD cameras and a notebook computer. From superposition of "lucky images", measurements of 39 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Images of some remarkable systems are also presented.

  1. Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature

    PubMed Central

    PU, JIUJUN; WANG, ZHIMING; ZHOU, HUI; ZHONG, AILING; JIN, KAI; RUAN, LUNLIANG; YANG, GANG

    2016-01-01

    Only a few cases of double or multiple pituitary adenomas have previously been reported in the literature; however, isolated double adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas are even more rare. The present study reports a rare case of a 50-year-old female patient who presented with typical clinical features of Cushing's disease and was diagnosed with isolated double ACTH-secreting pituitary adenomas. Endocrinological examination revealed an ACTH-producing pituitary adenoma, and preoperative magnetic resonance imaging (MRI) demonstrated a microadenoma with a lower intensity on the right side of the pituitary gland. The patient underwent endoscopic endonasal transsphenoidal surgery, which revealed another pituitary tumor in the left side of the pituitary gland. The two, clearly separated, pituitary adenomas identified in the same gland were completely resected. Immunohistochemistry and pathology revealed that the clearly separated double pituitary adenomas were positive for ACTH, thyroid-stimulating, growth and prolactin hormones. Postoperatively, the levels of ACTH and cortisol hormone decreased rapidly. The case reported in the present study is considerably rare, due to the presence of a second pituitary adenoma in the same gland, which was not detected by preoperative MRI scan, but was noticed during surgery. Intraoperative evaluation may be important in the identification of double or multiple pituitary adenomas. PMID:27347184

  2. An Optimization of Inventory Demand Forecasting in University Healthcare Centre

    NASA Astrophysics Data System (ADS)

    Bon, A. T.; Ng, T. K.

    2017-01-01

    Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.

  3. Utility of the sore throat pain model in a multiple-dose assessment of the acute analgesic flurbiprofen: a randomized controlled study.

    PubMed

    Schachtel, Bernard; Aspley, Sue; Shephard, Adrian; Shea, Timothy; Smith, Gary; Schachtel, Emily

    2014-07-03

    The sore throat pain model has been conducted by different clinical investigators to demonstrate the efficacy of acute analgesic drugs in single-dose randomized clinical trials. The model used here was designed to study the multiple-dose safety and efficacy of lozenges containing flurbiprofen at 8.75 mg. Adults (n=198) with moderate or severe acute sore throat and findings of pharyngitis on a Tonsillo-Pharyngitis Assessment (TPA) were randomly assigned to use either flurbiprofen 8.75 mg lozenges (n=101) or matching placebo lozenges (n=97) under double-blind conditions. Patients sucked one lozenge every three to six hours as needed, up to five lozenges per day, and rated symptoms on 100-mm scales: the Sore Throat Pain Intensity Scale (STPIS), the Difficulty Swallowing Scale (DSS), and the Swollen Throat Scale (SwoTS). Reductions in pain (lasting for three hours) and in difficulty swallowing and throat swelling (for four hours) were observed after a single dose of the flurbiprofen 8.75 mg lozenge (P<0.05 compared with placebo). After using multiple doses over 24 hours, flurbiprofen-treated patients experienced a 59% greater reduction in throat pain, 45% less difficulty swallowing, and 44% less throat swelling than placebo-treated patients (all P<0.01). There were no serious adverse events. Utilizing the sore throat pain model with multiple doses over 24 hours, flurbiprofen 8.75 mg lozenges were shown to be an effective, well-tolerated treatment for sore throat pain. Other pharmacologic actions (reduced difficulty swallowing and reduced throat swelling) and overall patient satisfaction from the flurbiprofen lozenges were also demonstrated in this multiple-dose implementation of the sore throat pain model. This trial was registered with ClinicalTrials.gov, registration number: NCT01048866, registration date: January 13, 2010.

  4. Distributed finite-time containment control for double-integrator multiagent systems.

    PubMed

    Wang, Xiangyu; Li, Shihua; Shi, Peng

    2014-09-01

    In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.

  5. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    PubMed Central

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705

  6. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.

    PubMed

    Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J

    2018-01-01

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.

  7. Double trisomy 48,XXX,+18 with multiple dysmorphic features.

    PubMed

    Jiang, Zi-Yan; Wu, Xiao-Hui; Zou, Chao-Chun

    2015-02-01

    Chromosomal abnormality is a common cause of congenital anomalies, psychiatric disorders, and mental retardation. However, the double trisomy 48,XXX,+18 is a rare chromosome abnormality. Case report and literature review. A 7-hour-old girl presented to our unit because of poor response after birth. She presented with multiple dysmorphic features, including small for gestational age infant, flat nasal bridge, widely-spaced eyes, the left thumb deformities, flat facial profile, raised sternum, ventricular septal defect, the third lateral brain ventricle enlargement, and small liver. This case expands the spectrum of malformations reported in association with the double trisomy 48,XXX,+18. The literature on 16 fetuses or infants with the 48,XXX,+18 were also reviewed. These data suggested that in patients with clinical features similar to trisomy 18, especially with anomalies of the ears and/or reproductive malformations, double trisomy (48,XXX,+18) should be considered and karyotyping should be performed although it is a rare disease.

  8. Can Multiple Cropping Help to Avoid the Impacts of Heat Extremes? The Case of Winter Wheat/Soybean Double Cropping in the United States

    NASA Astrophysics Data System (ADS)

    Seifert, C.; Lobell, D. B.

    2014-12-01

    In adapting U.S. agriculture to the climate of the 21st century, multiple cropping presents a unique opportunity to help offset projected negative trends in agricultural production while moving critical crop yield formation periods outside of the hottest months of the year. Critical constraints on this practice include moisture availability, and, more importantly, growing season length. We review evidence that this last constraint has decreased in the previous quarter century, allowing for more winter wheat/soybean double cropping in previously phenologically constrained areas. We also carry this pattern forward to 2100, showing a 126% to 211% increase in the area phenologically suitable for double cropping under the RCP45 and RCP85 scenarios respectively. These results suggest that climate change will relieve phenological constraints on wheat-soy double cropping systems over much of the United States, changing production patterns and crop rotations as areas become suitable for the practice.

  9. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  10. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  11. High frequency of telomeric association in a family with multiple congenital neoplasia.

    PubMed

    Dhaliwal, M K; Satya-Prakash, K L; Davis, P C; Pathak, S

    1994-01-01

    Chromosomal analysis of the peripheral blood cultures of a married couple whose second pregnancy gave birth to twin daughters with multiple congenital malignancies revealed normal karyotypes of 46,XX and 46,XY, respectively. However, in the father's blood, 23.3% of metaphases showed telomere-telomere associations involving single-single and double-double chromatids. Such associations were not observed in the metaphases of the mother. We speculate from these observations that the father's genotype may somehow be responsible for the congenital malignancies in their twin daughters.

  12. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  13. A modification of the Hammett equation for predicting ionisation constants of p-vinyl phenols.

    PubMed

    Sipilä, Julius; Nurmi, Harri; Kaukonen, Ann Marie; Hirvonen, Jouni; Taskinen, Jyrki; Yli-Kauhaluoma, Jari

    2005-01-01

    Currently there are several compounds used as drugs or studied as new chemical entities, which have an electron withdrawing group connected to a vinylic double bond in a phenolic or catecholic core structure. These compounds share a common feature--current computational methods utilizing the Hammett type equation for the prediction of ionisation constants fail to give accurate prediction of pK(a)'s for compounds containing the vinylic moiety. The hypothesis was that the effect of electron-withdrawing substituents on the pK(a) of p-vinyl phenols is due to the delocalized electronic structure of these compounds. Thus, this effect should be additive for multiple substituents attached to the vinylic double bond and quantifiable by LFER-based methods. The aim of this study was to produce an improved equation with a reduced tendency to underestimate the effect of the double bond on the ionisation of the phenolic hydroxyl. To this end a set of 19 para-substituted vinyl phenols was used. The ionisation constants were measured potentiometrically, and a training set of 10 compounds was selected to build a regression model (r2 = 0.987 and S.E. = 0.09). The average error with an external test set of six compounds was 0.19 for our model and 1.27 for the ACD-labs 7.0. Thus, we have been able to significantly improve the existing model for prediction of the ionisation constants of substituted p-vinyl phenols.

  14. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  15. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.

    PubMed

    Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro

    2012-10-07

    Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 26 CFR 1.381(c)(5)-1 - Inventories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...

  17. 26 CFR 1.381(c)(5)-1 - Inventories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...

  18. Modelling CO2 flow in naturally fractured geological media using MINC and multiple subregion upscaling procedure

    NASA Astrophysics Data System (ADS)

    Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin

    2017-04-01

    Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model

  19. Double Star Measurements at the Southern Sky with a 50 cm Reflector and a Fast CCD Camera in 2014

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2015-04-01

    A Ritchey-Chrétien reflector with 50 cm aperture was used in Namibia for recordings of double stars with a fast CCD camera and a notebook computer. From superposition of "lucky images", measurements of 91 pairings in 79 double and multiple systems were obtained and compared with literature data. Occasional deviations are discussed. Some images of noteworthy systems are also presented.

  20. Characterization of normal feline renal vascular anatomy with dual-phase CT angiography.

    PubMed

    Cáceres, Ana V; Zwingenberger, Allison L; Aronson, Lillian R; Mai, Wilfried

    2008-01-01

    Helical computed tomography angiography was used to evaluate the renal vascular anatomy of potential feline renal donors. One hundred and fourteen computed tomography angiograms were reviewed. The vessels were characterized as single without bifurcation, single with bifurcation, double, or triple. Multiplicity was most commonly seen for the right renal vein (45/114 vs. 3/114 multiple left renal veins, 0/114 multiple right renal arteries, and 8/114 multiple left renal arteries). The right kidney was 13.3 times more likely than the left to have multiple renal veins. Additional vascular variants included double caudal vena cava and an accessory renal artery. For the left kidney, surgery and computed tomography angiography findings were in agreement in 92% of 74 cats. For the right kidney, surgery and computed tomography angiography findings were in agreement in 6/6 cats. Our findings of renal vascular anatomy variations in cats were similar to previous reports in humans. Identifying and recognizing the pattern of distribution of these vessels is important when performing renal transplantation.

  1. Children's multiplicative transformations of discrete and continuous quantities.

    PubMed

    Barth, Hilary; Baron, Andrew; Spelke, Elizabeth; Carey, Susan

    2009-08-01

    Recent studies have documented an evolutionarily primitive, early emerging cognitive system for the mental representation of numerical quantity (the analog magnitude system). Studies with nonhuman primates, human infants, and preschoolers have shown this system to support computations of numerical ordering, addition, and subtraction involving whole number concepts prior to arithmetic training. Here we report evidence that this system supports children's predictions about the outcomes of halving and perhaps also doubling transformations. A total of 138 kindergartners and first graders were asked to reason about the quantity resulting from the doubling or halving of an initial numerosity (of a set of dots) or an initial length (of a bar). Controls for dot size, total dot area, and dot density ensured that children were responding to the number of dots in the arrays. Prior to formal instruction in symbolic multiplication, division, or rational number, halving (and perhaps doubling) computations appear to be deployed over discrete and possibly continuous quantities. The ability to apply simple multiplicative transformations to analog magnitude representations of quantity may form a part of the toolkit that children use to construct later concepts of rational number.

  2. Fiber sensor network with multipoint sensing using double-pass hybrid LPFG-FBG sensor configuration

    NASA Astrophysics Data System (ADS)

    Yong, Yun-Thung; Lee, Sheng-Chyan; Rahman, Faidz Abd

    2017-03-01

    This is a study on double-pass intensity-based hybrid Long Period Fiber Grating (LPFG)and Fiber Bragg Grating (FBG) sensor configuration where a fiber sensor network was constructed with multiple sensing capability. The sensing principle is based on interrogation of intensity changes of the reflected signal from an FBG caused by the LPFG spectral response to the surrounding perturbations. The sensor network developed was tested in monitoring diesel adulteration of up to a distance of 8 km. Kerosene concentration from 0% to 50% was added as adulterant into diesel. The sensitivity of the double-pass hybrid LPFG-FBG sensor over multiple points was>0.21 dB/% (for adulteration range of 0-30%) and >0.45 dB/% from 30% to 50% adulteration. It is found that the sensitivity can drop up to 35% when the fiber length increased from 0 km to 8 km (for the case of adulteration of 0-30%). With the multiple sensing capabilities, normalized FBG's reflected power can be demodulated at the same time for comparison of sensitivity performance across various fiber sensors.

  3. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    PubMed

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  4. High-mobility group box 1 is an important mediator of microglial activation induced by cortical spreading depression.

    PubMed

    Takizawa, Tsubasa; Shibata, Mamoru; Kayama, Yohei; Shimizu, Toshihiko; Toriumi, Haruki; Ebine, Taeko; Unekawa, Miyuki; Koh, Anri; Yoshimura, Akihiko; Suzuki, Norihiro

    2017-03-01

    Single episodes of cortical spreading depression (CSD) are believed to cause typical migraine aura, whereas clusters of spreading depolarizations have been observed in cerebral ischemia and subarachnoid hemorrhage. We recently demonstrated that the release of high-mobility group box 1 (HMGB1) from cortical neurons after CSD in a rodent model is dependent on the number of CSD episodes, such that only multiple CSD episodes can induce significant HMGB1 release. Here, we report that only multiple CSD inductions caused microglial hypertrophy (activation) accompanied by a greater impact on the transcription activity of the HMGB1 receptor genes, TLR2 and TLR4, while the total number of cortical microglia was not affected. Both an HMGB1-neurtalizing antibody and the HMGB1 inhibitor glycyrrhizin abrogated multiple CSD-induced microglial hypertrophy. Moreover, multiple CSD inductions failed to induce microglial hypertrophy in TLR2/4 double knockout mice. These results strongly implicate the HMGB1-TLR2/4 axis in the activation of microglia following multiple CSD inductions. Increased expression of the lysosomal acid hydrolase cathepsin D was detected in activated microglia by immunostaining, suggesting that lysosomal phagocytic activity may be enhanced in multiple CSD-activated microglia.

  5. Double layers and double wells in arbitrary degenerate plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η{sub 0}, ranging from dilutemore » classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η{sub 0} < 0 and quantum with η{sub 0} > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.« less

  6. Running Multiple Sub-Jobs with One Job Script on the Peregrine System |

    Science.gov Websites

    =00:10:00 # WALLTIME limit #PBS -l nodes=1:ppn=24 #PBS -q short #PBS -N wait_test #PBS -o std.out #PBS ;stdio.h> main() { double x,h,sum = 0; int i,N; scanf("%d",&N); h=1.0/(double) N; for (i=0 ; i<N; i++) { x=h*((double) i + 0.5); sum += 4.0*h/(1.0+x*x); } printf("\

  7. A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector

    DTIC Science & Technology

    2002-01-01

    Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple

  8. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  9. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems.

    PubMed

    Cofrades, S; Antoniou, I; Solas, M T; Herrero, A M; Jiménez-Colmenero, F

    2013-11-01

    The aim of this paper was to prepare and characterise multiple emulsions and assess their utility as pork backfat replacers in meat gel/emulsion model systems. In order to improve the fat content (in quantitative and qualitative terms) pork backfat was replaced by a water-in-oil-in-water emulsion (W1/O/W2) prepared with olive oil (as lipid phase), polyglycerol ester of polyricinoleic acid (PGPR) as a lipophilic emulsifier, and sodium caseinate (SC) and whey protein concentrate (WP) as hydrophilic emulsifiers. The emulsion properties (particle size and distribution, stability, microstructure) and meat model system characteristics (composition, texture, fat and water binding properties, and colour) of the W1/O/W2, as affected by reformulation, were evaluated. Multiple emulsions showed a well-defined monomodal distribution. Freshly prepared multiple emulsions showed good thermal stability (better using SC) with no creaming. The meat systems had good water and fat binding properties irrespective of formulation. The effect on texture by replacement of pork backfat by W1/O/W2 emulsions generally depends on the type of double emulsion (associated with the hydrophilic emulsifier used in its formulation) and the fat level in the meat system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Initiation of Detonation in Multiple Shock-Compressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Yoshinaka, A. C.; Zhang, F.; Petel, O. E.; Higgins, A. J.

    2006-07-01

    Initiation and resulting propagation of detonation via multiple shock reverberations between two high impedance plates has been investigated in amine-sensitized nitromethane. Experiments were designed so that the first reflected shock strength was below the critical value for initiation found previously. Luminosity combined with a distinct pressure hump indicated onset of reaction and successful initiation after double or triple shock reflection off the bottom plate. Final temperature estimates for double or triple shock reflection immediately before initiation lie between 700-720 K, consistent with those found previously for both incident and singly reflected shock initiation.

  11. Grass competition suppresses savanna tree growth across multiple demographic stages.

    PubMed

    Riginos, Corinna

    2009-02-01

    Savanna ecosystems, defined by the codominance of trees and grasses, cover one-fifth of the world's land surface and are of great socioeconomic and biological importance. Yet, the fundamental question of how trees and grasses coexist to maintain the savanna state remains poorly understood. Many models have been put forward to explain tree-grass coexistence, but nearly all have assumed that grasses do not limit tree growth and demography beyond the sapling stage. This assumption, however, has rarely been tested. Here I show that grass can strongly suppress the growth of trees. I removed grass around trees of three size classes in an Acacia drepanolobium savanna in Laikipia, Kenya. For even the largest trees, grass removal led to a doubling in growth and a doubling in the probability of transitioning to the next size class over two years. These results suggest that grass competition in productive (nutrient-rich) savannas may limit tree growth as much as herbivory and fire (the main factors thought to determine tree demography within a rainfall region) and should be incorporated into savanna models if tree-grass coexistence and savanna dynamics are to be understood.

  12. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    PubMed

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  13. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    PubMed Central

    Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363

  14. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less

  15. Coordinated Cluster/Double Star observations of dayside flux transfer events on 6 April 2004

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Pu, ZuYin; Zhou, XuZhi; Zhang, XianGuo; Dunlop, Malcolm; Fu, SuiYan; Xie, Lun; Zong, QiuGang; Xiao, ChiJie; Wang, XiaoGang; Liu, ZhenXing

    2008-10-01

    With the Double Star Program TC1 in the equatorial orbit and Cluster tetrahedron in the high latitude polar orbit, a conjunct observation of FTEs on the dayside magnetopause (MP) on April 6, 2004 is presented in this study. The FTEs observed by TC1 at low latitudes are characterized to be generated in the subsolar region and the obtained flux tube axes orientate along the predicted low latitude component magnetic reconnection X-line, indicating that these FTEs were more likely to be generated through multiple X-line reconnection or single X-line bursty reconnection. During the same period, Cluster also encountered a series of magnetosheath FTEs with their axes pointing roughly along the interplanetary magnetic field. At last, the global FTE configuration is obtained from observations in different locations, which is in good agreement with the "elbow shape" model.

  16. Kicked-Harper model versus on-resonance double-kicked rotor model: From spectral difference to topological equivalence

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Ho, Derek Y. H.; Lawton, Wayne; Wang, Jiao; Gong, Jiangbin

    2013-11-01

    Recent studies have established that, in addition to the well-known kicked-Harper model (KHM), an on-resonance double-kicked rotor (ORDKR) model also has Hofstadter's butterfly Floquet spectrum, with strong resemblance to the standard Hofstadter spectrum that is a paradigm in studies of the integer quantum Hall effect. Earlier it was shown that the quasienergy spectra of these two dynamical models (i) can exactly overlap with each other if an effective Planck constant takes irrational multiples of 2π and (ii) will be different if the same parameter takes rational multiples of 2π. This work makes detailed comparisons between these two models, with an effective Planck constant given by 2πM/N, where M and N are coprime and odd integers. It is found that the ORDKR spectrum (with two periodic kicking sequences having the same kick strength) has one flat band and N-1 nonflat bands with the largest bandwidth decaying in a power law as ˜KN+2, where K is a kick strength parameter. The existence of a flat band is strictly proven and the power-law scaling, numerically checked for a number of cases, is also analytically proven for a three-band case. By contrast, the KHM does not have any flat band and its bandwidths scale linearly with K. This is shown to result in dramatic differences in dynamical behavior, such as transient (but extremely long) dynamical localization in ORDKR, which is absent in the KHM. Finally, we show that despite these differences, there exist simple extensions of the KHM and ORDKR model (upon introducing an additional periodic phase parameter) such that the resulting extended KHM and ORDKR model are actually topologically equivalent, i.e., they yield exactly the same Floquet-band Chern numbers and display topological phase transitions at the same kick strengths. A theoretical derivation of this topological equivalence is provided. These results are also of interest to our current understanding of quantum-classical correspondence considering that the KHM and ORDKR model have exactly the same classical limit after a simple canonical transformation.

  17. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.

    PubMed

    Luo, Xiang; Yang, Xianhai; Qiao, Xianliang; Wang, Ya; Chen, Jingwen; Wei, Xiaoxuan; Peijnenburg, Willie J G M

    2017-03-22

    Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (k OH ) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict k OH . In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C 6 H 5 , -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH 2 , -NH-C(O)-, -NO 2 , -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO 3 , -SO 4 , -PO 4 , and -X (F, Cl, Br, and I).

  18. [Double mutant alleles in the EXT1 gene not previously reported in a teenager with hereditary multiple exostoses].

    PubMed

    Cammarata-Scalisi, Francisco; Cozar, Mónica; Grinberg, Daniel; Balcells, Susana; Asteggiano, Carla G; Martínez-Domenech, Gustavo; Bracho, Ana; Sánchez, Yanira; Stock, Frances; Delgado-Luengo, Wilmer; Zara-Chirinos, Carmen; Chacín, José Antonio

    2015-04-01

    Hereditary forms of multiple exostoses, now called EXT1/EXT2-CDG within Congenital Disorders of Glycosylation, are the most common benign bone tumors in humans and clinical description consists of the formation of several cartilage-capped bone tumors, usually benign and localized in the juxta-epiphyseal region of long bones, although wide body dissemination in severe cases is not uncommon. Onset of the disease is variable ranging from 2-3 years up to 13-15 years with an estimated incidence ranging from 1/18,000 to 1/50,000 cases in European countries. We present a double mutant alleles in the EXT1 gene not previously reported in a teenager and her family with hereditary multiple exostoses.

  19. Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR.

    PubMed

    Cho, HyungJoon; Baugh, Jonathan; Ryan, Colm A; Cory, David G; Ramanathan, Chandrasekhar

    2007-08-01

    Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.

  20. Use of Double-Loop Learning to Combat Advanced Persistent Threat: Multiple Case Studies

    ERIC Educational Resources Information Center

    Lamb, Christopher J.

    2013-01-01

    The Advanced Persistent Threat (APT) presents an ever present and more growing threat to organizations across the globe. Traditional Information Technology (IT) incident response falls short in effectively addressing this threat. This researcher investigated the use of single-loop and double-loop learning in two organizations with internal…

  1. Easy Demonstration of the Poisson Spot

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…

  2. Do Double Minority Students Face Double Jeopardy? Testing Minority Stress Theory

    ERIC Educational Resources Information Center

    Hayes, Jeffrey A.; Chun-Kennedy, Caitlin; Edens, Astrid; Locke, Benjamin D.

    2011-01-01

    Data from 2 studies revealed that ethnic and sexual minority clients experienced greater psychological distress on multiple dimensions than did European American or heterosexual clients, respectively, as did ethnic and sexual minority students who were not clients. Among sexual minority students, ethnicity was not an added source of distress.…

  3. Characterization of a double WAP domain-containing protein from the red swamp crayfish Procambarus clarkii

    USDA-ARS?s Scientific Manuscript database

    Crustaceans express multiple whey acidic protein (WAP) domain containing proteins which are components of host immunity. In the present study, a new double WAP domain containing protein was identified from red swamp crayfish Procambarus clarkii, designated Pc-DWD. The ORF is 387 bp, encoding 128 ami...

  4. Simulation Analysis of the Mutual Influence of the Stress Intensity Factor on the Multiple Blisters Caused by Hydrogen Induced Damage

    NASA Astrophysics Data System (ADS)

    Ji, Congwei; Zhang, Shaojie; Wang, Hehui

    2018-03-01

    Hydrogen blisters are taken as the research object by using the finite element software ABAQUS. The stress intensity factors of blister cracks are numerically calculated at varying depths and different edge distances for established three-dimensional finite element models of single-blister and double-blisters, respectively. The mutual influence of the stress intensity factors of the multiple blisters is obtained. It shows that the blister crack is easier to expand when the crack is closer to inner wall of the cylinder. What’s more, the crack growth rate increases firstly and then decreases as the increasing of the distance between two blisters cracks. The investigated result is of great reference value for predicting the trend of blister crack growth.

  5. Nonlinear Modeling of Radial Stellar Pulsations

    NASA Astrophysics Data System (ADS)

    Smolec, R.

    2009-09-01

    In this thesis, I present the results of my work concerning the nonlinear modeling of radial stellar pulsations. I will focus on classical Cepheids, particularly on the double-mode phenomenon. History of nonlinear modeling of radial stellar pulsations begins in the sixties of the previous century. At the beginning convection was disregarded in model equations. Qualitatively, almost all features of the radial pulsators were successfully modeled with purely radiative hydrocodes. Among problems that remained, the most disturbing was modeling of the double-mode phenomenon. This long-standing problem seemed to be finally solved with the inclusion of turbulent convection into the model equations (Kollath et al. 1998, Feuchtinger 1998). Although dynamical aspects of the double-mode behaviour were extensively studied, its origin, particularly the specific role played by convection, remained obscure. To study this and other problems of radial stellar pulsations, I implemented the convection into pulsation hydrocodes. The codes adopt the Kuhfuss (1986) convection model. In other codes, particularly in the Florida-Budapest hydrocode (e.g. Kollath et al. 2002), used in comput! ation of most of the published double-mode models, different approximations concerning e.g. eddy-viscous terms or treatment of convectively stable regions are adopted. Particularly the neglect of negative buoyancy effects in the Florida-Budapest code and its consequences, were never discussed in the literature. These consequences are severe. Concerning the single-mode pulsators, neglect of negative buoyancy leads to smaller pulsation amplitudes, in comparison to amplitudes computed with code including these effects. Particularly, neglect of negative buoyancy reduces the amplitude of the fundamental mode very strong. This property of the Florida-Budapest models is crucial in bringing up the stable non-resonant double-mode Cepheid pulsation involving fundamental and first overtone modes (F/1O). Such pulsation is not observed in models computed including negative buoyancy. As the neglect of negative buoyancy is physically not correct, so are the double-mode Cepheid models computed with the Florida-Budapest hydrocode. Extensive search for F/1O double-mode Cepheid pulsation with the codes including negative buoyancy effects yielded null result. Some resonant double-mode F/1O Cepheid models were found, but their occurrence was restricted to a very narrow domain in the Hertzsprung-Russel diagram. Model computations intended to model the double-overtone (1O/2O) Cepheids in the Large Magellanic Cloud, also revealed some stable double-mode pulsations, however, restricted to a narrow period range. Resonances are most likely conductive in bringing up the double-mode behaviour observed in these models. However, majority of the double-overtone LMC Cepheids cannot be reproduced with our codes. Hence, the modeling of double-overtone Cepheids with convective hydrocodes is not satisfactory, either. Double-mode pulsation still lacks satisfactory explanation, and problem of its modeling remains open.

  6. Transcatheter Closure of Bilateral Multiple Huge Pulmonary Arteriovenous Malformations with Homemade Double-Umbrella Occluders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Hongshan, E-mail: zhonghongshan@hotmail.com; Xu Ke; Shao Haibo

    2008-07-15

    A 28-year-old man underwent successful transcatheter occlusion of three huge pulmonary arteriovenous malformations (PAVMs) using homemade double-umbrella occluders and stainless steel coils. Thoracic CT with three-dimensional reconstruction and pulmonary angiography were used for treatment planning and follow-up. The diameters of the feeding vessels were 11 mm, 13 mm, and 14 mm, respectively. This report demonstrates the novel design and utility of the double-umbrella occluder, an alternative tool for treatment of large PAVMs.

  7. A Quasi-Experimental Study Investigating the Effect of Scent on Students' Memory of Multiplication Facts and Math Anxiety

    ERIC Educational Resources Information Center

    Leap, Evelyn M.

    2013-01-01

    This quasi-experimental study was conducted with two fifth grade classrooms to investigate the effect of scent on students' acquisition and retention of multiplication facts and math anxiety. Forty participants received daily instruction for nine weeks, using a strategy-rich multiplication program called Factivation. Students in the Double Smencil…

  8. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    PubMed

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly significant difference for each dimension measured (except for the inter-abutment distance between the first and the second die) between any two groups of stone models obtained from the four impression techniques. Pair wise comparison for each measurement did not reveal any significant difference (except for the faciolingual distance of the third die) between the casts produced using the two step double mix impression technique and the matrix impression system. The two step double mix impression technique produced stone dies that showed the least dimensional variation. During fabrication of a cast restoration, laboratory procedures should not only compensate for the cement thickness, but also for the increase or decrease in die dimensions.

  9. Reliability Modeling of Double Beam Bridge Crane

    NASA Astrophysics Data System (ADS)

    Han, Zhu; Tong, Yifei; Luan, Jiahui; Xiangdong, Li

    2018-05-01

    This paper briefly described the structure of double beam bridge crane and the basic parameters of double beam bridge crane are defined. According to the structure and system division of double beam bridge crane, the reliability architecture of double beam bridge crane system is proposed, and the reliability mathematical model is constructed.

  10. Interface reconstruction with emerging charge ordering in hexagonal manganite

    PubMed Central

    Xu, Changsong; Han, Myung-Geun; Bao, Shanyong; Nan, Cewen; Bellaiche, Laurent

    2018-01-01

    Multiferroic materials, which simultaneously have multiple orderings, hold promise for use in the next generation of memory devices. We report a novel self-assembled MnO double layer forming at the interface between a multiferroic YMnO3 film and a c-Al2O3 substrate. The crystal structures and the valence states of this MnO double layer were studied by atomically resolved scanning transmission electron microscopy and spectroscopy, as well as density functional theory (DFT) calculations. A new type of charge ordering has been identified within this MnO layer, which also contributes to a polarization along the [001] direction. DFT calculations further establish the occurrence of multiple couplings between charge and lattice in this novel double layer, in addition to the polarization in nearby YMnO3 single layer. The interface reconstruction reported here creates a new playground for emergent physics, such as giant ferroelectricity and strong magnetoelectric coupling, in manganite systems. PMID:29795782

  11. Effects of the inner droplet of double emulsions on the film drainage during a head-on collision

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Jing, Hefeng; Xu, Genmiao; Wang, Xiaoyong; Duan, Zhenya

    2015-07-01

    As a critical stage which severely affects the final coalescence of droplets, film drainage in the collision process of two simple droplets has been deeply studied for many years. However, the collision of multiple emulsions which contain other phases (like daughter droplets or particles) has never been studied although multiple emulsions are very important in emulsion industries nowadays. In this paper, the head-on collision of two core-shell double emulsions with equal sizes is investigated through a boundary integral method to disclose the effects of the inner droplet on the film drainage. When capillary number Ca is relatively high, due to the effect of the inner droplet on the inner circulation of mother droplets, the film drainage of double emulsions includes three stages: drainage, drainage halt, and second drainage, instead of two stages for that of simple droplets: drainage and drainage halt.

  12. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-02-01

    Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.

  13. ISS Double-Gimbaled CMG Subsystem Simulation Using the Agile Development Method

    NASA Technical Reports Server (NTRS)

    Inampudi, Ravi

    2016-01-01

    This paper presents an evolutionary approach in simulating a cluster of 4 Control Moment Gyros (CMG) on the International Space Station (ISS) using a common sense approach (the agile development method) for concurrent mathematical modeling and simulation of the CMG subsystem. This simulation is part of Training systems for the 21st Century simulator which will provide training for crew members, instructors, and flight controllers. The basic idea of how the CMGs on the space station are used for its non-propulsive attitude control is briefly explained to set up the context for simulating a CMG subsystem. Next different reference frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control moment gyroscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes the special case EOM for ISS's double-gimbaled fixed speed CMGs. CMG simulation development using the agile development method is presented in which customer's requirements and solutions evolve through iterative analysis, design, coding, unit testing and acceptance testing. At the end of the iteration a set of features implemented in that iteration are demonstrated to the flight controllers thus creating a short feedback loop and helping in creating adaptive development cycles. The unified modeling language (UML) tool is used in illustrating the user stories, class designs and sequence diagrams. This incremental development approach of mathematical modeling and simulating the CMG subsystem involved the development team and the customer early on, thus improving the quality of the working CMG system in each iteration and helping the team to accurately predict the cost, schedule and delivery of the software.

  14. Holographic Reciprocity Law Failure, with Applications to the Three-Dimensional Display of Medical Data

    NASA Astrophysics Data System (ADS)

    Johnson, Kristina Mary

    In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.

  15. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  16. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes

    DOE PAGES

    Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...

    2018-01-30

    Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less

  17. Ion Acceleration by Double Layers with Multi-Component Ion Species

    NASA Astrophysics Data System (ADS)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  18. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Delgado, Oliver; Ding, Liang-Hao; Story, Michael D.; Minna, John D.; Shay, Jerry W.; Chen, David J.

    2011-01-01

    DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. PMID:21421565

  19. Differential Requirements for c-Myc in Chronic Hematopoietic Hyperplasia and Acute Hematopoietic Malignancies in Pten-null Mice

    PubMed Central

    Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang

    2011-01-01

    Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961

  20. Ensemble-Biased Metadynamics: A Molecular Simulation Method to Sample Experimental Distributions

    PubMed Central

    Marinelli, Fabrizio; Faraldo-Gómez, José D.

    2015-01-01

    We introduce an enhanced-sampling method for molecular dynamics (MD) simulations referred to as ensemble-biased metadynamics (EBMetaD). The method biases a conventional MD simulation to sample a molecular ensemble that is consistent with one or more probability distributions known a priori, e.g., experimental intramolecular distance distributions obtained by double electron-electron resonance or other spectroscopic techniques. To this end, EBMetaD adds an adaptive biasing potential throughout the simulation that discourages sampling of configurations inconsistent with the target probability distributions. The bias introduced is the minimum necessary to fulfill the target distributions, i.e., EBMetaD satisfies the maximum-entropy principle. Unlike other methods, EBMetaD does not require multiple simulation replicas or the introduction of Lagrange multipliers, and is therefore computationally efficient and straightforward in practice. We demonstrate the performance and accuracy of the method for a model system as well as for spin-labeled T4 lysozyme in explicit water, and show how EBMetaD reproduces three double electron-electron resonance distance distributions concurrently within a few tens of nanoseconds of simulation time. EBMetaD is integrated in the open-source PLUMED plug-in (www.plumed-code.org), and can be therefore readily used with multiple MD engines. PMID:26083917

  1. A predictive model to inform adaptive management of double-crested cormorants and fisheries in Michigan

    USGS Publications Warehouse

    Tsehaye, Iyob; Jones, Michael L.; Irwin, Brian J.; Fielder, David G.; Breck, James E.; Luukkonen, David R.

    2015-01-01

    The proliferation of double-crested cormorants (DCCOs; Phalacrocorax auritus) in North America has raised concerns over their potential negative impacts on game, cultured and forage fishes, island and terrestrial resources, and other colonial water birds, leading to increased public demands to reduce their abundance. By combining fish surplus production and bird functional feeding response models, we developed a deterministic predictive model representing bird–fish interactions to inform an adaptive management process for the control of DCCOs in multiple colonies in Michigan. Comparisons of model predictions with observations of changes in DCCO numbers under management measures implemented from 2004 to 2012 suggested that our relatively simple model was able to accurately reconstruct past DCCO population dynamics. These comparisons helped discriminate among alternative parameterizations of demographic processes that were poorly known, especially site fidelity. Using sensitivity analysis, we also identified remaining critical uncertainties (mainly in the spatial distributions of fish vs. DCCO feeding areas) that can be used to prioritize future research and monitoring needs. Model forecasts suggested that continuation of existing control efforts would be sufficient to achieve long-term DCCO control targets in Michigan and that DCCO control may be necessary to achieve management goals for some DCCO-impacted fisheries in the state. Finally, our model can be extended by accounting for parametric or ecological uncertainty and including more complex assumptions on DCCO–fish interactions as part of the adaptive management process.

  2. Predictability of Bristol Bay, Alaska, sockeye salmon returns one to four years in the future

    USGS Publications Warehouse

    Adkison, Milo D.; Peterson, R.M.

    2000-01-01

    Historically, forecast error for returns of sockeye salmon Oncorhynchus nerka to Bristol Bay, Alaska, has been large. Using cross-validation forecast error as our criterion, we selected forecast models for each of the nine principal Bristol Bay drainages. Competing forecast models included stock-recruitment relationships, environmental variables, prior returns of siblings, or combinations of these predictors. For most stocks, we found prior returns of siblings to be the best single predictor of returns; however, forecast accuracy was low even when multiple predictors were considered. For a typical drainage, an 80% confidence interval ranged from one half to double the point forecast. These confidence intervals appeared to be appropriately wide.

  3. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III

    1988-01-01

    Model problem development and analysis continues with the Alternate Resonance Tuning (ART) concept. The various topics described are presently at different stages of completion: investigation of the effectiveness of the ART concept under an external propagating pressure field associated with propeller passage by the fuselage; analysis of ART performance with a double panel wall mounted in a flexible frame model; development of a data fitting scheme using a branch analysis with a Newton-Raphson scheme in multiple dimensions to determine values of critical parameters in the actual experimental apparatus; and investigation of the ART effect with real panels as opposed to the spring-mass-damper systems currently used in much of the theory.

  4. Generating multi-double-scroll attractors via nonautonomous approach.

    PubMed

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  5. Building of nested components by a double-nozzle droplet deposition process

    NASA Astrophysics Data System (ADS)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  6. A Novel Numerical Approach for Generation and Propagation of Rotor-Stator Interaction Noise

    NASA Astrophysics Data System (ADS)

    Patel, Krishna

    As turbofan engine designs move towards bypass ratios ≥12 and corresponding low pressure ratios, fan rotor blade tip Mach numbers are reduced, leading to rotor-stator interaction becoming an important contributor to tonal fan noise. For future aircraft configurations employing boundary layer ingestion, non-uniform flow enters the fan. The impact of such non-uniform flows on the generation and propagation of rotor-stator interaction tones has yet to be assessed. In this thesis, a novel approach is proposed to numerically predict the generation and propagation of rotor-stator interaction noise with distorted inflow. The approach enables a 42% reduction in computational cost compared to traditional approaches employing a sliding interface between the rotor and stator. Such an interface may distort rotor wakes and can cause non-physical acoustic wave reflections if time steps are not sufficiently small. Computational costs are reduced by modelling the rotor using distributed, volumetric body forces. This eliminates the need for a sliding interface and thus allows a larger time step size. The force model responds to local flow conditions and thus can capture the effects of long-wavelength flow distortions. Since interaction noise is generated by the incidence of the rotor wakes onto the stator vanes, the key challenge is to produce the wakes using a body force field since the rotor blades are not directly modelled. It is shown that such an approach can produce wakes by concentrating the viscous forces along streamtubes in the last 15% chord. The new approach to rotor wake generation is assessed on the GE R4 fan from NASA's Source Diagnostic Test, for which the computed overall aerodynamic performance matches the experiment to within 1%. The rotor blade wakes are generated with widths in excellent agreement and depths in fair agreement with the experiment. An assessment of modal sound power levels computed in the exhaust duct indicates that this approach can be used for predicting downstream propagating interaction noise.

  7. Lily Pad Doubling: Proportional Reasoning Development

    ERIC Educational Resources Information Center

    Robichaux-Davis, Rebecca R.

    2017-01-01

    Progressing from additive to multiplicative thinking is critical for the development of middle school students' proportional reasoning abilities. Yet, many middle school mathematics teachers lack a thorough understanding of additive versus multiplicative situations. This article describes a sequence of instructional activities used to develop the…

  8. Multiplicity counting from fission detector signals with time delay effects

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  9. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    PubMed

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  10. Fast concurrent array-based stacks, queues and deques using fetch-and-increment-bounded, fetch-and-decrement-bounded and store-on-twin synchronization primitives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gara, Alana; Heidelberger, Philip

    Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.

  11. Variable Pitch Darrieus Water Turbines

    NASA Astrophysics Data System (ADS)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  12. Multiple victimizations before and after leaving home associated with PTSD, depression, and substance use disorder among homeless youth.

    PubMed

    Bender, Kimberly; Brown, Samantha M; Thompson, Sanna J; Ferguson, Kristin M; Langenderfer, Lisa

    2015-05-01

    Exposure to multiple forms of maltreatment during childhood is associated with serious mental health consequences among youth in the general population, but limited empirical attention has focused on homeless youth-a population with markedly high rates of childhood maltreatment followed by elevated rates of street victimization. This study investigated the rates of multiple childhood abuses (physical, sexual, and emotional abuse) and multiple street victimizations (robbery, physical assault, and sexual assault) and examined their relative relationships to mental health outcomes (meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, criteria for post-traumatic stress disorder [PTSD], depression, and substance use disorder) among a large (N = 601) multisite sample of homeless youth. Approximately 79% of youth retrospectively reported multiple childhood abuses (two or more types) and 28% reported multiple street victimizations (two or more types). Each additional type of street victimization nearly doubled youths' odds for meeting criteria for substance use disorder. Furthermore, each additional type of childhood abuse experienced more than doubled youths' odds for meeting criteria for PTSD. Both multiple abuses and multiple street victimizations were associated with an approximate twofold increase in meeting depression criteria. Findings suggest the need for screening, assessment, and trauma-informed services for homeless youth who consider multiple types of abuse and victimization experiences. © The Author(s) 2014.

  13. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  14. Radial velocities of southern visual multiple stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less

  15. Multi-wavelength Observations and Modeling of Solar Flares: Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Su, Y.

    2017-12-01

    We present a review of our recent investigations on multi-wavelength observations and magnetic field modeling of solar flares. High-resolution observations taken by NVST and BBSO/NST reveal unprecedented fine structures of the flaring regions. Observations by SDO, IRIS, and GOES provide the complementary information. The magnetic field models are constructed using either non-linear force free field extrapolations or flux rope insertion method. Our studies have shown that the flaring regions often consist of double or multiple flux ropes, which often exist at different heights. The fine flare ribbon structures may be due to the magnetic reconnection in the complex quasi separatrix layers. The magnetic field modeling of several large flares suggests that the so called hot-channel structure is corresponding to the erupting flux rope above the X-point in a magnetic configuration with Hyperbolic Flux Tube.

  16. Complications and Short-Term Explantation Rate Following Artificial Urinary Sphincter Implantation: Results from a Large Middle European Multi-Institutional Case Series.

    PubMed

    Kretschmer, Alexander; Hüsch, Tanja; Thomsen, Frauke; Kronlachner, Dominik; Obaje, Alice; Anding, Ralf; Pottek, Tobias; Rose, Achim; Olianas, Roberto; Friedl, Alexander; Hübner, Wilhelm; Homberg, Roland; Pfitzenmaier, Jesco; Grein, Ulrich; Queissert, Fabian; Naumann, Carsten Maik; Schweiger, Josef; Wotzka, Carola; Nyarangi-Dix, Joanne N; Hofmann, Torben; Seiler, Roland; Haferkamp, Axel; Bauer, Ricarda M

    2016-01-01

    Background/Aims/Objectives: To analyze perioperative complication and short-term explantation rates after perineal or penoscrotal single-cuff and double-cuff artificial urinary sphincter (AUS) implantation in a large middle European multi-institutional patient cohort. 467 male patients with stress urinary incontinence underwent implantation of a perineal single-cuff (n = 152), penoscrotal single-cuff (n = 99), or perineal double-cuff (n = 216) AUS between 2010 and 2012. Postoperative complications and 6-month explantation rates were assessed. For statistical analysis, Fisher's exact test and Kruskal-Wallis rank sum test, and a multiple logistic regression model were used (p < 0.05). Compared to perineal single-cuff AUS, penoscrotal single-cuff implantation led to significantly increased short-term explantation rates (8.6% (perineal) vs. 19.2% (penoscrotal), p = 0.019). The postoperative infection rate was significantly higher after double-cuff compared to single-cuff implantation (6.0% (single-cuff) vs. 13.9% (double-cuff), p = 0.019). The short-term explantation rate after primary double-cuff placement was 6.5% (p = 0.543 vs. perineal single-cuff). In multivariate analysis, the penoscrotal approach (p = 0.004), intraoperative complications (p = 0.005), postoperative bleeding (p = 0.011), and perioperative infection (p < 0.001) were independent risk factors for short-term explantation. Providing data from a large contemporary multi-institutional patient cohort from high-volume and low-volume institutions, our results reflect the current standard of care in middle Europe. We indicate that the penoscrotal approach is an independent risk factor for increased short-term explantation rates. © 2016 S. Karger AG, Basel.

  17. Hybrid protection algorithms based on game theory in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming

    2011-12-01

    With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.

  18. Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code

    NASA Astrophysics Data System (ADS)

    Freidenreich, S.

    2015-12-01

    The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.

  19. Gravitational microlensing of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1993-01-01

    A Monte Carlo code is developed to calculate gravitational microlensing in three dimensions when the lensing optical depth is low or moderate (not greater than 0.25). The code calculates positions of microimages and time delays between the microimages. The majority of lensed gamma-ray bursts should show a simple double-burst structure, as predicted by a single point mass lens model. A small fraction should show complicated multiple events due to the collective effects of several point masses (black holes). Cosmological models with a significant fraction of mass density in massive compact objects can be tested by searching for microlensing events in the current BATSE data. Our catalog generated by 10,000 Monte Carlo models is accessible through the computer network. The catalog can be used to take realistic selection effects into account.

  20. Utility of the sore throat pain model in a multiple-dose assessment of the acute analgesic flurbiprofen: a randomized controlled study

    PubMed Central

    2014-01-01

    Background The sore throat pain model has been conducted by different clinical investigators to demonstrate the efficacy of acute analgesic drugs in single-dose randomized clinical trials. The model used here was designed to study the multiple-dose safety and efficacy of lozenges containing flurbiprofen at 8.75 mg. Methods Adults (n = 198) with moderate or severe acute sore throat and findings of pharyngitis on a Tonsillo-Pharyngitis Assessment (TPA) were randomly assigned to use either flurbiprofen 8.75 mg lozenges (n = 101) or matching placebo lozenges (n = 97) under double-blind conditions. Patients sucked one lozenge every three to six hours as needed, up to five lozenges per day, and rated symptoms on 100-mm scales: the Sore Throat Pain Intensity Scale (STPIS), the Difficulty Swallowing Scale (DSS), and the Swollen Throat Scale (SwoTS). Results Reductions in pain (lasting for three hours) and in difficulty swallowing and throat swelling (for four hours) were observed after a single dose of the flurbiprofen 8.75 mg lozenge (P <0.05 compared with placebo). After using multiple doses over 24 hours, flurbiprofen-treated patients experienced a 59% greater reduction in throat pain, 45% less difficulty swallowing, and 44% less throat swelling than placebo-treated patients (all P <0.01). There were no serious adverse events. Conclusions Utilizing the sore throat pain model with multiple doses over 24 hours, flurbiprofen 8.75 mg lozenges were shown to be an effective, well-tolerated treatment for sore throat pain. Other pharmacologic actions (reduced difficulty swallowing and reduced throat swelling) and overall patient satisfaction from the flurbiprofen lozenges were also demonstrated in this multiple-dose implementation of the sore throat pain model. Trial registration This trial was registered with ClinicalTrials.gov, registration number: NCT01048866, registration date: January 13, 2010. PMID:24988909

  1. Development of a Research Reactor Protocol for Neutron Multiplication Measurements

    DOE PAGES

    Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.; ...

    2018-03-20

    A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less

  2. Development of a Research Reactor Protocol for Neutron Multiplication Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.

    A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less

  3. Search for neutrinoless double-electron capture of 156Dy

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2015-12-01

    Background: Multiple large collaborations are currently searching for neutrinoless double-β decay, with the ultimate goal of differentiating the Majorana-Dirac nature of the neutrino. Purpose: Investigate the feasibility of resonant neutrinoless double-electron capture, an experimental alternative to neutrinoless double-β decay. Method: Two clover germanium detectors were operated underground in coincidence to search for the de-excitation γ rays of 156Gd following the neutrinoless double-electron capture of 156Dy. 231.95 d of data were collected at the Kimballton underground research facility with a 231.57 mg enriched 156Dy sample. Results: No counts were seen above background and half-life limits are set at O (1016-1018) yr for the various decay modes of 156Dy. Conclusion: Low background spectra were efficiently collected in the search for neutrinoless double-electron capture of 156Dy, although the low natural abundance and associated lack of large quantities of enriched samples hinders the experimental reach.

  4. Self-assembly of a double-helical complex of sodium.

    PubMed

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  5. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing.

    PubMed

    Stoggl, Thomas; Enqvist, Jonas; Muller, Erich; Holmberg, Hans-Christer

    2010-01-01

    In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Vandersypen, L. M. K.; Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  7. Investigating the development of double-peak subauroral ion drift (DSAID)

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2017-04-01

    This study focuses on the newly described ionospheric feature, called double-peak subauroral ion drift (DSAID), which is a subclass of the well-known single-peak SAID. Double-layer Region 2 (R2) field aligned currents (FACs) could be the main driver of DSAID. Our aim is to gain new insights into the development of DSAID during its two-stage progression. Observational results are provided by five scenarios, each demonstrating a certain progression sequence of DSAID. Results show that SAID/DSAID occurred during flux transfer events and was accompanied by flow channels (FCs) associated with dayside magnetopause (FC-2) and nightside magnetotail (FC-3) reconnections, with westward electrojet (eastward FC), and with auroral streamers (FC-4). In the premidnight magnetic local time (MLT) sector of stage 2, DSAID development was due to the short-circuiting of the reconnection-injected plasma jets during substorms or pseudobreakups. Thus, the related ring current pressure buildup enhanced the downward R2 FACs leading to double/multiple circuits forming double-layer R2 FACs. During the midnight MLT hours of stage 2, DSAID development was closely related to the westward traveling surge (WTS)/substorm current wedge (SCW). WTS/SCW-related strong upward R1 FACs closed with meriodional currents producing eastward and downward (i.e., downward R2 FAC-style) return currents enhancing the downward R2 FACs and thus leading to double/multiple circuits forming double-layer R2 FACs. Auroral streamers/FC-4 represent a substorm substructure and their occurrence with DSAID after stage 2 demonstrates that this substructure occasionally includes DSAID. Our results demonstrate also that the short-circuited system underlying SAID/DSAID acted sometimes as a current generator and sometimes as a voltage generator.

  8. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  9. The concept of double inlet-double outlet right ventricle: a distinct congenital heart disease.

    PubMed

    Spadotto, Veronica; Frescura, Carla; Ho, Siew Yen; Thiene, Gaetano

    The aim of this study was to estimate the incidence and to analyze the anatomy of double inlet-double outlet right ventricle complex and its associated cardiac anomalies in our autopsy series. Among the 1640 hearts with congenital heart disease of our Anatomical Collection, we reviewed the specimens with double inlet-double outlet right ventricle, according to the sequential-segmental analysis, identifying associated cardiac anomalies and examining lung histology to assess the presence of pulmonary vascular disease. We identified 14 hearts with double inlet-double outlet right ventricle (0.85%). Right atrial isomerism was observed in 10 hearts, situs solitus in 3 and left atrial isomerism in one. Regarding the mode of atrioventricular connection, all hearts but one had a common atrioventricular valve. Systemic or pulmonary venous abnormalities were noted in all patients with atrial isomerism. In nine patients a valvular or subvalvular pulmonary stenosis was present. Among the functionally "univentricular hearts", double inlet- double outlet right ventricle represents a peculiar entity, mostly in association with right atrial isomerism. Multiple cardiac anomalies are associated and may complicate surgical repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Quantifying the dynamics of field cancerization in tobacco-related head and neck cancer: a multi-scale modeling approach

    PubMed Central

    Ryser, Marc D.; Lee, Walter T.; Readyz, Neal E.; Leder, Kevin Z.; Foo, Jasmine

    2017-01-01

    High rates of local recurrence in tobacco-related head and neck squamous cell carcinoma (HNSCC) are commonly attributed to unresected fields of precancerous tissue. Since they are not easily detectable at the time of surgery without additional biopsies, there is a need for non-invasive methods to predict the extent and dynamics of these fields. Here we developed a spatial stochastic model of tobacco-related HNSCC at the tissue level and calibrated the model using a Bayesian framework and population-level incidence data from the Surveillance, Epidemiology, and End Results (SEER) registry. Probabilistic model analyses were performed to predict the field geometry at time of diagnosis, and model predictions of age-specific recurrence risks were tested against outcome data from SEER. The calibrated models predicted a strong dependence of the local field size on age at diagnosis, with a doubling of the expected field diameter between ages at diagnosis of 50 and 90 years, respectively. Similarly, the probability of harboring multiple, clonally unrelated fields at the time of diagnosis were found to increase substantially with patient age. Based on these findings, we hypothesized a higher recurrence risk in older compared to younger patients when treated by surgery alone; we successfully tested this hypothesis using age-stratified outcome data. Further clinical studies are needed to validate the model predictions in a patient-specific setting. This work highlights the importance of spatial structure in models of epithelial carcinogenesis, and suggests that patient age at diagnosis may be a critical predictor of the size and multiplicity of precancerous lesions. Major Findings Patient age at diagnosis was found to be a critical predictor of the size and multiplicity of precancerous lesions. This finding challenges the current one-size-fits-all approach to surgical excision margins. PMID:27913438

  11. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    PubMed

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Double Star Measurements at the Internationale Amateur Sternwarte (IAS) in Namibia in 2009

    NASA Astrophysics Data System (ADS)

    Anton, Rainer

    2012-01-01

    This paper is a continuation of earlier work published in JDSO in 2010. Using a 40-cm-Cassegrain telescope in Namibia and a fast CCD camera, 87 double and multiple systems were recorded and analyzed with the technique of "lucky imaging". Measurements are compared with literature data. Some noteworthy systems are discussed in more detail.

  13. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pairmore » of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.« less

  14. Ion distributions in electrolyte confined by multiple dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica

    2014-03-01

    The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.

  15. A Fast Vector Radiative Transfer Model for Atmospheric and Oceanic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; King, M. D.; Platnick, S. E.; Meyer, K.

    2017-12-01

    A fast vector radiative transfer model is developed in support of atmospheric and oceanic remote sensing. This model is capable of simulating the Stokes vector observed at the top of the atmosphere (TOA) and the terrestrial surface by considering absorption, scattering, and emission. The gas absorption is parameterized in terms of atmospheric gas concentrations, temperature, and pressure. The parameterization scheme combines a regression method and the correlated-K distribution method, and can easily integrate with multiple scattering computations. The approach is more than four orders of magnitude faster than a line-by-line radiative transfer model with errors less than 0.5% in terms of transmissivity. A two-component approach is utilized to solve the vector radiative transfer equation (VRTE). The VRTE solver separates the phase matrices of aerosol and cloud into forward and diffuse parts and thus the solution is also separated. The forward solution can be expressed by a semi-analytical equation based on the small-angle approximation, and serves as the source of the diffuse part. The diffuse part is solved by the adding-doubling method. The adding-doubling implementation is computationally efficient because the diffuse component needs much fewer spherical function expansion terms. The simulated Stokes vector at both the TOA and the surface have comparable accuracy compared with the counterparts based on numerically rigorous methods.

  16. Generating multi-double-scroll attractors via nonautonomous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Qinghui; Xie, Qingguo, E-mail: qgxie@mail.hust.edu.cn; Shen, Yi

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify themore » availability and feasibility of this method.« less

  17. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  18. Multiple-Barrier Resonant Tunneling Structures for Application in a Microwave Generator Stabilized by Microstrip Resonator

    DTIC Science & Technology

    2000-06-23

    conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L

  19. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less

  20. Clinical Significance of "Double-hit" and "Double-protein" expression in Primary Gastric B-cell Lymphomas.

    PubMed

    He, Miaoxia; Chen, Keting; Li, Suhong; Zhang, Shimin; Zheng, Jianming; Hu, Xiaoxia; Gao, Lei; Chen, Jie; Song, Xianmin; Zhang, Weiping; Wang, Jianmin; Yang, Jianmin

    2016-01-01

    Primary gastric B-cell lymphoma is the second most common malignancy of the stomach. There are many controversial issues about its diagnosis, treatment and clinical management. "Double-hit" and "double-protein" involving gene rearrangement and protein expression of c-Myc and bcl2/bcl6 are the most used terms to describe DLBCL poor prognostic factors in recent years. However, very little is known about the role of these prognostic factors in primary gastric B-cell lymphomas. This study aims to obtain a molecular pathology prognostic model of gastric B-cell lymphoma for clinical stratified management by evaluating how the "double-hit" and "double-protein" in tumor cells as well as microenvironmental reaction of tumor stromal tissue affect clinical outcome in primary gastric B-cell lymphomas. Data and tissues of 188 cases diagnosed with gastric B-cell lymphomas were used in this study. Tumor tissue microarray (TMA) of formalin fixed and paraffin embedded (FFPE) tissues was constructed for fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analysis with a serial of biomarkers containing MYC, BCL2, BCL6, CD31, SPARC, CD10, MUM1 and Ki-67. Modeled period analysis was used to estimate 3-year and 5-year overall survival (OS) and disease-free survival (DFS) distributions. There was no definite "double-hit" case though the gene rearrangement of c-Myc (5.9%), bcl2 (0.1%) and bcl6 (7.4%) was found in gastric B-cell lymphomas. The gene amplification or copy gains of c-Myc (10.1%), bcl-2 (17.0%) and bcl-6 (0.9%) were present in these lymphomas. There were 12 cases of the lymphomas with the "double-protein" expression of MYC and BCL2/BCL6. All patients with "double-protein" gastric B-cell lymphomas had poor outcome compared with those without. More importantly, "MYC-BCL2-BCL6" negative group of gastric B-cell lymphoma patients had favorable clinical outcome regardless clinical stage, pathological types and therapeutic modalities. And the similar better prognosis was found in the cases with low microvessel density (MVD) in tumor tissue and high expression of SPARC (SPARC≥5%) in stromal cells. "Double-hit" lymphoma was rare among primary gastric lymphoma, while patients with multiple gene amplification and/or copy gains of c-Myc, bcl2 and bcl6, and "double-protein" gastric B-cell lymphomas had a poor clinical outcome. In addition, patients with MYC, BCL2 and BCL6 expression negative or low MVD in tumor tissue with high expression of SPARC in stromal cells could have better prognosis than other gastric B-cell lymphomas regardless of their clinical stage and pathological types. These results would be of very importance for clinical stratified management and precision medicine of gastric B-cell lymphomas.

  1. Multiple locations of nerve compression: an unusual cause of persistent lower limb paresthesia.

    PubMed

    Ang, Chia-Liang; Foo, Leon Siang Shen

    2014-01-01

    A paucity of appreciation exists that the "double crush" phenomenon can account for persistent leg symptoms even after spinal neural decompression surgery. We present an unusual case of multiple locations of nerve compression causing persistent lower limb paresthesia in a 40-year old male patient. The patient's lower limb paresthesia was persistent after an initial spinal surgery to treat spinal lateral recess stenosis thought to be responsible for the symptoms. It was later discovered that he had peroneal muscle herniations that had caused superficial peroneal nerve entrapments at 2 separate locations. The patient obtained much symptomatic relief after decompression of the peripheral nerve. The "double crush" phenomenon and multiple levels of nerve compression should be considered when evaluating lower limb neurogenic symptoms, especially after spinal nerve root surgery. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on U235 and Pu239 using the double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Bélier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-03-01

    Prompt fission neutron spectra from U235 and Pu239 were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg U235 and 90 mg Pu239 detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  3. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  4. Design and optimization of LTE 1800 MIMO antenna.

    PubMed

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  5. Double Coaxial Microcatheter Technique for Glue Embolization of Renal Arteriovenous Malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchikawa, Yoko, E-mail: jauchikawa@gmail.com; Mori, Kensaku, E-mail: moriken@md.tsukuba.ac.jp; Shiigai, Masanari, E-mail: m-41gai@yahoo.co.jp

    PurposeTo demonstrate the technical benefit of the double coaxial microcatheter technique for embolization of renal arteriovenous malformations (AVMs) with n-butyl cyanoacrylate and iodized oil (glue).Materials and MethodsSix consecutive patients (1 man and 5 women; mean age 61 years; range 44–77 years) with renal AVMs were included. Five patients had hematuria, and one had a risk of heart failure due to a large intrarenal arteriovenous shunt. All patients underwent transarterial embolization using glue and the double coaxial microcatheter technique with outer 2.6F and inner 1.9F microcatheters. After glue injection, the inner microcatheter was retracted, while the outer microcatheter was retained. We assessed themore » complications and clinical outcomes of this technique.ResultsTechnical success was achieved in all patients. In 9 sessions, 34 feeding arteries were embolized with glue using the double coaxial microcatheter technique, 1 was embolized with glue using a single microcatheter, and 2 were embolized with coils. The double coaxial microcatheter technique was useful for selecting small tortuous feeding arteries, preventing glue reflux to the proximal arteries, and approaching multiple feeding arteries without complete retraction of the microcatheters. As a minor complication, glue migrated into the venous system in four patients without any sequelae. In all patients, favorable clinical outcomes, including hematuria cessation in five patients and improvement of the large intrarenal arteriovenous shunt in one patient, were obtained without deterioration of renal function.ConclusionGlue embolization with the double coaxial microcatheter technique was useful for treating renal AVMs with multiple tortuous feeding arteries.« less

  6. Noise-induced transitions in a double-well oscillator with nonlinear dissipation.

    PubMed

    Semenov, Vladimir V; Neiman, Alexander B; Vadivasova, Tatyana E; Anishchenko, Vadim S

    2016-05-01

    We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.

  7. Monoclonal gammopathy with double M-bands: An atypical presentation on serum protein electrophoresis simulating biclonal gammopathy.

    PubMed

    Bora, Kaustubh; Das, Umesh; Barman, Bhupen; Ruram, Alice Abraham

    2017-01-01

    Monoclonal gammopathies, such as multiple myeloma, typically exhibit high levels of a monoclonal immunoglobulin (M-protein), produced by a clone of abnormally proliferating B-lymphocytes and/or plasma cells. The M-protein can be evaluated by serum protein electrophoresis (SPEP), which yields a single discrete band (M-band), usually in the γ-globulin region. Rarely, two M-bands appear simultaneously at different positions during SPEP - a condition known as biclonal gammopathy, which is a result of clonal expansion of two different neoplastic cell lines. Here, we describe an atypical case of IgA-λ multiple myeloma, where double M-bands (one in β- and the other in γ-globulin region) were found during SPEP simulating biclonal gammopathy, although it was monoclonal in nature. This peculiar presentation of double M-bands in monoclonal gammopathy was attributed to polymeric forms of IgA by systematic workup. Further, we discuss how true and apparent biclonality can be distinguished by inexpensive analytical techniques in resource-constrained settings.

  8. Double-image storage optimized by cross-phase modulation in a cold atomic system

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Xie, Min

    2017-09-01

    A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.

  9. Reflection of a Year Long Model-Driven Business and UI Modeling Development Project

    NASA Astrophysics Data System (ADS)

    Sukaviriya, Noi; Mani, Senthil; Sinha, Vibha

    Model-driven software development enables users to specify an application at a high level - a level that better matches problem domain. It also promises the users with better analysis and automation. Our work embarks on two collaborating domains - business process and human interactions - to build an application. Business modeling expresses business operations and flows then creates business flow implementation. Human interaction modeling expresses a UI design, its relationship with business data, logic, and flow, and can generate working UI. This double modeling approach automates the production of a working system with UI and business logic connected. This paper discusses the human aspects of this modeling approach after a year long of building a procurement outsourcing contract application using the approach - the result of which was deployed in December 2008. The paper discusses in multiple areas the happy endings and some heartache. We end with insights on how a model-driven approach could do better for humans in the process.

  10. Generation of double giant pulses in actively Q-switched lasers

    NASA Astrophysics Data System (ADS)

    Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.

    2018-04-01

    Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.

  11. Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.

    PubMed

    Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John

    2017-10-01

    Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poeschla, Eric, E-mail: poeschla.eric@mayo.edu

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins,more » and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.« less

  13. Synchronized parameter optimization of the double freeform lenses illumination system used for the CF-LCoS pico-projectors

    NASA Astrophysics Data System (ADS)

    Chen, Enguo; Liu, Peng; Yu, Feihong

    2012-10-01

    A novel synchronized optimization method of multiple freeform surfaces is proposed and applied to double lenses illumination system design of CF-LCoS pico-projectors. Based on Snell's law and the energy conservation law, a series of first-order partial differential equations are derived for the multiple freeform surfaces of the initial system. By assigning the light deflection angle to each freeform surface, multiple surfaces can be obtained simultaneously by solving the corresponding equations, meanwhile the restricted angle on CF-LCoS is guaranteed. In order to improve the spatial uniformity, the multi-surfaces are synchronously optimized by using simplex algorithm for an extended LED source. Design example shows that the double lenses based illumination system, which employs a single 2 mm×2 mm LED chip and a CF-LCoS panel with a diagonal of 0.59 inches satisfies the needs of pico-projector. Moreover, analytical result indicates that the design method represents substantial improvement and practical significance over traditional CF-LCoS projection system, which could offer outstanding performance with both portability and low cost. The synchronized optimization design method could not only realize collimating and uniform illumination, but also could be introduced to other specific light conditions.

  14. Unified double- and single-sided homogeneous Green’s function representations

    PubMed Central

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  15. Unified double- and single-sided homogeneous Green's function representations

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  16. Effect of mood states and infertility stress on patients' attitudes toward embryo transfer and multiple pregnancy.

    PubMed

    Newton, Christopher; Feyles, Valter; Asgary-Eden, Veronica

    2013-08-01

    To examine whether mood state or infertility stress influences perceptions of risk, preferences for embryo transfer, or views on multiple pregnancy. Observational cohort study. Hospital-based fertility clinic. One hundred seventy-six women participating in IVF treatment. None. Mood scores, ratings of risk, preference for multiple embryo transfer, and attitudes toward multiple pregnancy. Growing feelings of tension across the cycle corresponded with increases in the perceived riskiness of double-embryo transfer, but there was no change in strength of transfer preferences. Women experiencing negative moods, such as depression, viewed twin and triplet pregnancy as less likely, whereas increasing positive feelings across the cycle were associated with increasing desire for twin pregnancy. Overall, women perceived double- and triple-embryo transfer as less risky by cycle end than at cycle beginning and felt more certain about multiple-embryo transfer. The dyssynchrony observed among changes in mood, perceptions of risk, and transfer preferences challenges assumptions about the way medical risk information influences transfer preferences, and the findings suggest that mood states experienced during an IVF cycle might affect transfer preferences by influencing attitudes toward multiple pregnancy. Additional considerations beyond providing risk information are needed to facilitate effective patient decision making. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. Mars double-aeroflyby free returns

    NASA Astrophysics Data System (ADS)

    Jesick, Mark

    2017-09-01

    Mars double-flyby free-return trajectories that pass twice through the Martian atmosphere are documented. This class of trajectories is advantageous for potential Mars atmospheric sample return missions because of its low geocentric energy at departure and arrival, because it would enable two sample collections at unique locations during different Martian seasons, and because of its lack of deterministic maneuvers. Free return opportunities are documented over Earth departure dates ranging from 2015 through 2100, with viable missions available every Earth-Mars synodic period. After constraining the maximum lift-to-drag ratio to be less than one, the minimum observed Earth departure hyperbolic excess speed is 3.23 km/s, the minimum Earth atmospheric entry speed is 11.42 km/s, and the minimum round-trip flight time is 805 days. An algorithm using simplified dynamics is developed along with a method to derive an initial estimate for trajectories in a more realistic dynamic model. Multiple examples are presented, including free returns that pass outside and inside of Mars's appreciable atmosphere.

  18. Recessively inherited multiple epiphyseal dysplasia with normal stature, club foot, and double layered patella caused by a DTDST mutation

    PubMed Central

    Superti-Furga, A.; Neumann, L.; Riebel, T.; Eich, G.; Steinmann, B.; Spranger, J.; Kunze, J.

    1999-01-01

    We have observed over 25 different mutations in the diastrophic dysplasia sulphate transporter gene (DTDST) in association with the recessive disorders achondrogenesis 1B, atelosteogenesis 2, and diastrophic dysplasia. The c862t (R279W) transition is the most common mutation in non-Finnish patients, but in these disorders it is usually combined with other DTDST mutations. We had not seen a case of homozygosity for c862t (R279W) until we analysed DNA from a 36 year old male with tall-normal stature (180 cm) who asked for genetic counselling for suspected multiple epiphyseal dysplasia. He was treated for club foot and hip dysplasia at birth. Skeletal changes consistent with multiple epiphyseal dysplasia, with the peculiar finding of a double layered patella, were recognised during childhood. Cleft palate, swelling of the ear pinna, and hitch hiker thumb were absent. He was found to be homozygous, and both healthy parents heterozygous, for the R279W mutation in DTDST, and his fibroblasts showed a sulphate incorporation defect typical of DTDST disorders. Counselling was given for a recessive disorder, thereby considerably reducing the probability of affected offspring.
  Multiple epiphyseal dysplasia is more frequently caused by dominant mutations in the COMP (EDM1, McKusick 132400) and COL9A2 genes (EDM2, McKusick 600204). A few other patients and families with features similar to our proband have been described previously and considered to have autosomal recessive MED (EDM4, McKusick 226900). This observation confirms the existence of this entity and assigns it to the phenotypic spectrum associated with mutations at the DTDST locus.


Keywords: multiple epiphyseal dysplasia; DTDST; double layered patella PMID:10465113

  19. First results from the new double velocity-double energy spectrometer VERDI

    NASA Astrophysics Data System (ADS)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  20. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.

  1. Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment

    PubMed Central

    Robinson, Stephen D.; Frenette, Paul S.; Rayburn, Helen; Cummiskey, Marge; Ullman-Culleré, Mollie; Wagner, Denisa D.; Hynes, Richard O.

    1999-01-01

    We extend our previous analyses of mice deficient in selectins by describing the generation and comparative phenotype of mice lacking one, two, or three selectins after sequential ablation of the murine genes encoding P-, E-, and L-selectins. All mice deficient in selectins are viable and fertile as homozygotes. However, mice missing both P- and E-selectins (PE−/−), and mice missing all three selectins (ELP−/−) develop mucocutaneous infections that eventually lead to death. Mice deficient in multiple selectins display varying degrees of leukocytosis, resulting in part from alterations in leukocyte rolling and recruitment. PE−/− mice, ELP−/− mice, and mice missing both P- and L-selectins (PL−/−) show drastic reductions in leukocyte rolling and in extravasation of neutrophils in thioglycollate-induced peritonitis. In a separate inflammatory model (ragweed-induced peritoneal eosinophilia), we demonstrate P-selectin to be both necessary and sufficient for the recruitment of eosinophils. The phenotype of mice missing both E- and L-selectins (EL−/−) is less severe than those seen in the other double knockouts. Comparisons among the double knockouts suggest that P-selectin normally cooperates with both E- and L-selectins. Our results indicate a preeminent role for P-selectin in regulating leukocyte behavior in mice. Data from the ELP−/− mice indicate, however, that all three selectins are important to leukocyte homeostasis and efficient neutrophil recruitment. PMID:10500197

  2. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  3. Microfluidic approach for encapsulation via double emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-10-01

    Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bootstrap-after-bootstrap model averaging for reducing model uncertainty in model selection for air pollution mortality studies.

    PubMed

    Roberts, Steven; Martin, Michael A

    2010-01-01

    Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.

  5. ILT for double exposure lithography with conventional and novel materials

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman

    2007-03-01

    Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.

  6. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.

  7. Individuality and universality in the growth-division laws of single E. coli cells

    NASA Astrophysics Data System (ADS)

    Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  8. Line-frequency doubling of directed self-assembly patterns for single-digit bit pattern media lithography

    NASA Astrophysics Data System (ADS)

    Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.

    2012-03-01

    Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.

  9. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  10. Montblanc1: GPU accelerated radio interferometer measurement equations in support of Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.

    2015-09-01

    We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.

  11. Did Shakespeare write double falsehood? Identifying individuals by creating psychological signatures with text analysis.

    PubMed

    Boyd, Ryan L; Pennebaker, James W

    2015-05-01

    More than 100 years after Shakespeare's death, Lewis Theobald published Double Falsehood, a play supposedly sourced from a lost play by Shakespeare and John Fletcher. Since its release, scholars have attempted to determine its true authorship. Using new approaches to language and psychological analysis, we examined Double Falsehood and the works of Theobald, Shakespeare, and Fletcher. Specifically, we created a psychological signature from each author's language and statistically compared the features of each signature with those of Double Falsehood's signature. Multiple analytic approaches converged in suggesting that Double Falsehood's psychological style and content architecture predominantly resemble those of Shakespeare, showing some similarity with Fletcher's signature and only traces of Theobald's. Closer inspection revealed that Shakespeare's influence is most apparent early in the play, whereas Fletcher's is most apparent in later acts. Double Falsehood has a psychological signature consistent with that expected to be present in the long-lost play The History of Cardenio, cowritten by Shakespeare and Fletcher. © The Author(s) 2015.

  12. Multistability in Chua's circuit with two stable node-foci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, B. C.; Wang, N.; Xu, Q.

    2016-04-15

    Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponentmore » spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.« less

  13. The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality.

    PubMed

    Hill, Joshua A; Mayer, Bryan T; Xie, Hu; Leisenring, Wendy M; Huang, Meei-Li; Stevens-Ayers, Terry; Milano, Filippo; Delaney, Colleen; Sorror, Mohamed L; Sandmaier, Brenda M; Nichols, Garrett; Zerr, Danielle M; Jerome, Keith R; Schiffer, Joshua T; Boeckh, Michael

    2017-04-20

    Strategies to prevent active infection with certain double-stranded DNA (dsDNA) viruses after allogeneic hematopoietic cell transplantation (HCT) are limited by incomplete understanding of their epidemiology and clinical impact. We retrospectively tested weekly plasma samples from allogeneic HCT recipients at our center from 2007 to 2014. We used quantitative PCR to test for cytomegalovirus, BK polyomavirus, human herpesvirus 6B, HHV-6A, adenovirus, and Epstein-Barr virus between days 0 and 100 post-HCT. We evaluated risk factors for detection of multiple viruses and association of viruses with mortality through day 365 post-HCT with Cox models. Among 404 allogeneic HCT recipients, including 125 cord blood, 125 HLA-mismatched, and 154 HLA-matched HCTs, detection of multiple viruses was common through day 100: 90% had ≥1, 62% had ≥2, 28% had ≥3, and 5% had 4 or 5 viruses. Risk factors for detection of multiple viruses included cord blood or HLA-mismatched HCT, myeloablative conditioning, and acute graft-versus-host disease ( P values < .01). Absolute lymphocyte count of <200 cells/mm 3 was associated with greater virus exposure on the basis of the maximum cumulative viral load area under the curve (AUC) ( P = .054). The maximum cumulative viral load AUC was the best predictor of early (days 0-100) and late (days 101-365) overall mortality (adjusted hazard ratio [aHR] = 1.36, 95% confidence interval [CI] [1.25, 1.49], and aHR = 1.04, 95% CI [1.0, 1.08], respectively) after accounting for immune reconstitution and graft-versus-host disease. In conclusion, detection of multiple dsDNA viruses was frequent after allogeneic HCT and had a dose-dependent association with increased mortality. These data suggest opportunities to improve outcomes with better antiviral strategies. © 2017 by The American Society of Hematology.

  14. Multiplicity

    DTIC Science & Technology

    1991-04-01

    that it has not adopted that test. 1 3 5 The Court did, however, recognize that the double Jeopardy protection includes a collateral estoppel feature... estoppel feature. 1 4 1 The Court articulated this new test in the following terms: The Double Jeopardy Clause bars any subsequent prosecution in which...126 Ashe v. Swenson, 397 U.S. at 452 (Brennan, J., concurring). 127 "We defined collateral estoppel as providing that ’when an issue of ultimate

  15. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  16. Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.

    PubMed

    Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T

    2018-04-04

    Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.

  17. Design and Optimization of LTE 1800 MIMO Antenna

    PubMed Central

    Wong, Huey Shin; Islam, Mohammad Tariqul

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than −15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz–1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440

  18. Integrated packaging of multiple double sided cooling planar bond power modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flowmore » path to remove heat and increase the power density of the power module.« less

  19. A DOUBLE-BLIND, RANDOMIZED, PLACEBO-CONTROLLED, FIXED-DOSE PHASE III STUDY OF VILAZODONE IN PATIENTS WITH GENERALIZED ANXIETY DISORDER

    PubMed Central

    Gommoll, Carl; Durgam, Suresh; Mathews, Maju; Forero, Giovanna; Nunez, Rene; Tang, Xiongwen; Thase, Michael E

    2015-01-01

    Background Vilazodone, a selective serotonin reuptake inhibitor and 5-HT1A receptor partial agonist, is approved for treating major depressive disorder in adults. This study (NCT01629966 ClinicalTrials.gov) evaluated the efficacy and safety of vilazodone in adults with generalized anxiety disorder (GAD). Methods A multicenter, double-blind, parallel-group, placebo-controlled, fixed-dose study in patients with GAD randomized (1:1:1) to placebo (n = 223), or vilazodone 20 mg/day (n = 230) or 40 mg/day (n = 227). Primary and secondary efficacy parameters were total score change from baseline to week 8 on the Hamilton Rating Scale for Anxiety (HAMA) and Sheehan Disability Scale (SDS), respectively, analyzed using a predefined mixed-effect model for repeated measures (MMRM). Safety outcomes were presented by descriptive statistics. Results The least squares mean difference (95% confidence interval) in HAMA total score change from baseline (MMRM) was statistically significant for vilazodone 40 mg/day versus placebo (–1.80 [–3.26, –0.34]; P = .0312 [adjusted for multiple comparisons]), but not for vilazodone 20 mg/day versus placebo. Mean change from baseline in SDS total score was not significantly different for either dose of vilazodone versus placebo when adjusted for multiplicity; significant improvement versus placebo was noted for vilazodone 40 mg/day without adjustment for multiplicity (P = .0349). The incidence of adverse events was similar for vilazodone 20 and 40 mg/day (∼71%) and slightly lower for placebo (62%). Nausea, diarrhea, dizziness, vomiting, and fatigue were reported in ≥5% of patients in either vilazodone group and at least twice the rate of placebo. Conclusions Vilazodone was effective in treating anxiety symptoms of GAD. No new safety concerns were identified. PMID:25891440

  20. A double-blind, randomized, placebo-controlled, fixed-dose phase III study of vilazodone in patients with generalized anxiety disorder.

    PubMed

    Gommoll, Carl; Durgam, Suresh; Mathews, Maju; Forero, Giovanna; Nunez, Rene; Tang, Xiongwen; Thase, Michael E

    2015-06-01

    Vilazodone, a selective serotonin reuptake inhibitor and 5-HT1A receptor partial agonist, is approved for treating major depressive disorder in adults. This study (NCT01629966 ClinicalTrials.gov) evaluated the efficacy and safety of vilazodone in adults with generalized anxiety disorder (GAD). A multicenter, double-blind, parallel-group, placebo-controlled, fixed-dose study in patients with GAD randomized (1:1:1) to placebo (n = 223), or vilazodone 20 mg/day (n = 230) or 40 mg/day (n = 227). Primary and secondary efficacy parameters were total score change from baseline to week 8 on the Hamilton Rating Scale for Anxiety (HAMA) and Sheehan Disability Scale (SDS), respectively, analyzed using a predefined mixed-effect model for repeated measures (MMRM). Safety outcomes were presented by descriptive statistics. The least squares mean difference (95% confidence interval) in HAMA total score change from baseline (MMRM) was statistically significant for vilazodone 40 mg/day versus placebo (-1.80 [-3.26, -0.34]; P = .0312 [adjusted for multiple comparisons]), but not for vilazodone 20 mg/day versus placebo. Mean change from baseline in SDS total score was not significantly different for either dose of vilazodone versus placebo when adjusted for multiplicity; significant improvement versus placebo was noted for vilazodone 40 mg/day without adjustment for multiplicity (P = .0349). The incidence of adverse events was similar for vilazodone 20 and 40 mg/day (∼71%) and slightly lower for placebo (62%). Nausea, diarrhea, dizziness, vomiting, and fatigue were reported in ≥5% of patients in either vilazodone group and at least twice the rate of placebo. Vilazodone was effective in treating anxiety symptoms of GAD. No new safety concerns were identified. © 2015 The Authors. Depression and Anxiety published by Wiley Periodicals, Inc.

  1. Parallel electric fields in extragalactic jets - Double layers and anomalous resistivity in symbiotic relationships

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.

  2. Sulcus reproduction with elastomeric impression materials: a new in vitro testing method.

    PubMed

    Finger, Werner J; Kurokawa, Rie; Takahashi, Hidekazu; Komatsu, Masashi

    2008-12-01

    Aim of this study was to investigate the depth reproduction of differently wide sulci with elastomeric impression materials by single- and double-mix techniques using a tooth and sulcus model, simulating clinical conditions. Impressions with one vinyl polysiloxane (VPS; FLE), two polyethers (PE; IMP and P2), and one hybrid VPS/PE elastomer (FUS) were taken from a truncated steel cone with a circumferential 2 mm deep sulcus, 50, 100 or 200 microm wide. The "root surface" was in steel and the "periodontal tissue" in reversible hydrocolloid. Single-mix impressions were taken with light-body (L) or monophase (M) pastes, double-mix impressions with L as syringe and M or heavy-body (H) as tray materials (n=8). Sulcus reproduction was determined by 3D laser topography of impressions at eight locations, 45 degrees apart. Statistical data analysis by ANOVA and multiple comparison tests (p<0.05). For 200 microm wide sulci, significant differences were found between impression materials only: FLE=IMP>FUS=P2. At 50 and 100 microm width, significant differences were found between materials (IMP>FUS=FLE>P2) and techniques (L+H=L+M>M>L). The sulcus model is considered useful for screening evaluation of elastomeric impression materials ability to reproduce narrow sulci. All tested materials and techniques reproduced 200 microm wide sulci to almost nominal depth. Irrespective of the impression technique used, IMP showed the best penetration ability in 50 and 100 microm sulci. Double-mix techniques are more suitable to reproduce narrow sulci than single-mix techniques.

  3. Applying the Post-Modern Double ABC-X Model to Family Food Insecurity

    ERIC Educational Resources Information Center

    Hutson, Samantha; Anderson, Melinda; Swafford, Melinda

    2015-01-01

    This paper develops the argument that using the Double ABC-X model in family and consumer sciences (FCS) curricula is a way to educate nutrition and dietetics students regarding a family's perceptions of food insecurity. The Double ABC-X model incorporates ecological theory as a basis to explain family stress and the resulting adjustment and…

  4. Study for the dispersion of double-diffraction spectrometers

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Huang, Zhanhua; Xu, Mingming; Jin, Guofan

    2018-01-01

    Double-cascade spectrometers and double-pass spectrometers can be uniformly called double-diffraction spectrometers. In current double-diffraction spectrometers design theory, the differences of the incident angles in the second diffraction are ignored. There is a significant difference between the design in theory and the actual result. In this study, based on the geometries of the double-diffraction spectrometers, we strictly derived the theoretical formulas of their dispersion. By employing the ZEMAX simulation software, verification of our theoretical model is implemented, and the simulation results show big agreement with our theoretical formulas. Based on the conclusions, a double-pass spectrometer was set up and tested, and the experiment results agree with the theoretical model and the simulation.

  5. Perceptions of Peer Sexual Behavior: Do Adolescents Believe in a Sexual Double Standard?

    PubMed

    Young, Michael; Cardenas, Susan; Donnelly, Joseph; J Kittleson, Mark

    2016-12-01

    The purpose of the study was to (1) examine attitudes of adolescents toward peer models having sex or choosing abstinence, and (2) determine whether a "double standard" in perception existed concerning adolescent abstinence and sexual behavior. Adolescents (N = 173) completed questionnaires that included 1 of 6 randomly assigned vignettes that described male and female peer models 3 ways: (1) no information about model's sexual behavior, (2) model in love but choosing abstinence, and (3) model in love and having sex. Participants read the vignette to which they had been assigned and responded to statements about the peer model. Data were analyzed using multivariate analysis of variance. Results did not show evidence of a sexual double standard among male participants, but did show some evidence of a sexual double standard among female participants. Additionally, both male and female participants evaluated more harshly peer models that were having sex than peer models that chose abstinence. Findings provide insight concerning the lack of a sexual double standard among male participants, the existence, to some degree, of a sexual double standard among female participants, and demonstrate the existence of a social cost to both young men and young women for choosing to have sex. © 2016, American School Health Association.

  6. Evaluating the double Poisson generalized linear model.

    PubMed

    Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

    2013-10-01

    The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Global magnetohydrodynamic simulations on multiple GPUs

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui

    2014-01-01

    Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.

  8. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  9. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  10. Crop effect to soil moisture retrieval at different microwave frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Luan, Jinzhe

    2006-12-01

    In soil moisture retrieval by microwave remote sensing technology, vegetation effect is important, due to its emission upward as well as masking the soil surface contribution. Because of good penetration characteristics through crop at low frequencies, L-band is often used, where crop is treated as a uniform layer, and 0 th-order Brightness Temperature model is used. Higher frequencies upper than L-band, the frequencies both on NASA AQUA AMSR-E and FY-3 to be launched next year in CHINA, may be more informative in SM retrieval. The multiple-scattering effects inside crop and that between crop layer and soil surface will be increasing when frequencies go higher from L-band. In this paper, a Matrix-Doubling model that account for multiple-scattering based on ray tracing technique is used to simulate the microwave emission of vegetated-surface at C- and X-band. The orientation and size of crop element such as leaves and cylinders are accounted for in crop layer, and AIEM is used for calculation of ground surface scattering. Simulation results from this model for corn and SGP99 experiment data are in good agreement. Since complicated theoretical model as used in this paper involves too many parameters, to make SM retrieval more directly, corresponding terms from the developed model are matched with 0 th-order,so as to derive effective single scattering albedo and vegetation opacity at C- and X-band.

  11. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  12. Use of the false discovery rate for evaluating clinical safety data.

    PubMed

    Mehrotra, Devan V; Heyse, Joseph F

    2004-06-01

    Clinical adverse experience (AE) data are routinely evaluated using between group P values for every AE encountered within each of several body systems. If the P values are reported and interpreted without multiplicity considerations, there is a potential for an excess of false positive findings. Procedures based on confidence interval estimates of treatment effects have the same potential for false positive findings as P value methods. Excess false positive findings can needlessly complicate the safety profile of a safe drug or vaccine. Accordingly, we propose a novel method for addressing multiplicity in the evaluation of adverse experience data arising in clinical trial settings. The method involves a two-step application of adjusted P values based on the Benjamini and Hochberg false discovery rate (FDR). Data from three moderate to large vaccine trials are used to illustrate our proposed 'Double FDR' approach, and to reinforce the potential impact of failing to account for multiplicity. This work was in collaboration with the late Professor John W. Tukey who coined the term 'Double FDR'.

  13. Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.

    PubMed

    Muramoto, Nobuhiko; Oda, Arisa; Tanaka, Hidenori; Nakamura, Takahiro; Kugou, Kazuto; Suda, Kazuki; Kobayashi, Aki; Yoneda, Shiori; Ikeuchi, Akinori; Sugimoto, Hiroki; Kondo, Satoshi; Ohto, Chikara; Shibata, Takehiko; Mitsukawa, Norihiro; Ohta, Kunihiro

    2018-05-18

    DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.

  14. A microwave backscattering model for precipitation

    NASA Astrophysics Data System (ADS)

    Ermis, Seda

    A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval are calculated by Mie scattering theory. VRT equations are solved by matrix doubling method to compute phase matrix for entire radar beam. Model results are validated with measured data by X-band dual polarization Phase Tilt Weather Radar (PTWR) for snow, rain, wet hail type precipitation. The geophysical parameters given the best fit with measured reflectivities are used in previous models i.e. Rayleigh Approximation and Mie scattering and compared with the VRT model. Results show that reflectivities calculated by VRT models are differed up to 10 dB from the Rayleigh approximation model and up to 5 dB from the Mie Scattering theory due to both multiple scattering and attenuation losses for the rain rates as high as 80 mm/h.

  15. On dense water formation in shelves of the Aegean Sea during the year 1987

    NASA Astrophysics Data System (ADS)

    Salusti, Ettore; Bellacicco, Marco; Anagnostou, Christos; Rinaldi, Eleonora; Tripsanas, Efthymios

    2015-04-01

    We here investigate the role of the rather virgin year 1987, when some modern data are available but before the main EMT event. A combination of field, satellite and numerical model temperature and salinity data from PROTHEUS, as well as a coupled ocean-atmosphere model, are used to implement theoretical models. After its formation over a sloping shelf of some important points in the Aegean Sea, due to the strong cold winter winds, a dense water patch can either have a dramatic downflow or can start a slow geostrophic descent along shelves and then following isobaths, best described by streamtube models. The most important, among these shelves characterized by a strong air sea interaction, have been identified from satellite data. The Northernmost shelves are those north of the island of Samothrace and in the Northern Thermaikos Gulf. In agreement with the field measuraments of Georgopoulos et al. (1987) also the shallow shelf between Limnos and Goceada was a source of very dense water, as well as thr shelf between Lesbos and the Turkish coast. Most probably also the shelves around the Cycladic Plateau were affected by strong winds and contributed to the Aegean Sea deep water formation. In addition, other theoretical models of wind-induced coastal upwelling allow to infer temperature and salinity information of dense water dynamics along the shallow coasts and shelves of the Aegean Sea. All this allows a heuristic application of classical T/S diagrams to estimate Northern Aegean dense water evolution and spreading, that nicely supports the early ideas of Zervakis et al. (2000). A complex situation about the Cycladic Plateau dynamics is also analyzed in correlation with sediment locations. Indeed seismic-reflection profiles confirm the presence of a contourite location along the northeast Cyclades Plateau shelves. All this interestingly opens novel prospective about the dense water coastal formation shelves. In synthesis such field, numerical and satellite data embedded in theoretical models allow a novel viewpoint on the Aegean dense water evolution just before the EMT, supported by existing data and also suggesting other possible contourite dynamics. Therefore all this can be seen as kind of challenge for investigating Aegean Sea dense water dynamics, and contourite locations as well.

  16. The Relationship Between Partial Contaminant Source Zone Remediation and Groundwater Plume Attenuation

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y. Sun, 2000, BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0, US EPA Report EPA/600/R-00/008 Domenico, P.A., 1987, An analytical model for multidimensional transport of a decaying contaminant species, J. Hydrol., 91: 49-58. Sun, Y., J.N. Petersen, T.P. Clement, and R.S. Skeen, 1999, A new analytical solution for multi-species transport equations with serial and parallel reactions, Water Resour. Res., 35(1): 185-190.

  17. Student Measurements of STFA 14 AC at Vanguard Preparatory School

    NASA Astrophysics Data System (ADS)

    Gillette, Sean; Archuleta, Alex; Diaz, Lizbeth; Gillespie, Kyle; Gosney, Timothy; Johnson, Stephen; Mohan, Nikita; Rajacich, Jacob; Roehl, Nathaniel; Sharpe, Scotty; Whitt, Kahaloha

    2016-01-01

    Eighth grade students at Vanguard Preparatory School measured the double star STFA 14 AC using a Bader Planetarium Micro Guide eyepiece. Navi (Gamma Cassiopeiae) was used as the ca libration star. The calculated means of multiple observations of STFA 14 AC resulted in a separation of 53.3" and a position angle of 2.0°. These measurements were compared to the most recent values in the Washington Double Star Catalog.

  18. Relaxation dynamics of maximally clustered networks

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2018-01-01

    We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics—the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.

  19. Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels.

    PubMed

    Kuo, David M-T; Chang, Yia-Chung

    2007-08-24

    A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.

  20. Analysis of the Functionality of Refillable Propellant Management Devices (PMD)

    NASA Astrophysics Data System (ADS)

    Winkelmann, Yvonne; Gaulke, Diana; Dreyer, Michael E.

    In order to restart a stage of a spacecraft it is necessary to position the liquid stable over the tank outlet. The gas-or vapor-free provision of the thrusters for the main engine start-up can be accomplished by the use of propellant management devices (PMDs). A propellant refillable reservoir (PRR) will supply the engine with the required amount of liquid propellant until the liquid outside the PRR has settled at the bottom of the tank. Hence, the reservoir will be refilled and the main engine can be restarted. This technique has been applied in case of storable propellants yet, e.g. in satellites or ATVs. For the application in a cryogenic upper stage demonstration and validation tests are still necessary. Ground experiments to simulate propulsed phases are evaluated. To demonstrate the functionality under propulsed conditions first filling, draining and draining with a constant fill level of the tank (refilling) are analyzed. Different inflows with respect to filling and varied outflow rates for the draining tests are investigated. Pressure losses in the LOX-PMD are measured during draining and compared to a previously accomplished estimation with an one-dimensional streamtube theory.

  1. Generation of the September 29, 2009 Samoa Tsunami: Examination of a Possible Non-Double Couple Component (Invited)

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Kirby, S. H.; Ross, S.; Dartnell, P.

    2009-12-01

    A non-double couple component associated with the Mw=8.0 September 29, 2009 Samoa earthquake is investigated to explain direct tsunami arrivals at deep-ocean pressure sensors (i.e., DART stations). In particular, we seek a tsunami generation model that correctly predicts the polarity of first motions: negative at the Apia station (#51425) NW of the epicenter and positive at the Tonga (#51426) and Aukland (#54401) stations south of the epicenter. Slip on a single, finite fault corresponding to either nodal plane of the best-fitting double couple fails to predict the positive first-motion polarity observed at the southerly (Tonga and Aukland) DART stations. The Samoa earthquake has a significant non-double component as measured by the compensated linear vector dipole (CLVD) ratio that ranges from |ɛ|=0.15 (USGS CMT) to |ɛ| =0.37 (Global CMT). To test what effect the non-double component has on tsunami generation, the static elastic displacement field at the sea floor is computed from the full moment tensor. This displacement field represents the initial conditions for tsunami propagation computed using a finite-difference approximation to the linear shallow-water wave equations. The tsunami waveforms calculated from the full moment tensor are consistent with the observed polarities at all of the DART stations. The static displacement field is then decomposed into double-couple and non-double couple components to determine the relative contribution of each to the tsunami wavefield. Although a point-source approximation to the tsunami source is typically inadequate at near-field and regional distances, finite-fault inversions of the 2009 Samoa earthquake indicate that peak slip is spatially concentrated near the hypocenter, suggesting that the point-source representation may be acceptable in this case. Generation of the 2009 Samoa tsunami may involve earthquake rupture on multiple faults and/or along curved faults, both of which are observed from multibeam bathymetry in the epicentral region. The exact rupture path of the earthquake is presently unclear. It is evident from seismological and tsunami observations of the 2009 Samoa event, however, that uniform slip on a single, planar fault cannot explain all aspects of the observed tsunami wavefield.

  2. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  3. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  4. Intermodel spread of the double-ITCZ bias in coupled GCMs tied to land surface temperature in AMIP GCMs

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyu; Xie, Shang-Ping

    2017-08-01

    Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.

  5. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  6. Encounter times of chromatin loci influenced by polymer decondensation

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Holcman, D.

    2018-03-01

    The time for a DNA sequence to find its homologous counterpart depends on a long random search inside the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two sites located on two different polymer chains and confined locally by potential wells. We find that reducing tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the present modeling approach that the fast search for homology is mediated by a local chromatin decondensation due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous recombination pathway for double-stranded DNA repair is controlled by its random search step.

  7. A test of the double-shearing model of flow for granular materials

    USGS Publications Warehouse

    Savage, J.C.; Lockner, D.A.

    1997-01-01

    The double-shearing model of flow attributes plastic deformation in granular materials to cooperative slip on conjugate Coulomb shears (surfaces upon which the Coulomb yield condition is satisfied). The strict formulation of the double-shearing model then requires that the slip lines in the material coincide with the Coulomb shears. Three different experiments that approximate simple shear deformation in granular media appear to be inconsistent with this strict formulation. For example, the orientation of the principal stress axes in a layer of sand driven in steady, simple shear was measured subject to the assumption that the Coulomb failure criterion was satisfied on some surfaces (orientation unspecified) within the sand layer. The orientation of the inferred principal compressive axis was then compared with the orientations predicted by the double-shearing model. The strict formulation of the model [Spencer, 1982] predicts that the principal stress axes should rotate in a sense opposite to that inferred from the experiments. A less restrictive formulation of the double-shearing model by de Josselin de Jong [1971] does not completely specify the solution but does prescribe limits on the possible orientations of the principal stress axes. The orientations of the principal compression axis inferred from the experiments are probably within those limits. An elastoplastic formulation of the double-shearing model [de Josselin de Jong, 1988] is reasonably consistent with the experiments, although quantitative agreement was not attained. Thus we conclude that the double-shearing model may be a viable law to describe deformation of granular materials, but the macroscopic slip surfaces will not in general coincide with the Coulomb shears.

  8. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE PAGES

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...

    2016-06-10

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  9. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  10. CONTRIBUTIONS OF CHEMICAL AND DIFFUSIVE EXCHANGE TO T1ρ DISPERSION

    PubMed Central

    Cobb, Jared Guthrie; Xie, Jingping; Gore, John C.

    2012-01-01

    Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid −OH exchange processes. PMID:22791589

  11. Multifocal Neuropathy: Expanding the Scope of Double Crush Syndrome.

    PubMed

    Cohen, Brian H; Gaspar, Michael P; Daniels, Alan H; Akelman, Edward; Kane, Patrick M

    2016-12-01

    Double crush syndrome (DCS), as it is classically defined, is a clinical condition composed of neurological dysfunction due to compressive pathology at multiple sites along a single peripheral nerve. The traditional definition of DCS is narrow in scope because many systemic pathologic processes, such as diabetes mellitus, drug-induced neuropathy, vascular disease and autoimmune neuronal damage, can have deleterious effects on nerve function. Multifocal neuropathy is a more appropriate term describing the multiple etiologies (including compressive lesions) that may synergistically contribute to nerve dysfunction and clinical symptoms. This paper examines the history of DCS and multifocal neuropathy, including the epidemiology and pathophysiology in addition to principles of evaluation and management. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Helium in double-detonation models of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Sim, Stuart A.; Hachinger, Stephan; Kerzendorf, Wolfgang

    2017-03-01

    The double-detonation explosion model has been considered a candidate for explaining astrophysical transients with a wide range of luminosities. In this model, a carbon-oxygen white dwarf star explodes following detonation of a surface layer of helium. One potential signature of this explosion mechanism is the presence of unburned helium in the outer ejecta, left over from the surface helium layer. In this paper we present simple approximations to estimate the optical depths of important He I lines in the ejecta of double-detonation models. We use these approximations to compute synthetic spectra, including the He I lines, for double-detonation models obtained from hydrodynamical explosion simulations. Specifically, we focus on photospheric-phase predictions for the near-infrared 10 830 Å and 2 μm lines of He I. We first consider a double detonation model with a luminosity corresponding roughly to normal SNe Ia. This model has a post-explosion unburned He mass of 0.03 M⊙ and our calculations suggest that the 2 μm feature is expected to be very weak but that the 10 830 Å feature may have modest opacity in the outer ejecta. Consequently, we suggest that a moderate-to-weak He I 10 830 Å feature may be expected to form in double-detonation explosions at epochs around maximum light. However, the high velocities of unburned helium predicted by the model ( 19 000 km s-1) mean that the He I 10 830 Å feature may be confused or blended with the C I 10 690 Å line forming at lower velocities. We also present calculations for the He I 10 830 Å and 2 μm lines for a lower mass (low luminosity) double detonation model, which has a post-explosion He mass of 0.077 M⊙. In this case, both the He I features we consider are strong and can provide a clear observational signature of the double-detonation mechanism.

  13. Classical Observations of Visual Binary and Multiple Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian D.

    2007-08-01

    The database of visual double star data has experienced tremendous changes, doubling in size during the last 25 years and growing at an ever increasing rate. Interferometric techniques have allowed the database to extend to much closer separation (and shorter periods), while longer timebases and higher-precision wide-field surveys have increased our knowledge of common proper motion pairs at the widest separations. These changes in the database are highlighted, describing the evolution of methods of observation (both historically and the past few years) and the effectiveness of these various methods in different regimes of separation/ period space. The various niches for wide- and narrow-field work as applied to double and multiple stars are examined and the different types of information which each can provide are also highlighted. After more than 20 years of successful work, speckle interferometry and conventional CCD astrometry have replaced filar micrometry and photography as the preferred classical techniques. Indeed, most work in filar micrometry is now being done by amateurs, although much of that community is also switching to CCDs and other electronic techniques. Despite the significant growth of the double star database, much still remains to be done, such as finding lost pairs, filling in missing parameters so that observing programs may be more efficient at observing stars appropriate to their capabilities, and providing at least approximate kinematic descriptions. Work on pairs described as neglected at the time of the last major WDS data release (2001) is given as a specific example of recent improvements, and finally the continued need to publish data using classical double star parameters is discussed.

  14. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Mayer, K. Ulrich; Beckie, Roger D.

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH< 4 in a mixing boundary) within the first 100 years can be as high as 75% for a NPR = 2 and 40% for NPR = 4. The latter is traditionally considered as a ;universally safe; threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles.

  15. SHORT RANGE ENSEMBLE Products

    Science.gov Websites

    - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic Multiscale Model on the B grid AWIPS grid 212 Regional - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic 132 - Double Resolution (Lambert Conformal - 16km) NEMS Non-hydrostatic Multiscale Model on the B grid

  16. Development and Application of a Two-Tier Multiple Choice Diagnostic Instrument To Assess High School Students' Understanding of Inorganic Chemistry Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Goh, Ngoh Khang; Chia, Lian Sai; Treagust, David F.

    2002-01-01

    Describes the development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Shows that the Grade 10 students had difficulty understanding the reactions involved in the identification of cations and anions, for example, double decomposition…

  17. Efficacy of a multi micronutrient-fortified drink in improving iron and micronutrient status among schoolchildren with low iron stores in India: A randomised, double-masked placebo-controlled trial

    USDA-ARS?s Scientific Manuscript database

    A multiple micronutrient-fortified drink could be an effective strategy to combating micronutrient deficiencies in school-going children. Our objective was to assess the efficacy of a multiple micronutrient-fortified drink in reducing iron deficiency (ID), ID anemia (IDA), anemia and improving micro...

  18. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    USGS Publications Warehouse

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0.17 when only one hazard is considered and a score of 0.37 when multiple hazards are considered simultaneously. The LHIs with the most predictive skill were ‘Inundation depth’ and ‘Wave attack’. The Bayesian Network approach has several advantages over the market-standard stage-damage functions: the predictive capacity of multiple indicators can be combined; probabilistic predictions can be obtained, which include uncertainty; and quantitative as well as descriptive information can be used simultaneously.

  19. Concept of multiple-cell cavity for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  20. The effect of cannabis on tremor in patients with multiple sclerosis.

    PubMed

    Fox, P; Bain, P G; Glickman, S; Carroll, C; Zajicek, J

    2004-04-13

    Disabling tremor is common in patients with multiple sclerosis (MS). Data from animal model experiments and subjective and small objective studies involving patients suggest that cannabis may be an effective treatment for tremor associated with MS. To our knowledge, there are no published double-blind randomized controlled trials of cannabis as a treatment for tremor in MS patients. The authors conducted a randomized double-blind placebo-controlled crossover trial to examine the effect of oral cannador (cannabis extract) on 14 patients with MS with upper limb tremors. There were eight women and six men, with a mean age of 45 years and mean Expanded Disability Status Scale score of 6.25. Patients were randomly assigned to receive each treatment and the doses escalated over a 2-week period before each assessment. The primary outcome was change on a tremor index, measured using a validated tremor rating scale. The study was powered to detect a functionally significant 50% improvement in the tremor index. Secondary outcomes included accelerometry, an ataxia scale, spiral drawing, finger tapping, and nine-hole pegboard test performance. Analysis of the data showed no significant improvement in any of the objective measures of upper limb tremor with cannabis extract compared to placebo. Finger tapping was faster on placebo compared to cannabis extract (p < 0.02). However, there was a nonsignificant trend for patients to experience more subjective relief from their tremors while on cannabis extract compared to placebo. Cannabis extract does not produce a functionally significant improvement in MS-associated tremor.

  1. [DNA structure from A to Z--biological implications of structural diversity of DNA].

    PubMed

    Bukowiecka-Matusiak, Małgorzata; Woźniak, Lucyna A

    2006-01-01

    Deoxyribonucleic acid (DNA) is a biopolymer of nucleotides, usually adopting a double-stranded helical form in cells, with complementary base pairing holding the two strands together. The most stable is B-DNA conformation, although numerous other double helical structures can occur under specific conditions (A-DNA, Z-DNA, P-DNA). The existence of multiple-stranded (triplex, tetraplex) forms in vivo and their biological function in cells are subject of intensive studies.

  2. A Van der Waals-like theory of plasma double layers

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, V. A.

    1989-01-01

    A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.

  3. Numerically simulated two-dimensional auroral double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1983-01-01

    A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.

  4. Double Ramification Cycles and Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

  5. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412

  6. [An ADAA model and its analysis method for agronomic traits based on the double-cross mating design].

    PubMed

    Xu, Z C; Zhu, J

    2000-01-01

    According to the double-cross mating design and using principles of Cockerham's general genetic model, a genetic model with additive, dominance and epistatic effects (ADAA model) was proposed for the analysis of agronomic traits. Components of genetic effects were derived for different generations. Monte Carlo simulation was conducted for analyzing the ADAA model and its reduced AD model by using different generations. It was indicated that genetic variance components could be estimated without bias by MINQUE(1) method and genetic effects could be predicted effectively by AUP method; at least three generations (including parent, F1 of single cross and F1 of double-cross) were necessary for analyzing the ADAA model and only two generations (including parent and F1 of double-cross) were enough for the reduced AD model. When epistatic effects were taken into account, a new approach for predicting the heterosis of agronomic traits of double-crosses was given on the basis of unbiased prediction of genotypic merits of parents and their crosses. In addition, genotype x environment interaction effects and interaction heterosis due to G x E interaction were discussed briefly.

  7. On double shearing in frictional materials

    NASA Astrophysics Data System (ADS)

    Teunissen, J. A. M.

    2007-01-01

    This paper evaluates the mechanical behaviour of yielding frictional geomaterials. The general Double Shearing model describes this behaviour. Non-coaxiality of stress and plastic strain increments for plane strain conditions forms an important part of this model. The model is based on a micro-mechanical and macro-mechanical formulation. The stress-dilatancy theory in the model combines the mechanical behaviour on both scales.It is shown that the general Double Shearing formulation comprises other Double Shearing models. These models differ in the relation between the mobilized friction and dilatancy and in non-coaxiality. In order to describe reversible and irreversible deformations the general Double Shearing model is extended with elasticity.The failure of soil masses is controlled by shear mechanisms. These shear mechanisms are determined by the conditions along the shear band. The shear stress ratio of a shear band depends on the orientation of the stress in the shear band. There is a difference between the peak strength and the residual strength in the shear band. While peak stress depends on strength properties only, the residual strength depends upon the yield conditions and the plastic deformation mechanisms and is generally considerably lower than the maximum strength. It is shown that non-coaxial models give non-unique solutions for the shear stress ratio on the shear band. The Double Shearing model is applied to various failure problems of soils such as the direct simple shear test, the biaxial test, infinite slopes, interfaces and for the calculation of the undrained shear strength. Copyright

  8. Production of Σ(1385)± and Ξ(1530)0 in p-Pb collisions at \\sqrt{{s}_{{\\rm{N}}{\\rm{N}}}}={\\rm{5.02\\; TeV}} measured by ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Song, Jihye; ALICE Collaboration

    2017-04-01

    In order to study the hot hadronic matter created in heavy-ion collisions, it is important to compare particle production in large systems to that in smaller systems, such as proton-proton (pp) and proton-lead (p-Pb) collisions. In particular, resonances with different lifetimes are good candidates to probe the interplay of particle re-scattering and regeneration in the hadronic phase. The yields of the strange and double-strange hyperon resonances Σ(1385)± and Ξ(1530)0 are measured in the rapidity range -0.5 < yCMS < 0 in p-Pb collisions at \\sqrt{{s}{{N}{{N}}}}={{5.02 TeV}} with the ALICE detector at the LHC. We report on the transverse momentum distributions and mean transverse momentum as a function of the charged-particle multiplicity. These results complement the information derived from the measurements of other resonances such as K*(892)0 and ˚(1020). The multiplicity dependence of the integrated yield ratios of excited hyperons to longer-lived particles is discussed and compared to model predictions from pQCD-inspired models such as PYTHIA8 as well as statistical hadronization models.

  9. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  10. A Unimodal Model for Double Observer Distance Sampling Surveys.

    PubMed

    Becker, Earl F; Christ, Aaron M

    2015-01-01

    Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line) with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

  11. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less

  12. Multiple homicides.

    PubMed

    Copeland, A R

    1989-09-01

    A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.

  13. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    PubMed

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both bcl-2 gene translocation and ICN were found in 30 patients. Four ICNs of C-MYC gene were found in 28 patients. Elevated protein in cerebrospinal fluid (CSF) was found in 13 patients. LDH increased in 10 cases. Follow-up period was 2-90 months with the average survival time of (23.0±3.7) months and two-year survival rate of 39.0%. Univariate survival analysis showed that overexpression of bcl-2 protein (≥70%) and MYC protein (≥40%), bcl-2 gene abnormality (including copy number increase and translocation), C-MYC gene copy number increased were adverse factors for survival. C-MYC/ bcl-2 gene double hit was seen in 2 cases. Bivariate survival analysis found that of bcl-2/MYC protein double expression and bcl-2 and C-MYC genes double aberration were significantly associated with adverse outcomes. Cox multivariate risk regression analysis found that gender, cerebrospinal fluid protein increasing, and ICN of C-MYC gene were independent poor prognostic factors. DH-MTX based comprehensive chemotherapy was associated with better prognosis. Conclusions: Double hit at genomic level (copy number variations and gene rearrangements) and double protein expression of bcl-2 and C-MYC in PCNS-DLBCL are significantly associated with an adverse outcome. DH-MTX based comprehensive treatment may prolong the patient survival.

  14. New generation of wearable goniometers for motion capture systems

    PubMed Central

    2014-01-01

    Background Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented. Methods KPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed. Results The proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations. Conclusions Double layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented. PMID:24725669

  15. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress

    PubMed Central

    Li, Xiaoming; Bai, Jing; Li, Jianchun; Li, Shenghao; Wang, Zeming; Zhou, Mingrui

    2017-01-01

    Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC. PMID:28526807

  16. Capturing a Commander's decision making style

    NASA Astrophysics Data System (ADS)

    Santos, Eugene; Nguyen, Hien; Russell, Jacob; Kim, Keumjoo; Veenhuis, Luke; Boparai, Ramnjit; Stautland, Thomas Kristoffer

    2017-05-01

    A Commander's decision making style represents how he weighs his choices and evaluates possible solutions with regards to his goals. Specifically, in the naval warfare domain, it relates the way he processes a large amount of information in dynamic, uncertain environments, allocates resources, and chooses appropriate actions to pursue. In this paper, we describe an approach to capture a Commander's decision style by creating a cognitive model that captures his decisionmaking process and evaluate this model using a set of scenarios using an online naval warfare simulation game. In this model, we use the Commander's past behaviors and generalize Commander's actions across multiple problems and multiple decision making sequences in order to recommend actions to a Commander in a manner that he may have taken. Our approach builds upon the Double Transition Model to represent the Commander's focus and beliefs to estimate his cognitive state. Each cognitive state reflects a stage in a Commander's decision making process, each action reflects the tasks that he has taken to move himself closer to a final decision, and the reward reflects how close he is to achieving his goal. We then use inverse reinforcement learning to compute a reward for each of the Commander's actions. These rewards and cognitive states are used to compare between different styles of decision making. We construct a set of scenarios in the game where rational, intuitive and spontaneous decision making styles will be evaluated.

  17. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE PAGES

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  18. Practice and attitudes regarding double gloving among staff surgeons and surgical trainees.

    PubMed

    Lipson, Mark E; Deardon, Rob; Switzer, Noah J; de Gara, Chris; Ball, Chad G; Grondin, Sean C

    2018-06-01

    Despite supporting evidence, many staff surgeons and surgical trainees do not routinely double glove. We performed a study to assess rates of and attitudes toward double gloving and the use of eye protection in the operating room. We conducted an electronic survey among all staff surgeons and surgical trainees at 2 tertiary care centres in Alberta between September and November 2015.We analyzed the data using log-binomial regression for binary outcomes to account for multiple independent variables and interactions. For 2-group comparisons, we used a 2-group test of proportions. The response rate was 34.3% (361/1051); 205/698 staff surgeons (29.4%) and 156/353 surgical trainees (44.2%) responded. Trainees were more likely than staff surgeons to ever double glove in the operating room ( p = 0.01) and to do so routinely ( p = 0.01). Staff surgeons were more likely than trainees to never double glove ( p = 0.01). A total of 300/353 respondents (85.0%) reported using eye protection routinely in the operating room. Needle-stick injury was common (184 staff surgeons [92.5%], 115 trainees [74.7%]). Reduced tactile feedback, decreased manual dexterity and discomfort/poor fit were perceived barriers to double gloving. Rates of double gloving leave room for improvement. Surgical trainees were more likely than staff surgeons to double glove. Barriers remain to routine double gloving among staff surgeons and trainees. Increased education on the benefits of double gloving and early introduction of this practice may increase uptake.

  19. Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.

    PubMed

    Huang, Jun; Zhang, Jianbo; Eikerling, Michael

    2018-05-07

    Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.

  20. Random matrix models, double-time Painlevé equations, and wireless relaying

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Haq, Nazmus S.; McKay, Matthew R.

    2013-06-01

    This paper gives an in-depth study of a multiple-antenna wireless communication scenario in which a weak signal received at an intermediate relay station is amplified and then forwarded to the final destination. The key quantity determining system performance is the statistical properties of the signal-to-noise ratio (SNR) γ at the destination. Under certain assumptions on the encoding structure, recent work has characterized the SNR distribution through its moment generating function, in terms of a certain Hankel determinant generated via a deformed Laguerre weight. Here, we employ two different methods to describe the Hankel determinant. First, we make use of ladder operators satisfied by orthogonal polynomials to give an exact characterization in terms of a "double-time" Painlevé differential equation, which reduces to Painlevé V under certain limits. Second, we employ Dyson's Coulomb fluid method to derive a closed form approximation for the Hankel determinant. The two characterizations are used to derive closed-form expressions for the cumulants of γ, and to compute performance quantities of engineering interest.

  1. Business Performer-Centered Design of User Interfaces

    NASA Astrophysics Data System (ADS)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  2. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  3. Complex bifurcation patterns in a discrete predator-prey model with periodic environmental modulation

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K. P.

    2018-02-01

    We consider the simplest model in the family of discrete predator-prey system and introduce for the first time an environmental factor in the evolution of the system by periodically modulating the natural death rate of the predator. We show that with the introduction of environmental modulation, the bifurcation structure becomes much more complex with bubble structure and inverse period doubling bifurcation. The model also displays the peculiar phenomenon of coexistence of multiple limit cycles in the domain of attraction for a given parameter value that combine and finally gets transformed into a single strange attractor as the control parameter is increased. To identify the chaotic regime in the parameter plane of the model, we apply the recently proposed scheme based on the correlation dimension analysis. We show that the environmental modulation is more favourable for the stable coexistence of the predator and the prey as the regions of fixed point and limit cycle in the parameter plane increase at the expense of chaotic domain.

  4. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  5. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  6. Advanced analysis techniques for uranium assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples countmore » rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.« less

  7. Future Performance Trend Indicators: A Current Value Approach to Human Resources Accounting. Report III. Multivariate Predictions of Organizational Performance Across Time.

    ERIC Educational Resources Information Center

    Pecorella, Patricia A.; Bowers, David G.

    Multiple regression in a double cross-validated design was used to predict two performance measures (total variable expense and absence rate) by multi-month period in five industrial firms. The regressions do cross-validate, and produce multiple coefficients which display both concurrent and predictive effects, peaking 18 months to two years…

  8. Recent advances in heterobimetallic palladium(II)/copper(II) catalyzed domino difunctionalization of carbon-carbon multiple bonds.

    PubMed

    Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto

    2014-09-21

    The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.

  9. Going Green and Using Less Paper to Print Exams: Student Performance, Completion Time, and Preference

    ERIC Educational Resources Information Center

    O'Connor, Kevin J.

    2014-01-01

    Two studies measured the impact on student exam performance and exam completion time of strategies aimed to reduce the amount of paper used for printing multiple-choice course exams. Study 1 compared single-sided to double-sided printed exams. Study 2 compared a single-column arrangement of multiple-choice answer options to a space (and paper)…

  10. Mixing of multiple jets with a confined subsonic crossflow - Summary of NASA-supported experiments and modeling

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1991-01-01

    Experimental and computational results on the mixing of single, double, and opposed rows of jets with an isothermal or variable temperature mainstream in a confined subsonic crossflow are summarized. The studies were performed to investigate flow and geometric variations typical of the complex 3D flowfield in the dilution zone of combustion chambers in gas turbine engines. The principal observations from the experiments were that the momentum-flux ratio was the most significant flow variable, and that temperature distributions were similar (independent of orifice diameter) when the orifice spacing and the square-root of the momentum-flux ratio were inversely proportional. The experiments and empirical model for the mixing of a single row of jets from round holes were extended to include several variations typical of gas turbine combustors.

  11. The costs to the NHS of multiple births after IVF treatment in the UK.

    PubMed

    Ledger, William L; Anumba, Dilly; Marlow, Neil; Thomas, Christine M; Wilson, Edward C F

    2006-01-01

    To determine the cost to the NHS resulting from multiple pregnancies arising from IVF treatment in the UK, and to compare those costs with the cost to the NHS due to singleton pregnancies resulting from IVF treatment. A modelling study using data from published literature and cost data from national sources in the public domain, calculating direct costs from the diagnosis of a clinical pregnancy until the end of the first year after birth. Academic Unit of Reproductive and Developmental Medicine. Theoretic core modelling study using data from published literature. The analysis was based on the total annual number of births resulting from an IVF treatment in the UK. Main outcome measures total direct costs to the NHS per IVF singleton, twin or triplet family. Cost of singleton, twin and triplet IVF pregnancies in the UK. Total direct costs to the NHS per IVF twin or triplet family (maternal + infant costs) are substantially higher than per IVF singleton family (singleton: pounds 3313; twin: pounds 9122; and triplet: pounds 32,354). Multiple pregnancies after IVF are associated with 56% of the direct cost of IVF pregnancies, although they represent less than 1/3 of the total annual number of maternities in the UK. Multiple pregnancies after IVF are associated with high direct costs to the NHS. Redirection of money saved by implementation of a mandatory 'two embryo transfer' policy into increased provision of IVF treatment could double the number of NHS-funded IVF treatment cycles at no extra cost. Further savings could be made if a selective 'single embryo transfer' policy were to be adopted.

  12. Safety, tolerability, pharmacokinetics, and effects on human experimental pain of the selective ionotropic glutamate receptor 5 (iGluR5) antagonist LY545694 in healthy volunteers.

    PubMed

    Petersen, Karin L; Iyengar, Smriti; Chappell, Amy S; Lobo, Evelyn D; Reda, Haatem; Prucka, William R; Verfaille, Steven J

    2014-05-01

    The objective of this study was to establish in healthy volunteers the maximally tolerated multiple dose (MTMD) of the ionotropic glutamate receptor 5 antagonist LY545694 (part A), and to investigate whether that dose had analgesic or antihyperalgesic effects in the brief thermal stimulation (BTS) pain model (Part B). Part A was a double-blind, placebo-controlled study in 3 groups of 10 healthy men. To simulate an extended-release formulation, study drug was administered orally over 6hours (12 equally divided aliquots at 30-minute intervals). Part B was a double-blind, placebo-controlled, double-dummy, 3-way crossover study in 27 healthy men. At each of the 3 study periods, subjects received either LY545694 (MTMD; as determined during part A) as a simulated, twice daily extended-release formulation for 4 doses over 3days, gabapentin (600mg 8hours apart; 6 doses over 3days; positive control), or matching placebo. The BTS model was induced twice with a 1-hour interval on each of the 2 study days, before drug administration and at the time of expected peak analgesia of LY545694. Plasma exposure for LY545694 was approximately linear over the 25- to 75-mg dose range. The MTMD of LY545694 was 25mg twice daily. Areas of secondary hyperalgesia were significantly smaller after administration of LY545694 and gabapentin compared with placebo (P<.0001 and P=.0004, respectively), but there was no difference between areas after administration of gabapentin and LY545694 (P=.400). Neither gabapentin nor LY545694 reduced the painfulness of skin heating during BTS model induction. The most common treatment-emergent adverse event was dizziness. The results of this study suggest that LY545694 should be explored further as a potential treatment for chronic pain involving neuronal sensitization. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2003-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.

  14. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  15. Spatial redistribution of radiation in flip-chip photodiodes based on InAsSbP/InAs double heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakgeim, A. L.; Il’inskaya, N. D.; Karandashev, S. A.

    2017-02-15

    The spatial distribution of equilibrium and nonequilibrium (including luminescent) IR (infrared) radiation in flip-chip photodiodes based on InAsSbP/InAs double heterostructures (λ{sub max} = 3.4 μm) is measured and analyzed; the structural features of the photodiodes, including the reflective properties of the ohmic contacts, are taken into account. Optical area enhancement due to multiple internal reflection in photodiodes with different geometric characteristics is estimated.

  16. Student Measurements of STFA 10AB (Theta Tauri)

    NASA Astrophysics Data System (ADS)

    Gillette, Sean; Estrada, Chris; Estrada, Reed; Aguilera, Sophia; Chavez, Valerie; Givens, Jalynn; Lindorfer, Sarah; Michels, Kaylie; Mobley, Makenzie; Reder, Gabriel; Renteria, Kayla; Shattles, Jenna; Wilkin, Aiden; Woodbury, Maisy; Rhoades, Breauna; Rhoades, Mark

    2017-04-01

    Eighth grade students at Vanguard Preparatory School measured the double star STFA 10AB using a 22-inch Newtonian Alt/Az telescope and a Celestron Micro Guide eyepiece. Bellatrix was used as the calibration star. The calculated means of multiple observations of STFA 10AB resulted in a separation of 45.18,” a scale constant of 7.88 arcseconds per division, and position angle of 257.9°. These measurements were compared to the most recent values in the Washington Double Star Catalog.

  17. Laser Speckle Photography: Some Simple Experiments for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Bates, B.; And Others

    1986-01-01

    Describes simple speckle photography experiments which are easy to set up and require only low cost standard laboratory equipment. Included are procedures for taking single, double, and multiple exposures. (JN)

  18. Analysis of the multiple system with chemically peculiar component φ Draconis

    NASA Astrophysics Data System (ADS)

    Liška, J.

    2016-09-01

    The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.

  19. Complete equation of state for shocked liquid nitrogen: Analytical developments

    DOE PAGES

    Winey, J. M.; Gupta, Y. M.

    2016-08-02

    The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref.more » Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.« less

  20. Stolen twin: fascination and curiosity/twin research reports: evolution of sleep length; dental treatment of craniopagus twins; cryopreserved double embryo transfer; gender options in multiple pregnancy/current events: appendectomy in one twin; autistic twin marathon runners; 3D facial recognition; twin biathletes.

    PubMed

    Segal, Nancy L

    2014-02-01

    The story of her allegedly stolen twin brother in Armenia is recounted by a 'singleton twin' living in the United States. The behavioral consequences and societal implications of this loss are considered. This case is followed by twin research reports on the evolution of sleep length, dental treatment of craniopagus conjoined twins, cryopreserved double embryo transfer (DET), and gender options in multiple pregnancy. Current events include the diagnosis of appendectomy in one identical twin, the accomplishments of autistic twin marathon runners, the power of three-dimensional (3D) facial recognition, and the goals of twin biathletes heading to the 2014 Sochi Olympics in Russia.

  1. Soft pair excitations and double-log divergences due to carrier interactions in graphene

    NASA Astrophysics Data System (ADS)

    Lewandowski, Cyprian; Levitov, L. S.

    2018-03-01

    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.

  2. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation.

    PubMed

    Ozgur, Beytullah; Sayar, Mehmet

    2016-10-06

    Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.

  3. Exoplanet orbital eccentricity: multiplicity relation and the Solar System.

    PubMed

    Limbach, Mary Anne; Turner, Edwin L

    2015-01-06

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.

  4. Exoplanet orbital eccentricity: Multiplicity relation and the Solar System

    PubMed Central

    Limbach, Mary Anne; Turner, Edwin L.

    2015-01-01

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527

  5. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  6. Uniscale multi-view registration using double dog-leg method

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan

    2009-02-01

    3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.

  7. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  8. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  9. Simulations of the flow past a cylinder using an unsteady double wake model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-García, N.; Sarlak, H.; Andersen, S. J.

    2016-06-08

    In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.

  10. Solar system applications of Mie theory and of radiative transfer of polarized light

    NASA Technical Reports Server (NTRS)

    Whitehill, L. P.

    1972-01-01

    A theory of the multiple scattering of polarized light is discussed using the doubling method of van de Hulst. The concept of the Stokes parameters is derived and used to develop the form of the scattering phase matrix of a single particle. The diffuse reflection and transmission matrices of a single scattering plane parallel atmosphere are expressed as a function of the phase matrix, and the symmetry properties of these matrices are examined. Four matrices are required to describe scattering and transmission. The scattering matrix that results from the addition of two identical layers is derived. Using the doubling method, the scattering and transmission matrices of layers of arbitrary optical thickness can be derived. The doubling equations are then rewritten in terms of their Fourier components. Computation time is reduced since each Fourier component doubles independently. Computation time is also reduced through the use of symmetry properties.

  11. Diapycnal Transport and Pattern Formation in Double-Diffusive Convection

    DTIC Science & Technology

    2015-12-01

    of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual turbulent/double-diffusive systems and...is presented to remedy this dearth of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual...8 2. Double-Diffusion: The Constant Flux Ratio Model ..........................9 3. The Combined Effects of

  12. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    NASA Astrophysics Data System (ADS)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  13. Theoretical Investigation of Light Transmission in a Slab Cavity via Kerr Nonlinearity of Carbon Nanotube Quantum Dot Nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Jabbari, M.; Sangachin, E. Ahmadi; Asadpour, S. H.

    2018-01-01

    In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.

  14. Technological innovations for a sustainable business model in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2014-09-01

    Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.

  15. VizieR Online Data Catalog: Photometry of multiple stars at NAOR&ASV in 2015 (Cvetkovic+, 2017)

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Z.; Pavlovic, R.; Boeva, S.

    2018-05-01

    This is the ninth series of CCD observations of double and multiple stars, obtained at the Bulgarian National Astronomical Observatory at Rozhen (NAOR) over five nights. As previously, the CCD camera VersArray 1300B was used, which was attached to the 2 m telescope. For each double or multiple star, five CCD frames in the Johnson B filter and five frames in the Johnson V filter were taken, which enabled us to determine the magnitude difference for these filters. In 2015 at the Astronomical Station at Vidojevica (ASV), over a total of 23 nights, observations were carried out by using the 60 cm telescope with a Cassegrain optical system. This is the fourth observational series at ASV since the work started there in 2011. In the observations we used the Apogee Alta U42 CCD camera whose characteristics can be found in the paper by Cvetkovic et al. (2016, J/AJ/151/58). Every pair was observed five times in the Cousins/Bessel B filter and five times in the Cousins/Bessel V one. (3 data files).

  16. Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997

    USGS Publications Warehouse

    Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.

    2009-01-01

    A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t

  17. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules

    NASA Astrophysics Data System (ADS)

    Fan, Yaming; Zhuo, Yuqun; Li, Liangliang

    2017-10-01

    SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.

  18. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE PAGES

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  19. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.

    PubMed

    Zeira, Ron; Shamir, Ron

    2018-05-03

    Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.

  20. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    PubMed

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean

    PubMed Central

    Hwang, Yen-Ting; Frierson, Dargan M. W.

    2013-01-01

    The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth’s energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models. PMID:23493552

  2. Scene of Multiple Explosions

    NASA Image and Video Library

    2007-03-07

    This composite image NASA Galaxy Evolution Explorer shows Z Camelopardalis, or Z Cam, a double-star system featuring a collapsed, dead star, called a white dwarf, and a companion star, as well as a ghostly shell around the system.

  3. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  4. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  5. Factors associated with progression of diabetic nephropathy in Japanese elderly patients with type 2 diabetes: sub-analysis of the Japanese Elderly Diabetes Intervention Trial.

    PubMed

    Araki, Shin-ichi; Nishio, Yoshihiko; Araki, Atsushi; Umegaki, Hiroyuki; Sakurai, Takashi; Iimuro, Satoshi; Ohashi, Yasuo; Uzu, Takashi; Maegawa, Hiroshi; Kashiwagi, Atsunori; Ito, Hideki

    2012-04-01

    Diabetic nephropathy is a serious complication in patients with type 2 diabetes. The aim of this study was to explore the factors associated with the progression of this complication in elderly patients with type 2 diabetes. This retrospective study of a subgroup of patients registered with the Japanese Elderly Diabetes Intervention Trial included 621 Japanese patients with type 2 diabetes mellitus (age ≥ 65 years, 346 with normoalbuminuria, 190 with microalbuminuria and 85 with overt proteinuria). Multivariate Cox proportional hazard regression model with a backward stepwise procedure was applied to select factors with significant effects on worsening of nephropathy stage and the doubling of serum creatinine. During the follow up (median 52 months), 21% of patients progressed from normoalbuminuria and microalbuminuria to a worse nephropathy stage. Aging, female sex and high-density lipoprotein cholesterol were identified as independent and significant factors that worsen nephropathy stage. Also, 6.1% of patients showed doubling of serum creatinine during follow up. A positive history of cardiovascular disease, hyperuricemia and conventional therapy were identified as significant factors involved in the doubling of serum creatinine. The cumulative incidence of the doubling of serum creatinine was significantly lower in the intensive therapy group than the conventional therapy group (P = 0.016), although that of progression of nephropathy stage was similar in the two groups. We identified several factors associated with the progression of diabetic nephropathy in elderly patients with type 2 diabetes. The results suggest that multiple risk factor intervention seems important in preventing deterioration of renal dysfunction. © 2012 Japan Geriatrics Society.

  6. Peri-Urban, but Not Urban, Residence in Bolivia Is Associated with Higher Odds of Co-Occurrence of Overweight and Anemia among Young Children, and of Households with an Overweight Woman and Stunted Child.

    PubMed

    Jones, Andrew D; Hoey, Lesli; Blesh, Jennifer; Janda, Kathryn; Llanque, Ramiro; Aguilar, Ana María

    2018-04-01

    Urban populations have grown globally alongside emerging simultaneous burdens of undernutrition and obesity. Yet, how heterogeneous urban environments are associated with this nutritional double burden is poorly understood. We aimed to determine: 1) the prevalence of the nutritional double burden and its components in urban, peri-urban, and rural areas of Bolivia; and 2) the association of residence in these areas with the nutritional double burden and its components. We surveyed 3946 randomly selected households from 2 metropolitan regions of Bolivia. Census data and remotely sensed imagery were used to define urban, peri-urban, and rural districts along a transect in each region. We defined 5 nutritional double burdens: concurrent overweight and anemia among women of reproductive age (15-49 y), and children (6-59 mo), respectively; concurrent overweight and stunting among children; and households with an overweight woman and, respectively, an anemic or stunted child. Capillary hemoglobin concentrations were measured to assess anemia (women: hemoglobin <120 g/L; children: hemoglobin <110 g/L), and overweight and stunting were calculated from height, weight, and age data. In multiple logistic regression models, peri-urban, but not urban residence, was associated with higher odds of concurrent overweight and anemia among children (OR: 1.8; 95% CI; 1.0, 3.2) and of households with an overweight woman and stunted child (1.8; 1.2, 2.7). Examining the components of the double burden, peri-urban women and children, respectively, had higher odds of overweight than rural residents [women (1.5; 1.2, 1.8); children (1.5; 1.0, 2.4)], and children from peri-urban regions had higher odds of stunting (1.5; 1.1, 2.2). Peri-urban, but not urban, residence in Bolivia is associated with a higher risk of the nutritional double burden than rural areas. Understanding how heterogeneous urban environments influence nutrition outcomes could inform integrated policies that simultaneously address both undernutrition and obesity.

  7. Possible Causes of Double-BSRs on the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Mountjoy, J. J.; Crutchley, G. J.; Krastel, S.; Koch, S.; Dannowski, A.; Bialas, J.; Henrys, S. A.

    2014-12-01

    Bottom Simulating Reflections (BSRs) are commonly thought to be caused by free gas at the base of gas hydrate stability (BGHS). BSRs usually occur at the pressure-temperature conditions for the phase boundary of gas hydrate, which depends on gas composition, pore water chemistry, and various other factors. Hence, BSRs should only occur at a single depth level beneath the seafloor. At several locations worldwide however, double and multiple BSRs have been observed. We have recently discovered localized double-BSRs on the Hikurangi Margin east of New Zealand and present first results from studying the possible origin of these double-BSRs. Both BSRs display negative polarity compared to the seafloor ruling out diagenetic origins. The deeper BSR (BSR-2) is found to be anomalously deep, while the shallower BSR (BSR-1) is at similar depths as BSRs regionally. BSR-2 and BSR-1 are clearly separated on seismic lines from east to west, while they converge from north to south. We propose two possible models for formation of these double-BSRs: 1. Uplift leads to depressurization and an upward movement of the BGHS with respect to the seafloor. BSR-1 may have formed at the new BGHS while immobile gas may remain in place at the original level of the BGHS causing BSR-2. 2. Thermogenic gas may leak from a deeper hydrocarbon reservoir. Gas mixes of thermogenic origin are predicted to form hydrate that is more stable than pure methane hydrate, in particular if the mix contains gases that lead to formation of Structure-II hydrate. BSR-2 may form at a level of the BGHS for a more stable gas mix; residual gases may migrate further until they reach the phase boundary for less stable hydrates at BSR-1. We currently slightly favour uplift as cause of the double-BSRs largely because of the smooth topography of BSR-2: Small-scale lateral variations of gas composition should lead to significant BSR topography. More importantly, we note that the process of fractionation of gas during hydrate formation from thermogenic gas mixes in nature is only poorly understood.

  8. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  9. Controlled double emulsification utilizing 3D PDMS microchannels

    NASA Astrophysics Data System (ADS)

    Chang, Fu-Che; Su, Yu-Chuan

    2008-06-01

    This paper presents a PDMS emulsification device that is capable of generating water-in-oil-in-water double emulsions in a controlled manner. Specially designed 3D microchannels are utilized to steer the independently driven water- and oil-phase flows (especially to restrict the attachment of the middle oil-phase flow on the channel surfaces), and to break the continuous flows into monodisperse double emulsions. In addition to channel geometries and fluid flow rates, surfactants and osmotic agents are employed to facilitate the breakup process and stabilize the resulting emulsion structures. In the prototype demonstration, two-level SU-8 molds were fabricated to duplicate PDMS microstructures, which were surface treated and bonded irreversibly to form 3D microchannels. Throughout the emulsification trials, dripping was intentionally induced to generate monodisperse double emulsions with single or multiple aqueous droplets inside each oil drop. It is found that the overall and core sizes of the resulting double emulsions could be adjusted independently, mainly by varying the outer and inner fluid flow rates, respectively. As such, the presented double emulsification device could potentially realize the controllability on emulsion structure and size distribution, which is desired for a variety of biological and pharmaceutical applications.

  10. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  11. Double versus single high-dose melphalan 200 mg/m2 and autologous stem cell transplantation for multiple myeloma: a region-based study in 484 patients from the Nordic area

    PubMed Central

    Björkstrand, Bo; Klausen, Tobias W.; Remes, Kari; Gruber, Astrid; Knudsen, Lene M.; Bergmann, Olav J.; Lenhoff, Stig; Johnsen, Hans E.

    2009-01-01

    Autologous stem cell transplantation is still considered the standard of care in young patients with multiple myeloma (MM). This disease is the most common indication for high-dose therapy (HDT) supported by hematopoietic stem cell transplantation and much data support the benefit of this procedure. Results of randomized studies are in favor of tandem autologous transplantation although the effect on overall survival is unclear. Based on sequential registration trials in the Nordic area, we aimed to evaluate the outcome of conventional single or double HDT. During 1994–2000 we registered a total of 484 previously untreated patients under the age of 60 years at diagnosis who on a regional basis initially were treated with single [Trial NMSG #5/94 and #7/98 (N=383)] or double [Trial Huddinge Karolinska Turku Herlev (N=101)] high-dose melphalan (200 mg/m2) therapy supported by autologous stem cell transplantation. A complete or very good partial response was achieved by 40% of patients in the single transplant group and 60% of patients in the double transplant group (p=0.0006). The probability of surviving progression free for five years after the diagnosis was 25% (95% CL 18–32%) in the singletransplant group and 46% (95% CL 33–55%) in the double transplant group (p=0.0014). The estimated overall five-year survival rate was 60% in the single transplant group and 64% in the doubletransplant (p=0.9). In a multivariate analysis of variables, including single versus double transplantation, β2 microglobulin level, age, sex and disease stage, only β2 microglobulin level was predictive for overall survival (p>0.0001) and progression free survival (p=0.001). In accordance with these results, a 1:1 case-control matched comparison between double and single transplantation did not identify significant differences in overall and progression free survival. In this retrospective analysis up front double transplantation with melphalan (200 mg/m2) as compared to single transplantation did not seem to improve the final outcome among patients in the Nordic area. These data are in accordance with recent publications from the Bologna 96 trial indicating that a second transplant should not be recommended up front as standard care.

  12. Multifunctional Metallosupramolecular Materials

    DTIC Science & Technology

    2011-02-28

    supramolecular polymers based on 16 and Zn(NTf2)2 using small- angle X - ray scattering (SAXS) and transmission electron microscopy (TEM), carried out by...The SAXS data (Figure 13a) show multiple strong Bragg diffraction maxima at integer multiples of the scattering vector of the primary diffraction ...a minor amount of residual double bonds in the poly(ethylene-co-butylene) core. The metallopolymers 16·[Zn(NTf2)2] x exhibit similar traces, but do

  13. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.

    PubMed

    Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon

    2013-11-06

    Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.

  14. Interferon-alpha and transfer factor in the treatment of multiple sclerosis: a double-blind, placebo-controlled trial. AUSTIMS Research Group.

    PubMed Central

    1989-01-01

    The role of interferon-alpha (IFN-alpha) and transfer factor (TF) in the treatment of multiple sclerosis was investigated in a prospective, multi-centric, three year, double-blind, placebo-controlled trial. One hundred and eighty two patients with clinically definite multiple sclerosis were randomised into three treatment groups whose compositions were found to be similar for demographic and prognostic variables including HLA status. Subcutaneous injections of IFN-alpha (3 x 10(6) units), TF (0.5 units) manufactured from leucocytes of cohabiting donors, or placebo were given twice weekly for two months, once weekly for 10 months then fortnightly for 24 months. One hundred and fifty three patients completed the injection regimen. There was no significant difference in the progression of disability for multiple sclerosis patients in either the IFN-alpha or TF-treated groups compared with the placebo group. Similarly, change in visual evoked responses (VER), and in number of oligoclonal bands (OCB) and the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF) over the trial period did not differ significantly between the three groups. However, the IFN-alpha-treated group had significantly more reported adverse drug reactions and patient withdrawals than either of the other two groups. PMID:2659737

  15. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    NASA Astrophysics Data System (ADS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-02-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory.

  16. Climate change and the middle atmosphere. I - The doubled CO2 climate

    NASA Technical Reports Server (NTRS)

    Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.

    1990-01-01

    The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.

  17. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    PubMed

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.

  18. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    PubMed

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).

  19. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  20. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers

    PubMed Central

    2012-01-01

    Background Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related) Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Methods Scalability of data from 1) a cross-sectional health survey (the Scottish Health Education Population Survey) and 2) a general population birth cohort study (the National Child Development Study) illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. Results and conclusions After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items) we show that all items from the 12-item General Health Questionnaire (GHQ-12) – when binary scored – were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech’s “well-being” and “distress” clinical scales). An illustration of ordinal item analysis confirmed that all 14 positively worded items of the Warwick-Edinburgh Mental Well-being Scale (WEMWBS) met criteria for the monotone homogeneity model but four items violated double monotonicity with respect to a single underlying dimension. Software availability and commands used to specify unidimensionality and reliability analysis and graphical displays for diagnosing monotone homogeneity and double monotonicity are discussed, with an emphasis on current implementations in freeware. PMID:22686586

  1. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers.

    PubMed

    Stochl, Jan; Jones, Peter B; Croudace, Tim J

    2012-06-11

    Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related) Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Scalability of data from 1) a cross-sectional health survey (the Scottish Health Education Population Survey) and 2) a general population birth cohort study (the National Child Development Study) illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items) we show that all items from the 12-item General Health Questionnaire (GHQ-12)--when binary scored--were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech's "well-being" and "distress" clinical scales). An illustration of ordinal item analysis confirmed that all 14 positively worded items of the Warwick-Edinburgh Mental Well-being Scale (WEMWBS) met criteria for the monotone homogeneity model but four items violated double monotonicity with respect to a single underlying dimension.Software availability and commands used to specify unidimensionality and reliability analysis and graphical displays for diagnosing monotone homogeneity and double monotonicity are discussed, with an emphasis on current implementations in freeware.

  2. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com; Wang, Jie, E-mail: wangjie@iun.edu

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  3. A double-strand break can trigger immunoglobulin gene conversion

    PubMed Central

    Bastianello, Giulia; Arakawa, Hiroshi

    2017-01-01

    All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075

  4. Mouse double minute-2 homolog (MDM2)-rs2279744 polymorphism associated with lung cancer risk in a Northeastern Chinese population.

    PubMed

    Wang, Xu; Jin, Lina; Cui, Jiuwei; Ma, Kewei; Chen, Xiao; Li, Wei

    2015-01-01

    Altered expression or function of mouse double minute-2 (MDM2) protein could contribute to lung carcinogenesis; thus, this study investigated MDM2-rs2279744 polymorphism together with other epidemiologic factors for their association with lung cancer risk. A total of 500 lung cancer patients and 500 age and gender-matched healthy controls living in Northeastern China were recruited for genotyping of MDM2-rs2279744. Clinicopathological data was collected and subjected to univariate and multivariate analyses. In univariate analysis, the MDM2-rs2279744 G/G genotype versus T/T + T/G genotypes showed a tendency toward a higher incidence of lung cancer in the recessive model (P = 0.043). However, there were no significant differences when it was analyzed by the dominant, additive, or multiplicative models. A significantly increased lung cancer risk was observed associated with lower education level, lower body mass index, cancer family history, prior diagnosis of chronic obstructive pulmonary disease and pneumonia, exposure to pesticide or gasoline/diesel, tobacco smoking, and heavy cooking emissions when assessed by multivariate analyses. Moreover, MDM2-rs2279744 was still a significant risk factor even after incorporating environmental and lifestyle factors. However, there was no association between MDM2-rs2279744 and other factors. The MDM2-rs2279744 G/G genotype was associated with a higher lung cancer risk, even after incorporating other epidemiologic factors.

  5. Contributions of chemical and diffusive exchange to T1ρ dispersion.

    PubMed

    Cobb, Jared Guthrie; Xie, Jingping; Gore, John C

    2013-05-01

    Variations in local magnetic susceptibility may induce magnetic field gradients that affect the signals acquired for MR imaging. Under appropriate diffusion conditions, such fields produce effects similar to slow chemical exchange. These effects may also be found in combination with other chemical exchange processes at multiple time scales. We investigate these effects with simulations and measurements to determine their contributions to rotating frame (R1ρ ) relaxation in model systems. Simulations of diffusive and chemical exchange effects on R1ρ dispersion were performed using the Bloch equations. Additionally, R1ρ dispersion was measured in suspensions of Sephadex and latex beads with varying spin locking fields at 9.4 T. A novel analysis method was used to iteratively fit for apparent chemical and diffusive exchange rates with a model by Chopra et al. Single- and double-inflection points in R1ρ dispersion profiles were observed, respectively, in simulations of slow diffusive exchange alone and when combined with rapid chemical exchange. These simulations were consistent with measurements of R1ρ in latex bead suspensions and small-diameter Sephadex beads that showed single- and double-inflection points, respectively. These observations, along with measurements following changes in temperature and pH, are consistent with the combined effects of slow diffusion and rapid -OH exchange processes. Copyright © 2012 Wiley Periodicals, Inc.

  6. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a {\\chi^{(2)}} photonic lattice with hexagonal domains

    NASA Astrophysics Data System (ADS)

    Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.

    2018-04-01

    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.

  8. Low Noise Double-Sided Silicon Strip Detector for Multiple-Compton Gamma-ray Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, Hiroyasu

    2002-12-03

    A Semiconductor Multiple-Compton Telescope (SMCT) is being developed to explore the gamma-ray universe in an energy band 0.1-20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of the SMCT is the high energy resolution that is crucial for high angular resolution and high background rejection capability. We have developed prototype modules for a low noise Double-sided Silicon Strip Detector (DSSD) system which is an essential element of the SMCT. The geometry of the DSSD is optimized to achieve the lowest noise possible. A new front-end VLSI device optimized for low noise operationmore » is also developed. We report on the design and test results of the prototype system. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 C.« less

  9. Strong correlation in incremental full configuration interaction

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.

    2017-06-01

    Incremental Full Configuration Interaction (iFCI) reaches high accuracy electronic energies via a many-body expansion of the correlation energy. In this work, the Perfect Pairing (PP) ansatz replaces the Hartree-Fock reference of the original iFCI method. This substitution captures a large amount of correlation at zero-order, which allows iFCI to recover the remaining correlation energy with low-order increments. The resulting approach, PP-iFCI, is size consistent, size extensive, and systematically improvable with increasing order of incremental expansion. Tests on multiple single bond, multiple double bond, and triple bond dissociations of main group polyatomics using double and triple zeta basis sets demonstrate the power of the method for handling strong correlation. The smooth dissociation profiles that result from PP-iFCI show that FCI-quality ground state computations are now within reach for systems with up to about 10 heavy atoms.

  10. Strand-invading linear probe combined with unmodified PNA.

    PubMed

    Asanuma, Hiroyuki; Niwa, Rie; Akahane, Mariko; Murayama, Keiji; Kashida, Hiromu; Kamiya, Yukiko

    2016-09-15

    Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.

    PubMed

    Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe

    2016-07-07

    Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.

  12. Formation of template-switching artifacts by linear amplification.

    PubMed

    Chakravarti, Dhrubajyoti; Mailander, Paula C

    2008-07-01

    Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.

  13. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  14. Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Verbiscer, Anne

    1997-01-01

    Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.

  15. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells.

    PubMed

    Kiziltepe, Tanyel; Hideshima, Teru; Ishitsuka, Kenji; Ocio, Enrique M; Raje, Noopur; Catley, Laurence; Li, Chun-Qi; Trudel, Laura J; Yasui, Hiroshi; Vallet, Sonia; Kutok, Jeffery L; Chauhan, Dharminder; Mitsiades, Constantine S; Saavedra, Joseph E; Wogan, Gerald N; Keefer, Larry K; Shami, Paul J; Anderson, Kenneth C

    2007-07-15

    Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO(*)) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K-induced cytotoxicity was mediated via NO(*) in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH(2)-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K-induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K-induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.

  16. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    NASA Astrophysics Data System (ADS)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Lafleur, T.; Boswell, R. W.

    Current-free double layers of the type reported in plasmas in the presence of an expanding magnetic field [C. Charles and R. W. Boswell, Appl. Phys. Lett. 82, 1356 (2003)] are modeled theoretically and with particle-in-cell/Monte Carlo simulations. Emphasis is placed on determining what mechanisms affect the electron velocity distribution function (EVDF) and how the EVDF influences the double layer. A theoretical model is developed based on depletion of electrons in certain velocity intervals due to wall losses and repletion of these intervals due to ionization and elastic electron scattering. This model is used to predict the range of neutral pressuresmore » over which a double layer can form and the electrostatic potential drop of the double layer. These predictions are shown to compare well with simulation results.« less

  18. Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yingxun; Li, Zhuxia; Wang, Nan; Cui, Ying; Winkelbauer, Jack

    2018-04-01

    The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of the improved quantum molecular dynamics model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than ˜70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b =2 fm and it shows that the charge distribution for 112Sn+112Sn at the beam energy of 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems Sn,132124+124Sn at Ebeam=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for 132Sn+124Sn relative to that for 124Sn+124Sn , and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.

  19. A 3D Model of Double-Helical DNA Showing Variable Chemical Details

    ERIC Educational Resources Information Center

    Cady, Susan G.

    2005-01-01

    Since the first DNA model was created approximately 50 years ago using molecular models, students and teachers have been building simplified DNA models from various practical materials. A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance…

  20. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

Top