Sample records for double-shell tank storage

  1. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  2. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, B.D.

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  3. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary linermore » to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.« less

  4. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. Themore » first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.« less

  5. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed.more » The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.« less

  6. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  7. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  8. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  9. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  10. Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.

    2013-12-02

    The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will bemore » updated annually with summaries of the past year's DST inspection activities.« less

  11. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  12. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  13. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  14. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  15. Soil load above Hanford waste storage tanks (2 volumes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianka, E.W.

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter formore » each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALLAWAY WS; HUBER HJ

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16,more » 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.« less

  17. Development of Automotive Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  19. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  20. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  1. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less

  2. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.

  3. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  4. Chemical Safety Alert: Catastrophic Failure of Storage Tanks

    EPA Pesticide Factsheets

    Aboveground, atmospheric storage tanks can fail when flammable vapors in the tank explode and break either the shell-to-bottom or side seam, resulting in hazardous release accidents. Proper maintenance practices can help prevent accidents.

  5. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  6. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  7. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  8. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Christopher A.; Landon, Matthew R.; Hanson, Carl E.

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)« less

  9. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  10. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less

  11. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  12. Data Quality Objectives for Tank Farms Waste Compatibility Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less

  13. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  14. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-03-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  15. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  16. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  17. NESC Review of the 8-Foot High Temperature Tunnel (HTT) Oxygen Storage Pressure Vessel Inspection Requirements

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael; Raju, Ivatury; Piascik, Robert; Cameron, Kenneth; Kirsch, Michael; Hoffman, Eric; Murthy, Pappu; Hopson, George; Greulich, Owen; Frazier, Wayne

    2009-01-01

    The 8-Foot HTT (refer to Figure 4.0-1) is used to conduct tests of air-breathing hypersonic propulsion systems at Mach numbers 4, 5, and 7. Methane, Air, and LOX are mixed and burned in a combustor to produce test gas stream containing 21 percent by volume oxygen. The NESC was requested by the NASA LaRC Executive Safety Council to review the rationale for a proposed change to the recertification requirements, specifically the internal inspection requirements, of the 8-Foot HTT LOX Run Tank and LOX Storage Tank. The Run Tank is an 8,000 gallon cryogenic tank used to provide LOX to the tunnel during operations, and is pressured during the tunnel run to 2,250 pounds per square inch gage (psig). The Storage Tank is a 25,000 gallon cryogenic tank used to store LOX at slightly above atmospheric pressure as a external shell, with space between the shells maintained under vacuum conditions.

  18. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until themore » 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m 3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.« less

  20. Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.

  1. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less

  2. Staged depressurization system

    DOEpatents

    Schulz, T.L.

    1993-11-02

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump. 4 figures.

  3. Staged depressurization system

    DOEpatents

    Schulz, Terry L.

    1993-01-01

    A nuclear reactor having a reactor vessel disposed in a containment shell is depressurized in stages using depressurizer valves coupled in fluid communication with the coolant circuit. At least one sparger submerged in the in-containment refueling water storage tank which can be drained into the containment sump communicates between one or more of the valves and an inside of the containment shell. The depressurizer valves are opened in stages, preferably at progressively lower coolant levels and for opening progressively larger flowpaths to effect depressurization through a number of the valves in parallel. The valves can be associated with a pressurizer tank in the containment shell, coupled to a coolant outlet of the reactor. At least one depressurization valve stage openable at a lowest pressure is coupled directly between the coolant circuit and the containment shell. The reactor is disposed in the open sump in the containment shell, and a further valve couples the open sump to a conduit coupling the refueling water storage tank to the coolant circuit for adding water to the coolant circuit, whereby water in the containment shell can be added to the reactor from the open sump.

  4. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  5. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAMS TL; GUILLOT S

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  7. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.P.

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPESTmore » simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.« less

  8. 242-A Evaporator quality assurance plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less

  9. Strategy Plan A Methodology to Predict the Uniformity of Double-Shell Tank Waste Slurries Based on Mixing Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Bamberger; L.M. Liljegren; P.S. Lowery

    This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less

  10. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  11. River Protection Project (RPP) Dangerous Waste Training Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less

  12. Molten salt thermal energy storage subsystem for solar thermal central receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    1982-02-01

    The development of a low cost thermal energy storage subsystem for large solar plants is described. Molten nitrate salt is used as both the solar plant working fluid and the storage medium. The storage system consists of a specially designed hot tank to hold salt at a storage temperature of 839K (1050 deg F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to reduce the shell temperature to 561K (550 deg F) so that a low cost carbon steel shell is used. The internal insulation is protected from the hot salt by a unique metal liner with orthogonal corrugations to allow for numerous cycles of thermal expansion and contraction. A preliminary design for a large commercial size plant (1200 MWh sub +), a laboratory test program for the critical components, and the design, construction, and test of a small scale (7 MWH sub t) research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico is described.

  13. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, Dennis J.

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  14. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  15. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in waysmore » that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.« less

  16. Research on the effect of wall corrosion and rim seal on the withdrawal loss for a floating roof tank.

    PubMed

    Wang, Yongqiang; Liu, Minmin; Liu, Fang; Zhao, Chaocheng; Zhao, Dongfeng; Han, Fenglei; Liu, Chunshuang

    2018-04-25

    Storage tanks are important parts of volatile organic compound (VOC) fugitive emission sources of the petrochemical industry; the floating roof tank is the main oil storage facility at present. Based on the mechanism of withdrawal loss and the type of rim seal, octane and gasoline were taken as the research objects. A model instrument for simulating the oil loading process by the 316 stainless steel and A3 carbon steel as the test piece was designed, and the film thickness was measured by wet film thickness gauge to investigate the influence of the corrosion of the tank wall and rim seal on the withdrawal loss for floating roof tanks. It was found that withdrawal loss was directly proportional to the shell factor, and the oil thickness of the octane and gasoline increased with the strength of the wall corrosion with the same wall material and rim seal. Compared with the untreated test piece, the oil film thickness of the octane/gasoline was increased by 7.04~8.57 μm/13.14~21.93 μm and 5.59~11.49 μm/11.61~25.48 μm under the corrosion of hydrochloric acid for 32 and 75 h, respectively. The oil film thickness of octane and gasoline decreased with the increasing of the rim seal, and the oil film thickness of the octane decreased by 11.97~28.90% and 37.32~73.83% under the resilient-filled seal and the double seal, respectively. The gasoline dropped by 11.97~31.18% and 45.98~75.34% under the resilient-filled seal and the double seal, respectively. In addition, the tank surface roughness reduced the compression of the rim seal on the tank wall, and the effect of scraping decreased. The API withdrawal loss formula for a floating roof tank was recommended to take into account the effect of the rim seal to improve the accuracy of the loss evaluation. Finally, some measures of reducing the withdrawal loss were proposed.

  17. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  18. Analysis and test results for a molten salt thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Sterrett, R. H.; Scott, O. L.

    A system has been developed to provide low cost thermal energy storage using molten salt. It consists of a hot tank to store the 565 C (1050 F) salt and a cold tank to store the 289 C (550 F) salt. The hot tank uses internal insulation protected by a liner to enable the use of a carbon steel shell for structural support. Due to the lower salt temperature, the cold tank can be a carbon steel shell with external insulation. This paper describes an analytical method used to predict the thermal performance of such systems and presents experimental data from a Subsystem Research Experiment (SRE) conducted by Martin Marietta Aerospace, Solar Energy Systems under contract from Sandia National Laboratories, Livermore, CA. The results from three of the SRE test cases are compared with the STS model results. These are (1) steady state operation, (2) concurrent charging and discharging, and (3) transient cooldown. The temperature differences between the analytical and experimental results were less than 10%. The internally insulated hot tank performed well.

  19. Offshore submarine storage facility for highly chilled liquified gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, S.F.

    1982-12-28

    Improvements in an offshore platform and submarine storage facility for highly chilled liquified gas, such as liquified natural gas, are disclosed. The improved facility includes an elongated, vertically oriented submerged anchoring frame to which one or more insulated storage tanks are moveably mounted so they can be positioned at a selected depth in the water. The double piston tank is constructed with improved seals to transfer ambient water pressure of the selected depth to the cryogenic liquified gas without intermixture. This transferred pressure at the depth selected aids in maintaining the liquified state of the stored liquified gas. Structural improvementsmore » to the tank facilitating ballasting, locking the double piston cylinders together and further facilitating surface access to the tank for inspection, repairs and removal, and structural improvements to the platform are disclosed.« less

  20. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  1. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  2. Technology development in support of the TWRS process flowsheet. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D.J.

    1995-10-11

    The Tank Waste Remediation System is to treat and dispose of Hanford`s Single-Shell and Double-Shell Tank Waste. The TWRS Process Flowsheet, (WHC-SD-WM-TI-613 Rev. 1) described a flowsheet based on a large number of assumptions and engineering judgements that require verification or further definition through process and technology development activities. This document takes off from the TWRS Process Flowsheet to identify and prioritize tasks that should be completed to strengthen the technical foundation for the flowsheet.

  3. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  4. Safety criteria for organic watch list tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  5. Sample Based Unit Liter Dose Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, L.

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less

  6. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze themore » effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (< ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.« less

  7. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  8. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  9. Annular Air Leaks in a liquid hydrogen storage tank

    NASA Astrophysics Data System (ADS)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  10. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  11. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS- 104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  12. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Operations and Checkout Building stand by while one of four gas tanks is moved toward the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  13. A storage gas tank is moved to a pallet in the O&C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  14. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  15. Drill Ship Glomar Java Sea, O.N. 568182, Capsizing and Sinking in the South China Sea, on 25 October 1983 with Multiple Loss of Life

    DTIC Science & Technology

    1985-05-28

    drilling mud tanks . * Continuing forward were the mud and cement pump room, bulk dry mud and cement storage , and ballast tanks . Also in the forward...including double bottom tanks throughout most of the vessel’s length, storage areas, and workshops. Above the main deck, aft, above the machinery spaces...elevated flat for storage of well casing. The drill floor with the draw works, rotary and associated equipment, was located at the superstructure deck

  16. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  17. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  18. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    NASA Astrophysics Data System (ADS)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  19. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  20. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2010-04-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.

  1. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER DA; KIRCH NW; WASHENFELDER DJ

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  2. Tank Remote Repair System Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.

    2002-12-06

    This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

  3. Repository of not readily available documents for project W-320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  4. General view of Sector Six Compound, looking east. Water Storage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Sector Six Compound, looking east. Water Storage Tank is at left - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Water Storage Plant, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  6. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  7. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  8. Double-shell CuS nanocages as advanced supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao

    2017-07-01

    Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.

  9. Cost-Efficient Storage of Cryogens

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2007-01-01

    NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

  10. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  11. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  12. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  13. Risk based inspection for atmospheric storage tank

    NASA Astrophysics Data System (ADS)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  14. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  15. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energymore » storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required for charging storage. Thus, the cost of the thermal storage system is reduced due to smaller containers and less salt. The optimum salt proportions, their melting temperature and the number of salts in the cascade are determined by raw materials costs and the mathematical model. We estimate the processing cost of the encapsulation to be low, where the major cost of the capsule will be the cost of the phase-change salt(s). Our economic analyses show that the cost of EPCM-TES is about $17.98 per kWh(t), which is about 40% lower than the $28.36 per kWh(t) for a two-tank sensible heat TES for a large scale CSP-TES design. Finally, additional improvements in the heat-transfer fluids, currently in development elsewhere will further improve the energy density to achieve the SunShot goal of $15 per kWh(t).« less

  16. Development of deep drawn aluminum piston tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.C.; Bronder, R.L.; Kilgard, L.W.

    1990-06-08

    An aluminum piston tank has been developed for applications requiring lightweight, low cost, low pressure, positive-expulsion liquid storage. The 3 liter (183 in{sup 3}) vessel is made primarily from aluminum sheet, using production forming and joining operations. The development process relied mainly on pressurizing prototype parts and assemblies to failure, as the primary source of decision making information for driving the tank design toward its optimum minimum-mass configuration. Critical issues addressed by development testing included piston operation, strength of thin-walled formed shells, alloy choice, and joining the end cap to the seamless deep drawn can. 9 refs., 8 figs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  18. Engineering report for simulated riser installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  19. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  20. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  1. KSC-01pp0953

    NASA Image and Video Library

    2001-05-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers check out the placement of one of four gas tanks on the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system

  2. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  3. Ferrocyanide Safety Program. Quarterly report for the period ending March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-04-01

    Various high-level radioactive waste from defense operations has accumulated at the Hanford Site in underground storage tanks since the mid-1940s. During the 1950s, additional tank storage space was required to support the defense mission. To obtain this additional storage volume within a short time period, and to minimize the need for constructing additional storage tanks, Hanford Site scientists developed a process to scavenge {sup 137}Cs from tank waste liquids. In implementing this process, approximately 140 metric tons of ferrocyanide were added to waste that was later routed to some Hanford Site single-shell tanks. The reactive nature of ferrocyanide in themore » presence of an oxidizer has been known for decades, but the conditions under which the compound can undergo endothermic and exothermic reactions have not been thoroughly studied. Because the scavenging process precipitated ferrocyanide from solutions containing nitrate and nitrite, an intimate mixture of ferrocyanides and nitrates and/or nitrites is likely to exist in some regions of the ferrocyanide tanks. This quarterly report provides a status of the activities underway at the Hanford Site on the Ferrocyanide Safety Issue, as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7. A revised Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was recently prepared and released in March 1994. Activities in the revised program plan are underway or have been completed, and the status of each is described in Section 4.0 of this report.« less

  4. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  5. A study of fluid-structure problems

    NASA Astrophysics Data System (ADS)

    Lam, Dennis Kang-Por

    The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.

  6. KSC-01pp0952

    NASA Image and Video Library

    2001-05-07

    KENNEDY SPACE CENTER, FLA. -- An overhead crane in the Operations and Checkout Building lowers one of four gas tanks onto the Spacelab Logistics Double Pallet while workers help guide it. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system

  7. Improved Polyurethane Storage Tank Performance

    DTIC Science & Technology

    2014-06-30

    condition occurred if water overflowed from the tank vent prior to reaching 45 gallons. A spline curve was drawn around the perimeter of each image so...estimated footprint and height envelope was added for spatial reference. A spline color code key was developed, so that the progression of the tanks...Table 4.5.3). A standard flat plate platen was used for the double butt seams and some closing seams by one fabricator. The other utilized a “Slinky

  8. Improved Polyurethane Storage Tank Performance

    DTIC Science & Technology

    2010-12-15

    determined through testing that the initial weld adhesion and weld adhesion after high temperature fuel (HTF) immersion have a linear relationship ...Unfortunately, the relationship between HTF weld adhesion and HTF dead- load performance is not as predictive. From 30 to approximately 45 lbsf/inch...consequently, will handle a higher ( theoretically double) shear load. This weld joint is currently being used to fabricate collapsible fuel tanks

  9. Operation and maintenance of the SOL-DANCE building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less

  10. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  12. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  13. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  14. Hydrogen Fire in a Storage Vessel

    NASA Technical Reports Server (NTRS)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor hazardous systems for proper configuration (i.e., a daily/weekly/monthly check sheet to verify critical purges are active).

  15. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  16. 75 FR 11169 - AES Sparrows Point LNG, LLC; Mid-Atlantic Express, LLC; Notice of Availability of the Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... LNG storage tanks; A closed-loop shell and tube heat exchanger vaporization system; Various ancillary..., there are three methods you can use to submit your comments to the Commission. In all instances please... encourages electronic filing of comments and has dedicated eFiling expert staff available to assist you at...

  17. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.« less

  18. Method for Detecting Perlite Compaction in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert

    2010-01-01

    Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.

  19. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006), the results of the two investigations will be compared to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. Both rigid tank and flexible tank configurations were analyzed with ANSYS. The response parameters of interest are total hydrodynamic reaction forces, impulsive and convective mode frequencies, waste pressures, and slosh heights. To a limited extent: tank stresses are also reported. The results of this study demonstrate that the ANSYS model has the capability to adequately predict global responses such as frequencies and overall reaction forces. Thus, the model is suitable for predicting the global response of the tank and contained waste. On the other hand, while the ANSYS model is capable of adequately predicting waste pressures and primary tank stresses in a large portion of the waste tank, the model does not accurately capture the convective behavior of the waste near the free surface, nor did the model give accurate predictions of slosh heights. Based on the ability of the ANSYS benchmark model to accurately predict frequencies and global reaction forces and on the results presented in Abatt, et al. (2006), the global ANSYS model described in Carpenter et al. (2006) is sufficient for the seismic evaluation of all tank components except for local areas of the primary tank. Due to the limitations of the ANSYS model in predicting the convective response of the waste, the evaluation of primary tank stresses near the waste free surface should be supplemented by results from an ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions. However, the primary tank is expected to have low demand to capacity ratios in the upper wall. Moreover, due to the less than desired mesh resolution in the primary tank knuckle of the global ANSYS model, the evaluation of the primary tank stresses in the lower knuckle should be supplemented by results from a more refined ANSYS sub-model of the primary tank that incorporates pressures from theoretical solutions or from Dytran solutions.« less

  20. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less

  1. Green chemistry solutions for sol-gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan

    2018-06-01

    NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300-500 °C). Thus, NaNO3 has been microencapsulated by sol-gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  2. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.« less

  3. USSR Report, Engineering and Equipment, No. 98.

    DTIC Science & Technology

    1983-11-09

    Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water

  4. Preliminary Sizing Study of Ares-I and Ares-V Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Harper, David W.

    2012-01-01

    A preliminary sizing study of two cryogenic propellant tanks was performed using a FORTRAN optimization program to determine weight efficient orthogrid designs for the tank barrels sections only. Various tensile and compressive failure modes were considered, including general buckling of cylinders with a shell buckling knockdown factor. Eight independent combinations of three design requirements were also considered and their effects on the tanks weight. The approach was to investigate each design case with a variable shell buckling knockdown factor, determining the most weight efficient combination of orthogrid design parameters. Numerous optimization analyses were performed, and the results presented herein compare the effects of the different design requirements and shell buckling knockdown factor. Through a series of comparisons between design requirements or shell buckling knockdown factors, the relative change in overall tank barrel weights is shown. The findings indicate that the design requirements can substantually increase the tank weight while a less conservative shell buckling knockdown factor can modestly reduce the tank weight.

  5. The safe removal of frozen air from the annulus of an LH2 storage tank

    NASA Astrophysics Data System (ADS)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-12-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modelling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  6. The Safe Removal of Frozen Air from the Annulus of an LH2 Storage Tank

    NASA Technical Reports Server (NTRS)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-01-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modeling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  7. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  8. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  9. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  10. 49 CFR 178.338-1 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...

  11. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less

  12. Outlook and Challenges for Hydrogen Storage in Nanoporous Materials

    DOE PAGES

    Broom, D. P.; Webb, C. J.; Hurst, Katherine E.; ...

    2016-02-16

    Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In our article, the current status of the field and future challenges are discussed, ranging from important open fundamental questions, such as the density and volume of the adsorbed phase and its relationship to overall storage capacity, to the development of new functional materials and complete storage system design. With regard to fundamentals, the use of neutron scattering to study adsorbed H 2, suitable adsorption isotherm equations, and the accurate computational modelling and simulation of H 2 adsorption are discussed. We cover new materials andmore » they include flexible metal–organic frameworks, core–shell materials, and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks, the improvement in the thermal conductivity of storage beds, and new storage system concepts and designs.« less

  13. A 400,000 lb crude oil storage tank was moved on an 11 in. air blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The British patented-system used to move the 55,000 bbl tank at the Cushing, Okla., tank farm of Getty Oil Co. uses the same airlift principle employed by various hovercraft. Representatives from 20 pipeline and oil companies watched the move, which placed the tank 22 ft higher and 600 ft away from its former location, to improve its gravity flow rate, an improvement spurred by greater crude demands placed on Cushing Terminal. Two 425 hp air compressors were attached to the tank's shell and produced 130,000 cu ft/min of air. The airflow was directed beneath the tank through a segmented skirtmore » fixed to the circumference of the tank's base. Less than 0.5 psi air pressure across the tank floor was needed to lift the tank. Four large D-7 tractors pulled and guided the tank up the incline onto its new pad, where the vessel was rotated into alignment for piping connections. Preliminary rig-up, grading, and pad preparation took six days, but actual tank relocation required only two hours. Getty's Cushing terminal feeds to the 20 in. dia Osage pipeline that serves Getty's El Dorado, Kans., refinery as well as other carriers.« less

  14. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Individual specification requirements applicable to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section... within an outer shell. ...

  15. Environmental projects. Volume 2: Underground storage tanks compliance program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  16. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome ofmore » this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.« less

  17. 1. VIEW OF THE WEST ELEVATION, LOOKING EAST, OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE WEST ELEVATION, LOOKING EAST, OF BUILDING 886 WHILE UNDER CONSTRUCTION IN 1964. ON THE RIGHT OF THE PHOTOGRAPH IS THE CRITICALITY ASSEMBLY ROOM, ROOM 101, CONSTRUCTED OF DOUBLE REINFORCED CONCRETE WALLS INTEGRALLY CAST TO THE TWO FEET THICK CEILING. IN THE FOREGROUND, IS THE 19' FEET DEEP PIT AREA INTENDED TO HOUSE WASTE SOLUTION STORAGE TANKS. ONLY ONE TANK WAS USED, TO STORE WASTEWATER. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  18. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  19. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  20. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less

  1. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...

  2. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...

  3. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    PubMed

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  4. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    NASA Astrophysics Data System (ADS)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  5. General view of Sector Four Compound, looking north. Antenna Array ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Sector Four Compound, looking north. Antenna Array is in background, behind Communications Antennas, Receiver Building, and Water Storage Tank - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Antenna Array, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  6. 49 CFR 179.220-25 - Stamping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ...

  7. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106.

  8. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  9. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  10. Deep Sludge Gas Release Event Analytical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environmentmore » from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.« less

  11. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  12. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  13. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  14. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  15. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stiffeners which prevent visual inspection of the cargo tank shell are prohibited on cargo tank motor... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.345-7 Circumferential reinforcements. (a) A cargo tank with a shell thickness of less than 3/8 inch must be circumferentially...

  16. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  17. Software For Design And Analysis Of Tanks And Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Graham, Jerry B.

    1995-01-01

    Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.

  18. Initial retrieval sequence and blending strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemwell, D.L.; Grenard, C.E.

    1996-09-01

    This report documents the initial retrieval sequence and the methodology used to select it. Waste retrieval, storage, pretreatment and vitrification were modeled for candidate single-shell tank retrieval sequences. Performance of the sequences was measured by a set of metrics (for example,high-level waste glass volume, relative risk and schedule).Computer models were used to evaluate estimated glass volumes,process rates, retrieval dates, and blending strategy effects.The models were based on estimates of component inventories and concentrations, sludge wash factors and timing, retrieval annex limitations, etc.

  19. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  20. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  1. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  2. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  3. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  4. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  5. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy`s (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program.

  6. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  7. Investigation of residual stresses in tank car shells in the vicinity of weld ends

    DOT National Transportation Integrated Search

    1997-01-01

    A large number of cracks which develop in railroad tank car : shells form near the ends of skip welds which are used to attach : stiffeners to the tank. The development and growth of these cracks in : fatigue are affected by the presence of residual ...

  8. Water Use Patterns in a Small Oklahoma City During Drought and Implications for Leaking Underground Storage Tanks

    EPA Science Inventory

    The City of Ada Oklahoma obtains water from the Simpson-Arbuckle aquifer located 19 km south of town. During winter the typical water demand is approximately 15,000 m3 per day, while during the drought of 2011 demand more than doubled. In order to understand water use patterns,...

  9. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Todd M.; Gunter, Jason R.; Boomer, Kayle D.

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  10. Tank tread assemblies with track-linking mechanism

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1986-01-01

    The proposed tank tread assembly has adjacent tank tread segments joined by a link bearing tapered pins retained by clips inserted through the tread shells perpendicular to the axes of the pin. It also has highway pads attached by a release rod bearing tapered, grooved cams which interlockingly engage tabs inserted into the tread shells.

  11. 49 CFR 178.345-1 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a fillet weld joining the tank shell to a flange shaped to fit the shell contour. (d) A manufacturer... be constructed with the cargo tanks made to the same specification or to different specifications...) Specification DOT 406, DOT 407 and DOT 412 cargo tank motor vehicles must conform to the requirements of this...

  12. Current situation and control measures of groundwater pollution in gas station

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin

    2017-11-01

    In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.

  13. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  14. Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loadsmore » for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.« less

  15. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    NASA Astrophysics Data System (ADS)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2014-02-01

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  16. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    PubMed

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  17. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  18. 7 CFR 58.321 - Cream storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cream storage tanks. 58.321 Section 58.321 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....321 Cream storage tanks. Cream storage tanks shall meet the requirements of § 58.128(d). Cream storage...

  19. 7 CFR 58.321 - Cream storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cream storage tanks. 58.321 Section 58.321 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....321 Cream storage tanks. Cream storage tanks shall meet the requirements of § 58.128(d). Cream storage...

  20. 7 CFR 58.321 - Cream storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream storage tanks. 58.321 Section 58.321 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....321 Cream storage tanks. Cream storage tanks shall meet the requirements of § 58.128(d). Cream storage...

  1. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of weldable quality metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c...

  2. 27 CFR 22.132 - Deposit in storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Deposit in storage tanks....132 Deposit in storage tanks. (a) Recovered alcohol shall be accumulated and kept in separate storage...) Recovered alcohol may be removed from storage tanks for packaging and shipment to a distilled spirits plant...

  3. 27 CFR 22.132 - Deposit in storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Deposit in storage tanks....132 Deposit in storage tanks. (a) Recovered alcohol shall be accumulated and kept in separate storage...) Recovered alcohol may be removed from storage tanks for packaging and shipment to a distilled spirits plant...

  4. ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries.

    PubMed

    Dong, Shihua; Li, Caixia; Ge, Xiaoli; Li, Zhaoqiang; Miao, Xianguang; Yin, Longwei

    2017-06-27

    Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb 2 S 3 @C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn 2+ dissociated from ZIF-8 and S 2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn 2+ and Sb 3+ , in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb 2 S 3 /C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb 2 S 3 /C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.

  5. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  6. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  7. 8. VIEW FROM NORTHWEST OF CONDENSATE STORAGE TANK (LEFT), PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW FROM NORTHWEST OF CONDENSATE STORAGE TANK (LEFT), PRIMARY WATER STORAGE TANK (CENTER), CANAL WATER STORAGE TANK (RIGHT) (LOCATIONS E,F,D) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  8. Study on collision resistance characteristics of the side tanks with water inside

    NASA Astrophysics Data System (ADS)

    Liu, Yuxi; Hu, Jinwen; Liu, Ting; Wu, Can

    2018-05-01

    When we evaluate the safety performance of ships against external events, one of the most important indicator is the collision resistance to which water inside the side tanks also make some contributions because of the water effect. To further analyze the interaction mechanism, different collision velocities and side tank waterlines are set for the analysis model. Results indicate the outside shell and the inner shell of the side structure significantly enhanced the collision resistance performance to a certain extension. The water effect on the failure of the outside shell is unobvious, while, it performs a great influence on the destructive reaction force of the inner shell. When the velocity of the coming bulbous bow gradually increases, the destructive reaction forces of the outside shell and the inner shell increase with a decreasing rate. Besides, water influence the collision characteristics of the inner shell a lot when the waterlines are below the upper rib of the strong frame.

  9. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  10. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  11. 49 CFR 179.400-10 - Sump or siphon bowl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... metal that is compatible with the inner tank shell; (b) The stress in any orientation under any condition does not exceed the circumferential stress in the inner tank shell; and (c) The wall thickness is...

  12. Conformable pressure vessel for high pressure gas storage

    DOEpatents

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  13. Semi-analytical approach to estimate railroad tank car shell puncture

    DOT National Transportation Integrated Search

    2011-03-16

    This paper describes the development of engineering-based equations to estimate the puncture resistance of railroad tank cars under a generalized shell or side impact scenario. Resistance to puncture is considered in terms of puncture velocity, which...

  14. 19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... storage tanks. 151.28 Section 151.28 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...

  15. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations...

  16. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations...

  17. A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Cai, Y.; Wang, J.

    2017-12-01

    Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

  18. Analysis of full-scale tank car shell impact tests

    DOT National Transportation Integrated Search

    2007-09-11

    This paper describes analyses of a railroad tank car : impacted at its side by a ram car with a rigid punch. This : generalized collision, referred to as a shell impact, is examined : using nonlinear finite element analysis (FEA) and threedimensional...

  19. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  20. 40 CFR 52.1931 - Petroleum storage tank controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Petroleum storage tank controls. 52... storage tank controls. (a) Notwithstanding any provisions to the contrary in the Oklahoma implementation plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  1. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  2. 40 CFR 52.1931 - Petroleum storage tank controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Petroleum storage tank controls. 52... storage tank controls. (a) Notwithstanding any provisions to the contrary in the Oklahoma implementation plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  3. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  4. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be...

  5. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be...

  6. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG storage tank must be inspected or tested to verify that each of the following conditions does not impair...

  7. Cost and performance of thermal storage concepts in solar thermal systems, Phase 2-liquid metal receivers

    NASA Astrophysics Data System (ADS)

    McKenzie, A. W.

    Cost and performance of various thermal storage concepts in a liquid metal receiver solar thermal power system application have been evaluated. The objectives of this study are to provide consistently calculated cost and performance data for thermal storage concepts integrated into solar thermal systems. Five alternative storage concepts are evaluated for a 100-MW(e) liquid metal-cooled receiver solar thermal power system for 1, 6, and 15 hours of storage: sodium 2-tank (reference system), molten draw salt 2-tank, sand moving bed, air/rock, and latent heat (phase change) with tube-intensive heat exchange (HX). The results indicate that the all sodium 2-tank thermal storage concept is not cost-effective for storage in excess of 3 or 4 hours; the molten draw salt 2-tank storage concept provides significant cost savings over the reference sodium 2-tank concept; and the air/rock storage concept with pressurized sodium buffer tanks provides the lowest evaluated cost of all storage concepts considered above 6 hours of storage.

  8. Analysis of railroad tank car shell impacts using finite element method

    DOT National Transportation Integrated Search

    2008-04-22

    This paper examines impacts to the side of railroad tank : cars by a ram car with a rigid indenter using dynamic, : nonlinear finite element analysis (FEA). Such impacts are : referred to as shell impacts. Here, nonlinear means elasticplastic : mater...

  9. 40 CFR 63.8985 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production facility includes all HCl storage tanks that contain liquid HCl product that is produced in the... service used to transfer liquid HCl product from the HCl production unit to the HCl storage tanks and/or... site via pipeline. (2) Storage tanks that are dedicated feedstock tanks for another process and storage...

  10. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  11. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  12. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  13. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  14. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  15. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  16. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  17. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  18. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  19. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  20. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  1. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less

  2. Application of welded steel sandwich panels for tank car shell impact protection.

    DOT National Transportation Integrated Search

    2013-04-01

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  3. Application of welded steel sandwich panels for tank car shell impact protection

    DOT National Transportation Integrated Search

    2013-04-30

    This report describes research conducted to examine the application of sandwich structure technology to provide protection against the threat of an indenter striking the side or shell of a tank car in the event of an accident. This research was condu...

  4. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.

    2014-02-18

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less

  5. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  6. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  7. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  8. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  9. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Christopher E.; Lawter, Amanda R.; Qafoku, Nikolla

    Isotopes of iodine were generated during plutonium production from nine production reactors at the U.S. Department of Energy Hanford Site. The long half-life 129I generated at the Hanford Site during reactor operations was 1) stored in single-shell and double-shell tanks, 2) discharged to liquid disposal sites (e.g., cribs and trenches), 3) released to the atmosphere during fuel reprocessing operations, or 4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater, including the plume in the 200-UP-1more » operable unit. There is also 129I remaining in the vadose zone beneath disposal or leak locations. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited.« less

  11. AT on Buried LPG Tanks Over 13 m3: An Innovative and Practical Solution

    NASA Astrophysics Data System (ADS)

    Di Fratta, Crescenzo; Ferraro, Antonio; Tscheliesnig, Peter; Lackner, Gerald; Correggia, Vincenzo; Altamura, Nicola

    In Italy, since 2005, techniques based on Acoustic Emission have been introduced for testing of underground LPG tanks up to 13 m3, according to the European standard EN 12818:2004. The testing procedure for these tanks plans to install one or more pairs of sensors inside the "dome" suited for the access to the valves and fittings of the tank, directly on the accessible metal shell. This methodology is not applicable for the underground LPG buried tanks, where it is necessary to install a larger number of AE sensors, in order to cover at 100% the whole tank shell, even at very deep positions. Already in 2004, the European standard EN 12820 (Appendix C - Informative)give the possibility to use Acoustic Emission testing of LPG underground or buried tanks with a capacity exceeding 13 m3, but no technique was specified for the application. In 2008, TÜV AUSTRIA ITALIA - BLU SOLUTIONS srl - Italian company of TÜV AUSTRIA Group - has developed a technique to get access at tank shell, where tank capacity is greater than 13 m3 and its' diameter greater than 3,5 m. This methodology was fully in comply with the provisions of the European Standard EN 12819:2010, becoming an innovative solution widely appreciated and is used in Italy since this time. Currently, large companies and petrochemical plants, at the occurrence of the tank's requalification, have engaged TÜV AUSTRIA ITALIA - BLU SOLUTIONS to install such permanent predispositions, which allow access to the tank shell - test object - with diameters from 4 to 8 m. Through this access, you can install the AE sensors needed to cover at 100% the tank surface and then to perform AE test. In an economic crisis period, this technique is proving a valid and practically applicable answer, in order to reduce inspection costs and downtime by offering a technically advanced solution (AT), increasing the safety of the involved operators, protecting natural resources and the environment.

  12. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).« less

  13. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).« less

  14. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  15. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  16. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  17. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  18. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less

  19. Single bi-temperature thermal storage tank for application in solar thermal plant

    DOEpatents

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  20. 49 CFR 178.345-1 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) All specification requirements are minimum requirements. (c) Definitions. See § 178.320(a) for the... flange, or by a fillet weld joining the tank shell to a flange shaped to fit the shell contour. (d) A... be constructed with the cargo tanks made to the same specification or to different specifications...

  1. 78 FR 14122 - Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto the existing shell. Steel mills...

  2. Evaluation of semi-empirical analyses for tank car puncture velocity, part II : correlations with engineering analyses

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punctur...

  3. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 2 : correlations with engineering analysis

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells. In this : context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and punct...

  4. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    USDA-ARS?s Scientific Manuscript database

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  5. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    PubMed

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  6. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  7. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The... 7 Agriculture 14 2010-01-01 2009-01-01 true Real property containing underground storage tanks... Property § 1955.57 Real property containing underground storage tanks. Within 30 days of acquisition of...

  8. Internally insulated thermal storage system development program

    NASA Technical Reports Server (NTRS)

    Scott, O. L.

    1980-01-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  9. Internally insulated thermal storage system development program

    NASA Astrophysics Data System (ADS)

    Scott, O. L.

    1980-03-01

    A cost effective thermal storage system for a solar central receiver power system using molten salt stored in internally insulated carbon steel tanks is described. Factors discussed include: testing of internal insulation materials in molten salt; preliminary design of storage tanks, including insulation and liner installation; optimization of the storage configuration; and definition of a subsystem research experiment to demonstrate the system. A thermal analytical model and analysis of a thermocline tank was performed. Data from a present thermocline test tank was compared to gain confidence in the analytical approach. A computer analysis of the various storage system parameters (insulation thickness, number of tanks, tank geometry, etc.,) showed that (1) the most cost-effective configuration was a small number of large cylindrical tanks, and (2) the optimum is set by the mechanical constraints of the system, such as soil bearing strength and tank hoop stress, not by the economics.

  10. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  11. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  12. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    PubMed

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  13. Solar project description for Helio-Thermics, Inc., lot 6 single family residence; Greenville, South Carolina

    NASA Astrophysics Data System (ADS)

    Moore, D.

    1981-03-01

    An instrumented single family residence in Greenville, South Carolina, has approximately 1086 square feet on conditioned space. Solar energy is used for space heating the home and preheating domestic and water (DHW). Solar energy enters the attic through a 416 square foot aperture which is double glazed with corrugated, translucent, fiberglass reinforced, acrylic panels. Warm air accumulates in the peak of the attic roof and circulates through the conditioned space or through storage by an air handler. Solar energy is stored in an 870 cubic foot storage bin containing 85,460 pounds of crushed rock located under the house. cold water is preheated in the attic by thermosiphoning water from the 80 gallon preheat tank through a manifold system of copper tubes. These tubes are attached to black sheet metal plates. Preheated city water is stored in the preheat tank and supplied, on demand, to a conventional 80 gallon DHW tank. When solar energy is insufficient to satisfy the space heating load, a water to air heat exchanger in the hot air supply duct provides auxiliary energy for space heating. A gas fired water heater provides auxiliary energy for the water to air heat exchanger and the DHW.

  14. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility used to transfer oxidized asphalt from a storage tank into a tank truck, rail car, or barge... facility includes one or more asphalt flux blowing stills, asphalt flux storage tanks storing asphalt flux intended for processing in the blowing stills, oxidized asphalt storage tanks, and oxidized asphalt loading...

  15. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  16. Hanford double shell waste tank corrosion studies - final report FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B. J.; Fuentes, R. E.; Hicks, K.

    2014-12-19

    SRNL tasks for FY14 included studies to evaluate the susceptibility of carbon steel to vapor space corrosion (VSC), liquid-air interface (LAI) corrosion, and pitting corrosion. Additionally, SRNL evaluated the susceptibility of carbon steel to pitting corrosion under buffered waste conditions, with the objective of determining the adequate amount of inhibitor (e.g., nitrite) necessary to mitigate pitting corrosion. Other CPP experiments were performed in historical waste simulants and the results were compared to previously gathered results. The results of these activities were utilized to assess the robustness of the standardized CPP protocol

  17. Optimal Elevation and Configuration of Hanford's Double-Shell Tank Waste Mixer Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Yokuda, Satoru T.; Majumder, Catherine A.

    The objective of this study was to compare the mixing performance of the Lawrence pump, which has injection nozzles at the top, with an alternative pump that has injection nozzles at the bottom, and to determine the optimal elevation for the alternative pump. Sixteen cases were evaluated: two sludge thicknesses at eight levels. A two-step evaluation approach was used: Step 1 to evaluate all 16 cases with the non-rotating mixer pump model and Step 2 to further evaluate four of those cases with the more realistic rotating mixer pump model. The TEMPEST code was used.

  18. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less

  19. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  20. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    DOEpatents

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  1. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  2. Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials

    NASA Astrophysics Data System (ADS)

    Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla

    2017-05-01

    The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.

  3. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Cooke, Gary A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in themore » classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  4. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, S. R.; Cooke, G. A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid inmore » the classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  5. 40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...

  6. 40 CFR Table 4 to Subpart Ffff of... - Emission Limits for Storage Tanks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applies to your storage tanks: For each . . . For which . . . Then you must . . . 1. Group 1 storage tank a. The maximum true vapor pressure of total HAP at the storage temperature is ≥76.6 kilopascals i... maximum true vapor pressure of total HAP at the storage temperature is <76.6 kilopascals i. Comply with...

  7. Techno-economic performance evaluation of solar tower plants with integrated multi-layered PCM thermocline thermal energy storage - A comparative study to conventional two-tank storage systems

    NASA Astrophysics Data System (ADS)

    Guedéz, Rafael; Ferruzza, Davide; Arnaudo, Monica; Rodríguez, Ivette; Perez-Segarra, Carlos D.; Hassar, Zhor; Laumert, Björn

    2016-05-01

    Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher investment costs and difficulties during the operation of the variable volume tanks. Instead, another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost up to 30% and maintain high efficiencies. This paper analyses a multi-layered solid PCM storage tank concept for solar tower applications, and describes a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. A detail model of the tank has been developed and introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme.

  8. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    PubMed Central

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596

  9. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    EPA Pesticide Factsheets

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  10. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHL, P.C.

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  11. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  13. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  14. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  15. Offsite radiological consequence analysis for the bounding flammable gas accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO, C.A.

    2003-03-19

    The purpose of this analysis is to calculate the offsite radiological consequence of the bounding flammable gas accident. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', requires the formal quantification of a limited subset of accidents representing a complete set of bounding conditions. The results of these analyses are then evaluated to determine if they challenge the DOE-STD-3009-94, Appendix A, ''Evaluation Guideline,'' of 25 rem total effective dose equivalent in order to identify and evaluate safety class structures, systems, and components. The bounding flammable gas accident is a detonation in a single-shell tank (SST).more » A detonation versus a deflagration was selected for analysis because the faster flame speed of a detonation can potentially result in a larger release of respirable material. As will be shown, the consequences of a detonation in either an SST or a double-shell tank (DST) are approximately equal. A detonation in an SST was selected as the bounding condition because the estimated respirable release masses are the same and because the doses per unit quantity of waste inhaled are generally greater for SSTs than for DSTs. Appendix A contains a DST analysis for comparison purposes.« less

  16. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hull barge with internal framing 1 Double hull barge with external framing 2 Single hull barge with..., ends, and bottoms) when the structural framing is on the internal tank surface. 2 Applicable to double hull tank barges (double sides, ends, and bottoms) when the structural framing is on the external tank...

  17. Testing and recommended practices to improve nurse tank safety, phase I : [research brief].

    DOT National Transportation Integrated Search

    2013-10-01

    This study focuses on determining causes and possible inspection remediation strategies to reduce the occurrence of anhydrous ammonia (NH3) nurse tank failures. Nurse tanks are cylindrical steel tank shells with hemispherical or elliptical end caps r...

  18. Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Ramos Archibold, Antonio

    Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300--400°C). Later, participating thermal radiation within the storage medium has been included in order to extend the conventional natural convection-dominated model and to analyze its influence on the melting and freezing dynamics at elevated temperatures (800-850°C). A parametric analysis has been performed in order to ascertain the effects of the controlling parameters on the melting/freezing rates and the total and radiative heat transfer rates at the inner surface of the shell. The results show that the presence of thermal radiation enhances the melting and solidification processes. Finally, a simplified model of the packed bed heat exchanger with multiple spherical capsules filled with the storage medium and positioned in a vertical array inside a cylindrical container is analyzed and numerically solved. The influence of the inlet mass flow rate, inner shell surface emissivity and PCM attenuation coefficient on the melting dynamics of the PCM has been analyzed and quantified.

  19. Fuel Storage Tanks at FAA Facilities: Order 1050.15A

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its : inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for : emergency backup generators providing secondary power to air navigati...

  20. 19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Gauging of sirup or molasses discharged into... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...

  1. THERMALLY SHIELDED MOISTURE REMOVAL DEVICE

    DOEpatents

    Miller, O.E.

    1958-08-26

    An apparatus is presented for removing moisture from the air within tanks by condensation upon a cartridge containing liquid air. An insulating shell made in two halves covers the cartridge within the evacuated system. The shell halves are hinged together and are operated by a system of levers from outside the tank with the motion translated through a sylphon bellows to cover and uncover the cartridge. When the condensation of moisture is in process, the insulative shell is moved away from the liquid air cartridge, and during that part of the process when there is no freezing out of moisture, the shell halves are closed on the cell so thnt the accumulated frost is not evaporated. This insulating shell greatly reduces the consumption of liquid air in this condensation process.

  2. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    DOT National Transportation Integrated Search

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  3. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  4. 30 CFR 57.4401 - Storage tank foundations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  5. Notification: Evaluation of EPA Efforts to Protect Tribal Communities From Risks Related to Underground Storage Tanks

    EPA Pesticide Factsheets

    Project #OPE-FY16-0013, March 8, 2016. The EPA OIG plans to begin preliminary research on the EPA’s work related to Underground Storage Tank and Leaking Underground Storage Tank programs in Indian country.

  6. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  7. 40 CFR 61.131 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storage tank means any tank, reservoir, or container used to collect or store refined benzene. BTX storage tank means any tank, reservoir, or container used to collect or store benzene-toluene-xylene or other... tank, reservoir, or container used to collect or store a flushing liquor solution prior to ammonia or...

  8. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  9. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  10. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  11. 40 CFR 282.73 - Minnesota State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.73 Minnesota State-Administered Program. (a) The State of Minnesota's underground storage tank program is approved in... chapter. EPA approved the Minnesota underground storage tank program on November 30, 2001, and approval...

  12. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  13. 30 CFR 56.4401 - Storage tank foundations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall be....4401 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  14. 76 FR 46798 - Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-UST-2010-0651; FRL-9447-3] Compatibility of Underground Storage Tank Systems With Biofuel Blends; Correction AGENCY: Environmental Protection Agency (EPA). ACTION... of underground storage tanks (USTs) can demonstrate compliance with the Federal compatibility...

  15. 30 CFR 77.1103 - Flammable liquids; storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storage tanks shall be mounted securely on firm foundations. Outlet piping shall be provided with flexible connections or other special fittings to prevent adverse effects from tank settling. (c) Fuel lines shall be... hazards. (d) Areas surrounding flammable-liquid storage tanks and electric substations and transformers...

  16. Mg and 18O Variations in the Shell of the Chilean Gastropod Concholepas concholepas Reflect SST and Growth Rate variations

    NASA Astrophysics Data System (ADS)

    Guzman, N.; Lazareth, C. E.; Poitrasson, F.; Cuif, J.; Ortlieb, L.

    2004-12-01

    To validate the use of fossil mollusc shells as recorders of environmental conditions, a primary calibration study was carried out on modern shells of the Chilean gastropod Concholepas concholepas, the so-called southern hemisphere abalone which is particularly abundant in Holocene archaeological sites. Organisms were maintained in culture tanks and feed with live mytilids. The sea water temperature in the tank was recorded every half-an-hour by an automatic device. The experiment lasted several months. Periodical marking with calcein provided a precise chronological control of the shell growth. Thus, well-dated high resolution chemical profiles could be directly compared with temperatures during shell formation. Geochemical analyses of the calcite layers include Mg, Sr and 16O/18O composition. Trace elements were analysed using Laser Ablation ICP-MS and Electron Microprobe while stable isotopes were measured on a Secondary Ion Mass spectrometry (SIMS). The shell growth rate during two months of formation varied between 30 and 140 µm/day which allows us to reach a temporal resolution for chemical profiles between a few hours and three days. The growth rate variations do not seem to be related to temperature fluctuations. Only Mg content was analytically reproducible and showed significant variations across the shells. The Mg high-resolution profiles display a grossly sinusoidal shape. Shells from different sites along the coasts of Chile showed mean Mg contents of 300 ppm and 500 ppm for mean temperatures of 17 and 20° C, respectively. This suggests a gross correlation between Mg and temperature. However, high resolution Mg results do not show an exact fitting neither with temperature nor with growth rates. Other parameters, like shell ageing as suggested by an amplitude increase observed near the edge of one of the shells, or other complex biological factors, may influence Mg incorporation into the shell. \\delta 18O values of the calcite vary between -1,5 and 2,0 \\permil for a temperature range between 17 and 22° C. Growth rate variations seem to be an important factor affecting the oxygen isotopic ratio within shells. When growth rate variations are limited, \\delta 18O and temperature are well correlated. The study confirms that, like for all biogenic carbonates, elemental and isotopic composition of the calcite layer of this gastropod, should not be used in paleoenvironmental reconstructions without detailed calibration experiments, and must systematically include precise growth rate analyses. The growth rhythms, which vary under the double influence of environmental and biological factors, are of paramount importance in the relationship between environmental parameters and geochemical composition of the growth layers of the shells. Work supported by "CONCHAS" Project (PNEDC).

  17. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  18. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  19. The 1980 report on NRL energy storage program

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.; Veith, R. J.

    1981-03-01

    The development of a means for bulk storage of energy in a form capable of providing demand sensitive steam, heat, or cooling is described. Salt eutectic systems availability and costs of salts, progress on the 2 MWht energy storage boiler tank under construction at NRL, and major elements of storage system costs for this 2 MWht tank which employs a heat transfer fluid are discussed. A radiation coupled energy storage tank concept is also discussed.

  20. 76 FR 12355 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tank: Information... docket, go to http://www.regulations.gov . Title: Underground Storage Tank: Information Request Letters... Storage Tanks: Technical and Financial Requirements, and State Program Approval Procedures.'' This...

  1. STATE-OF-THE-ART PROCEDURES AND EQUIPMENT FOR INTERNAL INSPECTION OF UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    Preventing leaks from underground storage tanks is of paramount importance in this decade as environmental resources are seriously threatened by the release of toxic substances and costs of reparation are exorbitant. Inspecting underground storage tanks is one action that helps p...

  2. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...

  3. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...

  4. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control systems on a 37,500 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Oil... a 25,000 barrel capacity crude oil storage tank at Cities Service Pipeline Company, Haynesville... barrel capacity crude oil storage tank at Cities Service Pipeline Company, Summerfield, Louisiana with...

  5. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.

    PubMed

    Han, M Y; Mun, J S

    2007-01-01

    Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.

  6. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  7. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)« less

  8. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1.more » Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.« less

  9. 33 CFR 157.10d - Double hulls on tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Double hulls on tank vessels. 157... OIL IN BULK Design, Equipment, and Installation § 157.10d Double hulls on tank vessels. (a) With the... completed after December 31, 1993; or (4) That is otherwise required to have a double hull by 46 U.S.C...

  10. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  11. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  12. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  13. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  14. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  15. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  16. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, D.; Awwad, A.; Roelant, D.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function atmore » winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)« less

  17. Thermocryogenic buckling and stress analyses of a partially filled cryogenic tank subjected to cylindrical strip heating

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading). The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were investigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio. A mechanical stress analysis of the tank also was conducted when the tank was under: (1) cryogen liquid pressure loading; (2) internal pressure loading; and (3) tank-wall inertia loading. Deformed shapes of the cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on the tank wall for the strain-gage installations. The accuracies of solutions from different finite element models were compared.

  18. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Dean, William G (Inventor); Owen, James W. (Inventor)

    1988-01-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  19. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  20. Insulation Progress since the Mid-1950s

    NASA Astrophysics Data System (ADS)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  1. GENERAL VIEW LOOKING NORTHEAST FROM ATOP A STORAGE TANK, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW LOOKING NORTHEAST FROM ATOP A STORAGE TANK, LOOKING AT THE CATALYZER BUILDINGS. NOTE CIRCULAR FOUNDATION FOR AMMONIA STORAGE TANK AND THE LIQUID AIR BUILDING IN THE UPPPER RIGHT CORNER OF PHOTO. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  2. 76 FR 11775 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tanks: [email protected] , or by mail to: EPA Docket Center, Environmental Protection Agency, Underground Storage Tank... White, Office of Underground Storage Tanks, Mail Code 5403P, Environmental Protection Agency, 1200...

  3. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  4. MEASUREMENT AND ANALYSIS OF ADSISTOR AND FIGARO GAS SENSORS USED FOR UNDERGROUND STORAGE TANK LEAK DETECTION

    EPA Science Inventory

    Two different sensor technologies and their properties were analyzed. he nalysis simulated a leak which occurs from an underground storage tank. igaro gas sensors and the Adsistor gas sensor were tested in simulated underground storage tank nvironments using the Carnegie Mellon R...

  5. ASSESSMENT OF THE APPLICABILITY OF CHEMICAL OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINANTS AT LEAKING UNDERGROUND STORAGE TANK (LUST) SITES

    EPA Science Inventory

    The total number of confirmed releases from underground storage tanks is increasing rapidly. In addition, the treatment of contaminants in soil and groundwater at leaking underground storage tank (LUST) sites presents complex technical challenges. Most of the remedial technologie...

  6. 40 CFR 80.1653 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this subpart O: (i) The location, date, time, and storage tank or truck identification for each sample... analytical testing: (i) The location, date, time, and storage tank or truck identification for each sample..., time, and storage tank or truck identification for each sample collected. (B) The name and title of the...

  7. 40 CFR Table 21 to Subpart G of... - Average Storage Temperature (Ts) as a Function of Tank Paint Color

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Average Storage Temperature (Ts) as a..., and Wastewater Pt. 63, Subpt. G, Table 21 Table 21 to Subpart G of Part 63—Average Storage Temperature (Ts) as a Function of Tank Paint Color Tank Color Average Storage Temperature (Ts) White TA a = 0...

  8. 40 CFR Table 21 to Subpart G of... - Average Storage Temperature (Ts) as a Function of Tank Paint Color

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Average Storage Temperature (Ts) as a..., and Wastewater Pt. 63, Subpt. G, Table 21 Table 21 to Subpart G of Part 63—Average Storage Temperature (Ts) as a Function of Tank Paint Color Tank Color Average Storage Temperature (Ts) White TA a = 0...

  9. 40 CFR Table 21 to Subpart G of... - Average Storage Temperature (Ts) as a Function of Tank Paint Color

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Average Storage Temperature (Ts) as a..., and Wastewater Pt. 63, Subpt. G, Table 21 Table 21 to Subpart G of Part 63—Average Storage Temperature (Ts) as a Function of Tank Paint Color Tank Color Average Storage Temperature (Ts) White TA a = 0...

  10. 40 CFR Table 21 to Subpart G of... - Average Storage Temperature (Ts) as a Function of Tank Paint Color

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Average Storage Temperature (Ts) as a..., and Wastewater Pt. 63, Subpt. G, Table 21 Table 21 to Subpart G of Part 63—Average Storage Temperature (Ts) as a Function of Tank Paint Color Tank Color Average Storage Temperature (Ts) White TA a = 0...

  11. 40 CFR Table 21 to Subpart G of... - Average Storage Temperature (Ts) as a Function of Tank Paint Color

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Average Storage Temperature (Ts) as a..., and Wastewater Pt. 63, Subpt. G, Table 21 Table 21 to Subpart G of Part 63—Average Storage Temperature (Ts) as a Function of Tank Paint Color Tank Color Average Storage Temperature (Ts) White TA a = 0...

  12. Tank atmosphere perturbation: a procedure for assessing flashing losses from oil storage tanks.

    PubMed

    Littlejohn, David; Lucas, Donald

    2003-03-01

    A new procedure to measure the total volume of emissions from heavy crude oil storage tanks is described. Tank flashing losses, which are difficult to measure, can be determined by correcting this value for working and breathing losses. The procedure uses a fan or blower to vent the headspace of the storage tank, with subsequent monitoring of the change in concentrations of oxygen or other gases. Combined with a separate determination of the reactive organic carbon (ROC) fraction in the gas, this method allows the evaluation of the total amount of ROC emitted. The operation of the system is described, and results from measurement of several storage tanks in California oil fields are presented. Our measurements are compared with those obtained using the California Air Resources Board (CARB) 150 method.

  13. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  14. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, LA; Ganapathi, GB; Wirz, RE

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is itsmore » high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.« less

  15. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: RCRA subtitle I. Underground storage tanks (40 cfr part 280). Updated as of July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This module explains the Underground Storage Tank Regulatory Program established in 1988, that includes technical requirements to prevent, protect, and clean up releases from Underground Storage Tanks (USTs), as well as financial responsibility requirements to guarantee that UST owners and operators have enough money set aside to clean up releases and compensate third parties. Describes the Universe of USTs and the technical and financial requirements that apply to them. Defines underground storage tank and provides criteria for determining which USTs are subject to regulation. Discusses deadlines for upgrading tanks and the closure and corrective action requirements.

  16. 7. AGENT STORAGE TANKS LOCATED IN CONCRETE BASEMENT. PHOTOGRAPH IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. AGENT STORAGE TANKS LOCATED IN CONCRETE BASEMENT. PHOTOGRAPH IS OF THE EASTERN MOST TANK LOOKING SOUTH. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  17. 6. Photocopy of photograph, U.S. Army, ca. 1955 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of photograph, U.S. Army, ca. 1955 (original print located at Rocky Mountain Arsenal, Commerce City, Colorado). AERIAL VIEW OF BUILDING 1611. VIEW TO NORTHEAST. 'THIS IS THE HONEST JOHN WARHEAD DEMILITARIZATION PLANT. THE DEMILITARIZATION PROCESS CONSISTS OF STRIPPING AND OPENING THE WARHEAD MANUALLY AND DOWNLOADING THE M139 BOMBLETS ONTO A CONVEYOR WHICH CARRIES THEM THROUGH A PUNCH, DRAIN AND RINSE MACHINE INTO A ROTARY RETORT DEACTIVATION FURNACE WHERE THE BURSTER IS BURNED. THE BOMBLET SHELLS, WHICH ARE ALUMINUM, ARE THEN CONVEYED TO A DECONTAMINATION FURNACE WHERE THEY ARE MELTED AND CAST INTO INGOTS. THE GB, WHICH IS COLLECTED IN THE PUNCH, DRAIN AND RINSE MACHINE, IS CONDUCTED TO A STORAGE TANK AND, ULTIMATELY, IS NEUTRALIZED ... - Rocky Mountain Arsenal, Ammunition Demolition Building-Tail Fin Storage & Assembly, 2750 feet South of Ninth Avenue; 3480 feet East of D Street, Commerce City, Adams County, CO

  18. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  19. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  20. 76 FR 21299 - Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 281 [EPA-R10-UST-2011-0097; FRL-9296-1] Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation AGENCY... application for final approval of its Underground Storage Tank (UST) Program under Subtitle I of the Resource...

  1. 40 CFR 63.9000 - What emission limitations and work practice standards must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Hazardous Waste in Boilers and Industrial Furnaces. (d) The emission limits for HCl storage tanks in table 1 to this subpart do not apply during periods of planned routine maintenance of HCl storage tank control devices. Periods of planned routine maintenance of each HCl storage tank control device...

  2. HOW TO EFFECTIVELY RECOVER FREE PRODUCT AT LEAKING UNDERGROUND STORAGE TANK SITES - A GUIDE FOR STATE REGULATORS

    EPA Science Inventory

    Over 315,000 releases from leaking underground storage tanks (USTs) were reported by state and local environmental agencies as of March 19961. EPA's Office of Underground Storage Tanks (OUST) anticipates that at least 100,000 additional releases will be confirmed in the next few ...

  3. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 1

    DTIC Science & Technology

    1990-01-01

    There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the

  4. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2014-01-01 2014-01-01 false Real property containing underground storage tanks...

  5. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2011-01-01 2011-01-01 false Real property containing underground storage tanks...

  6. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2012-01-01 2012-01-01 false Real property containing underground storage tanks...

  7. 7 CFR 1955.57 - Real property containing underground storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (3) Septic tanks; (4) Pipeline facilities (including gathering lines) regulated under; (i) The...) Storm water or wastewater collection systems; (7) Flow-through process tanks; (8) Liquid traps or... 7 Agriculture 14 2013-01-01 2013-01-01 false Real property containing underground storage tanks...

  8. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  9. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  10. 40 CFR 63.447 - Clean condensate alternative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment includes smelt dissolving tanks, lime mud washers and storage tanks, white and mud liquor... tanks, and dreg washers ending with the white liquor storage tanks prior to the digester system, and any... preparation systems, the paper or paperboard machines, and the paper machine white water system, broke...

  11. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    EPA Science Inventory

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  12. Attenuation of standing waves in a large water tank using arrays of large tethered encapsulated bubbles.

    PubMed

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2014-04-01

    The use of bubble resonance effects to attenuate low-frequency underwater sound was investigated experimentally in a large water tank. A compact electromechanical sound source was used to excite standing wave fields at frequencies ranging between 50 and 200 Hz in the tank. The source was then surrounded by a stationary array of tethered encapsulated air bubbles, and reduction in standing wave amplitude by as much as 26 dB was observed. The bubbles consisted of either thin-shelled latex balloons with approximately 5 cm radii or thicker-shelled vinyl boat fenders with 6.9 cm radii. The effects of changing the material and thickness of the bubble shells were found to be in qualitative agreement with predictions from Church's model for sound propagation in a liquid containing encapsulated bubbles [J. Acoust. Soc. Am. 97, 1510-1521 (1995)]. Although demonstrated here for low frequency noise abatement within a tank, which is useful for quieting acoustic test facilities and large tanks used for marine life husbandry, the eventual aim of this work is to use stationary arrays of large tethered encapsulated bubbles to abate low frequency underwater noise from anthropogenic sources in the marine environment.

  13. 78 FR 42818 - SafetyAlert: Safety Alert: Risks Associated With Liquid Petroleum (LP) Gas Odor Fade

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... stakeholders from industry, fire fighter associations, and other regulatory agencies in order to better... tanks are used. New or recently cleaned tanks may absorb the odorant into the metal shell of these tanks...

  14. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications.

    PubMed

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-10-21

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd(2+) ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.

  15. Opposed Bellows Would Expel Contents Of Tank

    NASA Technical Reports Server (NTRS)

    Whitaker, Willie

    1994-01-01

    Proposed storage tank contains two pairs of opposed bellows used to expel its contents. Storage and expulsion volumes of tank same as those of older version of tank equipped with single bellows. Four bellows offer greater stability. Applications include automobile cooling systems and gasoline-powered tools like chain saws and leaf blowers.

  16. 40 CFR 282.83 - North Carolina State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Insofar as .94A(2) subjects certain heating oil tanks and the piping connected to otherwise excluded tanks... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.83 North... an underground storage tank program in lieu of the Federal program under subtitle I of the Resource...

  17. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-09-01

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions. Electronic supplementary information (ESI) available: Synthetic schemes, TEM, SEM, XRD, FTIR, UV-DRS spectra, TPR, and catalytic data. See DOI: 10.1039/c4nr02692f

  18. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  19. Alternative Fuels Data Center: Propane Vehicles

    Science.gov Websites

    dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional

  20. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  1. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...

    2018-01-25

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  2. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  3. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  4. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen; Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. Intrusively inspecting these tanks would mean a significant down time to the program as the cryogenic liquid and the perlite insulation would have to be removed which would be a significant task and long-term schedule disruption. A study of the tanks was performed to determine the extent to which performance and structural information could be revealed without intrusive inspection. Thermal images of the tanks were taken over a variety of environmental conditions to determine the best conditions under which to compare and use thermography as a health monitoring technique as the tanks continue to age. The settling and subsequent compaction of insulation is a serious concern for cryogenic tanks. Comparison of images from the tanks reveals significant variations in the insulation in the annual regions and point to the use of thermography as a way to monitor for insulation migration and possible compaction. These measurements, when combined with mathematical models of historical boil-off data provide key insight to the condition of the vessels. Acceptance testing methods for new tanks, before they are filled with cryogenic commodity (and thereby thermally cycled), are needed and we explore how thermography can be used to accomplish this.

  5. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  6. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  7. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  8. Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David

    2015-11-01

    From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  9. Novel Architecture for a Long-Life, Lightweight Venus Lander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugby, D.; Seghi, S.; Kroliczek, E.

    2009-03-16

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less

  10. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  11. Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development

    NASA Technical Reports Server (NTRS)

    Jakupca, Ian; Burke, Kenneth A.

    2003-01-01

    The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.

  12. 49 CFR 179.220-26 - Stenciling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...

  13. 49 CFR 179.220-26 - Stenciling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The outer shell, or the...

  14. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  15. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  16. 40 CFR Table 1 to Subpart Bbbbbb... - Applicability Criteria, Emission Limits, and Management Practices for Storage Tanks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and operate each internal and external floating roof gasoline storage tank according to the applicable... (b) Equip each internal floating roof gasoline storage tank according to the requirements in § 60... the requirements in § 60.112b(a)(1)(iv) through (ix) of this chapter; and (c) Equip each external...

  17. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  18. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  19. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  20. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  1. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  2. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  3. Operating results of a thermocline thermal energy storage included in a parabolic trough mini power plant

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Lecat, Florent; Boullet, Nicolas; Flamant, Gilles

    2017-06-01

    A thermocline thermal energy storage tank consists in using one single tank to store sensible heat. At almost any time, three zones coexist in the tank: a hot fluid zone at the top, a cold fluid zone at the bottom, and an intermediate zone called thermocline. Filling the tank with solid materials enables to reduce cost and to maintain the thermal stratification during stand-by periods. The present paper deals with a 230 kWh experimental thermocline tank that is included into a 150 kWth parabolic trough mini power plant. The heat transfer fluid is a non-pressurized synthetic oil (dibenzyltoluene) that flows through alumina spheres in the storage tank. The solid materials are contained into baskets in order to facilitate their removing and replacement. Thermocouples measure temperature along the center of the cylinder and along its radius. It is therefore possible to study the thermocline behavior thanks to the measured temperature profiles. A typical charge, a typical discharge and a stand-by process are presented and storage performances are discussed. The behavior of the tank in a dynamic system is also considered, by analyzing a typical day of solar production and storage of the energy surplus.

  4. VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN STORAGE TANK IN FOREGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Receiving & Storage Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  5. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  6. The effect of different precooling rates and cold storage on milk microbiological quality and composition.

    PubMed

    Paludetti, Lizandra F; Kelly, Alan L; O'Brien, Bernadette; Jordan, Kieran; Gleeson, David

    2018-03-01

    The objective of this study was to measure the effect of different milk cooling rates, before entering the bulk tank, on the microbiological load and composition of the milk, as well as on energy usage. Three milk precooling treatments were applied before milk entered 3 identical bulk milk tanks: no plate cooler (NP), single-stage plate cooler (SP), and double-stage plate cooler (DP). These precooling treatments cooled the milk to 32.0 ± 1.4°C, 17.0 ± 2.8°C, and 6.0 ± 1.1°C, respectively. Milk was added to the bulk tank twice daily for 72 h, and the tank refrigeration temperature was set at 3°C. The blend temperature within each bulk tank was reduced after each milking event as the volume of milk at 3°C increased simultaneously. The bacterial counts of the milk volumes precooled at different rates did not differ significantly at 0 h of storage or at 24-h intervals thereafter. After 72 h of storage, the total bacterial count of the NP milk was 3.90 ± 0.09 log 10 cfu/mL, whereas that of the precooled milk volumes were 3.77 ± 0.09 (SP) and 3.71 ± 0.09 (DP) log 10 cfu/mL. The constant storage temperature (3°C) over 72 h helped to reduce bacterial growth rates in milk; consequently, milk composition was not affected and minimal, if any, proteolysis occurred. The DP treatment had the highest energy consumption (17.6 ± 0.5 Wh/L), followed by the NP (16.8 ± 2.7 Wh/L) and SP (10.6 ± 1.3 Wh/L) treatments. This study suggests that bacterial count and composition of milk are minimally affected when milk is stored at 3°C for 72 h, regardless of whether the milk is precooled; however, milk entering the tank should have good initial microbiological quality. Considering the numerical differences between bacterial counts, however, the use of the SP or DP precooling systems is recommended to maintain low levels of bacterial counts and reduce energy consumption. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  7. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  8. Mission analysis report for single-shell tank leakage mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.

    1994-09-01

    This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less

  9. LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HAGERTY KJ, MOORE WP; JOHNSON JM

    2012-04-17

    This report documents the laboratory testing and analyses as directed under the test plan, LAB-PLN-11-00010, Evaluation of Technetium Ion Exchange Material against Hanford Double Shell Tank Supernate Simulate with Pertechnetate. Technetium (Tc-99) is a major fission product from nuclear reactors, and because it has few applications outside of scientific research, most of the technetium will ultimately be disposed of as nuclear waste. The radioactive decay of Tc-99 to ruthenium 99 (Ru-99) produces a low energy {beta}{sup -} particle (0.1 MeV max). However, due to its fairly long half-life (t{sub 1/2} = 2.13E05 years), Tc-99 is a major source of radiationmore » in low-level waste (UCRL-JRNL-212334, Current Status of the Thermodynamic Data for Technetium and its Compounds and Aqueous Species). Technetium forms the soluble oxy anion, TcO{sub 4}{sup -} under aerobic conditions. This anion is very mobile in groundwater and poses a health risk (ANL, Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas). It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix (RPP-RPT-23199, The Removal of Technetium-99 from the Effluent Treatment Facility Basin 44 Waste Using Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7 Ion Exchange Resins). Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin (Gu, B. et. ai, Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater). Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (ANSI/ASN-16.1-2003, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-term Test Procedure) as reported in RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This effort falls under the technetium management initiative and will provide data for those who will make decisions on the handling and disposition of technetium. To that end, the objective of this effort was to challenge Purolite{reg_sign} A530E against a double-shell tank (DST) simulant (tank 241-AN-105 or AN-105) spiked with pertechnetate (TcO{sub 4}{sup -}) to determine breakthrough of the lead column.« less

  10. CHARACTERISTICS OF NON-PETROLEUM UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    It is generally acknowledged that a small fraction of the total underground storage tank population is used to store chemicals. The detailed characteristics of these tanks, however, are not well understood. Additional information is required if competent decisions are to be made ...

  11. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  12. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    NASA Astrophysics Data System (ADS)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  13. Concentrating Solar Power Projects - Archimede | Concentrating Solar Power

    Science.gov Websites

    as the heat-transfer fluid. A 2-tank direct system will provide 8 hours of thermal storage. Status % Thermal Storage Storage Type: 2-tank direct Storage Capacity: 8 hour(s) Thermal Storage Description: Total of 1,580 tons of molten salt. 60% sodium nitrate, 40% potassium nitrate. Capacity 100 MWh (thermal

  14. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  15. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  16. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...

  17. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  18. Entropy generation minimization for the sloshing phenomenon in half-full elliptical storage tanks

    NASA Astrophysics Data System (ADS)

    Saghi, Hassan

    2018-02-01

    In this paper, the entropy generation in the sloshing phenomenon was obtained in elliptical storage tanks and the optimum geometry of tank was suggested. To do this, a numerical model was developed to simulate the sloshing phenomenon by using coupled Reynolds-Averaged Navier-Stokes (RANS) solver and the Volume-of-Fluid (VOF) method. The RANS equations were discretized and solved using the staggered grid finite difference and SMAC methods, and the available data were used for the model validation. Some parameters consisting of maximum free surface displacement (MFSD), maximum horizontal force exerted on the tank perimeter (MHF), tank perimeter (TP), and total entropy generation (Sgen) were introduced as design criteria for elliptical storage tanks. The entropy generation distribution provides designers with useful information about the causes of the energy loss. In this step, horizontal periodic sway motions as X =amsin(ωt) were applied to elliptical storage tanks with different aspect ratios namely ratios of large diameter to small diameter of elliptical storage tank (AR). Then, the effect of am and ω was studied on the results. The results show that the relation between MFSD and MHF is almost linear relative to the sway motion amplitude. Moreover, the results show that an increase in the AR causes a decrease in the MFSD and MHF. The results, also, show that the relation between MFSD and MHF is nonlinear relative to the sway motion angular frequency. Furthermore, the results show that an increase in the AR causes that the relation between MFSD and MHF becomes linear relative to the sway motion angular frequency. In addition, MFSD and MHF were minimized in a sway motion with a 7 rad/s angular frequency. Finally, the results show that the elliptical storage tank with AR =1.2-1.4 is the optimum section.

  19. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  20. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  1. Heat recovery, ice storage to cut user's energy costs 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponczak, G.

    1985-12-02

    A new recovery system which uses waste heat generated by an Illinois ice rink's compressors for space heating and domestic hot water will benefit from low off-peak electricity rates at a time when demand rates for the rink will be increasing 30%. The thermal storage system uses the same compressors to build ice. The Wilmette Centennial Park Recreation Complex expects to reduce gas and electricity costs by 40%, or about $100,000 per year. Part of the project involved installing new, high-efficiency compressor motors. A preliminary energy audit revealed that the old compressors were throwing off 2.25 million Btu of heatmore » per hour. An air-to-water heat exchanger now provides space heating as needed. Two double-vented heat exchangers generate hot water for swimming pools and the ice-making machine. The ice storage tank is used for cooling. An energy management system controls these and other building systems.« less

  2. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  3. Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation

    NASA Astrophysics Data System (ADS)

    Rulin, Zhang; Xudong, Cheng; Youhai, Guan

    2017-06-01

    The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.

  4. Working and Net Available Shell Storage Capacity

    EIA Publications

    2017-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  5. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  6. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  7. Criteria: waste tank isolation and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  8. USING COMPUTER MODELS TO DETERMINE THE EFFECT OF STORAGE ON WATER QUALITY

    EPA Science Inventory

    Studies have indicated that water quality is degraded as a result of long residence times in storage tanks, highlighting the importance of tank design, location, and operation. Computer models, developed to explain some of the mixing and distrribution issues associated with tank...

  9. ENZYMES FOR ENHANCING BIOREMEDIATION OF PETROLEUM- CONTAMINATED SOILS: A BRIEF REVIEW

    EPA Science Inventory

    During the 1950s and 1960s, hundreds of thousands of underground storage tanks (and above-ground storage tanks) containing petroleum products and hazardous chemicals were installed. Many of these tanks either have been abandoned or have exceeded their useful lives and are leakin...

  10. STATE-OF-THE-ART PROCEDURES AND EQUIPMENT FOR INTERNAL INSPECTION AND UPGRADING OF UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    This report supplements the previous State-of-the-Art Procedures and Equipment for Internal Inspection of Underground Storage Tanks published in 1991 by the EPA. The present report updates and provides descriptions of additional tank inspection technologies, specifically, noninva...

  11. 40 CFR 279.22 - Used oil storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil storage. 279.22 Section 279...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.22 Used oil storage. Used... Underground Storage Tank (40 CFR part 280) standards for used oil stored in underground tanks whether or not...

  12. 40 CFR 279.22 - Used oil storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Used oil storage. 279.22 Section 279...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.22 Used oil storage. Used... Underground Storage Tank (40 CFR part 280) standards for used oil stored in underground tanks whether or not...

  13. 40 CFR 279.22 - Used oil storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil storage. 279.22 Section 279...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.22 Used oil storage. Used... Underground Storage Tank (40 CFR part 280) standards for used oil stored in underground tanks whether or not...

  14. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  15. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  16. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  17. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  18. Evaluation of semi-empirical analyses for railroad tank car puncture velocity, part 1 : correlations with experimental data

    DOT National Transportation Integrated Search

    2001-11-01

    This report is the first in a two-part series that focuses on methodologies to determine the puncture velocity of tank car shells. In this context, puncture velocity refers to the impact velocity at which a coupler will puncture the tank. In this rep...

  19. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  20. Shop fabricated corrosion-resistant underground storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyer, W.B.; Stellmach, W.A.

    1995-12-31

    Integral corrosion resistance has long been incorporated into shop fabricated steel underground storage tank design. Since 1969, an industry standard has been the sti-P{sub 3}{reg_sign} (P3) tank. However, the past decade has seen the development of several alternative corrosion resistant and secondary containment technologies. Fiberglass-coated steel composite tanks, and jacketed tanks utilizing various materials as a secondary wall, provide corrosion resistance without the cathodic protection monitoring requirements mandated by the EPA for single-wall P3 tanks. On the other hand, the P3 tank is the only tank technology commonly marketed today with an integral ability to verify its corrosion resistance overmore » the life of the tank. Many existing USTs remain to be replaced or upgraded with corrosion resistance (and other requirements) by the end of 1998. Steel tanks built and installed prior to the advent of pre-engineered, factory-supplied protection against corrosion can be retrofitted with cathodic protection or can be internally lined. Specific installation standards developed by the steel tank industry and the petroleum industry must be followed so as to assure the integrity of the various corrosion resistant technologies developed by the Steel Tank Institute. The technologies describes in this paper will ensure compliance with the corrosion protection requirements of new storage tanks.« less

  1. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  2. 40 CFR 61.130 - Applicability, designation of sources, and delegation of authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.130... each of the following sources at furnace and foundry coke by-product recovery plants: tar decanters... tanks, light-oil storage tanks, and excess ammonia-liquor storage tanks at furnace coke by-product...

  3. 40 CFR 61.130 - Applicability, designation of sources, and delegation of authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.130... each of the following sources at furnace and foundry coke by-product recovery plants: tar decanters... tanks, light-oil storage tanks, and excess ammonia-liquor storage tanks at furnace coke by-product...

  4. 40 CFR 61.130 - Applicability, designation of sources, and delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.130... each of the following sources at furnace and foundry coke by-product recovery plants: tar decanters... tanks, light-oil storage tanks, and excess ammonia-liquor storage tanks at furnace coke by-product...

  5. 40 CFR 61.130 - Applicability, designation of sources, and delegation of authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.130... each of the following sources at furnace and foundry coke by-product recovery plants: tar decanters... tanks, light-oil storage tanks, and excess ammonia-liquor storage tanks at furnace coke by-product...

  6. 15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAILED VIEW OF ENRICHED URANIUM STORAGE TANK. THE ADDITION OF THE GLASS RINGS SHOWN AT THE TOP OF THE TANK HELPS PREVENT THE URANIUM FROM REACHING CRITICALITY LIMITS. (4/12/62) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  7. Thermal analysis of the position of the freezing front around an LNG in-ground storage tank with a heat barrier

    NASA Astrophysics Data System (ADS)

    Watanabe, O.; Tanaka, M.

    A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.

  8. 9 CFR 354.34 - Application for inspection service in official plants; approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sewer, cesspool, sedimentation tank, etc. (13) Approximate rate of production—indicate hourly rate of..., if so, specify such uses. (10) Hot water facilities—specify facilities such as boilers, storage tanks, mixing valves, etc., and indicate the size and number of boilers and storage tanks. (11) Specify number...

  9. 40 CFR 61.130 - Applicability, designation of sources, and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.130... each of the following sources at furnace and foundry coke by-product recovery plants: tar decanters... tanks, light-oil storage tanks, and excess ammonia-liquor storage tanks at furnace coke by-product...

  10. The effect of storage conditions on the composition and functional properties of blended bulk tank milk.

    PubMed

    O'Connell, A; Kelly, A L; Tobin, J; Ruegg, P L; Gleeson, D

    2017-02-01

    The objective of this study was to investigate the effects of storage temperature and duration on the composition and functional properties of bulk tank milk when fresh milk was added to the bulk tank twice daily. The bulk tank milk temperature was set at each of 3 temperatures (2, 4, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September when all cows were in mid lactation, and period 2 was undertaken in October and November when all cows were in late lactation. Bulk tank milk stored at the 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Compositional parameters were measured for all bulk tank milk samples, including gross composition and quantification of nitrogen compounds, casein fractions, free amino acids, and Ca and P contents. The somatic cell count, heat stability, titratable acidity, and rennetability of bulk tank milk samples were also assessed. Almost all parameters differed between mid and late lactation; however, the interaction between lactation, storage temperature, and storage duration was significant for only 3 parameters: protein content and concentrations of free cysteic acid and free glutamic acid. The interaction between storage temperature and storage time was not significant for any parameter measured, and temperature had no effect on any parameter except lysine: lysine content was higher at 6°C than at 2°C. During 96 h of storage, the concentrations of some free amino acids (glutamic acid, lysine, and arginine) increased, which may indicate proteolytic activity during storage. Between 0 and 96 h, minimal deterioration was observed in functional properties (rennet coagulation time, curd firmness, and heat stability), which was most likely due to the dissociation of β-casein from the casein micelle, which can be reversed upon pasteurization. Thus, this study suggests that blended milk can be stored for up to 96 h at temperatures between 2°C and 6°C with little effect on its composition or functional properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less

  12. Review of high convergence implosion experiments with single and double shell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, N. D.; Watt, R. G.; Varnum, W. S.

    2002-01-01

    Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.

  13. Studies on Freezing of Shell-Fish-I

    NASA Astrophysics Data System (ADS)

    Song, Dae Jin; Konagaya, Shiro; Tanaka, Takeo

    Ark shell, Anadara broughtonii(Shrenk), are commonly eaten raw or under-done in Korea, Japan, and East Asian countries. Along with a recent remarkable development of culture fisheries, Ark shell has become one of the commercially important shell-fish species. Transportation and storage of large quantities of shell-fish is becoming increasingly important. This work was begun with this background to make clear the effects of temperature and length of storage time on the quality of frozen stored ark shell. Results are as follows : (1) There was little chang in amounts of free and expressible drip from ark shell flesh frozen stored at -40°CdegC for 6 months. Water holding capacity of the same meat was almost constant over 6 months storage. However, a mounts of both drip increased markedly after 2 months storage at -10°C. (2) Protein extractibility of ark shell flesh tended to decrease gradually from the begining when stored at -10°C, while at -20°C, the protein extractibility was stable for 3 months before decreasing gradually. However at -40°C, the protein extractibility was stable for 6 months. It was found that paramyosin was very stable even when the ark shell was frozen stored at -10°C. (3) It was observed that ark shell flesh became tough when frozen. The toughness of ark shell flesh as measured by an instrument increased with frozen storage time and increased temperature. (4) In the smooth muscle, it was histologically observed that initial small ice crystals formed between muscle bundles grew larger during frozen storage. It was found that the higher the storage temperature, the bigger the ice crystals formed. Aggregation of some muscle fiber and empty spaces between muscle bundles were observd after thawed muscles frozen stored at relatively high temperature such as -10°C.

  14. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  15. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  16. Synthesis of green Fe3+/glucose/rGO electrode for supercapacitor application assisted by chemical exfoliation process from burning coconut shell

    NASA Astrophysics Data System (ADS)

    Putra, Gilang B. A.; Pradana, Herdy Y.; Soenaryo, Dimas E. T.; Baqiya, Malik A.; Darminto

    2018-04-01

    For the goal of large, environmental - friendly, renewable, and inexpensive energy storage, the development of supercapacitor electrodes is needed, by anchoring transition metal oxide (Fe3+ ion) as pseudo capacitor electrode material with reduced graphene oxide (rGO) from an old coconut shell as electrochemical double layer capacitor (EDLC). This porous electrode composite is prepared by sonication and chemical exfoliation assisted by acid. Synthesis of supercapacitor is also added by glucose, which acts as a spacer between layers of rGO to increase the capacitance, also as binder between the materials used. Combining Fe3+ with old coconut shell rGO give high specific capacitance of up to 99 F/g at a potential window of -1 V to 1 V. The Fe3+/glucose/rGO electrode has thickness of up to 57 nm (from PSA result) and give a uniform distribution from EDX mapping with disperse Fe domains and not bonding with rGO.

  17. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  18. Energy Storage Criteria Handbook.

    DTIC Science & Technology

    1982-10-01

    Phase Change Material Heating System .......................... 311 14.3.1 Analysis of Storage Purpose ........................... 312 14.3.2 Choosing...329 Worksheet I: Cost Analysis of PCM System ...................... 330 14.4 Water Tank Cold Storage...Selecting Components ........................333 14.5.6 Economic Analysis .......................................334 Worksheet A: Cooling Load and Tank

  19. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    PubMed

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  20. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  1. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  2. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  3. 46 CFR 91.40-3 - Drydock examination, internal structural examination, cargo tank internal examination, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIRKBRIDE, R.A.

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  5. KEA-144: Final Results of the Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) Project

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Fesmire, James; Swanger, Adam; Jumper, Kevin; Johnson, Wesley; Tomsik, Thomas

    2017-01-01

    GODU-LH2 system has successfully met all test objectives at the 33%, 67%, and 100% tank fill level. Complete control over the state of the fluid has been demonstrated using Integrated Refrigeration and Storage (IRAS). Almost any desired point along the H2saturation curve can essentially be "dialed in" and maintained indefinitely. System can also be used to produce densified hydrogen in large quantities to the triple point. Exploring multiple technology infusion paths. Studying implementation of IRAS technology into new LH2sphere for EM-2 at LC39B. Technical interchange also occurring with STMD, LSP, ULA, DoE, KIST, Kawasaki, Shell Oil, SpaceX, US Coast Guard, and Virgin Galactic.

  6. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  7. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  8. 49 CFR 179.220-4 - Insulation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-4 Insulation. The annular space between the inner container and the outer shell must contain an approved insulation material. [Amdt. 179-9, 36 FR...

  9. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  10. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...

  11. 49 CFR 178.274 - Specifications for UN portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and 178.277, as applicable. Design type means a portable tank or series of portable tanks made of... the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design... be designed and constructed to withstand a hydraulic test pressure of not less than 1.5 times the...

  12. The high pressure gas assembly is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  13. KSC-01PP1009

    NASA Image and Video Library

    2001-05-18

    KENNEDY SPACE CENTER, FLA. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B

  14. KSC-01PP1008

    NASA Image and Video Library

    2001-05-18

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B

  15. Test plan for evaluating the operational performance of the prototype nested, fixed-depth fluidic sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REICH, F.R.

    The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system willmore » fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.« less

  16. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  17. Optimization of armored spherical tanks for storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Knight, D. A.

    1992-01-01

    A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of space tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armor and redundancy) is investigated.

  18. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  19. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  20. Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS

    NASA Astrophysics Data System (ADS)

    Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.

  1. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  2. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analysesmore » and forms, inspection logs, equipment identification, etc.« less

  3. Optimization of armored spherical tanks for storage on the lunar surface

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Knight, D. A.

    1992-01-01

    A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of spare tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armoring and redundancy) is investigated. The objective is to find the optimum combination which yields the lowest shielding mass per cubic meter of surviving fuel out of the original ensemble. The investigation found that, for the volumes of fuel associated with multikilowatt class cryo storage RFC's, and the armoring methodology and meteoroid models used, storage should be fragmented into small individual tanks. Larger installations (more fuel) pay less of a shielding penalty than small installations. For the same survival probability over the same time period, larger volumes will require less armoring mass per unit volume protected.

  4. Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

    PubMed

    Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David

    2017-06-12

    Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  6. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less

  7. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  8. 78 FR 40651 - Regulated Navigation Area; Special Buzzards Bay Vessel Regulation, Buzzards Bay, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... regardless of whether those tank barges are single or double hull. Reporting and participation requirements..., equipment limitations), double hull tank barges laden with 5,000 or more barrels of oil or hazardous material may require a tug escort. Single-hull tank barges will continue to require tug escorts under all...

  9. Test Plan - Solids Accumulation Scouting Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilizationmore » Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.« less

  10. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  11. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  12. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  13. The high pressure gas assembly is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS- 104 is scheduled for launch June 14 from Launch Pad 39B.

  14. Effect of various refrigeration temperatures on quality of shell eggs.

    PubMed

    Shin, Daekeun; Narciso-Gaytán, Carlos; Regenstein, Joe M; Sánchez-Plata, Marcos X

    2012-05-01

    The objective of this study was to evaluate the effects of low storage temperatures on shell egg quality. Approximately 2100 shell eggs were collected and stored at - 1.1, 0.6, 2.2, 3.9, 5.6 and 7.2 °C for up to 4 weeks. Eighteen eggs at each storage temperature were evaluated after 0, 2, 7, 14, 21 and 28 days of storage. Haugh units (HU), yolk index (YI), albumen pH (pHA), yolk pH (pHY) and angel food cake density (CD) were measured. Shell egg quality tended to be preserved better at below 2.2 °C, as high HU and YI values relative to eggs stored at 7.2 °C were determined on day 28. However, storage at - 1.1 °C tended to cause the opposite effect, especially highly declined HU values over time. Significantly different HU values of shell eggs were measured after 14 days of storage, with eggs stored at 0.6 and 2.2 °C having the highest HU values, 80.42 and 77.97 respectively. A lower temperature limit for shell egg storage could be established between 0.6 and 2.2 °C, as both temperatures showed the highest HU values, 77.88 and 77.60 respectively, after 28 days of storage. Copyright © 2011 Society of Chemical Industry.

  15. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with a storage tank equipped with radial fins of rectangular profile

    NASA Astrophysics Data System (ADS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2013-01-01

    The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.

  16. SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Baricco, Marcello; Bang, Mads; Fichtner, Maximilian; Hauback, Bjorn; Linder, Marc; Luetto, Carlo; Moretto, Pietro; Sgroi, Mauro

    2017-02-01

    The main objective of the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project was to develop a solid state hydrogen storage tank based on complex hydrides and to fully integrate it with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. A mixed lithium amide/magnesium hydride system was used as the main storage material for the tank, due to its high gravimetric storage capacity and relatively low hydrogen desorption temperature. The mixed lithium amide/magnesium hydride system was coupled with a standard intermetallic compound to take advantage of its capability to release hydrogen at ambient temperature and to ensure a fast start-up of the system. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit (APU). A full thermal integration was possible thanks to the high operation temperature of the fuel cell and to the relative low temperature (170 °C) for hydrogen release from the mixed lithium amide/magnesium hydride system.

  17. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  18. REACTOR UNLOADING MEANS

    DOEpatents

    Cooper, C.M.

    1957-08-20

    A means for remotely unloading irradiated fuel slugs from a neutronic reactor core and conveying them to a remote storage tank is reported. The means shown is specifically adapted for use with a reactor core wherein the fuel slugs are slidably held in end to end abutting relationship in the horizontal coolant flow tubes, the slugs being spaced from tae internal walls of the tubes to permit continuous circulation of coolant water therethrough. A remotely operated plunger at the charging ends of the tubes is used to push the slugs through the tubes and out the discharge ends into a special slug valve which transfers the slug to a conveying tube leading into a storage tank. Water under pressure is forced through the conveying tube to circulate around the slug to cool it and also to force the slug through the conveving tube into the storage tank. The slug valve and conveying tube are shielded to prevent amy harmful effects caused by the radioactive slug in its travel from the reactor to the storage tank. With the disclosed apparatus, all the slugs in the reactor core can be conveyed to the storage tank shortly after shutdown by remotely located operating personnel.

  19. Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine

    2013-02-01

    Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  1. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  2. Two LNG plants slated for Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.F.; Phannenstiel, L.L.

    1975-06-09

    Two large LNG plants are in the planning stage for Indonesia. The Badak field in East Kalimantan, Borneo, will have a 450 million ft/sup 3//day plant with a projected 20-y life. Gas will be liquefied in a 2-train plant employing the propane-MCR process, then stored in double-wall tanks having a total capacity of 2.4 million bbl. Arun field in North Sumatra will have an LNG plant capable of liquefying 1.2 billion ft/sup 3//day of gas in 6 trains, also using the propane-MCR process. LNG storage capacity at Arun will total 3.2 million bbl.

  3. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  4. Parametric design using IGRIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, C.

    1994-10-01

    The Department of Energy`s (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden.more » The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL`s experience with the gantry robot service-providing mechanism.« less

  5. 10 CFR 431.101 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.101... heaters, hot water supply boilers and unfired hot water storage tanks, pursuant to Part C of Title III of...

  6. 10 CFR 431.101 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.101... heaters, hot water supply boilers and unfired hot water storage tanks, pursuant to Part C of Title III of...

  7. 10 CFR 431.101 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.101... heaters, hot water supply boilers and unfired hot water storage tanks, pursuant to Part C of Title III of...

  8. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. 10 CFR 431.101 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.101... heaters, hot water supply boilers and unfired hot water storage tanks, pursuant to Part C of Title III of...

  10. VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS AND STEEL BEAMS), SUB-BASEMENT LEVEL -27’, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  11. State and Territorial Underground Storage Tank Regulations: Compliance Deadlines for Major Provisions

    EPA Pesticide Factsheets

    Review compliance deadlines for major provisions of the 2015 federal UST requirements, in the 15 states that have updated their state underground storage tank regulations to incorporate the revised requirements.

  12. 125. ARAI Contaminated waste storage tank (ARA729). Shows location of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. ARA-I Contaminated waste storage tank (ARA-729). Shows location of tank on the ARA-I site, section views, connecting pipeline, and other details. Norman Engineering Company 961-area/SF-301-3. Date: January 1959. Ineel index code no. 068-0301-00-613-102711. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  13. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    PubMed

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  14. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Recknagle, K.

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less

  15. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  16. Hypervelocity cutting machine and method

    DOEpatents

    Powell, J.R.; Reich, M.

    1996-11-12

    A method and machine are provided for cutting a workpiece such as concrete. A gun barrel is provided for repetitively loading projectiles therein and is supplied with a pressurized propellant from a storage tank. A thermal storage tank is disposed between the propellant storage tank and the gun barrel for repetitively receiving and heating propellant charges which are released in the gun barrel for repetitively firing projectiles therefrom toward the workpiece. In a preferred embodiment, hypervelocity of the projectiles is obtained for cutting the concrete workpiece by fracturing thereof. 10 figs.

  17. The mathematical model accuracy estimation of the oil storage tank foundation soil moistening

    NASA Astrophysics Data System (ADS)

    Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.

    2018-04-01

    The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.

  18. 76 FR 71987 - Collection of Information Under Review by Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ..., Alternate Compliance Program, 1625-0083, Operational Measures for Existing Tank Vessels Without Double Hulls.... Title: Operational Measures for Existing Tank Vessels Without Double Hulls. OMB Control Number: 1625...

  19. Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho

    2018-02-22

    Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.

  20. Hohlraum-Driven Ignition-Like Double-Shell Implosion Experiments on Omega: Analysis and Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P; Robey, H F; Park, H-S

    2003-08-22

    An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less

Top