Sample records for doubled unit-cell volumes

  1. Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes

    USDA-ARS?s Scientific Manuscript database

    Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...

  2. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    NASA Astrophysics Data System (ADS)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  3. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  4. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    PubMed

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  5. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed Central

    Farinas, J; Verkman, A S

    1996-01-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water

  6. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed

    Farinas, J; Verkman, A S

    1996-12-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water

  7. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

    PubMed Central

    Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme

    2015-01-01

    Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149

  8. Cambodian Basic Course; Volume Two, Units 46-90.

    ERIC Educational Resources Information Center

    Suos, Someth; And Others

    Volume Two of this course is comprised of units 46-90 and a Cambodian-to-English Glossary for both Volume One and Volume Two. The units are made up of dialogs, narrations, and various kinds of pattern drills. All Cambodian material is written in Cambodian script. The Glossary gives both a short English equivalent and a unit number reference for…

  9. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  10. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  11. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2014-10-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  12. Clinical Significance of "Double-hit" and "Double-protein" expression in Primary Gastric B-cell Lymphomas.

    PubMed

    He, Miaoxia; Chen, Keting; Li, Suhong; Zhang, Shimin; Zheng, Jianming; Hu, Xiaoxia; Gao, Lei; Chen, Jie; Song, Xianmin; Zhang, Weiping; Wang, Jianmin; Yang, Jianmin

    2016-01-01

    Primary gastric B-cell lymphoma is the second most common malignancy of the stomach. There are many controversial issues about its diagnosis, treatment and clinical management. "Double-hit" and "double-protein" involving gene rearrangement and protein expression of c-Myc and bcl2/bcl6 are the most used terms to describe DLBCL poor prognostic factors in recent years. However, very little is known about the role of these prognostic factors in primary gastric B-cell lymphomas. This study aims to obtain a molecular pathology prognostic model of gastric B-cell lymphoma for clinical stratified management by evaluating how the "double-hit" and "double-protein" in tumor cells as well as microenvironmental reaction of tumor stromal tissue affect clinical outcome in primary gastric B-cell lymphomas. Data and tissues of 188 cases diagnosed with gastric B-cell lymphomas were used in this study. Tumor tissue microarray (TMA) of formalin fixed and paraffin embedded (FFPE) tissues was constructed for fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analysis with a serial of biomarkers containing MYC, BCL2, BCL6, CD31, SPARC, CD10, MUM1 and Ki-67. Modeled period analysis was used to estimate 3-year and 5-year overall survival (OS) and disease-free survival (DFS) distributions. There was no definite "double-hit" case though the gene rearrangement of c-Myc (5.9%), bcl2 (0.1%) and bcl6 (7.4%) was found in gastric B-cell lymphomas. The gene amplification or copy gains of c-Myc (10.1%), bcl-2 (17.0%) and bcl-6 (0.9%) were present in these lymphomas. There were 12 cases of the lymphomas with the "double-protein" expression of MYC and BCL2/BCL6. All patients with "double-protein" gastric B-cell lymphomas had poor outcome compared with those without. More importantly, "MYC-BCL2-BCL6" negative group of gastric B-cell lymphoma patients had favorable clinical outcome regardless clinical stage, pathological types and therapeutic modalities. And the similar better

  13. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    PubMed Central

    Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology. PMID:28973866

  14. Nano sized La2Co2O6 double perovskite synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.

  15. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps,more » the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.« less

  16. Severe and fatal obstetric injury claims in relation to labor unit volume.

    PubMed

    Milland, Maria; Mikkelsen, Kim L; Christoffersen, Jens K; Hedegaard, Morten

    2015-05-01

    To assess possible association between the incidence of approved claims for severe and fatal obstetric injuries and delivery volume in Denmark. A nationwide panel study of labor units. Claimants seeking financial compensation due to injuries occurring in labor units in 1995-2012. Exposure information regarding the annual number of deliveries per labor unit was retrieved from the Danish National Birth Register. Outcome information was retrieved from the Danish Patient Compensation Association. Exposure was categorized in delivery volume quintiles as annual volume per labor unit: (10-1377), (1378-2016), (2017-2801), (2802-3861), (3862-6659). Five primary measures of outcome were used. Incidence rate ratios of (A) Submitted claims, (B) Approved claims, (C) Approved severe injury claims (120% degree of disability), (D) Approved fatal injury claims, and (C+D) Combined. 1 151 734 deliveries in 51 labor units and 1872 submitted claims were included. The incidence rate ratios of approved claims overall, of approved fatal injury claims, and of approved severe and fatal injuries combined increased significantly with decreasing annual delivery volume. Face value incidence rate ratios of approved severe injuries increased with decreasing labor unit volume, but the association did not reach statistical significance. High volume labor units appear associated with fewer approved and fewer fatal injury claims compared with units with less volume. The findings support the development towards consolidation of units in Denmark. A suggested option would be to tailor obstetric patient safety initiatives according to the delivery volume of individual labor units. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  17. Lung cancers diagnosed at annual CT screening: volume doubling times.

    PubMed

    Henschke, Claudia I; Yankelevitz, David F; Yip, Rowena; Reeves, Anthony P; Farooqi, Ali; Xu, Dongming; Smith, James P; Libby, Daniel M; Pasmantier, Mark W; Miettinen, Olli S

    2012-05-01

    To empirically address the distribution of the volume doubling time (VDT) of lung cancers diagnosed in repeat annual rounds of computed tomographic (CT) screening in the International Early Lung Cancer Action Program (I-ELCAP), first and foremost with respect to rates of tumor growth but also in terms of cell types. All CT screenings in I-ELCAP from 1993 to 2009 were performed according to HIPAA-compliant protocols approved by the institutional review boards of the collaborating institutions. All instances of first diagnosis of primary lung cancer after a negative screening result 7-18 months earlier were identified, with symptom-prompted diagnoses included. Lesion diameter was calculated by using the measured length and width of each cancer at the time when the nodule was first identified for further work-up and at the time of the most recent prior screening, 7-18 months earlier. The length and width were measured a second time for each cancer, and the geometric mean of the two calculated diameters was used to calculate the VDT. The χ(2) statistic was used to compare the VDT distributions. The median VDT for 111 cancers was 98 days (interquartile range, 108). For 56 (50%) cancers it was less than 100 days, and for three (3%) cancers it was more than 400 days. Adenocarcinoma was the most frequent cell type (50%), followed by squamous cell carcinoma (19%), small cell carcinoma (19%), and others (12%). Lung cancers manifesting as subsolid nodules had significantly longer VDTs than those manifesting as solid nodules (P < .0001). Lung cancers diagnosed in annual repeat rounds of CT screening, as manifest by the VDT and cell-type distributions, are similar to those diagnosed in the absence of screening.

  18. Regulation of cell volume by glycosaminoglycans.

    PubMed

    Joerges, Jelena; Schulz, Tobias; Wegner, Jeannine; Schumacher, Udo; Prehm, Peter

    2012-01-01

    Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra- and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding. Copyright © 2011 Wiley Periodicals, Inc.

  19. Planning, Designing, Building, and Moving a Large Volume Maternity Service to a New Labor and Birth Unit.

    PubMed

    Thompson, Heather; Legorreta, Kimberly; Maher, Mary Ann; Lavin, Melanie M

    Our health system recognized the need to update facility space and associated technology for the labor and birth unit within our large volume perinatal service to improve the patient experience, and enhance safety, quality of care, and staff satisfaction. When an organization decides to invest $30 million dollars in a construction project such as a new labor and birth unit, many factors and considerations are involved. Financial support, planning, design, and construction phases of building a new unit are complex and therefore require strong interdisciplinary collaboration, leadership, and project management. The new labor and birth unit required nearly 3 years of planning, designing, and construction. Patient and family preferences were elicited through consumer focus groups. Multiple meetings with the administrative and nursing leadership teams, staff nurses, nurse midwives, and physicians were held to generate ideas for improvement in the new space. Involving frontline clinicians and childbearing women in the process was critical to success. The labor and birth unit moved to a new patient tower in a space that was doubled in square footage and geographically now on three separate floors. In the 6 months prior to the move, many efforts were made in our community to share our new space. The marketing strategy was very detailed and creative with ongoing input from the nursing leadership team. The nursing staff was involved in every step along the way. It was critical to have champions as workflow teams emerged. We hosted simulation drills and tested scenarios with new workflows. Move day was rehearsed with representatives of all members of the perinatal team participating. These efforts ultimately resulted in a move time of ~5 hours. Birth volumes increased 7% within the first 6 months. After 3 years in our new space, our birth volumes have risen nearly 15% and are still growing. Key processes and roles responsible for a successful build, efficient and safe move

  20. Development of large volume double ring penning plasma discharge source for efficient light emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic fieldmore » of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.« less

  1. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  2. Double-double bend achromat cell upgrade at the Diamond Light Source: From design to commissioning

    NASA Astrophysics Data System (ADS)

    Bartolini, R.; Abraham, C.; Apollonio, M.; Bailey, C. P.; Cox, M. P.; Day, A.; Fielder, R. T.; Hammond, N. P.; Heron, M. T.; Holdsworth, R.; Kay, J.; Martin, I. P. S.; Mhaskar, S.; Miller, A.; Pulampong, T.; Rehm, G.; Rial, E. C. M.; Rose, A.; Shahveh, A.; Singh, B.; Thomson, A.; Walker, R. P.

    2018-05-01

    Diamond has recently successfully commissioned a major change in the lattice consisting of the substitution of a standard double-bend achromat (DBA) cell with a modified four-bend achromat (4BA) cell called "double-double bend achromat" (DDBA). This work stems from the original studies initiated in 2012 towards a Diamond upgrade and provides the benefit of an additional straight section in the ring available for insertion devices. This paper reviews the DDBA design and layout, the implications for technical subsystems, the associated engineering challenges and the main results of the commissioning completed in April 2017.

  3. Unit Cells

    ERIC Educational Resources Information Center

    Olsen, Robert C.; Tobiason, Fred L.

    1975-01-01

    Describes the construction of unit cells using clear plastic cubes which can be disassembled, and one inch cork balls of various colors, which can be cut in halves, quarters, or eighths, and glued on the inside face of the cube, thus simulating a unit cell. (MLH)

  4. Thermal analysis of Malaysian double storey housing - low/medium cost unit

    NASA Astrophysics Data System (ADS)

    Normah, M. G.; Lau, K. Y.; Yusoff, S. Mohd.

    2012-06-01

    Almost half of the total energy used today is consumed in buildings. In the tropical climate, air-conditioning a housing unit takes much of the energy bill. Malaysia is no exception. Malaysian double storey terrace housing is popular among developers and buyers. Surveys have shown that housing occupants are much dissatisfied with the thermal comfort and artificial cooling is often sought. The objective of this study is to assess the thermal comfort of the low and medium-cost double storey housing in the area surrounding Universiti Teknologi Malaysia. A simulation program using the Weighting Factor Method calculates the heat transfer interaction, temperature distribution, and PMV level in three types of housing units in relation to the size. Fanger's PMV model based on ISO Standard 7730 is used here because it accounts for all parameters that affect the thermal sensation of a human within its equation. Results showed that both the low and medium-cost housing units studied are out of the comfortable range described by ASHRAE Standard 55 with the units all complied with the local bylaws. In view of the uncertainties in energy supply, future housing units should consider natural ventilation as part of the passive energy management.

  5. Comparison of double dose plateletpheresis on the Fenwal Amicus, Fresenius COM.TEC and Trima Accel cell separators.

    PubMed

    Keklik, Muzaffer; Eser, Bulent; Kaynar, Leylagul; Solmaz, Musa; Ozturk, Ahmet; Yay, Mehmet; Birekul, Ayse; Oztekin, Mehmet; Sivgin, Serdar; Cetin, Mustafa; Unal, Ali

    2014-10-01

    A variety of apheresis instruments are now available on the market for double dose plateletpheresis. We compared three apheresis devices (Fenwal Amicus, Fresenius COM.TEC and Trima Accel) with regard to processing time, platelet (PLT) yield, collection efficiency (CE) and collection rate (CR). The single-needle or double-needle double plateletpheresis procedures of the three instruments were compared in a retrospective, randomized study in 135 donors. In the pre-apheresis setting, 45 double plateletpheresis procedures performed with each instrument revealed no significant differences in donor's age, sex, weight, hemoglobin, white blood cell and PLT count between three groups. The blood volume processed to reach a target PLT yield of ≥ 6 × 10(11) was higher in the COM.TEC compared with the Amicus and Trima (4394 vs. 3780 and 3340 ml, respectively; p < 0.001). Also there was a significantly higher median volume of ACD used in collections on the COM.TEC compared with the Amicus and Trima (426 vs. 387 and 329 ml, respectively; p < 0.001). There was a significantly higher median time needed for the procedures on the COM.TEC compared with the Amicus and Trima (66 vs. 62 and 63 min, respectively; p = 0.024). The CE was significantly higher with the Trima compared with the Amicus and COM.TEC (83.57 ± 17.19 vs. 66.71 ± 3.47 and 58.79 ± 5.14%, respectively; p < 0.001). Also, there was a significantly higher product volume on the Trima compared with the Amicus and COM.TEC (395.56 vs. 363.11 and 386.4 ml, respectively; p = 0.008). Additionally, the CR was significantly lower with the COM.TEC compared with the Amicus and Trima (0.092 ± 0.011 vs. 0.099 ± 0.013 and 0.097 ± 0.013 plt × 10(11)/min, respectively; p = 0.039). There was no significant differences in PLT yield between the three groups (p = 0.636). Trima single-needle device collected double dose platelets more efficiently than Amicus and

  6. Health Occupations Education. Units of Instruction. Teacher's Guide. Volume II.

    ERIC Educational Resources Information Center

    Williams, Catherine

    This manual is the second part of a two-volume teacher's guide to a series of instructional units for use in health occupations education programs in Texas. Covered in the 10 units included in this volume are the following topics: special procedures (administering oxygen to patients; using elastic bandages; assisting with postural drainage; and…

  7. A Novel Unit Cell for Active Switches in the Millimeter-Wave Frequency Range

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Scherer, Gunnar; Lewark, Ulrich J.; Massler, Hermann; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar

    2018-02-01

    This paper presents a novel transistor unit cell which is intended to realize compact active switches in the high millimeter-wave frequency range. The unit cell consists of the combination of shunt and common gate transistor within a four-finger transistor cell, achieving gain in the amplifying state as well as good isolation in the isolating state. Gate width-dependent characteristics of the unit cell as well as the design of actual switch implementations are discussed in detail. To verify the concept, two switches, a single pole double throw (SPDT) switch and single pole quadruple throw (SP4T) switch, intended for the WR3 frequency range (220-325 GHz) were manufactured and characterized. The measured gain at 250 GHz is 4.6 and 2.2 dB for the SPDT and SP4T switch, respectively. An isolation of more than 24 dB for the SPDT switch and 12.8 dB for the SP4T switch was achieved.

  8. 'Tumour volume' as a predictor of survival after resection of non-small-cell lung cancer (NSCLC)

    PubMed Central

    Jefferson, M. F.; Pendleton, N.; Faragher, E. B.; Dixon, G. R.; Myskow, M. W.; Horan, M. A.

    1996-01-01

    Many factors have been individually related to outcome in populations of non-small-cell lung cancer (NSCLC) patients. Factors responsible for the outcome of an individual after surgical resection are poorly understood. We have examined the importance of 'tumour volume' in determining prognosis of patients following resection of NSCLC in a multivariate model. Cox's proportional hazard analysis was used to determine the relative prognostic significance of stage, patient age, gender, tumour cell-type, nodal score and estimated 'tumour volume' in 669 cases with NSCLC treated with surgical resection, of which 280 had died. All factors (except tumour cell-type, P = 0.33) were individually related to survival (P < 0.05). When examined together, survival time was significantly and independently related to 'tumour volume' and stage (P < 0.001), and other factors ceased to be significant. In cases with stage I or II tumours, risk of death was found to increase significantly with increasing estimated 'tumour volume' (23.8% relative increase in hazard to death per doubling of 'tumour volume', 95% confidence interval 13.2-35.2%, P < 0.001 stage I; P < 0.006 stage II). In cases with stage IIIa tumours this factor alone was the significant prognostic variable. In conclusion, an estimate of 'tumour volume' significantly improves prediction of prognosis for individual NSCLC patients with UICC stage I or II tumours. PMID:8695364

  9. Cartilage formation in the CELLS 'double bubble' hardware

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Arizpe, Jorge; Montufar-Solis, Dina

    1991-01-01

    The CELLS experiment scheduled to be flown on the first International Microgravity Laboratory is designed to study the effect of microgravity on the cartilage formation, by measuring parameters of growth in a differentiating cartilage cell culture. This paper investigates the conditions for this experiment by studying cartilage differentiation in the 'bubble exchange' hardware with the 'double bubble' design in which the bubbles are joined by a flange which also overlays the gasket. Four types of double bubbles (or double gas permeable membranes) were tested: injection-molded bubbles 0.01- and 0.005-in. thick, and compression molded bubbles 0.015- and 0.01-in. thick. It was found that double bubble membranes of 0.005- and 0.010-in. thickness supported cartilage differentiation, while the 0.015-in. bubbles did not. It was also found that nodule count, used in this study as a parameter, is not the best measure of the amount of cartilage differentiation.

  10. Calculus Students' Understanding of Area and Volume Units

    ERIC Educational Resources Information Center

    Dorko, Allison; Speer, Natasha

    2015-01-01

    Units of measure are critical in many scientific fields. While instructors often note that students struggle with units, little research has been conducted about the nature and extent of these difficulties or why they exist. We investigated calculus students' unit use in area and volume computations. Seventy-three percent of students gave…

  11. Results of a prospective multicentre myeloablative double-unit cord blood transplantation trial in adult patients with acute leukaemia and myelodysplasia.

    PubMed

    Barker, Juliet N; Fei, Mingwei; Karanes, Chatchada; Horwitz, Mitchell; Devine, Steven; Kindwall-Keller, Tamila L; Holter, Jennifer; Adams, Alexia; Logan, Brent; Navarro, Willis H; Riches, Marcie

    2015-02-01

    Double-unit cord blood (CB) grafts may improve engraftment and relapse risk in adults with haematological malignancies. We performed a prospective high-dose myeloablative double-unit CB transplantation (CBT) trial in adults with high-risk acute leukaemia or myelodysplasia (MDS) between 2007 and 2011. The primary aim was to establish the 1-year overall survival in a multi-centre setting. Fifty-six patients (31 acute myeloid leukaemia, 19 acute lymphoblastic leukaemia, 4 other acute leukaemias, 2 myelodysplastic syndrome [MDS]) were transplanted at 10 centres. The median infused total nucleated cell doses were 2·62 (larger unit) and 2·02 (smaller unit) x 10(7) /kg. The cumulative incidence of day 100 neutrophil engraftment was 89% (95% confidence interval [CI]: 80-96). Day 180 grade II-IV acute graft-versus-host disease (GVHD) incidence was 64% (95%CI: 51-76) and 36% (95%CI: 24-49) of patients had chronic GVHD by 3-years. At 3-years post-transplant, the transplant-related mortality (TRM) was 39% (95%CI: 26-52), and the 3-year relapse incidence was 11% (95%CI: 4-21). With a median 37-month (range 23-71) follow-up of survivors, the 3-year disease-free survival was 50% (95%CI: 37-63). Double-unit CBT is a viable alternative therapy for high-risk acute leukaemia/ MDS in patients lacking a matched unrelated donor. This is especially important for minority patients. The relapse incidence was low but strategies to ameliorate TRM are needed. © 2014 John Wiley & Sons Ltd.

  12. EPA RREL'S MOBILE VOLUME REDUCTION UNIT -- APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The volume reduction unit (VRU) is a pilot-scale, mobile soil washing system designed to remove organic contaminants from the soil through particle size separation and solubilization. The VRU removes contaminants by suspending them in a wash solution and by reducing the volume of...

  13. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  14. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  15. Unitized Regenerative Fuel Cell System Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.

  16. Standard atomic volumes in double-stranded DNA and packing in protein–DNA interfaces

    PubMed Central

    Nadassy, Katalin; Tomás-Oliveira, Isabel; Alberts, Ian; Janin, Joël; Wodak, Shoshana J.

    2001-01-01

    Standard volumes for atoms in double-stranded B-DNA are derived using high resolution crystal structures from the Nucleic Acid Database (NDB) and compared with corresponding values derived from crystal structures of small organic compounds in the Cambridge Structural Database (CSD). Two different methods are used to compute these volumes: the classical Voronoi method, which does not depend on the size of atoms, and the related Radical Planes method which does. Results show that atomic groups buried in the interior of double-stranded DNA are, on average, more tightly packed than in related small molecules in the CSD. The packing efficiency of DNA atoms at the interfaces of 25 high resolution protein–DNA complexes is determined by computing the ratios between the volumes of interfacial DNA atoms and the corresponding standard volumes. These ratios are found to be close to unity, indicating that the DNA atoms at protein–DNA interfaces are as closely packed as in crystals of B-DNA. Analogous volume ratios, computed for buried protein atoms, are also near unity, confirming our earlier conclusions that the packing efficiency of these atoms is similar to that in the protein interior. In addition, we examine the number, volume and solvent occupation of cavities located at the protein–DNA interfaces and compared them with those in the protein interior. Cavities are found to be ubiquitous in the interfaces as well as inside the protein moieties. The frequency of solvent occupation of cavities is however higher in the interfaces, indicating that those are more hydrated than protein interiors. Lastly, we compare our results with those obtained using two different measures of shape complementarity of the analysed interfaces, and find that the correlation between our volume ratios and these measures, as well as between the measures themselves, is weak. Our results indicate that a tightly packed environment made up of DNA, protein and solvent atoms plays a significant role

  17. [Influence of transport parameters values on volume flows in the double-membrane system].

    PubMed

    Slezak, Andrzej; Bryll, Arkadiusz

    2005-01-01

    On the basis of Kedem-Katchalsky non-linear equations for the double-membrane system, research were carried out upon the influence of the transmembrane transport parameters, i.e. hydraulic permeability (Lp), reflection (sigma) and solute (omega) coefficients on the volume flows in the double-membrane system. The membrane system was composed of two membranes Ml and Mr characterized by coefficients, respectively Lpl, sigmal, omegal and Lp(r), sigmar, omegar, that separated the solutions at concentrations Cl, Cm, Cr. In order to show the influence of the membranes parameters values on the volume flow intensity, there were calculated the following dependencies: J(v sigma) = f omega(Lp)ii, Jv = f sigma(omega r)Lp,i), Jv = f sigma(sigma(omega r Lp,li), Jv = f sigma(sigma omega l Lp,ri) , (i = l, r), in conditions of set out mechanic pressure (Pl = Pr = Po = const.) and set concentrations (Cl = Cr = C = const.). The graphical pictures of the two first equations are hyperbolas and straight lines in particular cases, whereas the graphical pictures of further two dependencies are more complex.

  18. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  19. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  20. 48 CFR 242.1402 - Volume movements within the contiguous United States.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... administration office submits a volume movement report when— (1) Significant changes are made to the movement... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Volume movements within... SERVICES Traffic and Transportation Management 242.1402 Volume movements within the contiguous United...

  1. The effect of impression volume and double-arch trays on the registration of maximum intercuspation.

    PubMed

    Hahn, Sara M; Millstein, Philip L; Kinnunen, Taru H; Wright, Robert F

    2009-12-01

    The type of double-arch trays used may affect occlusion. The purpose of this study was to determine what effect, if any, double-arch tray design and impression material volume had on the registration of maximum intercuspation (MI). Quadrant impressions were made on articulated fracture-resistant dental casts mounted in maximum intercuspation occlusion. Three types of sideless double-arch impression trays were used: First Bite with nylon webbing, Sultan's 3-Way with double crosshatch webbing, and Premium's 3-in-1 Tray with single crosshatch webbing. Vinyl polysiloxane impression material (Aquasil Ultra Rigid Fast Set) was distributed at 2 different volumes (5.4 ml and 8.3 ml), and 60 impressions were made (n=10). A weight of 1.2 kg was placed on the upper arm of an Artex articulator, ensuring complete closure. The impressions were allowed to polymerize for 5 minutes. After polymerization, specimens were placed on a light box, and a camera set at a fixed distance was used to capture the light transmission that was projected through the impression material. The camera transferred the information to an image analysis program (ImageJ). This system allowed the different amounts of light projected through the impression to be translated into a gray scale value (GSV), which was assigned a thickness value, in millimeters, of a specified occlusal contact area. To assess reliability of the experimental design, 10 control impressions were made by directly applying impression material onto the typodont. These were analyzed in the same manner as the impressions made with trays. A 2-way ANOVA comparing volume by tray type was used (alpha=.05). This was followed by a Tukey HSD test. There was no main effect for volume of impression material (P=.71). Tray type was significantly different (P<.001). Impressions made with Sultan trays were significantly less accurate than impressions made with First Bite or Premium impression trays. The Premium tray type had the highest mean (SD) GSV

  2. Cell volume regulation and apoptotic volume decrease in rat distal colon superficial enterocytes.

    PubMed

    Antico, Stefania; Lionetto, Maria Giulia; Giordano, Maria Elena; Caricato, Roberto; Schettino, Trifone

    2013-01-01

    The colon epithelium is physiologically exposed to osmotic stress, and the activation of cell volume regulation mechanisms is essential in colonocyte physiology. Moreover, colon is characterized by a high apoptotic rate of mature cells balancing the high division rate of stem cells. The aim of the present work was to investigate the main cell volume regulation mechanisms in rat colon surface colonocytes and their role in apoptosis. Cell volume changes were measured by light microscopy and video imaging on colon explants; apoptosis sign appearance was monitored by confocal microscopy on annexin V/propidium iodide labeled explants. Superficial colonocytes showed a dynamic regulation of their cell volume during anisosmotic conditions with a Regulatory Volume Increase (RVI) response following hypertonic shrinkage and Regulatory Volume Decrease (RVD) response following hypotonic swelling. RVI was completely inhibited by bumetanide, while RVD was completely abolished by high K(+) or iberiotoxin treatment and by extracellular Ca(2+) removal. DIDS incubation was also able to affect the RVD response. When colon explants were exposed to H2O2 as apoptotic inducer, colonocytes underwent an isotonic volume decrease ascribable to Apoptotic Volume Decrease (AVD) within about four hours of exposure. AVD was shown to precede annexin V positivity. It was also inhibited by high K(+) or iberiotoxin treatment. Interestingly, treatment with iberiotoxin significantly inhibited apoptosis progression. In rat superficial colonocytes K(+) efflux through high conductance Ca(2+)-activated K(+) channels (BK channels) was demonstrated to be the main mechanism of RVD and to plays also a crucial role in the AVD process and in the progression of apoptosis. © 2013 S. Karger AG, Basel.

  3. One-Unit versus Two-Unit Cord-Blood Transplantation for Hematologic Cancers

    PubMed Central

    Wagner, John E.; Eapen, Mary; Carter, Shelly; Wang, Yanli; Schultz, Kirk R.; Wall, Donna A.; Bunin, Nancy; Delaney, Colleen; Haut, Paul; Margolis, David; Peres, Edward; Verneris, Michael R.; Walters, Mark; Horowitz, Mary M.; Kurtzberg, Joanne

    2014-01-01

    BACKGROUND Umbilical-cord blood has been used as the source of hematopoietic stem cells in an estimated 30,000 transplants. The limited number of hematopoietic cells in a single cord-blood unit prevents its use in recipients with larger body mass and results in delayed hematopoietic recovery and higher mortality. Therefore, we hypothesized that the greater numbers of hematopoietic cells in two units of cord blood would be associated with improved outcomes after transplantation. METHODS Between December 1, 2006, and February 24, 2012, a total of 224 patients 1 to 21 years of age with hematologic cancer were randomly assigned to undergo double-unit (111 patients) or single-unit (113 patients) cord-blood transplantation after a uniform myeloablative conditioning regimen and immunoprophylaxis for graft-versus-host disease (GVHD). The primary end point was 1-year overall survival. RESULTS Treatment groups were matched for age, sex, self-reported race (white vs. nonwhite), performance status, degree of donor–recipient HLA matching, and disease type and status at transplantation. The 1-year overall survival rate was 65% (95% confidence interval [CI], 56 to 74) and 73% (95% CI, 63 to 80) among recipients of double and single cord-blood units, respectively (P = 0.17). Similar outcomes in the two groups were also observed with respect to the rates of disease-free survival, neutrophil recovery, transplantation-related death, relapse, infections, immunologic reconstitution, and grade II–IV acute GVHD. However, improved platelet recovery and lower incidences of grade III and IV acute and extensive chronic GVHD were observed among recipients of a single cord-blood unit. CONCLUSIONS We found that among children and adolescents with hematologic cancer, survival rates were similar after single-unit and double-unit cord-blood transplantation; however, a single-unit cord-blood transplant was associated with better platelet recovery and a lower risk of GVHD. PMID:25354103

  4. Serious infection risk and immune recovery after double-unit cord blood transplantation without antithymocyte globulin.

    PubMed

    Sauter, Craig; Abboud, Michelle; Jia, Xiaoyu; Heller, Glenn; Gonzales, Anne-Marie; Lubin, Marissa; Hawke, Rebecca; Perales, Miguel-Angel; van den Brink, Marcel R; Giralt, Sergio; Papanicolaou, Genovefa; Scaradavou, Andromachi; Small, Trudy N; Barker, Juliet N

    2011-10-01

    Factors contributing to infection risk after cord blood transplantation (CBT) include the use of anti-thymocyte globulin (ATG), prolonged neutropenia, and failure to transfer immunity. In the present study, we investigated the potential of double-unit CBT without ATG to reduce the risk of infection and evaluated the nature of serious infections in the first year after CBT using this approach. Seventy-two predominantly adult patients underwent CBT for hematologic malignancies; of these, 52 patients received myeloablative conditioning, and 20 received nonmyeloablative conditioning. The peak incidences of bacterial infections (32%), fungal infections (14%), and bacterial/fungal pneumonias (10%) occurred in the first 30 days posttransplantation. Three such infections contributed to early mortality. The peak incidence of viral infections was 31-60 days posttransplantation, affecting 30% of patients. Cytomegalovirus (CMV) was the most common viral infection. CMV infections occurring before day 120 (n = 23) had no relationship with graft-versus-host disease (GVHD), whereas CMV infections occurring after day 120 (n = 5), along with all cases of Epstein-Barr virus viremia (n = 5) and adenoviral enteritis (n = 2), occurred exclusively in the context of GVHD therapy or corticosteroid use for another indication. Viral infections had the highest lethality: 2 were a direct cause of death, and 3 contributed to death. Patients exhibited steady immune recovery, achieving a median CD3(+)4(+) T cell count >200 cells/μL by day 120 post-CBT, and no infection-related deaths occurred after day 120. Our results suggest that double-unit CBT without ATG is associated with prompt T cell recovery, and, unlike in CBT incorporating ATG, infection is rarely a primary cause of death. However, CBT without ATG is associated with a significant risk of GVHD, and serious infections remain a challenge, especially in the setting of GVHD. New strategies are needed to further reduce infectious

  5. An Ancient Relation between Units of Length and Volume Based on a Sphere

    PubMed Central

    Zapassky, Elena; Gadot, Yuval; Finkelstein, Israel; Benenson, Itzhak

    2012-01-01

    The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery vessels but not of the ceramics of Mesopotamia, which had a different system of measuring length and volume units. PMID:22470489

  6. The effect of inter-unit HLA matching in double umbilical cord blood transplantation for acute leukemia

    PubMed Central

    Brunstein, Claudio; Zhang, Mei-Jie; Barker, Juliet; St. Martin, Andrew; Bashey, Asad; de Lima, Marcos; Dehn, Jason; Hematti, Peiman; Perales, Miguel-Angel; Rocha, Vanderson; Territo, Mary; Weisdorf, Daniel; Eapen, Mary

    2017-01-01

    The effects of inter-unit HLA-match on early outcomes with regards to double cord blood transplantation have not been established. Therefore, we studied the effect of inter-unit HLA-mismatching on the outcomes of 449 patients with acute leukemia after double cord blood transplantation. Patients were divided into two groups: one group that included transplantations with inter-unit mismatch at 2 or less HLA-loci (n=381) and the other group with inter-unit mismatch at 3 or 4 HLA-loci (n=68). HLA-match considered low resolution matching at HLA-A and -B loci and allele-level at HLA-DRB1, the accepted standard for selecting units for double cord blood transplants. Patients’, disease, and transplant characteristics were similar in the two groups. We observed no effect of the degree of inter-unit HLA-mismatch on neutrophil (Hazard Ratio 1.27, P=0.11) or platelet (Hazard Ratio 0.1.13, P=0.42) recovery, acute graft-versus-host disease (Hazard Ratio 1.17, P=0.36), treatment-related mortality (Hazard Ratio 0.92, P=0.75), relapse (Hazard Ratio 1.18, P=0.49), treatment failure (Hazard Ratio 0.99, P=0.98), or overall survival (Hazard Ratio 0.98, P=0.91). There were no differences in the proportion of transplants with engraftment of both units by three months (5% after transplantation of units with inter-unit mismatch at ≤2 HLA-loci and 4% after transplantation of units with inter-unit mismatch at 3 or 4 HLA-loci). Our observations support the elimination of inter-unit HLA-mismatch criterion when selecting cord blood units in favor of optimizing selection based on individual unit characteristics. PMID:28126967

  7. Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell

    NASA Astrophysics Data System (ADS)

    Zhong, Haihong; Tian, Ran; Gong, Xiaoman; Li, Dianqing; Tang, Pinggui; Alonso-Vante, Nicolas; Feng, Yongjun

    2017-09-01

    We fabricated a NiFeOx/CoNy-C nanocomposite derived from CoPcTs-intercalated Ni2Fe-layered double hydroxides (Ni2Fe-CoPcTs-LDH), which served as high-efficiency, low-cost, and long-durability bifunctional oxygen electrocatalyst in half-cell, and a H2-O2 laminar flow unitized regenerative micro-cell (LFURMC) in alkaline media. Based on the synergistic effect between Co-Ny and NiFeOx centers, the non-noble hybrid catalyst NiFeOx/CoNy-C achieves a ΔE (η@jOER,10 - η@jORR,-3) = 0.84 V in alkaline solution, outperforming the commercial Pt/C, and very close to that of IrOx/C. In the fuel cell mode, the performance of NiFeOx/CoNy-C with the maximum power density of 56 mW cm-2 is similar to that of Pt/C (63 mW cm-2) and IrOx/C (58 mW cm-2); in the electrolysis mode, the calculated maximum electrical power consumed on NiFeOx/CoNy-C (237 mW cm-2) is more than 3 times that on Pt/C (73 mW cm-2), similar with that of IrOx/C. More importantly, the NiFeOx/CoNy-C shows a remarkable stability in alternating modes in a LFURMC system.

  8. Cellular pressure and volume regulation and implications for cell mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2013-03-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.

  9. High-rate lithium/manganese dioxide batteries; the double cell concept

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.

  10. 48 CFR 47.207-11 - Volume movements within the contiguous United States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Volume movements within... Transportation-Related Services 47.207-11 Volume movements within the contiguous United States. (a) For purposes of contract administration, a volume movement is— (1) In DoD, the aggregate of freight shipments...

  11. One-unit versus two-unit cord-blood transplantation for hematologic cancers.

    PubMed

    Wagner, John E; Eapen, Mary; Carter, Shelly; Wang, Yanli; Schultz, Kirk R; Wall, Donna A; Bunin, Nancy; Delaney, Colleen; Haut, Paul; Margolis, David; Peres, Edward; Verneris, Michael R; Walters, Mark; Horowitz, Mary M; Kurtzberg, Joanne

    2014-10-30

    Umbilical-cord blood has been used as the source of hematopoietic stem cells in an estimated 30,000 transplants. The limited number of hematopoietic cells in a single cord-blood unit prevents its use in recipients with larger body mass and results in delayed hematopoietic recovery and higher mortality. Therefore, we hypothesized that the greater numbers of hematopoietic cells in two units of cord blood would be associated with improved outcomes after transplantation. Between December 1, 2006, and February 24, 2012, a total of 224 patients 1 to 21 years of age with hematologic cancer were randomly assigned to undergo double-unit (111 patients) or single-unit (113 patients) cord-blood transplantation after a uniform myeloablative conditioning regimen and immunoprophylaxis for graft-versus-host disease (GVHD). The primary end point was 1-year overall survival. Treatment groups were matched for age, sex, self-reported race (white vs. nonwhite), performance status, degree of donor-recipient HLA matching, and disease type and status at transplantation. The 1-year overall survival rate was 65% (95% confidence interval [CI], 56 to 74) and 73% (95% CI, 63 to 80) among recipients of double and single cord-blood units, respectively (P=0.17). Similar outcomes in the two groups were also observed with respect to the rates of disease-free survival, neutrophil recovery, transplantation-related death, relapse, infections, immunologic reconstitution, and grade II-IV acute GVHD. However, improved platelet recovery and lower incidences of grade III and IV acute and extensive chronic GVHD were observed among recipients of a single cord-blood unit. We found that among children and adolescents with hematologic cancer, survival rates were similar after single-unit and double-unit cord-blood transplantation; however, a single-unit cord-blood transplant was associated with better platelet recovery and a lower risk of GVHD. (Funded by the National Heart, Lung, and Blood Institute and the

  12. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride.

    PubMed Central

    Dunham, P B; Ellory, J C

    1981-01-01

    The major pathway of passive K influx (ouabain-insensitive) was characterized in low-K type (LK) red cells of sheep. 1. Passive K transport in these cells was highly sensitive to variations in cell volume; it increased threefold or more in cells swollen osmotically by 10%, and decreased up to twofold in cells shrunken 5-10%. Active K influx was insensitive to changes in cell volume. Three different methods for varying cell volume osmotically all gave similar results. 2. The volume-sensitive pathway was specific for K in that Na influx did not vary with changes in cell volume. 3. The volume-sensitive K influx was a saturable function of external K concentration. It was slightly inhibited by Na, whereas K influx in shrunken cells was unaffected by Na. 4. Passive K influx was dependent on the major anion in the medium in that replacement of Cl with any of six other anions resulted in a reduction of K influx by 50-80% (replacement of Cl by Br caused an increase in K influx). The activation of K influx by Cl followed sigmoid kinetics. 5. Passive K influx is inhibited by anti-L antibody. The antibody affected only that portion of influx which was Cl-dependent and volume-sensitve. Of the subfractions of the antibody, it is anti-L1 which inhibits passive K transport. 6. Pretreatment of cells with iodoacetamide reduced the sensitivity of K influx to cell volume in that the influx was reduced in swollen IAA-treated cells and increased in shrunken IAA-cells. 7. Intracellular Ca has no role in altering passive K transport in LK sheep cells. Therefore, the major pathway of passive K transport in LK sheep red cells is sensitive to changes in cell volume, specific for K, dependent on Cl, and inhibited by anti-L1 antibody, The minor pathway, observed in shrunken cells, has none of these properties. PMID:6798197

  13. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  14. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  15. The use of a computerized algorithm to determine single cardiac cell volumes.

    PubMed

    Marino, T A; Cook, L; Cook, P N; Dwyer, S J

    1981-04-01

    Single cardiac muscles cell volume data have been difficult to obtain, especially because the shape of a cell is quite complex. With the aid of a surface reconstruction method, a cell volume estimation algorithm has been developed that can be used on serial of cells. The cell surface is reconstructed by means of triangular tiles so that the cell is represented as a polyhedron. When this algorithm was tested on computer generated surfaces of a known volume, the difference was less than 1.6%. Serial sections of two phantoms of a known volume were also reconstructed and a comparison of the mathematically derived volumes and the computed volume estimations gave a per cent difference of between 2.8% and 4.1%. Finally cell volumes derived using conventional methods and volumes calculated using the algorithm were compared. The mean atrial muscle cell volume derived using conventional methods was 7752.7 +/- 644.7 micrometers3, while the mean computerized algorithm estimated atrial muscle cell volume was 7110.6 +/- 625.5 micrometers3. For AV bundle cells the mean cell volume obtained by conventional methods was 484.4 +/- 88.8 micrometers3 and the volume derived from the computer algorithm was 506.0 +/- 78.5 micrometers3. The differences between the volumes calculated using conventional methods and the algorithm were not significantly different.

  16. Color in the Cortex—single- and double-opponent cells

    PubMed Central

    Shapley, Robert; Hawken, Michael

    2011-01-01

    This is a review of the research during the past 25 years on cortical processing of color signals. At the beginning of the period the modular view of cortical processing predominated. However, at present an alternative view, that color and form are linked inextricably in visual cortical processing, is more persuasive than it seemed in 1985. Also, the role of the primary visual cortex, V1, in color processing now seems much larger than it did in 1985. The re-evaluation of the important role of V1 in color vision was caused in part by investigations of human V1 responses to color, measured with functional magnetic resonance imaging, fMRI, and in part by the results of numerous studies of single-unit neurophysiology in non-human primates. The neurophysiological results have highlighted the importance of double-opponent cells in V1. Another new concept is population coding of hue, saturation, and brightness in cortical neuronal population activity. PMID:21333672

  17. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    PubMed

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.

  18. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    PubMed

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  19. Double Knockdown of Prolyyl Hydroxylase and Factor Inhibiting HIF with Non-Viral Minicircle Gene Therapy Enhances Stem Cell Mobilization and Angiogenesis After Myocardial Infarction

    PubMed Central

    Huang, Mei; Nguyen, Patricia; Jia, Fangjun; Hu, Shijun; Gong, Yongquan; de Almeida, Patricia E.; Wang, Li; Nag, Divya; Kay, Mark A.; Giaccia, Amato J; Robbins, Robert C.; Wu, Joseph C.

    2011-01-01

    Background Under normoxic conditions, hypoxia inducible factor-1 alpha (HIF-1α) is rapidly degraded by two hydroxylases, prolyl hydroxylase (PHD) and factor inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its up-regulation may be an effective therapeutic option for ischemic heart failure. Methods and Results PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin sequences for inhibiting PHD isoenzyme 2 (shPHD2) and FIH (shFIH) were inserted into novel non-viral minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit+ cardiac progenitor cells (CPCs) demonstrated higher expression of angiogenesis factors in the double knockdown group compared to the single knockdown and shScramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially following LAD ligation in adult FVB mice (n=60). Functional studies using magnetic resonance imaging (MRI), echocardiography, and pressure-volume (PV) loops showed greater improvement in cardiac function in the double knockdown group. To assess mechanism(s) of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double knockdown group. Fluorescence activated cell sorting (FACS) showed significantly higher activation of endogenous c-kit+ cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser capture microdissection (LCM) analysis confirmed up-regulation of HIF-1α protein and angiogenesis genes, respectively. Conclusions We demonstrated that HIF-1α up-regulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function. PMID

  20. Synergetic effect of double-step blocking layer for the perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Kim, Jaewook; Gil, Bumjin; Park, Byungwoo

    2017-10-01

    In an organometallic CH3NH3PbI3 (MAPbI3) perovskite solar cell, we have demonstrated a vastly compact TiO2 layer synthesized by double-step deposition, through a combination of sputter and solution deposition to minimize the electron-hole recombination and boost the power conversion efficiency. As a result, the double-step strategy allowed outstanding transmittance of blocking layer. Additionally, crystallinity and morphology of the perovskite film were significantly modified, provoking enhanced photon absorption and solar cell performance with the reduced recombination rate. Thereby, this straightforward double-step strategy for the blocking layer exhibited 12.31% conversion efficiency through morphological improvements of each layer.

  1. General and Virus-Specific Immune Cell Reconstitution Following Double Cord Blood Transplantation

    PubMed Central

    Saliba, Rima M.; Rezvani, Katayoun; Leen, Ann; Jorgensen, Jeffrey; Shah, Nina; Hosing, Chitra; Parmar, Simrit; Oran, Betul; Olson, Amanda; Mehta, Rohtesh S.; Chemaly, Roy F.; Saunders, Ila M.; Bollard, Catherine M.; Shpall, Elizabeth J.

    2015-01-01

    Cord blood transplantation (CBT) is curative for many patients with hematologic malignancies but is associated with delayed immune recovery and an increased risk of viral infections compared to human leukocyte antigen (HLA) matched bone marrow or peripheral blood progenitor cell transplantation. In this study we evaluated the significance of lymphocyte recovery in 125 consecutive patients with hematologic malignancies who underwent double-unit CBT (DUCBT) with an anti-thymocyte globulin-containing regimen at our institution. A subset of 65 patients were prospectively evaluated for recovery of T, natural killer (NK) and B cells and in 46 patients we also examined viral-specific T cell recovery against Adenovirus, Epstein-Barr virus, cytomegalovirus, BK virus, respiratory syncytial virus and Influenza antigen. Our results indicate that in recipients of DUCBT, the day 30 absolute lymphocyte count is highly predictive of non-relapse mortality (NRM) and overall survival (OS). Immune recovery post-DUCBT was characterized by prolonged CD8+ and CD4+ T lymphopenia associated with preferential expansion of B and NK cells. We also observed profound delays in quantitative and functional recovery of viral-specific CD4+ and CD8+ T-cell responses for the first year post-CBT. Taken together, our data support efforts aimed at optimizing viral-specific T cell recovery to improve outcomes post-CBT. PMID:25708219

  2. K-Cl cotransporters, cell volume homeostasis, and neurological disease

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric

    2016-01-01

    K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  3. K-Cl cotransporters, cell volume homeostasis, and neurological disease.

    PubMed

    Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric

    2015-08-01

    K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Iron supplementation and 2-unit red blood cell apheresis: a randomized, double-blind, placebo-controlled study.

    PubMed

    Radtke, Hartmut; Mayer, Beate; Röcker, Lothar; Salama, Abdulgabar; Kiesewetter, Holger

    2004-10-01

    The benefits of 2-unit red blood cell (RBC) apheresis are evident, but iron depletion may be a limiting factor in using this technology. Regular iron supplementation may allow a better utilization of this technique. In this study, 260 regular blood donors donated 2-unit RBCs on each of a total of seven visits at intervals of 8 to 10 weeks. The volunteers were randomly assigned to receive 100 mg of iron(II) or placebo daily. Group A received iron capsules after the first three donations, and Group B after the second three donations, respectively. Hemoglobin, serum ferritin, and serum iron were measured before each donation. Mean serum ferritin concentration decreased after each donation in the placebo phase of both treatment groups, but it remained largely constant during the iron phase in Group A, and even increased during the iron phase in Group B. Regular iron supplementation prevents iron depletion in the majority of donors after 2-unit RBC apheresis within an 8- to 10-week period.

  5. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE PAGES

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...

    2016-11-16

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  6. One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herricks, Thurston; Dilworth, David J.; Mast, Fred D.

    Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less

  7. A Novel Double Subculture Method and Its Theory for the Enumeration of Injured Cells in Stressed Microbial Population.

    PubMed

    Tsuchido, Tetsuaki

    2017-01-01

     A novel double subculture method, termed DiVSaL (Differential Viabilities between Solid and Liquid media) method, for the enumeration of injured cell population of a microorganism, which occurs after some sublethal to lethal treatment, was proposed. In this method injured cells were enumerated as the differential value between viabilities determined with two different techniques, the conventional plate counting using a solid agar medium and the growth delay analysis using a liquid medium. In the former technique, the viable cell number is obtained as colony forming unit (CFU) formed on an agar medium where sublethally injured cells are as much rescued as possible. In the latter technique, on the other hand," the integrated viability" defined by Takano and Tsuchido (1982) is introduced and is calculated from the growth delay of a stressed population, referred to unstressed one. For the growth delay analysis, in this paper, not only the original theoretical model, where the specific growth rate (and therefore the defined G 10 value) does not change after the exposure to a stress treatment, but also a novel modified theory, where the parameter changes, is proposed. On the theoretical background, this DiVSaL method as a double subculture method can be used to enumerate the injured cells without selection by addition of some inhibitor or by nutritional shortage.

  8. TREATABILITY STUDY BULLETIN: MOBILE VOLUME REDUCTION UNIT AT THE ESCAMBIA SUPERFUND SITE

    EPA Science Inventory

    The RREL has developed a pilot-scale Mobile Volume Reduction Unit (VRU) to determine the feasibility of soil washing for the remediation of contaminated soils. This mobile unit, mounted on two trailers, can process 100 lb/hr of soil feed. Soil washing is a cost effective technolo...

  9. Comparison of the mechanobiological performance of bone tissue scaffolds based on different unit cell geometries.

    PubMed

    Rodríguez-Montaño, Óscar L; Cortés-Rodríguez, Carlos Julio; Uva, Antonio E; Fiorentino, Michele; Gattullo, Michele; Monno, Giuseppe; Boccaccio, Antonio

    2018-07-01

    Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    PubMed

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  12. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  13. Investor structure and the price-volume relationship in a continuous double auction market: An agent-based modeling perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bi, Zhengzheng; Shen, Dehua

    2017-02-01

    This paper investigates the impact of investor structure on the price-volume relationship by simulating a continuous double auction market. Connected with the underlying mechanisms of the price-volume relationship, i.e., the Mixture of Distribution Hypothesis (MDH) and the Sequential Information Arrival Hypothesis (SIAH), the simulation results show that: (1) there exists a strong lead-lag relationship between the return volatility and trading volume when the number of informed investors is close to the number of uninformed investors in the market; (2) as more and more informed investors entering the market, the lead-lag relationship becomes weaker and weaker, while the contemporaneous relationship between the return volatility and trading volume becomes more prominent; (3) when the informed investors are in absolute majority, the market can achieve the new equilibrium immediately. Therefore, we can conclude that the investor structure is a key factor in affecting the price-volume relationship.

  14. Annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for the Central United States during the 2011 floods

    USGS Publications Warehouse

    Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.

    2014-01-01

    During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes

  15. Volume reduction of hot cell plastic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, F W; Henscheid, J P; Lewis, L C

    1989-09-19

    The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

  16. Zinc Chromate Induces Chromosome Instability and DNA Double Strand Breaks in Human Lung Cells

    PubMed Central

    Xie, Hong; Holmes, Amie L.; Young, Jamie L.; Qin, Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng, Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2014-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or ‘particulate’ Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis. PMID:19027772

  17. 77 FR 4274 - Migratory Bird Permits; Double-Crested Cormorant Management in the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 21 [Docket No. FWS-R9-MB-2011-0033; 91200-1231-9BPP] RIN 1018-AX82 Migratory Bird Permits; Double-Crested Cormorant Management in the United States AGENCY: Fish and Wildlife Service, Interior. ACTION: Request for comments; extension of...

  18. TREATABILITY STUDY BULLETIN: MOBILE VOLUME REDUCTION UNIT AT THE SAND CREEK SUPERFUND SITE

    EPA Science Inventory

    The Risk Reduction Engineering Laboratory (RREL) Releases Control Branch (RCB) has developed a pilot-scale Mobile Volume Reduction Unit (VRU) to determine the feasibility of soil washing for the remediation of contaminated soils. This mobile unit, mounted on two trailers, can pro...

  19. Bistability: Requirements on Cell-Volume, Protein Diffusion, and Thermodynamics

    PubMed Central

    Endres, Robert G.

    2015-01-01

    Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition. PMID:25874711

  20. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  1. Design of the De-Orbit Sail Boom Deployment Unit

    NASA Astrophysics Data System (ADS)

    Meyer, Sebastian; Hillebrandt, Martin; Straubel, Marco; Huhne, Christian

    2014-06-01

    The design of the De-Orbit Sail boom deployment unit is strongly driven by volume constraints, which are given by the cubesat container. Four CFRP (carbon fiber reinforced polymer) booms [4] with a cross-sectional shape of a double-omega and a length of 3.6 m are reeled on one spool in the center of the unit. The deployment of the four booms are controlled by an electric motor, which acts on the boom spool. Due to the volume limitation caused by the dimensions of the cubesat deployer the deployment unit has little room for the mechanisms components. With the aim to achieve a robust design, the deployment concept of the unit has greatly changed during the development process. The history of the design as well as the mechanisms are described. Additionally the results of the flight model testing are presented.

  2. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes.

    PubMed

    Tejada, Maria A; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.

  3. Efficient volume computation for three-dimensional hexahedral cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dukowicz, J.K.

    1988-02-01

    Currently, algorithms for computing the volume of hexahedral cells with ''ruled'' surfaces require a minimum of 122 FLOPs (floating point operations) per cell. A new algorithm is described which reduces the operation count to 57 FLOPs per cell. copyright 1988 Academic Press, Inc.

  4. Lithium-Ion Cell Charge-Control Unit Developed

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  5. Double jeopardy: the impact of neoliberalism on care workers in the United States and South Africa.

    PubMed

    Abramovitz, Mimi; Zelnick, Jennifer

    2010-01-01

    Many researchers have explored how neoliberal restructuring of the workplace has reduced the standard of living and increased workplace stress among private sector employees. However, few have focused on how neoliberal restructuring of public policy has had similar effects on the public sector workforce. Using original case study research, the authors examine how two iconic pieces of neoliberal policy--the 1996 welfare reform bill in the United States and the GEAR macroeconomic policy in South Africa--affected public/nonprofit human service workers in New York City, United States, and public sector nurses in KwaZulu-Natal, South Africa. The authors argue that in both situations, despite national differences, these policies created a "double jeopardy," in which patients/clients and care workers are adversely affected by neoliberal public policy. This "double jeopardy" creates significant hardship, but also the opportunity for new social movements.

  6. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    PubMed Central

    Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A.

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells. PMID:28222129

  7. Evidence of Time-Of-Day Pricing In the United States. Volume 2, Appendices and Case Studies

    DOT National Transportation Integrated Search

    1984-05-01

    This is the companion volume to the research report, Evidence on Time of Transit Pricing in the United States. This volume serves as an expanded appendix to the Volume 1 report, principally providing detailed case-by-case summaries on experiences wit...

  8. Three dimensional metafilms with dual channel unit cells

    DOE PAGES

    Burckel, D. Bruce; Campione, Salvatore; Davids, Paul S.; ...

    2017-04-04

    Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ~λ d/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs,more » normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. Lastly, the ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.« less

  9. Sustained release of stem cell factor in a double network hydrogel for ex vivo culture of cord blood-derived CD34+ cells.

    PubMed

    Zhang, Yuanhao; Pan, Xiuwei; Shi, Zhen; Cai, Haibo; Gao, Yun; Zhang, Weian

    2018-04-01

    Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34 + cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34 + cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs. © 2017 John Wiley & Sons Ltd.

  10. 48 CFR 242.1402 - Volume movements within the contiguous United States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Volume movements within the contiguous United States. 242.1402 Section 242.1402 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT...

  11. Optical volume and mass measurements show that mammalian cells swell during mitosis

    PubMed Central

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael

    2015-01-01

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells. PMID:26598614

  12. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  13. Favorites, Friendships, Food, and Fantasy: Literature-Based Thematic Units for Early Primary. Volume One [and] Volume Two.

    ERIC Educational Resources Information Center

    Lukasevich, Ann; Pieronek, Florence

    Written for teachers who are interested in learning how to use literature to enhance emergent literacy growth, this handbook, in two volumes, focuses on how to implement integrated, literature-based, thematic units that stress the development of effective strategies required of independent, self-directed competent readers and writers. The first…

  14. DEMONSTRATION BULLETIN: MOBILE VOLUME REDUCTION UNIT - U.S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    The Volume Reduction Unit (VRU), which was developed by EPA, is a mobile, pilot-scale soil washing system for stand-alone field use in cleaning soil contaminated with hazardous substances. Removal efficiencies depend on the contaminant as well as the type of soil. Soil washing...

  15. Cellular volume regulation and substrate stiffness modulate the detachment dynamics of adherent cells

    NASA Astrophysics Data System (ADS)

    Yang, Yuehua; Jiang, Hongyuan

    2018-03-01

    Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.

  16. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  17. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial.

    PubMed

    Bartunek, Jozef; Terzic, Andre; Davison, Beth A; Filippatos, Gerasimos S; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L; Shochat, Michael K; Kasprzak, Jaroslaw D; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A; Teerlink, John R; Gersh, Bernard J; Povsic, Thomas J; Henry, Timothy D; Metra, Marco; Hajjar, Roger J; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William

    2017-03-01

    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein-Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann-Whitney estimator 0.54, 95% confidence interval [CI] 0.47-0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200-370 mL (60% of patients) (Mann-Whitney estimator 0.61, 95% CI 0.52-0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. © The Author 2016. Published by Oxford University Press on behalf

  18. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    PubMed Central

    Bartunek, Jozef; Terzic, Andre; Davison, Beth A.; Filippatos, Gerasimos S.; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G.; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M.; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L.; Shochat, Michael K.; Kasprzak, Jaroslaw D.; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R.; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A.; Teerlink, John R.; Gersh, Bernard J.; Povsic, Thomas J.; Henry, Timothy D.; Metra, Marco; Hajjar, Roger J.; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William

    2017-01-01

    Aims Cardiopoietic cells, produced through cardiogenic conditioning of patients’ mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. Methods and results This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. Conclusion The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. PMID:28025189

  19. Successful short-term cryopreservation of volume-reduced cord blood units in a cryogenic mechanical freezer: effects on cell recovery, viability, and clonogenic potential.

    PubMed

    Anagnostakis, Ioannis; Papassavas, Andreas C; Michalopoulos, Efstathios; Chatzistamatiou, Theofanis; Andriopoulou, Sofia; Tsakris, Athanassios; Stavropoulos-Giokas, Catherine

    2014-01-01

    Cord blood (CB) units are stored from weeks to years in liquid- or vapor-phase nitrogen until they are used for transplantation. We examined the effects of cryostorage in a mechanical freezer at -150°C on critical quality control variables of CB collections to investigate the possible use of mechanical freezers at -150°C as an alternative to storage in liquid- (or vapor-) phase nitrogen. A total of 105 CB units were thawed and washed at different time intervals (6, 12, 24, and 36 months). For every thawed CB unit, samples were removed and cell enumeration (total nucleated cells [TNCs], mononuclear cells [MNCs], CD34+, CD133+) was performed. In addition, viability was obtained with the use of flow cytometry, and recoveries were calculated. Also, total absolute colony-forming unit counts were performed and progenitor cell recoveries were studied by clonogenic assays. Significant differences (p < 0.05) were observed in certain variables (TNCs, MNC numbers, viability) when they were examined in relation with time intervals, while others (CD34+, CD133+) were relatively insensitive (p = NS) to the duration of time interval the CB units were kept in cryostorage condition. The data presented suggest that cryopreservation of CB units in a mechanical freezer at -150°C may represent an alternative cryostorage condition for CB cryopreservation. © 2013 American Association of Blood Banks.

  20. Construction of Injectable Double-Network Hydrogels for Cell Delivery.

    PubMed

    Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2017-07-10

    Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.

  1. Low Volume Resuscitation with Cell Impermeants

    DTIC Science & Technology

    2014-10-01

    function even in the low volume state. This is likely due to low resistance to flow in the peripheral capillaries due to prevention of cell swelling...limited in their effectiveness. Attempts to modify basic intravenous crystalloids for prehospital resuscitation by adding hypertonic NaCl or starch

  2. Effect of cytoplasmic volume on developmental competence of buffalo (Bubalus bubalis) embryos produced through hand-made cloning.

    PubMed

    Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K

    2011-06-01

    This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.

  3. High-Volume Production of Lightweight Multijunction Solar Cells

    NASA Technical Reports Server (NTRS)

    Youtsey, Christopher

    2015-01-01

    MicroLink Devices, Inc., has transitioned its 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable of sustaining large-volume production. This Phase II project improves the ELO process by reducing cycle time and increasing the yield of large-area devices. In addition, all critical device fabrication processes have transitioned to 6-inch production tool sets designed for volume production. An emphasis on automated cassette-to-cassette and batch processes minimizes operator dependence and cell performance variability. MicroLink Devices established a pilot production line capable of at least 1,500 6-inch wafers per month at greater than 80 percent yield. The company also increased the yield and manufacturability of the 6-inch reclaim process, which is crucial to reducing the cost of the cells.

  4. Sickle Cell Unit.

    ERIC Educational Resources Information Center

    Canipe, Stephen L.

    Included in this high school biology unit on sickle cell anemia are the following materials: a synopsis of the history of the discovery and the genetic qualities of the disease; electrophoresis diagrams comparing normal, homozygous and heterozygous conditions of the disease; and biochemical characteristics and population genetics of the disease. A…

  5. Recruitment, Job Search, and the United States Employment Service. Volume II: Tables and Methods.

    ERIC Educational Resources Information Center

    Camil Associates, Inc., Philadelphia, PA.

    This volume contains the appendixes to Volume I of the report on recruitment, job search, and the United States Employment Service in 20 middle-sized American cities. Appendix A contains 165 pages of tables. Appendix B (63 pages) contains details of sample design, data analysis, and estimate precision under the categories of: Overview of the study…

  6. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  7. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials

    PubMed Central

    Shapley, Robert M.; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component’s power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics. PMID:29375753

  8. Double Aneuploidy Detected by Cell-Free DNA Testing and Confirmed by Fetal Tissue Analysis.

    PubMed

    Echague, Charlene G; Petersen, Scott M

    2016-06-01

    Double aneuploidies account for 0.21-2.8% of spontaneous abortions resulting from chromosomal abnormalities. Rarely, cell-free DNA testing detects multiple aneuploidies; however, to discern among maternal, placental, and fetal origin, further evaluation is required. A 49-year-old woman, gravida 5 para 0, underwent cell-free DNA testing at 11 4/7 weeks of gestation, which revealed a fetus that was high risk for trisomies 18 and 21. On ultrasonography at 14 weeks of gestation, she was diagnosed with a missed abortion and underwent surgical management. Fetal and placental tissues were sent for analysis and were positive for trisomies 18 and 21, confirming the results of cell-free DNA testing. Our case highlights the ability of cell-free DNA testing to recognize a double aneuploidy confirmed by fetal tissue analysis.

  9. Double-hit lymphomas constitute a highly aggressive subgroup in diffuse large B-cell lymphomas in the era of rituximab.

    PubMed

    Kobayashi, Tsutomu; Tsutsumi, Yasuhiko; Sakamoto, Natsumi; Nagoshi, Hisao; Yamamoto-Sugitani, Mio; Shimura, Yuji; Mizutani, Shinsuke; Matsumoto, Yosuke; Nishida, Kazuhiro; Horiike, Shigeo; Asano, Naoko; Nakamura, Shigeo; Kuroda, Junya; Taniwaki, Masafumi

    2012-11-01

    The incorporation of rituximab in immunochemotherapy has improved treatment outcomes for diffuse large B-cell lymphoma, but the prognosis for some diffuse large B-cell lymphomas remains dismal. Identification of adverse prognostic subgroups is essential for the choice of appropriate therapeutic strategy. We retrospectively investigated the impact of so-called 'double-hit' cytogenetic abnormalities, i.e. cytogenetic abnormalities involving c-MYC co-existing with other poor prognostic cytogenetic abnormalities involving BCL2, BCL6 or BACH2, on treatment outcomes for 93 consecutive diffuse large B-cell lymphoma patients. According to the revised international prognostic index, no patients were cytogenetically diagnosed with double-hit lymphomas in the 'very good' risk group or in the 'good' risk group, while 5 of 33 patients had double-hit lymphomas in the 'poor' risk group. All the double-hit lymphoma patients possessed both nodal and extranodal involvement. The overall complete response rate was 89.3%, overall survival 87.1% and progression-free survival 75.8% over 2 years (median observation period: 644 days). The complete response rates were 93.2% for the non-double-hit lymphoma patients and 40.0% for the double-hit lymphoma patients. Significantly longer progression-free survival and overall survival were observed for the 'very good' and the 'good' risk patients than for the 'poor' risk patients. Moreover, the progression-free survival of double-hit lymphoma was significantly shorter than that of the non-double-hit lymphoma 'poor' risk patients (P = 0.016). In addition, the overall survival of the double-hit lymphoma patients also tended to be shorter than that of the non-double-hit lymphoma 'poor' risk group. The diagnosis of double-hit lymphoma can help discriminate a subgroup of highly aggressive diffuse large B-cell lymphomas and indicate the need for the development of novel therapeutic strategies for double-hit lymphoma.

  10. Hydrogeologic framework and estimates of ground-water volumes in Tertiary and upper Cretaceous hydrogeologic units in the Powder River basin, Wyoming

    USGS Publications Warehouse

    Hinaman, Kurt

    2005-01-01

    The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a

  11. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Red cell volume with changes in plasma osmolarity during maximal exercise.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.

    1973-01-01

    The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.

  13. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  14. Health Occupations Curriculum. Skills and Theory for Health Assistant. Volume I, Units 1-4.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    This volume consists of the first four units of a basic core curriculum that is intended for all health workers. The units deal with the following topics: (1) the health care facility, the long-term care facility, the health team, and the nursing team; (2) verbal and nonverbal communication, written communication, human behavior, ethical behavior,…

  15. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  16. Unit: Cells, Inspection Set, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This trial version of a unit is the series being produced by the Australian Science Education Project provides instructions for students to prepare a variety of cell types and examine them with microscopes. It also gives some information about the variety and function of cells. The core of the unit, which all students are expected to complete,…

  17. Double Knockout of the Na+-Driven Cl-/HCO3- Exchanger and Na+/Cl- Cotransporter Induces Hypokalemia and Volume Depletion.

    PubMed

    Sinning, Anne; Radionov, Nikita; Trepiccione, Francesco; López-Cayuqueo, Karen I; Jayat, Maximilien; Baron, Stéphanie; Cornière, Nicolas; Alexander, R Todd; Hadchouel, Juliette; Eladari, Dominique; Hübner, Christian A; Chambrey, Régine

    2017-01-01

    We recently described a novel thiazide-sensitive electroneutral NaCl transport mechanism resulting from the parallel operation of the Cl - /HCO 3 - exchanger pendrin and the Na + -driven Cl - /2HCO 3 - exchanger (NDCBE) in β-intercalated cells of the collecting duct. Although a role for pendrin in maintaining Na + balance, intravascular volume, and BP is well supported, there is no in vivo evidence for the role of NDCBE in maintaining Na + balance. Here, we show that deletion of NDCBE in mice caused only subtle perturbations of Na + homeostasis and provide evidence that the Na + /Cl - cotransporter (NCC) compensated for the inactivation of NDCBE. To unmask the role of NDCBE, we generated Ndcbe/Ncc double-knockout (dKO) mice. On a normal salt diet, dKO and single-knockout mice exhibited similar activation of the renin-angiotensin-aldosterone system, whereas only dKO mice displayed a lower blood K + concentration. Furthermore, dKO mice displayed upregulation of the epithelial sodium channel (ENaC) and the Ca 2+ -activated K + channel BKCa. During NaCl depletion, only dKO mice developed marked intravascular volume contraction, despite dramatically increased renin activity. Notably, the increase in aldosterone levels expected on NaCl depletion was attenuated in dKO mice, and single-knockout and dKO mice had similar blood K + concentrations under this condition. In conclusion, NDCBE is necessary for maintaining sodium balance and intravascular volume during salt depletion or NCC inactivation in mice. Furthermore, NDCBE has an important role in the prevention of hypokalemia. Because NCC and NDCBE are both thiazide targets, the combined inhibition of NCC and the NDCBE/pendrin system may explain thiazide-induced hypokalemia in some patients. Copyright © 2016 by the American Society of Nephrology.

  18. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    PubMed

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  19. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  20. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  1. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  2. Influence of the charge double layer on solid oxide fuel cell stack behavior

    NASA Astrophysics Data System (ADS)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  3. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells.

    PubMed

    Milush, Jeffrey M; Mir, Kiran D; Sundaravaradan, Vasudha; Gordon, Shari N; Engram, Jessica; Cano, Christopher A; Reeves, Jacqueline D; Anton, Elizabeth; O'Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S; Brenchley, Jason M; Else, James G; Silvestri, Guido; Sodora, Donald L

    2011-03-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4(+) T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3(+)CD4(-)CD8(-) T cells (double-negative T cells) partially compensates for CD4(+) T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4(+) T cells to SIV-negative animals resulted in rapid loss of CD4(+) T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4(+) T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4(+) T cell-like helper functions upon SIV-induced CD4(+) T cell depletion in this species.

  4. Impact of Resource-Based Practice Expenses on the Medicare Physician Volume

    PubMed Central

    Maxwell, Stephanie; Zuckerman, Stephen

    2007-01-01

    In 1999, Medicare implemented a resource-based relative value unit (RVU) system for physician practice expense payments, and increased the number of services for which practice expense payments differ by site. Using 1998-2004 data, we examined RVU growth and decomposed that growth into resource-based RVUs, site of service, and service quantity and mix. We found that the number services with site of service differentials doubled, and that shifts in site of service and introduction of resource-based practice expenses (RBPE) were important sources of change in practice expense RVU volume. Service quantity and mix remained the largest source of growth in total RVU volume. PMID:18435224

  5. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    PubMed Central

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  6. Effects of Lugol's iodine solution and formalin on cell volume of three bloom-forming dinoflagellates

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang

    2017-07-01

    Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.

  7. United States Air Force Summer Research Program -- 1993. Volume 8. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque. New Mexico Sponsored by...Best Available Copy UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8 PHILLIPS LABORATORY ...Alabama Box 870344 Tuscaloosa, AL 35487-0344 Final Report for: Graduate Student Research Program Phillips Laboratory , Hanscom AFB Sponsored by: Air

  8. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction.

    PubMed

    Suzuki, Yuka; Tada-Oikawa, Saeko; Hayashi, Yasuhiko; Izuoka, Kiyora; Kataoka, Misa; Ichikawa, Shunsuke; Wu, Wenting; Zong, Cai; Ichihara, Gaku; Ichihara, Sahoko

    2016-10-13

    The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE -/- ) mice, a model of human atherosclerosis. HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE -/- mice were exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse) once every other week for 10 weeks by pharyngeal aspiration. Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE -/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE -/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE -/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.

  9. The scaling of relativistic double-year widths - Poisson-Vlasov solutions and particle-in-cell simulations

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Borovsky, Joseph E.

    1992-01-01

    The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.

  10. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  11. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  12. Buckling behavior of origami unit cell facets under compressive loads

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali Emhmed; Naguib, Hani E.

    2018-03-01

    Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.

  13. Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation.

    PubMed

    Brochiero, E; Banderali, U; Lindenthal, S; Raschi, C; Ehrenfeld, J

    1995-11-01

    The permeability to Cl- of the basolateral membrane (blm) was investigated in renal (A6) epithelial cells, assessing their role in transepithelial ion transport under steady-state conditions (isoosmotic) and following a hypoosmotic shock (i.e. in a regulatory volume decrease, RVD). Three different complementary studies were made by measuring: (1) the Cl- transport rates (delta F/Fo s-1 (x10(-3))), where F is the fluorescence of N-(6-methoxyquinoyl) acetoethyl ester, MQAE, and Fo the maximal fluorescence (x10(-3)) of both membranes by following the intracellular Cl- activities (ai Cl-, measured with MQAE) after extracellular Cl- substitution (2) the blm 86Rb and 36Cl uptakes and (3) the cellular potential and Cl- current using the whole-cell patch-clamp technique to differentiate between the different Cl- transport mechanisms. The permeability of the blm to Cl- was found to be much greater than that of the apical membranes under resting conditions: aiCl- changes were 5.3 +/- 0.7 mM and 25.5 +/- 1.05 mM (n = 79) when Cl- was substituted by NO3(-) in the media bathing apical and basolateral membranes. The Cl- transport rate of the blm was blocked by bumetanide (100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 50 microM) but not by N-phenylanthranilic acid (DPC, 100 microM). 86Rb and 36Cl uptake experiments confirmed the presence of a bumetanide- and a NPPB-sensitive Cl- pathway, the latter being approximately three times more important than the former (Na/K/2Cl cotransporter). Appli-cation of a hypoosmotic medium to the serosal side of the cell increased delta F/Fo s-1 (x10(-3)) after extracellular Cl- substitution (1.03 +/- 0.10 and 2.45 +/- 0.17 arbitrary fluorescent units s-1 for isoosmotic and hypoosmotic conditions respectively, n = 11); this delta F/Fo s-1 (x10(-3)) increase was totally blocked by serosal NPPB application; on the other hand, cotransporter activity was decreased by the hypoosmotic shock. Cellular Ca2+ depletion had no effect on

  14. Size-dependent cell separation and enrichment using double spiral microchannels

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Liu, Chao; Sun, Jiashu; Jiang, Xingyu

    2012-11-01

    Much attention has been directed toward microfluidic technologies that can help improve circulating tumor cells (CTCs) separation from the blood sample. In the present work, we develop a double spiral microfluidic platform with one inlet and three outlets that allows for passive, label-free tumor cell enrichment with high throughput and efficiency, inspired by the single spiral cell sorter. The curved channel induces a Dean drag force acting on cells to compete with the inertial lift, resulting in large tumor cells to be focused and deflected into the middle outlet while small hematologic cells are removed from the inner outlet. We continuously isolated and enriched the rare tumor cells (MCF-7 and Hela cells) from diluted whole blood using the same geometry. At a spike ratio of 100 tumor cells per million hematologic cells, 92.28% of blood cells and 96.77% of tumor cells were collected at the inner and middle outlet, respectively, at the throughput of 33.3 million cells per minute. A numerical model is developed to simulate the Dean flows inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation in optimizing the operating conditions.

  15. Atlas of United States Trees, Volume 2: Alaska Trees and Common Shrubs.

    ERIC Educational Resources Information Center

    Viereck, Leslie A.; Little, Elbert L., Jr.

    This volume is the second in a series of atlases describing the natural distribution or range of native tree species in the United States. The 82 species maps include 32 of trees in Alaska, 6 of shrubs rarely reaching tree size, and 44 more of common shrubs. More than 20 additional maps summarize environmental factors and furnish general…

  16. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-03-01

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  17. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

    DOE PAGES

    Pant, Lalit M.; Weber, Adam Z.

    2017-04-14

    A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

  18. Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupta, Ian

    2005-01-01

    High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.

  19. Plasma volume during stress in man - Osmolality and red cell volume

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Mangseth, G. R.

    1979-01-01

    The purpose was (1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and (2) to determine the upper limit of this range. During a variety of stresses - submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting - changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.

  20. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  1. Metalenses based on the non-parallel double-slit arrays

    NASA Astrophysics Data System (ADS)

    Shao, Hongyan; Chen, Chen; Wang, Jicheng; Pan, Liang; Sang, Tian

    2017-09-01

    Metalenses based on surface plasmon polaritons have played an indispensable role in ultra-thin devices designing. The amplitude, phase and polarization of electromagnetic waves all can be controlled easily by modifying the metasurface structures. Here we propose and investigate a new type of structure with Babinet-inverted nano-antennas which can provide a series of unit-cells with phase-shifts covering 2π and ensure almost same transmittance simultaneously. As a result, the wavefront can be manipulated by arraying the units in course. Metalenses with the linear asymmetrical double slit unit-cell arrays are designed and the simulative results exhibit their perfect focusing characteristics, including single-focus lenses and multi-focus lenses. The small focus size and high numerical aperture make them stand out from the traditional counterparts in application of precision sensing devices. We expect our designs will provide new insights in the practical applications for metasurfaces in data storages, optical information processing and optical holography.

  2. A medulloblastoma showing an unusually long doubling time: reflection of its singular nature.

    PubMed

    Doron, Omer; Zauberman, Jacob; Feldman, Ze'ev

    2016-06-01

    In this paper, we present a case of a 4-year-old male diagnosed with a desmoplastic, SHH-type medulloblastoma. Retrospectively, we discovered that the patient underwent an MRI scan at 21 months for reasons unrelated, revealing a T1-enhanced lesion at the vermis, later recognized as the source of the tumor. This unique case provides us with a glimpse into the natural history of this tumor. Our ability to measure tumor volume at two defined time points, 31 months apart, enabled us to deduce the tumor's doubling time. This is defined as the time of one cell cycle divided by the amount of cycling cells, multiplied by cell loss factor. Potential doubling time (Tpot) and actual doubling time (Td), calculated using the Gompertzian model, are the most clinically relevant with regard to a tumor's response to radiotherapy. Here, we show an actual doubling-time (Td) of 78 days, and an extrapolated tumor diameter at the time of birth of 0.25 mm. These results both support the medulloblastoma's embryonic origin, and indicating a threefold longer actual doubling time when compared to previous studies. Taking into account the reported range of medulloblastoma potential doubling time, we deduced a cell loss factor of between 48.9 and 95.5 %. These percentages fall in line with other malignant tumors. Although limited due to the obvious reliance on only two points in time and using the Gompertzian model to complete the remainder, to the best of our knowledge, this is the longest follow-up period reported for medulloblastoma. We have described how a unique turn of events enabled us to get a glimpse into the in situ development of a medulloblastoma over a 31-month period. Regarded sometimes as an idiosyncratic tumor comprised of an array of molecular changes, the complexity of medulloblastoma is displayed here, by revealing for the first time an actual doubling time three- to fourfold the previously known length.

  3. Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.

    PubMed

    Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne

    2018-03-26

    In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with

  4. Ethnomathematics study: uncovering units of length, area, and volume in Kampung Naga Society

    NASA Astrophysics Data System (ADS)

    Septianawati, T.; Turmudi; Puspita, E.

    2017-02-01

    During this time, mathematics is considered as something neutral and not associated with culture. It can be seen from mathematics learning in the school which adopt many of foreign mathematics learning are considered more advanced (western). In fact, Indonesia is a rich country in cultural diversity. In the cultural activities, there are mathematical ideas that were considered a important thing in the mathematics learning. A study that examines the idea or mathematical practices in a variety of cultural activities are known as ethnomathematics. In Indonesia, there are some ethnic maintain their ancestral traditions, one of them is Kampung Naga. Therefore, this study was conducted in Kampung Naga. This study aims to uncover units of length, area, and volume used by Kampung Naga society. This study used a qualitative approach and ethnography methods. In this research, data collection is done through the principles of ethnography such as observation, interviews, documentation, and field notes. The results of this study are units of length, area, and volume used by Kampung Naga society and its conversion into standard units. This research is expected to give information to the public that mathematics has a relationship with culture and become recommendation to mathematics curriculum in Indonesia.

  5. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    PubMed

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  6. Deorientation of PolSAR coherency matrix for volume scattering retrieval

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.

    2016-05-01

    Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of

  7. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  8. Modeling of single event transients with dual double-exponential current sources: Implications for logic cell characterization

    DOE PAGES

    Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...

    2015-08-07

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less

  9. Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection

    PubMed Central

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies. PMID:25460012

  10. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    PubMed

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  11. Cell force mapping using a double-sided micropillar array based on the moiré fringe method

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.

    2014-07-01

    The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.

  12. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress

    PubMed Central

    Li, Xiaoming; Bai, Jing; Li, Jianchun; Li, Shenghao; Wang, Zeming; Zhou, Mingrui

    2017-01-01

    Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC. PMID:28526807

  13. The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film

    PubMed Central

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan

    2017-01-01

    Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974

  14. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.

    PubMed

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin

    2018-03-01

    Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.

  15. On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Kosovichev, A. G.

    2018-02-01

    Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called Λ-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon can result from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.

  16. Electronics reliability fracture mechanics. Volume 1: Causes of failures of shop replaceable units and hybrid microcircuits

    NASA Astrophysics Data System (ADS)

    Kallis, J.; Buechler, D.; Erickson, J.; Westerhuyzen, D. V.; Strokes, R.

    1992-05-01

    This is the first of two volumes. The other volume (WL-TR-91-3119) is 'Fracture Mechanics'. The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stress of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. A detailed investigation was performed of the following two shop replaceable units (SRUs): Timing and Control Module (P/N 3562102) and Linear Regulator Module (P/N 3569800). The SRUs are in the Programmable Signal Processor (3137042) Line Replaceable Unit (LRU) of the Hughes AN/APG-63 Radar for the F-15 Aircraft.

  17. Engineering artificial cells by combining HeLa-based cell-free expression and ultra-thin double emulsion template

    PubMed Central

    Ho, Kwun Yin; Murray, Victoria L.; Liu, Allen P.

    2015-01-01

    Generation of artificial cells provides the bridge needed to cover the gap between studying the complexity of biological processes in whole cells and studying these same processes in an in vitro reconstituted system. Artificial cells are defined as the encapsulation of biologically active material in a biological or synthetic membrane. Here, we describe a robust and general method to produce artificial cells for the purpose of mimicking one or more behaviors of a cell. A microfluidic double emulsion system is used to encapsulate a mammalian cell free expression system that is able to express membrane proteins into the bilayer or soluble proteins inside the vesicles. The development of a robust platform that allows the assembly of artificial cells is valuable in understanding subcellular functions and emergent behaviors in a more cell-like environment as well as for creating novel signaling pathways to achieve specific cellular behaviors. PMID:25997354

  18. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Sato, F.; Saga, K.

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less

  19. A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal cortical tissue perfusion in healthy volunteers.

    PubMed

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2014-05-01

    We compared the effects of intravenous administration of 6% hydroxyethyl starch (maize-derived) in 0.9% saline (Voluven; Fresenius Kabi, Runcorn, United Kingdom) and a "balanced" preparation of 6% hydroxyethyl starch (potato-derived) [Plasma Volume Redibag (PVR); Baxter Healthcare, Thetford, United Kingdom] on renal blood flow velocity and renal cortical tissue perfusion in humans using magnetic resonance imaging. Hyperchloremia resulting from 0.9% saline infusion may adversely affect renal hemodynamics when compared with balanced crystalloids. This phenomenon has not been studied with colloids. Twelve healthy adult male subjects received 1-L intravenous infusions of Voluven or PVR over 30 minutes in a randomized, double-blind manner, with crossover studies 7 to 10 days later. Magnetic resonance imaging proceeded for 60 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled, and weight was recorded at 0, 30, 60, 120, 180, and 240 minutes. Mean peak serum chloride concentrations were 108 and 106 mmol/L, respectively, after Voluven and PVR infusion (P = 0.032). Changes in blood volume (P = 0.867), strong ion difference (P = 0.219), and mean renal artery flow velocity (P = 0.319) were similar. However, there was a significant increase in mean renal cortical tissue perfusion after PVR when compared with Voluven (P = 0.033). There was no difference in urinary neutrophil gelatinase-associated liopcalin to creatinine ratios after the infusion (P = 0.164). There was no difference in the blood volume-expanding properties of the 2 preparations of 6% hydroxyethyl starch. The balanced starch produced an increase in renal cortical tissue perfusion, a phenomenon not seen with starch in 0.9% saline.

  20. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellularmore » vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.« less

  1. Isolation of mesenchymal stromal/stem cells from cryopreserved umbilical cord blood cells.

    PubMed

    Fujii, Sumie; Miura, Yasuo; Iwasa, Masaki; Yoshioka, Satoshi; Fujishiro, Aya; Sugino, Noriko; Kaneko, Hitomi; Nakagawa, Yoko; Hirai, Hideyo; Takaori-Kondo, Akifumi; Ichinohe, Tatsuo; Maekawa, Taira

    2017-07-05

    Umbilical cord blood (UCB) has advantages over other tissues because it can be obtained without an invasive procedure and complex processing. We explored the availability of cryopreserved UCB cells as a source of mesenchymal stromal/stem cells (MSCs). MSCs were successfully isolated from six of 30 UCB units (median volume, 34.0 mL; median nucleated cell number, 4.4×10 8 ) that were processed and cryopreserved using CP-1/human serum albumin. This isolation rate was lower than that (57%) from non-cryopreserved UCB cells. The number of nucleated cells before and after hydroxyethyl starch separation, UCB unit volume, and cell viability after thawing did not significantly differ between UCB units from which MSCs were successfully isolated and those from which they were not. When CryoSure-DEX40 was used as a cryoprotectant, MSCs were isolated from two of ten UCB units. Logistic regression analysis demonstrated that the cryopreservation method was not significantly associated with the success of MSC isolation. The isolated MSCs had a similar morphology and surface marker expression profile as bone marrow-derived MSCs and were able to differentiate into osteogenic, adipogenic, and chondrogenic cells. In summary, MSCs can be isolated from cryopreserved UCB cells. However, the cryopreservation process reduces the isolation rate; therefore, freshly donated UCB cells are preferable for the isolation of MSCs.

  2. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  3. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor

  4. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  5. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  6. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  7. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  8. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    2014-06-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less

  9. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  10. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  11. Sol-Gel Deposited Double Layer TiO₂ and Al₂O₃ Anti-Reflection Coating for Silicon Solar Cell.

    PubMed

    Jung, Jinsu; Jannat, Azmira; Akhtar, M Shaheer; Yang, O-Bong

    2018-02-01

    In this work, the deposition of double layer ARC on p-type Si solar cells was carried out by simple spin coating using sol-gel derived Al2O3 and TiO2 precursors for the fabrication of crystalline Si solar cells. The first ARC layer was created by freshly prepared sol-gel derived Al2O3 precursor using spin coating technique and then second ARC layer of TiO2 was deposited with sol-gel derived TiO2 precursor, which was finally annealed at 400 °C. The double layer Al2O3/TiO2 ARC on Si wafer exhibited the low average reflectance of 4.74% in the wavelength range of 400 and 1000 nm. The fabricated solar cells based on double TiO2/Al2O3 ARC attained the conversion efficiency of ~13.95% with short circuit current (JSC) of 35.27 mA/cm2, open circuit voltage (VOC) of 593.35 mV and fill factor (FF) of 66.67%. Moreover, the fabricated solar cells presented relatively low series resistance (Rs) as compared to single layer ARCs, resulting in the high VOC and FF.

  12. Response of double cropping suitability to climate change in the United States

    NASA Astrophysics Data System (ADS)

    Seifert, Christopher A.; Lobell, David B.

    2015-02-01

    In adapting US agriculture to the climate of the 21st century, a key unknown is whether cropping frequency may increase, helping to offset projected negative yield impacts in major production regions. Combining daily weather data and crop phenology models, we find that cultivated area in the US suited to dryland winter wheat-soybeans, the most common double crop (DC) system, increased by up to 28% from 1988 to 2012. Changes in the observed distribution of DC area over the same period agree well with this suitability increase, evidence consistent with climate change playing a role in recent DC expansion in phenologically constrained states. We then apply the model to projections of future climate under the RCP45 and RCP85 scenarios and estimate an additional 126-239% increase, respectively, in DC area. Sensitivity tests reveal that in most instances, increases in mean temperature are more important than delays in fall freeze in driving increased DC suitability. The results suggest that climate change will relieve phenological constraints on wheat-soy DC systems over much of the United States, though it should be recognized that impacts on corn and soybean yields in this region are expected to be negative and larger in magnitude than the 0.4-0.75% per decade benefits we estimate here for double cropping.

  13. Piezo1 links mechanical forces to red blood cell volume.

    PubMed

    Cahalan, Stuart M; Lukacs, Viktor; Ranade, Sanjeev S; Chien, Shu; Bandell, Michael; Patapoutian, Ardem

    2015-05-22

    Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis.

  14. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data.

    PubMed

    Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina

    2014-06-01

    In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained

  15. Red Blood Cell Volume, Plasma Volume and Total Blood Volume in Healthy Elderly Men and Women Aged 64 to 100

    DTIC Science & Technology

    1992-05-06

    Robert Valeri, Linda E. Pivacek, Hiliary Siebens, and Mark D. Altschule ». PERFORMING ORGANIZATION NAME AND AOORESS Naval Blood Research Laboratory...Gibson JG, Peacock WC, Seligman AM, Sack T: Circulating red cell volume measured simultaneously by the radioactive iron and dye methods. J Clin

  16. Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control.

    PubMed

    Karnik, Rucha; Waghmare, Sakharam; Zhang, Ben; Larson, Emily; Lefoulon, Cécile; Gonzalez, Wendy; Blatt, Michael R

    2017-01-01

    Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H + -ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    PubMed

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  18. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    PubMed Central

    LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622

  19. Concept of multiple-cell cavity for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  20. Rapid induction of single donor chimerism after double umbilical cord blood transplantation preceded by reduced intensity conditioning: results of the HOVON 106 phase II study

    PubMed Central

    Somers, Judith A.E.; Braakman, Eric; van der Holt, Bronno; Petersen, Eefke J.; Marijt, Erik W.A.; Huisman, Cynthia; Sintnicolaas, Kees; Oudshoorn, Machteld; Groenendijk-Sijnke, Marlies E.; Brand, Anneke; Cornelissen, Jan J.

    2014-01-01

    Double umbilical cord blood transplantation is increasingly applied in the treatment of adult patients with high-risk hematological malignancies and has been associated with improved engraftment as compared to that provided by single unit cord blood transplantation. The mechanism of improved engraftment is, however, still incompletely understood as only one unit survives. In this multicenter phase II study we evaluated engraftment, early chimerism, recovery of different cell lineages and transplant outcome in 53 patients who underwent double cord blood transplantation preceded by a reduced intensity conditioning regimen. Primary graft failure occurred in one patient. Engraftment was observed in 92% of patients with a median time to neutrophil recovery of 36 days (range, 15–102). Ultimate single donor chimerism was established in 94% of patients. Unit predominance occurred by day 11 after transplantation and early CD4+ T-cell chimerism predicted for unit survival. Total nucleated cell viability was also associated with unit survival. With a median follow up of 35 months (range, 10–51), the cumulative incidence of relapse and non-relapse mortality rate at 2 years were 39% and 19%, respectively. Progressionfree survival and overall survival rates at 2 years were 42% (95% confidence interval, 28–56) and 57% (95% confidence interval, 43–70), respectively. Double umbilical cord blood transplantation preceded by a reduced intensity conditioning regimen using cyclophosphamide/fludarabine/4 Gy total body irradiation results in a high engraftment rate with low non-relapse mortality. Moreover, prediction of unit survival by early CD4+ lymphocyte chimerism might suggest a role for CD4+ lymphocyte mediated unit-versus-unit alloreactivity. www.trialregister.nl NTR1573. PMID:25107890

  1. Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells.

    PubMed

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Krügel, Ute; Schulz, Angela; Färber, Katrin; Zahn, Dirk; Grosse, Johannes; Wiedemann, Peter; Chen, Ju; Schöneberg, Torsten; Illes, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2010-03-01

    Intense neuronal activity in the sensory retina is associated with a volume increase of neuronal cells (Uckermann et al., J. Neurosci. 2004, 24:10149) and a decrease in the osmolarity of the extracellular space fluid (Dmitriev et al., Vis. Neurosci. 1999, 16:1157). Here, we show the existence of an endogenous purinergic mechanism that prevents hypoosmotic swelling of retinal glial (Müller) cells in mice. In contrast to the cells from wild-type mice, hypoosmotic stress induced rapid swelling of glial cell somata in retinal slices from mice deficient in P2Y(1), adenosine A(1) receptors, or ecto-5'-nucleotidase (CD73). Consistently, glial cell bodies in retinal slices from wild-type mice displayed osmotic swelling when P2Y(1) or A(1) receptors, or CD73, were pharmacologically blocked. Exogenous ATP, UTP, and UDP inhibited glial swelling in retinal slices, while the swelling of isolated glial cells was prevented by ATP but not by UTP or UDP, suggesting that uracil nucleotides indirectly regulate the glial cell volume via activation of neuronal P2Y(4/6) and neuron-to-glia signaling. It is suggested that autocrine/paracrine activation of purinergic receptors and enzymes is crucially involved in the regulation of the glial cell volume.

  2. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    PubMed

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Patentability of Stem Cells in the United States.

    PubMed

    Fendrick, Sarah E; Zuhn, Donald L

    2015-08-20

    Until recently, the patentability of stem cells was well established within the judicial and statutory framework in the United States. However, the shifting landscape of patent law, particularly with regard to patent-eligible subject matter under 35 U.S.C. §101, presents new challenges to the patentability of stem cells. In this paper, we discuss the legal precedent that paved the way for stem cell patents, including Diamond v. Chakrabarty and In re Bergy. Additionally, we review recent Supreme Court cases and recent guidance issued by the U.S. Patent and Trademark Office that impose new limitations on patent-eligible subject matter and thereby threaten the patentability of stem cells in the United States. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  6. Cutaneous double-hit B-cell lymphoma: an aggressive form of B-cell lymphoma with a propensity for cutaneous dissemination.

    PubMed

    Magro, Cynthia M; Wang, Xuan; Subramaniyam, Shivakumar; Darras, Natasha; Mathew, Susan

    2014-04-01

    Diffuse large cell B-cell lymphoma of the skin is most commonly represented by diffuse large cell variants of primary cutaneous follicle center cell lymphoma and the leg-type lymphoma. In a minority of cases, the infiltrates are an expression of stage 4 disease of established extracutaneous B-cell lymphoma. We describe 3 patients with an aggressive form of B-cell lymphoma secondarily involving the skin. Two of the patients were in the ninth decade of life, whereas 1 patient was 34 years of age. In the elderly patients, there was an antecedent and/or concurrent history of follicular lymphoma, whereas in the younger patient, the tumor was a de novo presentation of this aggressive form of lymphoma. The elderly patients succumbed to their disease within less than a year from the time of diagnosis, whereas 1 patient is alive but with persistent and progressive disease despite chemotherapeutic intervention. The infiltrates in all 3 cases were diffuse and composed of large malignant hematopoietic cells that exhibited a round nucleus with a finely dispersed chromatin. Phenotypically, the tumor cells were Bcl-2 and CD10 positive, whereas Bcl-6 and Mum-1 showed variable positivity. One case showed combined Mum-1 positivity along with an acute lymphoblastic lymphoma phenotype, including the absence of CD20 expression. In each case, there was a c-MYC and BCL2/IGH rearrangement diagnostic of double-hit lymphoma. In one case, there was an additional BCL6 rearrangement, defining what is in essence triple-hit lymphoma. In conclusion, double-hit lymphoma is an aggressive form of B-cell neoplasia resistant to standard chemotherapy regimens, which in many but not all cases represents tumor progression in the setting of a lower grade B-cell malignancy.

  7. Using a Virtual Manipulative Environment to Support Students' Organizational Structuring of Volume Units

    ERIC Educational Resources Information Center

    O'Dell, Jenna R.; Barrett, Jeffrey E.; Cullen, Craig J.; Rupnow, Theodore J.; Clements, Douglas H.; Sarama, Julie; Rutherford, George; Beck, Pamela S.

    2017-01-01

    In this study, we investigated how Grade 3 and 4 students' organizational structure for volume units develops through repeated experiences with a virtual manipulative for building prisms. Our data consist of taped clinical interviews within a micro-genetic experiment. We report on student strategy development using a virtual manipulative for…

  8. Double side read-out technique for mitigation of radiation damage effects in PbWO 4 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchini, Marco Toliman; Auffray, E.; Benaglia, A.

    Test beam results of a calorimetric module based on 3×3×22 cm 3 PbWO 4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m -1, have been tested using electrons in the 50–200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct formore » event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. As a result, the double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study.« less

  9. Double side read-out technique for mitigation of radiation damage effects in PbWO 4 crystals

    DOE PAGES

    Lucchini, Marco Toliman; Auffray, E.; Benaglia, A.; ...

    2016-04-18

    Test beam results of a calorimetric module based on 3×3×22 cm 3 PbWO 4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m -1, have been tested using electrons in the 50–200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct formore » event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. As a result, the double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study.« less

  10. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study.

    PubMed

    Vangsness, C Thomas; Farr, Jack; Boyd, Joel; Dellaero, David T; Mills, C Randal; LeRoux-Williams, Michelle

    2014-01-15

    There are limited treatment options for tissue restoration and the prevention of degenerative changes in the knee. Stem cells have been a focus of intense preclinical research into tissue regeneration but limited clinical investigation. In a randomized, double-blind, controlled study, the safety of the intra-articular injection of human mesenchymal stem cells into the knee, the ability of mesenchymal stem cells to promote meniscus regeneration following partial meniscectomy, and the effects of mesenchymal stem cells on osteoarthritic changes in the knee were investigated. A total of fifty-five patients at seven institutions underwent a partial medial meniscectomy. A single superolateral knee injection was given within seven to ten days after the meniscectomy. Patients were randomized to one of three treatment groups: Group A, in which patients received an injection of 50 × 10⁶ allogeneic mesenchymal stem cells; Group B, 150 × 10⁶ allogeneic mesenchymal stem cells; and the control group, a sodium hyaluronate (hyaluronic acid/hyaluronan) vehicle control. Patients were followed to evaluate safety, meniscus regeneration, the overall condition of the knee joint, and clinical outcomes at intervals through two years. Evaluations included sequential magnetic resonance imaging (MRI). No ectopic tissue formation or clinically important safety issues were identified. There was significantly increased meniscal volume (defined a priori as a 15% threshold) determined by quantitative MRI in 24% of patients in Group A and 6% in Group B at twelve months post meniscectomy (p = 0.022). No patients in the control group met the 15% threshold for increased meniscal volume. Patients with osteoarthritic changes who received mesenchymal stem cells experienced a significant reduction in pain compared with those who received the control, on the basis of visual analog scale assessments. There was evidence of meniscus regeneration and improvement in knee pain following treatment with

  11. A new human male diploid cell strain, TIG-7: its age-related changes and comparison with a matched female TIG-1 cell strain.

    PubMed

    Yamamoto, K; Kaji, K; Kondo, H; Matsuo, M; Shibata, Y; Tasaki, Y; Utakoji, T; Ooka, H

    1991-01-01

    A new human diploid cell strain, TIG-7, which has the male karyotype, was established and characterized. Isozyme and histocompatibility typing of the cell strain was performed. The average in vitro life span of the cells is 73 population doublings. Changes in cell volume, doubling time, saturation density, the efficiency of cell attachment, plating efficiency, and relative DNA content were examined during in vitro cellular aging. Hydrocortisone slightly prolongs the life span of the cell strain when the hormone is administered to the cultures during middle passages. The age-related changes in the parameters of TIG-7 are not appreciably different from those of the previously established TIG-1 cell strain. These results show that this cell strain is useful for research on cellular aging; further profit is anticipated from research using a combination of these two sexually different cell strains.

  12. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    PubMed

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd

  13. Preparation of red blood cell concentrates and plasma units from whole blood held overnight using a hollow-fibre separation system.

    PubMed

    Johnson, L; Kwok, M; Marks, D C

    2015-02-01

    The ErySep system represents an alternative to centrifuge-based whole blood (WB) separation, using gravity and filtration through hollow-fibres (0·2 µm pore size) to produce red blood cell (RBC) and plasma components. The aim of this study was to characterise the quality of ErySep RBC and plasma units compared with standard products from WB held overnight. Two ABO-compatible WB units (n = 24) were pooled and split to produce matched products. One of the WB units was separated into components using the ErySep system (ErySep; n = 12), whereas the other units were separated by centrifugation (control; n = 12). RBC units were stored at 2-6 °C and assessed for in vitro quality over 42 days of storage. Plasma was frozen at -30 °C and tested upon thawing. Processing WB with the ErySep system took longer than controls. The ErySep RBC units were of an appropriate volume (307 ± 17 mL) and contained sufficient Hb (50 ± 2 g unit(-1) ). ErySep RBC components contained more microparticles relative to controls at expiry. The plasma volume, total protein, coagulation factor activity (fibrinogen, FV, FVIII) and number of microparticles was lower in the ErySep units compared with controls. Following overnight hold of WB, the ErySep system was capable of producing RBC components that met specifications. However, the ErySep plasma components did not meet quality specifications. © 2015 British Blood Transfusion Society.

  14. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data

  15. Interpretation of HbA1c : association with mean cell volume and haemoglobin concentration.

    PubMed

    Simmons, D; Hlaing, T

    2014-11-01

    The utility of HbA1c in diabetes diagnosis is reduced in settings associated with altered haemoglobin glycation. We have studied whether HbA1c varies with mean cell volume and mean cell haemoglobin concentration as measures of haemoglobin metabolism. Randomly selected adults from rural Victoria, Australia, were invited for biomedical assessment. After excluding patients with known diabetes and/or serum creatinine ≥ 0.12 mmol/l, 1315 adults were included. Demography, arthropometric measurements, oral glucose tolerance test, analyses of full blood count and HbA1c were undertaken. After adjusting for age, sex, ethnicity, BMI, town and socio-economic status, there were no significant differences in haemoglobin, mean cell volume or mean cell haemoglobin concentration by glycaemic status (defined by oral glucose tolerance test). HbA1c was significantly and independently associated with fasting glucose, town, mean cell haemoglobin concentration, ethnicity, age and BMI among men < 50 years (R² = 33.8%); fasting glucose, 2-h glucose, mean cell haemoglobin concentration and town among men ≥ 50 years (R² = 47.9%); fasting glucose, mean cell volume, mean cell haemoglobin concentration, town, 2-h glucose and age among women < 50 years (R² = 46.3%); fasting glucose, mean cell haemoglobin concentration, mean cell volume and 2-h glucose among women ≥ 50 years (R² = 51.6%). A generalized linear model showed a gradient from an adjusted mean HbA1c of 36 (95% CI 34-38) mmol/mol with a mean cell haemoglobin concentration of ≤ 320 g/l to 30 (95% CI 29-31) mmol/mol with a mean cell haemoglobin concentration of > 370 g/l. The gradient across mean cell volume was negative, but only by 1 mmol/mol (0.1%) HbA1c . A mean HbA1c difference of 5 mmol/mol (0.5%) across the mean cell haemoglobin concentration reference range suggests that an accompanying full blood count examination may be required for its use in the diagnosis of diabetes. Further studies are required to confirm this.

  16. Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.

    In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less

  17. Stockability: A major factor in productivity differences between Pinus taeda plantations in Hawaii and the Southeastern United States.

    Treesearch

    Dean S. DeBell; William R. Harms; Craig D. Whitesell

    1989-01-01

    Basal area and volume production in loblolly pine spacing trials in Hawaii were nearly double the average production in research plantings in the Southeastern United States. The higher productivity in Hawaii was associated, to some extent, with site index and more rapid growth of individual trees. Competition-related mortality, however, was considerably lower in Hawaii...

  18. 26 CFR 509.120 - Double taxation claims.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 19 2010-04-01 2010-04-01 false Double taxation claims. 509.120 Section 509.120... CONVENTIONS SWITZERLAND General Income Tax § 509.120 Double taxation claims. (a) General. Under Article XVII... United States or Switzerland has resulted, or will result, in double taxation contrary to the provisions...

  19. 26 CFR 509.120 - Double taxation claims.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 19 2011-04-01 2010-04-01 true Double taxation claims. 509.120 Section 509.120... CONVENTIONS SWITZERLAND General Income Tax § 509.120 Double taxation claims. (a) General. Under Article XVII... United States or Switzerland has resulted, or will result, in double taxation contrary to the provisions...

  20. Piezo1 links mechanical forces to red blood cell volume

    PubMed Central

    Cahalan, Stuart M; Lukacs, Viktor; Ranade, Sanjeev S; Chien, Shu; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis. DOI: http://dx.doi.org/10.7554/eLife.07370.001 PMID:26001274

  1. Cell Size Regulation in Bacteria

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  2. Space nuclear system volume accumulator development (SNAP program)

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the volume accumulator units to be employed in the NaK primary and secondary coolant loops of the 5-kwe reactor thermoelectric system are described. Three identical VAU's are required - two for the primary coolant loop, and one for the secondary coolant loop. The VAU's utilize nested-formed bellows as the flexing member, are hermetically sealed, provide double containment and utilize a combination of gas pressure force and bellows spring force to obtain the desired pressure regulation of the coolant loops. All parts of the VAU, except the NaK inlet tube, are to be fabricated from Inconel 718.

  3. Rb vapor-cell clock demonstration with a frequency-doubled telecom laser.

    PubMed

    Almat, Nil; Pellaton, Matthieu; Moreno, William; Gruet, Florian; Affolderbach, Christoph; Mileti, Gaetano

    2018-06-01

    We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10 -13 ·τ -1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.

  4. Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales

    NASA Astrophysics Data System (ADS)

    Kim, Hojun; Leal, Cecilia

    Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.

  5. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  6. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes.

    PubMed

    Diaz, Roberto J; Armstrong, Stephen C; Batthish, Michelle; Backx, Peter H; Ganote, Charles E; Wilson, Gregory J

    2003-01-01

    Accumulation of osmotically active metabolites, which create an osmotic gradient estimated at ~60 mOsM, and cell swelling are prominent features of ischemic myocardial cell death. This study tests the hypothesis that reduction of ischemic swelling by enhanced cell volume regulation is a key mechanism in the delay of ischemic myocardial cell death by ischemic preconditioning (IPC). Experimental protocols address whether: (i) IPC triggers a cell volume regulation mechanism that reduces cardiomyocyte swelling during subsequent index ischemia; (ii) this reduction in ischemic cell swelling is sufficient in magnitude to account for the IPC protection; (iii) the molecular mechanism that mediates IPC also mediates cell volume regulation. Two experimental models with rabbit ventricular myocytes were studied: freshly isolated pelleted myocytes and 48-h cultured myocytes. Myocytes were preconditioned either by distinct short simulated ischemia (SI)/simulated reperfusion protocols (IPC), or by subjecting myocytes to a pharmacological preconditioning (PPC) protocol (1 microM calyculin A, or 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA), prior to subjecting them to either different durations of long SI or 30 min hypo-osmotic stress. Cell death (percent blue square myocytes) was monitored by trypan blue staining. Cell swelling was determined by either the bromododecane cell flotation assay (qualitative) or video/confocal microscopy (quantitative). Simulated ischemia induced myocyte swelling in both the models. In pelleted myocytes, IPC or PPC with either calyculin A or APNEA produced a marked reduction of ischemic cell swelling as determined by the cell floatation assay. In cultured myocytes, IPC substantially reduced ischemic cell swelling (P < 0.001). This IPC effect on ischemic cell swelling was related to an IPC and PPC (with APNEA) mediated triggering of cell volume regulatory decrease (RVD). IPC and APNEA also significantly (P < 0.001) reduced hypo-osmotic cell

  7. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit.

    PubMed

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months).

  8. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  9. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung

    2018-02-01

    The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.

  10. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume.

    PubMed

    Duan, D; Cowley, S; Horowitz, B; Hume, J R

    1999-01-01

    In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.

  11. Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.

    PubMed

    Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R

    2013-08-20

    Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Lead hampers gill cell volume regulation in marine crabs: stronger effect in a weak osmoregulator than in an osmoconformer.

    PubMed

    Amado, Enelise M; Freire, Carolina A; Grassi, Marco T; Souza, Marta M

    2012-01-15

    Hepatus pudibundus is a strictly marine osmoconformer crab, while Callinectes ornatus inhabits estuarine areas, behaving as a weak hyper-osmoregulator in diluted seawater. Osmoconformers are expected to have higher capacity for cell volume regulation, but gill cells of a regulator are expected to display ion transporters to a higher degree. The influence of lead nitrate (10 μM) on the ability of isolated gill cells from both species to volume regulate under isosmotic and hyposmotic conditions were here evaluated. Without lead, under a 25% hyposmotic shock, the gill cells of both species were quite capable of cell volume maintenance. Cells of C. ornatus, however, had a little swelling (5%) during the hyposmotic shock of greater intensity (50%), while cells of H. pudibundus were still capable of volume regulation. In the presence of lead, even under isosmoticity, the gill cells of both species showed about 10% volume reduction, indicating that lead promotes the loss of water by the cells. When lead was associated with 25% and 50% hyposmotic shock, C. ornatus cells lost more volume (15%), when compared to isosmotic conditions, while H. pudibundus cells showed volume regulation. We then analyzed the possible ways of action of lead on the mechanisms of cell volume regulation in the two species. Verapamil (100 μM) was used to inhibit Ca²⁺ channels, ouabain (100 μM) to inhibit Na⁺/K⁺-ATPase, and HgCl₂ (100 μM) to inhibit aquaporins. Our results suggest that: (1) Ca²⁺ channels are candidates for lead entry into gill cells of H. pudibundus and C. ornatus, being the target of lead action in these cells; (2) aquaporins are much more relevant for water flux in H. pudibundus; and (3) the Na⁺/K⁺-ATPase is much more relevant for volume regulation in C. ornatus. Osmoregulators may be more susceptible to metal contamination than osmoconformers, especially in situations of reduced salinity, for two basic reasons: (1) lower capacity of volume regulation and (2

  13. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    PubMed

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  14. The Effect of Ginger on Breast Milk Volume in the Early Postpartum Period: A Randomized, Double-Blind Controlled Trial.

    PubMed

    Paritakul, Panwara; Ruangrongmorakot, Kasem; Laosooksathit, Wipada; Suksamarnwong, Maysita; Puapornpong, Pawin

    2016-09-01

    In Thailand, ginger is a popular natural galactagogue among breastfeeding women. However, there has never been evidence to support the effectiveness of ginger in increasing the breast milk volume. To compare breast milk volume on the third and seventh day postpartum between lactating mothers who receive 500 mg dried ginger capsules twice daily with those receiving placebo. A randomized, double-blind controlled trial was conducted. Women who deliver a term baby were randomly assigned to receive dried ginger or placebo for 7 days postpartum. Breast milk volume was measured on third day postpartum using test weight method for a period of 24 hours and on seventh day postpartum using 1 hour milk production. We also compared the third day serum prolactin level between the two groups. Data from 63 women were available for analysis, 30 from the ginger group and 33 from the placebo group. The two groups were similar regarding baseline characteristics. Women in the ginger group have higher milk volume than the placebo group (191.0 ± 71.2 mL/day versus 135.0 ± 61.5 mL/day, p < 0.01). However, the seventh day milk volume in the ginger group does not differ from the placebo group (80.0 ± 58.5 mL versus 112.1 ± 91.6 mL, p = 0.24). The mean serum prolactin levels were similar in both groups (321.5 ± 131.8 ng/L in the ginger group, and 331.4 ± 100.7 ng/L in the placebo group, p = 0.74). No side effect was reported in this study. Ginger is a promising natural galactagogue to improve breast milk volume in the immediate postpartum period without any notable side effect.

  15. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    PubMed

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  16. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    PubMed Central

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  17. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  18. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-01-01

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418

  19. Volumization of the Brow at the Time of Blepharoplasty: Treating the Eyebrow Fat Pad as an Independent Unit.

    PubMed

    Vrcek, Ivan; Chou, Eva; Somogyi, Marie; Shore, John W

    Loss of volume in the sub-brow fat pad with associated descent of the eyebrow is a common anatomical finding resulting in both functional and aesthetic consequences. A variety of techniques have been described to address brow position at the time of blepharoplasty. To our knowledge, none of these techniques treat the sub-brow fat pad as an isolated unit. Doing so enables the surgeon to stabilize and volumize the brow without resultant tension on the blepharoplasty wound. The authors describe a technique for addressing volume loss in the eyebrow with associated brow descent that treats the sub-brow fat pad as an isolated unit. A retrospective review of all patients undergoing brow ptosis repair by a single surgeon (J.W.S.) over an 11-month period was performed. Eighteen patients and 33 brows underwent the technique described. Patients were followed for an average of 11 weeks (range: 4 weeks to 20 weeks). All patients preoperatively displayed both visually significant dermatochalasis and brow descent below the orbital rim. Evaluation of pre- and postoperative photos demonstrates successful volumization of the brow with skin redraping without focal dimpling or undue tension on the eyelid wound. Performing a dissection that allows the sub-brow fat pad to be elevated in isolation from the overlying orbicularis and underlying periosteum allows for volumization and of the brow without compromising closure. This technique is a safe and effective means of volumizing the brow and treating secondary brow descent.

  20. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  1. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  2. Estimating crustal heterogeneity from double-difference tomography

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Virieux, J.; Okubo, P.

    2006-01-01

    Seismic velocity parameters in limited, but heterogeneous volumes can be inferred using a double-difference tomographic algorithm, but to obtain meaningful results accuracy must be maintained at every step of the computation. MONTEILLER et al. (2005) have devised a double-difference tomographic algorithm that takes full advantage of the accuracy of cross-spectral time-delays of large correlated event sets. This algorithm performs an accurate computation of theoretical travel-time delays in heterogeneous media and applies a suitable inversion scheme based on optimization theory. When applied to Kilauea Volcano, in Hawaii, the double-difference tomography approach shows significant and coherent changes to the velocity model in the well-resolved volumes beneath the Kilauea caldera and the upper east rift. In this paper, we first compare the results obtained using MONTEILLER et al.'s algorithm with those obtained using the classic travel-time tomographic approach. Then, we evaluated the effect of using data series of different accuracies, such as handpicked arrival-time differences ("picking differences"), on the results produced by double-difference tomographic algorithms. We show that picking differences have a non-Gaussian probability density function (pdf). Using a hyperbolic secant pdf instead of a Gaussian pdf allows improvement of the double-difference tomographic result when using picking difference data. We completed our study by investigating the use of spatially discontinuous time-delay data. ?? Birkha??user Verlag, Basel, 2006.

  3. Endothelial cell colony forming units derived from malignant breast diseases are resistant to tumor necrosis factor-α-induced apoptosis.

    PubMed

    Chou, Chen-Pin; Jiang, Shih Sheng; Pan, Huay-Ben; Yen, Yi-Chen; Tseng, Hui-Hwa; Hung, Yu-Ting; Wang, Ssu-Han; Chen, Yu-Lin; Chen, Ya-Wen

    2016-11-24

    Mobilisation of endothelial progenitor cells (EPCs) from the bone marrow is a crucial step in the formation of de novo blood vessels, and levels of peripheral blood EPCs have been shown to be elevated in certain malignant states. Using flow cytometry and a Hill-based colony forming unit (CFU) assay, the present study indicated that higher levels of CD34 and vascular endothelial growth factor receptor 2 (VEGFR2) double-positive EPCs, as well as increased formation of endothelial cell colony-forming units (EC-CFUs) are associated with benign and malignant breast diseases, providing possible indicators for breast disease detection. Gene expression profiles revealed a genetic difference between CD34 + VEGFR2 + EPCs and EC-CFUs. Decreased expression of tumour necrosis factor receptor 2 (TNFR2) signalling-related genes and inhibition of tumour necrosis factor (TNF)-induced signalling were demonstrated in EC-CFUs derived from patients with malignant breast disease in comparison with those from healthy controls. Interestingly, our data provided the first evidence that EC-CFUs derived from patients with malignant breast disease were resistant to TNF-α-induced apoptosis, indicating a plausible target for future therapeutic interventions.

  4. Advances in understanding the pathogenesis of the red cell volume disorders.

    PubMed

    Badens, Catherine; Guizouarn, Hélène

    2016-09-01

    Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies. © 2016 John Wiley & Sons Ltd.

  5. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.

    PubMed

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F

    2015-05-19

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.

  6. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit

    PubMed Central

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    Objective To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. Methods The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. Results One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). Conclusion The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months). PMID:27925055

  7. Optimising methods of red cell sedimentation from cord blood to maximise nucleated cell recovery prior to cryopreservation.

    PubMed

    Madkaikar, M; Gupta, M; Ghosh, K; Swaminathan, S; Sonawane, L; Mohanty, D

    2007-01-01

    Human cord blood is now an established source of stem cells for haematopoietic reconstitution. Red blood cell (RBC) depletion is required to reduce the cord blood unit volume for commercial banking. Red cell sedimentation using hydroxy ethyl starch (HES) is a standard procedure in most cord blood banks. However, while standardising the procedure for cord blood banking, a significant loss of nucleated cells (NC) may be encountered during standard HES sedimentation protocols. This study compares four procedures for cord blood processing to obtain optimal yield of nucleated cells. Gelatin, dextran, 6% HES and 6% HES with an equal volume of phosphate-buffered saline (PBS) were compared for RBC depletion and NC recovery. Dilution of the cord blood unit with an equal volume of PBS prior to sedimentation with HES resulted in maximum NC recovery (99% [99.5 +/- 1.3%]). Although standard procedures using 6% HES are well established in Western countries, they may not be applicable in India, as a variety of factors that can affect RBC sedimentation (e.g., iron deficiency, hypoalbuminaemia, thalassaemia trait, etc.) may reduce RBC sedimentation and thus reduce NC recovery. While diluting cord blood with an equal volume of PBS is a simple method to improve the NC recovery, it does involve an additional processing step.

  8. Ionizing radiation, ion transports, and radioresistance of cancer cells

    PubMed Central

    Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska

    2013-01-01

    The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948

  9. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  10. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation.

    PubMed

    Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-10-13

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.

  11. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells

    PubMed Central

    Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang

    2016-01-01

    Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055

  12. Multistage variable probability forest volume inventory. [Defiance Unit of the Navajo Nation in Arizona and Colorado

    NASA Technical Reports Server (NTRS)

    Anderson, J. E. (Principal Investigator)

    1979-01-01

    The net board foot volume (Scribner log rule) of the standing Ponderosa pine timber on the Defiance Unit of the Navajo Nation's forested land was estimated using a multistage forest volume inventory scheme with variable sample selection probabilities. The inventory designed to accomplish this task required that both LANDSAT MSS digital data and aircraft acquired data be used to locate one acre ground splits, which were subsequently visited by ground teams conducting detailed tree measurements using an optical dendrometer. The dendrometer measurements were then punched on computer input cards and were entered in a computer program developed by the U.S. Forest Service. The resulting individual tree volume estimates were then expanded through the use of a statistically defined equation to produce the volume estimate for the entire area which includes 192,026 acres and is approximately a 44% the total forested area of the Navajo Nation.

  13. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

    PubMed Central

    Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J

    2015-01-01

    Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829

  14. Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model.

    PubMed

    Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J

    2009-10-01

    To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  15. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  16. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  17. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2013-01-01

    Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015

  18. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited.

    PubMed

    McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith

    2011-03-01

    The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.

  19. Partial Rarefaction as Way to Reduce Distortion Curve of double-glazed unit

    NASA Astrophysics Data System (ADS)

    Plotnikov, Alexander

    2017-10-01

    Use of Insulated Glass Units (IGU) as glazing on building façades causes optical distortions of mirrored images of neighboring buildings in glazed surfaces. Optical distortions are caused by varying distances between glass panes in IGUs as a result of climate factors. This paper examines available engineering solutions that reduce such distortions: use of more rigid outer glasses, encasing the building in a shell of single glass panes, known as the ‘double façade’, and use of vacuum IGUs. A new way is proposed to reduce optical distortions by installing additional pointed or linear supports and creating pre-stress with partial rarefaction inside the IGU. Overpressure that can cause IGU expansion and glass deformation was calculated. In the urban environment of Moscow, reduction of air pressure with simultaneous increase of air pressure inside the IGU during summer heat waves can be as high as 5%, and this figure determines the level of rarefaction.

  20. The fundamental unit of pain is the cell.

    PubMed

    Reichling, David B; Green, Paul G; Levine, Jon D

    2013-12-01

    The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.

  1. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  2. Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene

    NASA Astrophysics Data System (ADS)

    Sabzyan, Hassan; Sadeghpour, Narges

    2016-04-01

    Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.

  3. Psychological stress moderates the relationship between running volume and CD4+ T cell subpopulations.

    PubMed

    Rehm, K E; Sunesara, I; Tull, M T; Marshall, G D

    2016-01-01

    Endurance-based exercise training can lead to alterations in components of the immune system, but it is unknown how psychological stress (another potent immunomodulator) may impact these changes. The purpose of this study was to determine the moderating role of psychological stress on exercise-induced immune changes. Twenty-nine recreational runners were recruited for this study four weeks before completing a marathon. Each subject reported: weekly training volume (miles/wk) for the week prior to the study visit; completed the Perceived Stress Scale (PSS), the state version of the State-Trait Anxiety Inventory (STAI) and the Penn State Worry Questionnaire (PSWQ); and donated blood for assessment of CD4+ T cell subpopulations and mitogen-induced cytokine production. Participants ran an average of 30 (±13.4) miles (1 mile=1.6 km) per week. Average values (SD) for immune biomarkers were: regulatory T cells (Treg), 3.2% (±1.2%); type 1 regulatory cells (Tr1), 27.1% (±8.3%); T helper 3 (Th3), 1.8% (±0.7%); interferon gamma (IFNγ), 3.1 pg/ml (±1.0); interleukin (IL)-4, 1.4 pg/ml (±1.1); IFNγ/IL-4, 8.6 (±1.2); IL-10, 512 pg/ml (±288). There was a significant relationship between running volume and both Treg cell numbers (slope of the regression line (β)=0.05, p less than 0.001) and IL-10 production β=-10.6, p=0.002), and there was a trending relationship between running volume and Tr1 cell numbers (β=-0.2%, p=0.064). Perceived stress was a trending moderator of the running volume-Treg relationship, whereas worry was a significant moderator of the running volume-IFNγ and running volume-IFNγ/IL-4 relationships. These data indicate that various forms of psychological stress can impact endurance exercise-based changes in certain immune biomarkers. These changes may reflect an increased susceptibility to clinical risks in some individuals.

  4. Natural Killer/T-cell Neoplasms: Analysis of Incidence, Patient Characteristics, and Survival Outcomes in the United States.

    PubMed

    Kommalapati, Anuhya; Tella, Sri Harsha; Ganti, Apar Kishore; Armitage, James O

    2018-05-04

    Limited data are available regarding the incidence, survival patterns, and long-term outcomes of natural killer (NK)/T-cell neoplasms in the United States. We performed a retrospective study of patients with NK/T-cell neoplasms diagnosed from 2001 to 2014 using the Surveillance, Epidemiology, and End Results program database. The Kaplan-Meier method was used to estimate the overall survival difference among the subgroups. Multivariate analyses were used to determine the factors affecting survival. For the 797 patients with NK/T-cell lymphoma, nasal type, the median age at diagnosis was 53 years, and males tended to be younger at diagnosis (P < .0001). The incidence of the disease increased from 0.4 in 2001 to 0.8 in 2014 per 1,000,000 individuals. The incidence was significantly greater in Hispanic patients compared with that in non-Hispanic patients (rate ratio, 3.03; P = .0001). The median overall survival was 20 months (range, 2-73 months) and varied significantly according to the primary site (P < .0001) and the disease stage at diagnosis (P < .0001). NK/T-cell lymphoma patients had an increased risk of acute myeloid leukemia (standardized incidence ratio, 18.77; 95% confidence interval, 2.27-67.81). For the 105 NK/T-cell leukemia patients, the median age at diagnosis was 58 years (range, 4-95 years). The overall incidence of the disease was 0.09 per 1,000,000 individuals and was significantly greater in males (rate ratio, 0.41; P < .0001). Unlike NK/T-cell lymphoma, no racial disparities were found in the incidence. The median overall survival was 17 months (range, 0-36 months). The incidence of NK/T-cell lymphoma, nasal type, in the United States has at least doubled in the past decade, with the greatest predilection among Hispanics. Patients with NK/T-cell lymphoma might have an increased risk of the subsequent development of acute myeloid leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    PubMed Central

    2017-01-01

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. We show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms. PMID:28636815

  6. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    DOE PAGES

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja; ...

    2017-06-21

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  7. Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition

    NASA Astrophysics Data System (ADS)

    Hong, Sang-Hoon; Wdowinski, Shimon

    2013-08-01

    Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.

  8. Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Tompkins, Bryon A; DiFede, Darcy L; Khan, Aisha; Landin, Ana Marie; Schulman, Ivonne Hernandez; Pujol, Marietsy V; Heldman, Alan W; Miki, Roberto; Goldschmidt-Clermont, Pascal J; Goldstein, Bradley J; Mushtaq, Muzammil; Levis-Dusseau, Silvina; Byrnes, John J; Lowery, Maureen; Natsumeda, Makoto; Delgado, Cindy; Saltzman, Russell; Vidro-Casiano, Mayra; Da Fonseca, Moisaniel; Golpanian, Samuel; Premer, Courtney; Medina, Audrey; Valasaki, Krystalenia; Florea, Victoria; Anderson, Erica; El-Khorazaty, Jill; Mendizabal, Adam; Green, Geoff; Oliva, Anthony A; Hare, Joshua M

    2017-01-01

    Abstract Background Aging frailty, characterized by decreased physical and immunological functioning, is associated with stem cell depletion. Human allogeneic mesenchymal stem cells (allo-hMSCs) exert immunomodulatory effects and promote tissue repair. Methods This is a randomized, double-blinded, dose-finding study of intravenous allo-hMSCs (100 or 200-million [M]) vs placebo delivered to patients (n = 30, mean age 75.5 ± 7.3) with frailty. The primary endpoint was incidence of treatment-emergent serious adverse events (TE-SAEs) at 1-month postinfusion. Secondary endpoints included physical performance, patient-reported outcomes, and immune markers of frailty measured at 6 months postinfusion. Results No therapy-related TE-SAEs occurred at 1 month. Physical performance improved preferentially in the 100M-group; immunologic improvement occurred in both the 100M- and 200M-groups. The 6-minute walk test, short physical performance exam, and forced expiratory volume in 1 second improved in the 100M-group (p = .01), not in the 200M- or placebo groups. The female sexual quality of life questionnaire improved in the 100M-group (p = .03). Serum TNF-α levels decreased in the 100M-group (p = .03). B cell intracellular TNF-α improved in both the 100M- (p < .0001) and 200M-groups (p = .002) as well as between groups compared to placebo (p = .003 and p = .039, respectively). Early and late activated T-cells were also reduced by MSC therapy. Conclusion Intravenous allo-hMSCs were safe in individuals with aging frailty. Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome. Given the excellent safety and efficacy profiles demonstrated in this study, larger clinical trials are warranted to establish the efficacy of hMSCs in this multisystem disorder. Clinical Trial Registration www.clinicaltrials.gov: CRATUS (#NCT02065245). PMID:28977399

  9. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  10. Upscaling the Navier-Stokes Equation for Turbulent Flows in Porous Media Using a Volume Averaging Method

    NASA Astrophysics Data System (ADS)

    Wood, Brian; He, Xiaoliang; Apte, Sourabh

    2017-11-01

    Turbulent flows through porous media are encountered in a number of natural and engineered systems. Many attempts to close the Navier-Stokes equation for such type of flow have been made, for example using RANS models and double averaging. On the other hand, Whitaker (1996) applied volume averaging theorem to close the macroscopic N-S equation for low Re flow. In this work, the volume averaging theory is extended into the turbulent flow regime to posit a relationship between the macroscale velocities and the spatial velocity statistics in terms of the spatial averaged velocity only. Rather than developing a Reynolds stress model, we propose a simple algebraic closure, consistent with generalized effective viscosity models (Pope 1975), to represent the spatial fluctuating velocity and pressure respectively. The coefficients (one 1st order, two 2nd order and one 3rd order tensor) of the linear functions depend on averaged velocity and gradient. With the data set from DNS, performed with inertial and turbulent flows (pore Re of 300, 500 and 1000) through a periodic face centered cubic (FCC) unit cell, all the unknown coefficients can be computed and the closure is complete. The macroscopic quantity calculated from the averaging is then compared with DNS data to verify the upscaling. NSF Project Numbers 1336983, 1133363.

  11. Measuring P-V-T Phase Behavior with a Variable Volume View Cell

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Salter, Jason D.

    2004-01-01

    An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.

  12. Fluorescence exclusion: A simple versatile technique to calculate cell volumes and local heights (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    Understanding volume regulation during mitosis is technically challenging. Indeed, a very sensitive non invasive imaging over time scales ranging from seconds to hours and over large fields is required. Therefore, Quantitative Phase Imaging (QPI) would be a perfect tool for such a project. However, because of asymmetric protein segregation during mitosis, an efficient separation of the refractive index and the height in the phase signal is required. Even though many strategies to make such a separation have been developed, they usually are difficult to implement, have poor sensitivity, or cannot be performed in living cells, or in a single shot. In this paper, we will discuss the use of a new technique called fluorescence exclusion to perform volume measurements. By coupling such technique with a simultaneous phase measurement, we were also able to recover the refractive index inside the cells. Fluorescence exclusion is a versatile and powerful technique that allows the volume measurement of many types of cells. A fluorescent dye, which cannot penetrate inside the cells, is mixed with the external medium in a confined environment. Therefore, the fluorescent signal depends on the inverse of the object's height. We could demonstrate both experimentally and theoretically that fluorescence exclusion can accurately measure cell volumes, even for cells much higher than the depth of focus of the objective. A local accurate height and RI measurement can also be obtained for smaller cells. We will also discuss the way to optimize the confinement of the observation chamber, either mechanically or optically.

  13. No Correlation Between Work-Hours and Operative Volumes--A Comparison Between United States and Danish Operative Volumes Achieved During Surgical Residency.

    PubMed

    Kjærgaard, Jane; Sillesen, Martin; Beier-Holgersen, Randi

    2016-01-01

    Since 2003, United States residents have been limited to an 80-hour workweek. This has prompted concerns of reduced educational quality, especially inadequate operating exposure. In contrast, the Danish surgical specialty-training program mandates a cap on working hours of 37 per week. We hypothesize that there is no direct correlation between work-hours and operative volume achieved during surgical residency. To test the hypothesis, we compare Danish and US operative volumes achieved during surgical residency training. Retrospective comparative study. The data from the US population was extracted from the Accreditation Council for Graduate Medical Education database for General Surgery residents from 2012 to 2013. For Danish residents, a questionnaire with case categories matching the Accreditation Council for Graduate Medical Education categories were sent to all Danish surgeons graduating the national surgical residency program in 2012 or 2013, 54 in total. In all, 30 graduated residents (55%) responded to the Danish survey. We found no significant differences in mean total major procedures (1002.4 vs 976.9, p = 0.28) performed during residency training, but comparing average major procedures per year, the US residents achieve significantly more (132.3 vs 195.4, p <0.01). When factoring in differences in time spent in training, this amounts to a weekly average difference of 1.2 cases throughout training. In this study, we find no difference in overall surgical volumes between Danes and US residents during their surgical training. When time in training was accounted for, differences between weekly surgical volumes achieved were minor, indicating a lack of direct correlation between weekly work-hours and operative volumes achievable. Factors other than work-hours seem to effect on operative volumes achieved during training. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Families’ Experiences of Doubling Up After Homelessness

    PubMed Central

    Bush, Hannah; Shinn, Marybeth

    2017-01-01

    This study examined experiences of doubling up among families after episodes of homelessness. Doubling up refers to two or more adults or families residing in the same housing unit, which has been an increasing trend in the United States in recent decades. Within the past 14 years, the number of households containing more than one family, related or unrelated, has more than tripled. Although doubling up is increasingly common among families at all income levels, this study seeks to understand the experiences of doubling up among families who have been homeless. Through qualitative interviews with caregivers of 29 families, we analyzed advantages and disadvantages of doubling up with the caregiver’s parent, other family, and nonfamily. Experiences were rated on a four-point scale—(1) mostly negative, (2) negative mixed, (3) positive mixed, and (4) mostly positive—and coded for various positive and negative themes. Overall, we found that doubling up was a generally negative experience for families in our sample, regardless of their relationship to their hosts. Common themes included negative effects on children, undesirable environments, interpersonal tension, and feelings of impermanence and instability. For formerly sheltered families in this study, doubling up after shelter did not resolve their period of housing instability and may be only another stop in an ongoing cycle of homelessness. PMID:29326758

  16. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel.

    PubMed

    Dismuke, William M; Sharif, Najam A; Ellis, Dorette Z

    2009-07-01

    There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux.

  17. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.

    PubMed

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-04-03

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. Copyright © 2017 Zapotoczny and Sekelsky.

  18. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

    PubMed Central

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-01-01

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. PMID:28179392

  19. Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-05-15

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less

  20. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.

    PubMed

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  1. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope

    NASA Astrophysics Data System (ADS)

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  2. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    NASA Astrophysics Data System (ADS)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  3. How I treat double-hit lymphoma.

    PubMed

    Friedberg, Jonathan W

    2017-08-03

    The 2016 revision of the World Health Organization (WHO) classification for lymphoma has included a new category of lymphoma, separate from diffuse large B-cell lymphoma, termed high-grade B-cell lymphoma with translocations involving myc and bcl-2 or bcl-6 . These lymphomas, which occur in <10% of cases of diffuse large B-cell lymphoma, have been referred to as double-hit lymphomas (or triple-hit lymphomas if all 3 rearrangements are present). It is important to differentiate these lymphomas from the larger group of double-expressor lymphomas, which have increased expression of MYC and BCL-2 and/or BCL-6 by immunohistochemistry, by using variable cutoff percentages to define positivity. Patients with double-hit lymphomas have a poor prognosis when treated with standard chemoimmunotherapy and have increased risk of central nervous system involvement and progression. Double-hit lymphomas may arise as a consequence of the transformation of the underlying indolent lymphoma. There are no published prospective trials in double-hit lymphoma, however retrospective studies strongly suggest that aggressive induction regimens may confer a superior outcome. In this article, I review my approach to the evaluation and treatment of double-hit lymphoma, with an eye toward future clinical trials incorporating rational targeted agents into the therapeutic armamentarium. © 2017 by The American Society of Hematology.

  4. Experimental evidence for negative turgor pressure in small leaf cells of Robinia pseudoacacia L versus large cells of Metasequoia glyptostroboides Hu et W.C. Cheng. 2. Höfler diagrams below the volume of zero turgor and the theoretical implication for pressure-volume curves of living cells.

    PubMed

    Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T

    2017-03-01

    The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.

  5. Variation in critical care unit admission rates and outcomes for patients with acute coronary syndromes or heart failure among high- and low-volume cardiac hospitals.

    PubMed

    van Diepen, Sean; Bakal, Jeffrey A; Lin, Meng; Kaul, Padma; McAlister, Finlay A; Ezekowitz, Justin A

    2015-02-27

    Little is known about cross-hospital differences in critical care units admission rates and related resource utilization and outcomes among patients hospitalized with acute coronary syndromes (ACS) or heart failure (HF). Using a population-based sample of 16,078 patients admitted to a critical care unit with a primary diagnosis of ACS (n=14,610) or HF (n=1467) between April 1, 2003 and March 31, 2013 in Alberta, Canada, we stratified hospitals into high (>250), medium (200 to 250), or low (<200) volume based on their annual volume of all ACS and HF hospitalization. The percentage of hospitalized patients admitted to critical care units varied across low, medium, and high-volume hospitals for both ACS and HF as follows: 77.9%, 81.3%, and 76.3% (P<0.001), and 18.0%, 16.3%, and 13.0% (P<0.001), respectively. Compared to low-volume units, critical care patients with ACS and HF admitted to high-volume hospitals had shorter mean critical care stays (56.6 versus 95.6 hours, P<0.001), more critical care procedures (1.9 versus 1.2 per patient, <0.001), and higher resource-intensive weighting (2.8 versus 1.5, P<0.001). No differences in in-hospital mortality (5.5% versus 6.2%, adjusted odds ratio 0.93; 95% CI, 0.61 to 1.41) were observed between high- and low-volume hospitals; however, 30-day cardiovascular readmissions (4.6% versus 6.8%, odds ratio 0.77; 95% CI, 0.60 to 0.99) and cardiovascular emergency-room visits (6.6% versus 9.5%, odds ratio 0.80; 95% CI, 0.69 to 0.94) were lower in high-volume compared to low-volume hospitals. Outcomes stratified by ACS or HF admission diagnosis were similar. Cardiac patients hospitalized in low-volume hospitals were more frequently admitted to critical care units and had longer hospitals stays despite lower resource-intensive weighting. These findings may provide opportunities to standardize critical care utilization for ACS and HF patients across high- and low-volume hospitals. © 2015 The Authors. Published on behalf of the American

  6. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  7. The fundamental unit of pain is the cell.

    PubMed

    Reichling, David B; Green, Paul G; Levine, Jon D

    2013-12-01

    The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    PubMed

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. REFLECTION AND REFRACTION, VOLUME 2.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  10. Estimates of low-level waste volumes and classifications at 2-Unit 1100 MWe reference plants for decommissioning scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Vance, J.N.; James, D.

    1991-01-01

    A number of nuclear utilities and industry organizations in the United States have evaluated the requirements for reactor decommissioning. These broad scope studies have addressed the major issues of technology, methodology, safety and costs of decommissioning and have produced substantial volumes of data to describe, in detail, the issues and impacts which result. The objective of this paper to provide CECo a reasonable basis for discussion low-level waste burial volumes for the most likely decommissioning options and to show how various decontamination and VR technologies can be applied to provide additional reduction of the volumes required to be buried atmore » low-level waste burial grounds.« less

  11. Basolateral amygdala volume and cell numbers in major depressive disorder: a postmortem stereological study.

    PubMed

    Rubinow, Marisa J; Mahajan, Gouri; May, Warren; Overholser, James C; Jurjus, George J; Dieter, Lesa; Herbst, Nicole; Steffens, David C; Miguel-Hidalgo, Jose J; Rajkowska, Grazyna; Stockmeier, Craig A

    2016-01-01

    Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.

  12. Measurements of Neglected Double Stars: February 2018 Report

    NASA Astrophysics Data System (ADS)

    Carro, Joseph M.

    2018-07-01

    This article presents measurements of 53 neglected double stars. The stars were selected from the Washington Double Star Catalog published by the United States Naval Observatory. The photographs were taken by remote telescopes. The measurements were done by the author.

  13. Hemoglobin and mean platelet volume predicts diffuse T1-MRI white matter volume decrease in sickle cell disease patients.

    PubMed

    Choi, Soyoung; Bush, Adam M; Borzage, Matthew T; Joshi, Anand A; Mack, William J; Coates, Thomas D; Leahy, Richard M; Wood, John C

    2017-01-01

    Sickle cell disease (SCD) is a life-threatening genetic condition. Patients suffer from chronic systemic and cerebral vascular disease that leads to early and cumulative neurological damage. Few studies have quantified the effects of this disease on brain morphometry and even fewer efforts have been devoted to older patients despite the progressive nature of the disease. This study quantifies global and regional brain volumes in adolescent and young adult patients with SCD and racially matched controls with the aim of distinguishing between age related changes associated with normal brain maturation and damage from sickle cell disease. T1 weighted images were acquired on 33 clinically asymptomatic SCD patients (age = 21.3 ± 7.8; F = 18, M = 15) and 32 racially matched control subjects (age = 24.4 ± 7.5; F = 22, M = 10). Exclusion criteria included pregnancy, previous overt stroke, acute chest, or pain crisis hospitalization within one month. All brain volume comparisons were corrected for age and sex. Globally, grey matter volume was not different but white matter volume was 8.1% lower (p = 0.0056) in the right hemisphere and 6.8% (p = 0.0068) in the left hemisphere in SCD patients compared with controls. Multivariate analysis retained hemoglobin (β = 0.33; p = 0.0036), sex (β = 0.35; p = 0.0017) and mean platelet volume (β = 0.27; p = 0.016) as significant factors in the final prediction model for white matter volume for a combined r 2 of 0.37 (p < 0.0001). Lower white matter volume was confined to phylogenetically younger brain regions in the anterior and middle cerebral artery distributions. Our findings suggest that there are diffuse white matter abnormalities in SCD patients, especially in the frontal, parietal and temporal lobes, that are associated with low hemoglobin levels and mean platelet volume. The pattern of brain loss suggests chronic microvascular insufficiency and tissue hypoxia as the causal mechanism

  14. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  15. Controlling cell volume for efficient PHB production by Halomonas.

    PubMed

    Jiang, Xiao-Ran; Yao, Zhi-Hao; Chen, Guo-Qiang

    2017-11-01

    Bacterial morphology is decided by cytoskeleton protein MreB and cell division protein FtsZ encoded by essential genes mreB and ftsZ, respectively. Inactivating mreB and ftsZ lead to increasing cell sizes and cell lengths, respectively, yet seriously reduce cell growth ability. Here we develop a temperature-responsible plasmid expression system for compensated expression of relevant gene(s) in mreB or ftsZ disrupted recombinants H. campaniensis LS21, allowing mreB or ftsZ disrupted recombinants to grow normally at 30°C in a bioreactor for 12h so that a certain cell density can be reached, followed by 36h cell size expansions or cell shape elongations at elevated 37°C at which the mreB and ftsZ encoded plasmid pTKmf failed to replicate in the recombinants and thus lost themselves. Finally, 80% PHB yield increase was achieved via controllable morphology manipulated H. campaniensis LS21. It is concluded that controllable expanding cell volumes (widths or lengths) provides more spaces for accumulating more inclusion body polyhydroxybutyrate (PHB) and the resulting cell gravity precipitation benefits the final separation of cells and product during downstream. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm.

    PubMed

    Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe

    2018-02-01

    In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease.

    PubMed

    Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne

    2016-02-01

    Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (p<0.0001) and pulmonary capillary blood volume from 39.7 to 64.1 ml/m2 (p<0.0001); forced expiratory volume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation

    PubMed Central

    Hasan, Md. Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-01-01

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size. PMID:28773951

  19. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    PubMed

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  20. Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert (Editor)

    1990-01-01

    The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.

  1. Efficient gaussian density formulation of volume and surface areas of macromolecules on graphical processing units.

    PubMed

    Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio

    2017-04-15

    We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    NASA Astrophysics Data System (ADS)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  3. An ancillary method in urine cytology: Nucleolar/nuclear volume ratio for discrimination between benign and malignant urothelial cells.

    PubMed

    Tone, Kiyoshi; Kojima, Keiko; Hoshiai, Keita; Kumagai, Naoya; Kijima, Hiroshi; Kurose, Akira

    2016-06-01

    The essential of urine cytology for the diagnosis and the follow-up of urothelial neoplasia has been widely recognized. However, there are some cases in which a definitive diagnosis cannot be made due to difficulty in discriminating between benign and malignant. This study evaluated the practicality of nucleolar/nuclear volume ratio (%) for the discrimination. Using Papanicolaou-stained slides, 253 benign urothelial cells and 282 malignant urothelial cells were selected and divided into a benign urothelial cell and an urothelial carcinoma (UC) cell groups. Three suspicious cases and four cases in which discrimination between benign and malignant was difficult were prepared for verification test. Subject cells were decolorized and stained with 4',6-diamidino-2-phenylindole for detection of the nuclei and the nucleoli. Z-stack method was performed to analyze. When the cutoff point of 1.514% discriminating benign urothelial cells and UC cells from nucleolar/nuclear volume ratio (%) was utilized, the sensitivity was 56.0%, the specificity was 88.5%, the positive predictive value was 84.5%, and the negative predictive value was 64.4%. Nuclear and nucleolar volume, number of the nucleoli, and nucleolar/nuclear volume ratio (%) were significantly higher in the UC cell group than in the benign urothelial cell group (P <0.001). In the verification test using the nucleolar/nuclear ratio (%), four of the seven cases were concordant with the final diagnosis. This study analyzed the nuclear and nucleolar volume to establish an index for discrimination of benign and malignant urothelial cells, providing possible additional information in urine cytology. Diagn. Cytopathol. 2016;44:483-491. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Comparison of urodynamic volume measurements using room and body temperature saline: a double-blinded randomized crossover study design.

    PubMed

    Gehrich, Alan Paul; Hill, Micah J; McWilliams, Grant D E; Larsen, Wilma; McCartin, Tamarin

    2012-01-01

    Urodynamic studies, routinely performed in women with lower urinary tract symptoms, have a large impact on clinical decision making. Unfortunately, these studies are insensitive in reproducing idiopathic detrusor overactivity (IDO). We set out to examine whether serial cystometry with different distending fluid temperatures could better reproduce symptoms. Eighty-six women were enrolled in a double-blinded, randomized, crossover study. Two cystometries were performed in series, starting with either body temperature fluid (BTF) or room temperature fluid (RTF) and then repeating cystometry with the other temperature fluid. Primary outcomes included first sensation, first urge, and maximum cystometric capacity. Secondary outcomes included subjective sensation of bladder discomfort and the incidence of IDO. In aggregate, the temperature of the fluid did not affect volumes of bladder sensation. There were no differences in self-reported bladder irritation or IDO between the different temperature fluids. There was a significant carryover effect with BTF. BTF administered first reached sensory thresholds at lower volumes than when it was administered second after RTF. Room temperature fluid cystometry showed no statistical difference in volume between first fill and second fill. Idiopathic detrusor overactivity contractions were seen in 9% of studies and were not affected by period or temperature. These data suggest that BTF and RTF independently do not affect bladder sensory thresholds. The periodicity in combination with varying fluid temperature is of greater impact. This study documents that changes in temperature of the distending fluid from BTF to RTF or vice versa likely do not provoke IDO contractions.

  5. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  6. Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units

    NASA Astrophysics Data System (ADS)

    Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail

    A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.

  7. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  8. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo.

    PubMed

    Song, Xinyu; Han, Xiaoyue; Yu, Fabiao; Zhang, Jinjin; Chen, Lingxin; Lv, Changjun

    2018-01-15

    Formaldehyde (FA) is an endogenously produced reactive carbonyl species (RCS) through biological metabolic processes whose concentration is closely related to human health and disease. Noninvasive and real-time detection of FA concentration in organisms is very important for revealing the physiological and pathological functions of FA. Herein, we design and synthesize a reversible fluorescent probe BOD-NH 2 for the detection of FA in living cells and in vivo. The probe is composed of two moieties: the BODIPY fluorophore and the primary amino group response unit. The probe undergoes an intracellular aldimine condensation reaction with FA and forms imine (C[double bond, length as m-dash]N) which will result in C[double bond, length as m-dash]N isomerization and rotation to turn-off the fluorescence of the probe. It is important that the probe can show a reversible response to FA. The probe BOD-NH 2 has been successfully applied for detecting and imaging FA in the cytoplasm of living cells. BOD-NH 2 is capable of detecting fluctuations in the levels of endogenous and exogenous FA in different types of living cells. The probe can be used to visualize the FA concentration in fresh hippocampus and the probe can further qualitatively evaluate the FA concentrations in ex vivo-dissected organs. Moreover, BOD-NH 2 can also be used for imaging in mice. The above applications make our new probe a potential chemical tool for the study of physiological and pathological functions of FA in cells and in vivo.

  9. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    PubMed

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  10. Work environment, volume of activity and staffing in neonatal intensive care units in Italy: results of the SONAR-nurse study.

    PubMed

    Corchia, Carlo; Fanelli, Simone; Gagliardi, Luigi; Bellù, Roberto; Zangrandi, Antonello; Persico, Anna; Zanini, Rinaldo

    2016-04-02

    Neonatal units' volume of activity, and other quantitative and qualitative variables, such as staffing, workload, work environment, care organization and geographical location, may influence the outcome of high risk newborns. Data about the distribution of these variables and their relationships among Italian neonatal units are lacking. Between March 2010-April 2011, 63 neonatal intensive care units adhering to the Italian Neonatal Network participated in the SONAR Nurse study. Their main features and work environment were investigated by questionnaires compiled by the chief and by physicians and nurses of each unit. Twelve cross-sectional monthly-repeated surveys on different shifts were performed, collecting data on number of nurses on duty and number and acuity of hospitalized infants. Six hundred forty five physicians and 1601 nurses compiled the questionnaires. In the cross-sectional surveys 702 reports were collected, with 11082 infant and 3226 nurse data points. A high variability was found for units' size (4-50 total beds), daily number of patients (median 14.5, range 3.4-48.7), number of nurses per shift (median 4.2, range 0.7-10.8) and number of team meetings per month. Northern regions performed better than Central and Southern regions for frequency of training meetings, qualitative assessment of performance, motivation within the unit and nursing work environment; mean physicians' and nurses' age increased moving from North to South. After stratification by terciles of the mean daily number of patients, the median number of nurses per shift increased at increasing volume of activity, while the opposite was found for the nurse-to-patient ratio adjusted by patients' acuity. On average, in units belonging to the lower tercile there was 1 nurse every 2.5 patients, while in those belonging to the higher tercile the ratio was 1 nurse every 5 patients. In Italy, there is a high variability in organizational characteristics and work environment among neonatal

  11. [Veterinary double-monsters historically viewed].

    PubMed

    Baljet, B; Heijke, G C

    1997-01-01

    A large number of duplication monstrosities have been observed in cattle, sheep, pigs, horses, goats, cats and dogs, ever since the publication of the famous woodcut of a swine double monster by J. S. Brant in Basel in 1496, better known as the "wunderbare Sau von Landser im Elsass". Albrecht Dürer also made a woodcut of this double monster in front of the village Landser in 1496. A picture of a deer double monster was published in 1603 by Heinrich Ulrich in Germany. In the monograph De monstrorum causis, natura et differentiis ..., published by the Italian Fortunius Licetus in 1616 pictures of double monsters being half man half dog are found. These fantasy figures have been popular for a long time and were supposed to be really in existence. Apart from these fantasy figures many pictures are known from real veterinary double monsters. U. Aldrovandus described in 1642 in his Monstrorum historia, besides many fantasy figures, also real human and veterinary double monsters and he gave also good pictures of them. In the 19th century examples of veterinary duplication monstrosities were published by I. Geoffroy Saint-Hilaire (1832-37), E. F. Gurlt (1832), W. Vrolik (1840) and C. Taruffi (1881); they proposed also concepts concerning the etiology. In the second volume of his famous handbook of teratology (1907), E. Schwalbe described many veterinary double monsters and discussed the theories of the genesis of congenital malformations. Various theories concerning the genesis of double monsters have been given since Aristotle (384-322 B.C.). ...

  12. Learning about the Unit Cell and Crystal Lattice with Computerized Simulations and Games: A Pilot Study

    ERIC Educational Resources Information Center

    Luealamai, Sutha; Panijpan, Bhinyo

    2012-01-01

    The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…

  13. Reducing intraoperative red blood cell unit wastage in a large academic medical center.

    PubMed

    Whitney, Gina M; Woods, Marcella C; France, Daniel J; Austin, Thomas M; Deegan, Robert J; Paroskie, Allison; Booth, Garrett S; Young, Pampee P; Dmochowski, Roger R; Sandberg, Warren S; Pilla, Michael A

    2015-11-01

    The wastage of red blood cell (RBC) units within the operative setting results in significant direct costs to health care organizations. Previous education-based efforts to reduce wastage were unsuccessful at our institution. We hypothesized that a quality and process improvement approach would result in sustained reductions in intraoperative RBC wastage in a large academic medical center. Utilizing a failure mode and effects analysis supplemented with time and temperature data, key drivers of perioperative RBC wastage were identified and targeted for process improvement. Multiple contributing factors, including improper storage and transport and lack of accurate, locally relevant RBC wastage event data were identified as significant contributors to ongoing intraoperative RBC unit wastage. Testing and implementation of improvements to the process of transport and storage of RBC units occurred in liver transplant and adult cardiac surgical areas due to their history of disproportionately high RBC wastage rates. Process interventions targeting local drivers of RBC wastage resulted in a significant reduction in RBC wastage (p < 0.0001; adjusted odds ratio, 0.24; 95% confidence interval, 0.15-0.39), despite an increase in operative case volume over the period of the study. Studied process interventions were then introduced incrementally in the remainder of the perioperative areas. These results show that a multidisciplinary team focused on the process of blood product ordering, transport, and storage was able to significantly reduce operative RBC wastage and its associated costs using quality and process improvement methods. © 2015 AABB.

  14. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    PubMed

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  15. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-03-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m-3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  16. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  17. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer

    PubMed Central

    Zhang, Zhaojing; Yao, Liyong; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming‐Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2017-01-01

    Abstract Double layer distribution exists in Cu2SnZnSe4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double‐layer distribution of CZTSe film is eliminated entirely and the formation of MoSe2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSex mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu‐Sn‐Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu2Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm2 and a CZTSe solar cell with efficiency of 7.2% is fabricated. PMID:29610727

  18. Testing of an oral dosing technique for double-crested cormorants, Phalacocorax auritus, laughing gulls, Leucophaeus atricilla, homing pigeons, Columba livia, and western sandpipers, Calidris mauri, with artificially weather MC252 oil.

    PubMed

    Dean, K M; Cacela, D; Carney, M W; Cunningham, F L; Ellis, C; Gerson, A R; Guglielmo, C G; Hanson-Dorr, K C; Harr, K E; Healy, K A; Horak, K E; Isanhart, J P; Kennedy, L V; Link, J E; Lipton, I; McFadden, A K; Moye, J K; Perez, C R; Pritsos, C A; Pritsos, K L; Muthumalage, T; Shriner, S A; Bursian, S J

    2017-12-01

    Scoping studies were designed to determine if double-crested cormorants (Phalacocorax auritus), laughing gulls (Leucophaues atricilla), homing pigeons (Columba livia) and western sandpipers (Calidris mauri) that were gavaged with a mixture of artificially weathered MC252 oil and food for either a single day or 4-5 consecutive days showed signs of oil toxicity. Where volume allowed, samples were collected for hematology, plasma protein electrophoresis, clinical chemistry and electrolytes, oxidative stress and organ weigh changes. Double-crested cormorants, laughing gulls and western sandpipers all excreted oil within 30min of dose, while pigeons regurgitated within less than one hour of dosing. There were species differences in the effectiveness of the dosing technique, with double-crested cormorants having the greatest number of responsive endpoints at the completion of the trial. Statistically significant changes in packed cell volume, white cell counts, alkaline phosphatase, alanine aminotransferase, creatine phosphokinase, gamma glutamyl transferase, uric acid, chloride, sodium, potassium, calcium, total glutathione, glutathione disulfide, reduced glutathione, spleen and liver weights were measured in double-crested cormorants. Homing pigeons had statistically significant changes in creatine phosphokinase, total glutathione, glutathione disulfide, reduced glutathione and Trolox equivalents. Laughing gulls exhibited statistically significant decreases in spleen and kidney weight, and no changes were observed in any measurement endpoints tested in western sandpipers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis.

    PubMed

    Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming

    2016-06-17

    Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells.

    PubMed

    Alja, Štraser; Filipič, Metka; Novak, Matjaž; Žegura, Bojana

    2013-08-21

    The newly emerging cyanobacterial cytotoxin cylindrospermopsin (CYN) is increasingly found in surface freshwaters, worldwide. It poses a potential threat to humans after chronic exposure as it was shown to be genotoxic in a range of test systems and is potentially carcinogenic. However, the mechanisms of CYN toxicity and genotoxicity are not well understood. In the present study CYN induced formation of DNA double strand breaks (DSBs), after prolonged exposure (72 h), in human hepatoma cells, HepG2. CYN (0.1-0.5 µg/mL, 24-96 h) induced morphological changes and reduced cell viability in a dose and time dependent manner. No significant increase in lactate dehydrogenase (LDH) leakage could be observed after CYN exposure, indicating that the reduction in cell number was due to decreased cell proliferation and not due to cytotoxicity. This was confirmed by imunocytochemical analysis of the cell-proliferation marker Ki67. Analysis of the cell-cycle using flow-cytometry showed that CYN has an impact on the cell cycle, indicating G0/G1 arrest after 24 h and S-phase arrest after longer exposure (72 and 96 h). Our results provide new evidence that CYN is a direct acting genotoxin, causing DSBs, and these facts need to be considered in the human health risk assessment.

  1. Can Multiple Cropping Help to Avoid the Impacts of Heat Extremes? The Case of Winter Wheat/Soybean Double Cropping in the United States

    NASA Astrophysics Data System (ADS)

    Seifert, C.; Lobell, D. B.

    2014-12-01

    In adapting U.S. agriculture to the climate of the 21st century, multiple cropping presents a unique opportunity to help offset projected negative trends in agricultural production while moving critical crop yield formation periods outside of the hottest months of the year. Critical constraints on this practice include moisture availability, and, more importantly, growing season length. We review evidence that this last constraint has decreased in the previous quarter century, allowing for more winter wheat/soybean double cropping in previously phenologically constrained areas. We also carry this pattern forward to 2100, showing a 126% to 211% increase in the area phenologically suitable for double cropping under the RCP45 and RCP85 scenarios respectively. These results suggest that climate change will relieve phenological constraints on wheat-soy double cropping systems over much of the United States, changing production patterns and crop rotations as areas become suitable for the practice.

  2. The use of biomarkers to describe plasma-, red cell-, and blood volume from a simple blood test.

    PubMed

    Lobigs, Louisa Margit; Sottas, Pierre-Edouard; Bourdon, Pitre Collier; Nikolovski, Zoran; El-Gingo, Mohamed; Varamenti, Evdokia; Peeling, Peter; Dawson, Brian; Schumacher, Yorck Olaf

    2017-01-01

    Plasma volume and red cell mass are key health markers used to monitor numerous disease states, such as heart failure, kidney disease, or sepsis. Nevertheless, there is currently no practically applicable method to easily measure absolute plasma or red cell volumes in a clinical setting. Here, a novel marker for plasma volume and red cell mass was developed through analysis of the observed variability caused by plasma volume shifts in common biochemical measures, selected based on their propensity to present with low variations over time. Once a month for 6 months, serum and whole blood samples were collected from 33 active males. Concurrently, the CO-rebreathing method was applied to determine target levels of hemoglobin mass (HbM) and blood volumes. The variability of 18 common chemistry markers and 27 Full Blood Count variables was investigated and matched to the observed plasma volume variation. After the removal of between-subject variations using a Bayesian model, multivariate analysis identified two sets of 8 and 15 biomarkers explaining 68% and 69% of plasma volume variance, respectively. The final multiparametric model contains a weighting function to allow for isolated abnormalities in single biomarkers. This proof-of-concept investigation describes a novel approach to estimate absolute vascular volumes, with a simple blood test. Despite the physiological instability of critically ill patients, it is hypothesized the model, with its multiparametric approach and weighting function, maintains the capacity to describe vascular volumes. This model has potential to transform volume management in clinical settings. Am. J. Hematol. 92:62-67, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banse, K.

    1982-01-01

    A review of growth rates of diatoms and dinoflagellates in light-saturated, nutrient-replete cultures at 20/sup 0/C confirms weak dependence on cell volume or mass. These maximal (intrinsic) rates are not linearly related to surface area or surface-to-volume ratio of the cells. The growth of most diatoms is materially faster than that of dinoflagellates; other algae fall in between or below the dinoflagellates. Small ciliates have appreciably higher intrinsic growth rates than algae of the same cell volume. The average food consumption per ciliate in the marine pelagic realm is inferred to be very low, so that the realized specific growthmore » rates are much smaller than the intrinsic potentials. Also, a previously postulated refuge from predation, afforded by small size, is extended down to about 10-..mu..m/sup 3/ cell volume.« less

  4. Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musalinov, S. B.; Anzulevich, A. P.; Bychkov, I. V.

    2017-01-15

    The results of simulation by the transfer-matrix method of TiO{sub 2}/SiO{sub 2} double-layer and TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coatings for multijunction InGaP/GaAs/Ge heterostructure solar cells are presented. The TiO{sub 2}/SiO{sub 2} double-layer antireflection coating is experimentally developed and optimized. The experimental spectral dependences of the external quantum yield of the InGaP/GaAs/Ge heterostructure solar cell and optical characteristics of antireflection coatings, obtained in the simulation, are used to determine the photogenerated current densities of each subcell in the InGaP/GaAs/Ge solar cell under AM1.5D irradiation conditions (1000 W/m{sup 2}) and for the case of zero reflection loss. It ismore » shown in the simulation that the optimized TiO{sub 2}/Si{sub 3}N{sub 4}/SiO{sub 2} triple-layer antireflection coating provides a 2.3 mA/cm{sup 2} gain in the photocurrent density for the Ge subcell under AM1.5D conditions in comparison with the TiO{sub 2}/SiO{sub 2} double-layer antireflection coating under consideration. This thereby provides an increase in the fill factor of the current–voltage curve and in the output electric power of the multijunction solar cell.« less

  5. From Higher Education To Employment. Volume II: Canada, Denmark, Spain, United States = De l'enseignement superieur a l'emploi. Volume II: Canada, Danemark, Expagne, Etats-Unis.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    This volume presents reports on the flows of graduates from higher education and on their entry into working life in Canada, Denmark, Spain and the United States. Each paper is written according to detailed guidelines designed to assemble information from many sources, to reflect the state of the art, and to illustrate a variety of approaches,…

  6. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  7. Zn- and Co-based layered double hydroxides: prediction of the a parameter from the fraction of trivalent cations and vice versa

    PubMed Central

    Richardson, Ian G.

    2013-01-01

    A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies. PMID:23873067

  8. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo

    2016-06-16

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia

  9. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  10. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis

  11. Reticulocyte count in red-blood-cell units stored in AS-1.

    PubMed

    Urbina, A; Palomino, F

    2013-05-01

    Previous data that showed maintenance of reticulocyte percentage in whole blood stored in CPDA-1 have led to the assumption that reticulocyte maturation becomes arrested during refrigerated storage. However, reticulocyte behaviour in red-blood-cell units stored in additive solutions has not yet been studied. This study was thus aimed at determining reticulocyte count and reticulocyte subtypes in red-blood-cells units stored in AS-1. Reticulocyte percentage and subtypes were determined by flow cytometry with thiazole orange in six red-blood-cells units stored in AS-1. Reticulocyte count was 26.8 ± 4.6 × 10(9) /l at week 0.5 and 8.2 ± 2.9 × 10(9) /l at week 6. Total haemolysis during storage was 0.19 ± 0.08%. High-fluorescence reticulocytes were 2.0 ± 3.2 × 10(9) /l at week 0.5 and decreased by weeks 2, 4 and 6. Low-fluorescence reticulocytes were 22.1 ± 3.1 × 10(9) /l at week 0.5 and decreased by weeks 4 and 6. A significant decrease in reticulocytes occurred during red-blood-cells units' storage in AS-1. Even if it were assumed that all of haemolysed cells during storage were reticulocytes, there are a number of them whose disappearance cannot be explained by this mechanism. Changes observed in reticulocyte subtypes suggest that they mature during storage. © 2013 The Author(s) Vox Sanguinis © 2013 International Society of Blood Transfusion.

  12. Clinicopathological and genomic analysis of double-hit follicular lymphoma: comparison with high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements.

    PubMed

    Miyaoka, Masashi; Kikuti, Yara Y; Carreras, Joaquim; Ikoma, Haruka; Hiraiwa, Shinichiro; Ichiki, Akifumi; Kojima, Minoru; Ando, Kiyoshi; Yokose, Tomoyuki; Sakai, Rika; Hoshikawa, Masahiro; Tomita, Naoto; Miura, Ikuo; Takata, Katsuyoshi; Yoshino, Tadashi; Takizawa, Jun; Bea, Silvia; Campo, Elias; Nakamura, Naoya

    2018-02-01

    Most high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements are aggressive B-cell lymphomas. Occasional double-hit follicular lymphomas have been described but the clinicopathological features of these tumors are not well known. To clarify the characteristics of double-hit follicular lymphomas, we analyzed 10 cases of double-hit follicular lymphomas and 15 cases of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements for clinicopathological and genome-wide copy-number alterations and copy-neutral loss-of-heterozygosity profiles. For double-hit follicular lymphomas, the median age was 67.5 years (range: 48-82 years). The female/male ratio was 2.3. Eight patients presented with advanced clinical stage. The median follow-up time was 20 months (range: 1-132 months). At the end of the follow-up, 8 patients were alive, 2 patients were dead including 1 patient with diffuse large B-cell lymphoma transformation. Rearrangements of MYC/BCL2, MYC/BCL6, and MYC/BCL2/BCL6 were seen in 8, 1, and 1 cases, respectively. The partner of MYC was IGH in 6 cases. There were no cases of histological grade 1, 4 cases of grade 2, 5 cases of grade 3a, and 1 case of grade 3b. Two cases of grade 3a exhibited immunoblast-like morphology. Immunohistochemistry demonstrated 9 cases with ≥50% MYC-positive cells. There was significant difference in MYC intensity (P=0.00004) and MIB-1 positivity (P=0.001) between double-hit follicular lymphomas and high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. The genome profile of double-hit follicular lymphomas was comparable with conventional follicular lymphomas (GSE67385, n=198) with characteristic gains of 2p25.3-p11.1, 7p22.3-q36.3, 12q11-q24.33, and loss of 18q21.32-q23 (P<0.05). In comparison with high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements, double-hit follicular lymphomas had fewer copy-number alterations and minimal common region of gain at 2p16.1 (70%), locus

  13. Varying termiticide application rate and volume affect initial soil penetration

    Treesearch

    Christopher Peterson

    2010-01-01

    The initial soil penetration of Premise 75 and Termidor SC, containing imidacloprid and fipronil, respectively, were tested in laboratory columns of five different soils. Three combinations of application concentration and volume were used: double the recommended active ingredient concentration at one half the recommended volume (DR), the full concentration and volume...

  14. The Hb E (HBB: c.79G>A), Mean Corpuscular Volume, Mean Corpuscular Hemoglobin Cutoff Points in Double Heterozygous Hb E/- -SEA α-Thalassemia-1 Carriers are Dependent on Hemoglobin Levels.

    PubMed

    Leckngam, Prapapun; Limweeraprajak, Ektong; Kiewkarnkha, Tiemjan; Tatu, Thanusak

    2017-01-01

    Identifying double heterozygosities in Hb E (HBB: c.79 G>A)/- - SEA (Southeast Asian) (α-thalassemia-1) (α-thal-1) in patients first diagnosed as carrying Hb E is important in thalassemia control. Low Hb E, mean corpuscular volume (MCV) and mean corpuscular hemoglobin (Hb) (MCH) levels have been observed in this double heterozygosity. However, the cutoff points of these parameters have never been systematically established. Here, we analyzed Hb E and red blood cell (RBC) parameters in 372 Hb E patients grouped by Hb levels, by the status of - - SEA and -α 3.7 (α-thal-2; rightward) deletions, to establish the cutoff points. Then, the established cutoff points were evaluated in 184 Hb E patients. It was found that the cutoff points of Hb E, MCV, MCH were significantly dependent on the Hb levels. In the group having Hb levels <10.0 g/dL, the cutoff points of Hb E, MCV and MCH were 21.2%, 64.9 fL and 21.0 pg, respectively, and were 25.6%, 72.8 fL and 23.9 pg, respectively, in the group having Hb levels 10.0-11.9 g/dL. Finally, in the group having Hb levels ≥12.0 g/dL, the cutoff points of Hb E, MCV and MCH were 27.1%, 76.7 fL and 25.3 pg, respectively. Thus, to screen for the double heterozygous Hb E/- - SEA anomaly in patients initially diagnosed as carrying Hb E, the Hb levels must be taken into account in choosing the suitable cutoff points of these three parameters.

  15. Preparation of Double-Stranded (Replicative Form) Bacteriophage M13 DNA.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2017-11-01

    The double-stranded, closed-circular, replicative form (RF) of M13 DNA is present in high copy numbers in infected cells, and its physical characteristics are essentially identical to those of closed-circular plasmid DNAs. Any of the methods commonly used to purify plasmid DNA can therefore be used to isolate M13 RF DNA. This protocol describes the isolation of M13 RF DNA by alkaline lysis from small volumes (1-2 mL) of infected bacterial cultures. The yield of DNA (1-4 mg, depending on the size of the M13 clone) is more than enough for most purposes in molecular cloning. However, should more DNA be needed, the procedure can easily be scaled up. © 2017 Cold Spring Harbor Laboratory Press.

  16. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  17. Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei

    2018-06-01

    With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

  18. Ethical Leadership, Leader-Member Exchange and Feedback Seeking: A Double-Moderated Mediation Model of Emotional Intelligence and Work-Unit Structure

    PubMed Central

    Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe

    2017-01-01

    This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers’ feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure. PMID:28744251

  19. Ethical Leadership, Leader-Member Exchange and Feedback Seeking: A Double-Moderated Mediation Model of Emotional Intelligence and Work-Unit Structure.

    PubMed

    Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe

    2017-01-01

    This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers' feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure.

  20. The effect of latent adenovirus 5 infection on cigarette smoke-induced lung inflammation.

    PubMed

    Vitalis, T Z; Kern, I; Croome, A; Behzad, H; Hayashi, S; Hogg, J C

    1998-03-01

    The aim of this study was to test the hypothesis that latent adenovirus (Ad) 5 infection increases the lung inflammation that follows a single acute exposure to cigarette smoke. A recently developed model of latent adenoviral infection in guinea-pigs was used. Twelve animals were infected with Ad5 (10(8) plaque-forming units) and 12 animals were sham-infected. Thirty five days later six Ad5-infected and six sham-infected animals were exposed to the smoke from five cigarettes. The remaining animals were used as controls for both infection and smoking. As markers of inflammation, the volume fraction of macrophages, T-lymphocytes, neutrophils and eosinophils were measured by quantitative histology. We found that latent Ad5-infection alone, doubled the number of macrophages in the lung parenchyma and that smoking alone, doubled the volume fraction of neutrophils in the airway wall and the volume fraction of macrophages in the lung parenchyma. Neither viral infection nor smoking, alone, had an effect on T-lymphocytes or eosinophils. However, the combination of viral infection and smoking doubled the T-lymphocyte helper cells and quadrupled the volume fraction of macrophages in the lung parenchyma. We conclude that in guinea-pigs, latent adenovirus 5 infection increases the inflammation that follows a single acute exposure to cigarette smoke, by increasing the volume fraction of macrophages and T-lymphocyte helper cells.

  1. Mixed metal oxides for dye-sensitized solar cell using zinc titanium layered double hydroxide as precursor

    NASA Astrophysics Data System (ADS)

    Liu, Jianqiang; Qin, Yaowei; Zhang, Liangji; Xiao, Hongdi; Song, Jianye; Liu, Dehe; Leng, Mingzhe; Hou, Wanguo; Du, Na

    2013-12-01

    Mixed metal oxides (MMO) are always obtained from layered double hydroxide (LDH) by thermal decomposition. In the present work, a zinc titanium LDH with the zinc titanium molar ratio of 4.25 was prepared by urea method and ZnO-based mixed oxides were obtained by calcining at or over 500°C. The MMO was used as electrodes for dye sensitized solar cell (DSSC). The cells constructed by films of prepared composite materials using a N719 as dye were prepared. The efficiency values of these cells are 0.691%, 0.572% and 0.302% with MMO prepared at 500, 600 and 700°C, respectively.

  2. T-cell chronic lymphocytic leukemia in a double yellow-headed Amazon parrot (Amazona ochrocephala oratrix).

    PubMed

    Osofsky, Anna; Hawkins, Michelle G; Foreman, Oded; Kent, Michael S; Vernau, William; Lowenstine, Linda J

    2011-12-01

    An adult, male double yellow-headed Amazon parrot (Amazona ochrocephala oratrix) was diagnosed with chronic lymphocytic leukemia based on results of a complete blood cell count and cytologic examination of a bone marrow aspirate. Treatment with oral chlorambucil was attempted, but no response was evident after 40 days. The bird was euthanatized, and the diagnosis of chronic lymphocytic leukemia was confirmed on gross and microscopic examination of tissues. Neoplastic lymphocytes were found in the bone marrow, liver, kidney, testes, and blood vessels. Based on CD3-positive immunocytochemical and immunohistochemical immunophenotyping, the chronic lymphocytic leukemia was determined to be of T-cell origin.

  3. Cadmium recovery by coupling double microbial fuel cells.

    PubMed

    Choi, Chansoo; Hu, Naixu; Lim, Bongsu

    2014-10-01

    Cr(VI)-MFC of the double microbial fuel cell (d-MFC) arrangement could successfully complement the insufficient voltage and power needed to recover cadmium metal from Cd(II)-MFC, which operated as a redox-flow battery. It was also possible to drain electrical energy from the d-MFC by an additional passage. The highest maximum utilization power density (22.5Wm(-2)) of Cr(VI)-MFC, with the cathode optimized with sulfate buffer, was 11.3times higher than the highest power density directly supplied to Cd(II)-MFC (2.0Wm(-2)). Cr(VI)-MFC could generate 3times higher power with the additional passage than without it; and the current density for the former was 4.2times higher than the latter at the same maximum power point (38.0Am(-2) vs. 9.0Am(-2)). This boosting phenomenon could be explained by the Le Chatelier's principle, which addresses the rate of electron-hole pair formation that can be accelerated by quickly removing electrons generated by microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Heat Transfer Characteristics of Fan Coil Unit (FCU) Under The Effect of Chilled Water Volume Flowrate

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.

    2018-01-01

    In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.

  5. Outcomes of PCI in Relation to Procedural Characteristics and Operator Volumes in the United States.

    PubMed

    Fanaroff, Alexander C; Zakroysky, Pearl; Dai, David; Wojdyla, Daniel; Sherwood, Matthew W; Roe, Matthew T; Wang, Tracy Y; Peterson, Eric D; Gurm, Hitinder S; Cohen, Mauricio G; Messenger, John C; Rao, Sunil V

    2017-06-20

    Professional guidelines have reduced the recommended minimum number to an average of 50 percutaneous coronary intervention (PCI) procedures performed annually by each operator. Operator volume patterns and associated outcomes since this change are unknown. The authors describe herein PCI operator procedure volumes; characteristics of low-, intermediate-, and high-volume operators; and the relationship between operator volume and clinical outcomes in a large, contemporary, nationwide sample. Using data from the National Cardiovascular Data Registry collected between July 1, 2009, and March 31, 2015, we examined operator annual PCI volume. We divided operators into low- (<50 PCIs per year), intermediate- (50 to 100 PCIs per year), and high- (>100 PCIs per year) volume groups, and determined the adjusted association between annual PCI volume and in-hospital outcomes, including mortality. The median annual number of procedures performed per operator was 59; 44% of operators performed <50 PCI procedures per year. Low-volume operators more frequently performed emergency and primary PCI procedures and practiced at hospitals with lower annual PCI volumes. Unadjusted in-hospital mortality was 1.86% for low-volume operators, 1.73% for intermediate-volume operators, and 1.48% for high-volume operators. The adjusted risk of in-hospital mortality was higher for PCI procedures performed by low- and intermediate-volume operators compared with those performed by high-volume operators (adjusted odds ratio: 1.16 for low versus high; adjusted odds ratio: 1.05 for intermediate vs. high volume) as was the risk for new dialysis post PCI. No volume relationship was observed for post-PCI bleeding. Many PCI operators in the United States are performing fewer than the recommended number of PCI procedures annually. Although absolute risk differences are small and may be partially explained by unmeasured differences in case mix between operators, there remains an inverse relationship

  6. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    NASA Astrophysics Data System (ADS)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  7. Fukushima Daiichi Unit 1 Uncertainty Analysis-Exploration of Core Melt Progression Uncertain Parameters-Volume II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Brooks, Dusty Marie

    Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on keymore » figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .« less

  8. Reducing intraoperative red blood cell unit wastage in a large academic medical center

    PubMed Central

    Whitney, Gina M.; Woods, Marcella C.; France, Daniel J.; Austin, Thomas M.; Deegan, Robert J.; Paroskie, Allison; Booth, Garrett S.; Young, Pampee P.; Dmochowski, Roger R.; Sandberg, Warren S.; Pilla, Michael A.

    2015-01-01

    BACKGROUND The wastage of red blood cell (RBC) units within the operative setting results in significant direct costs to health care organizations. Previous education-based efforts to reduce wastage were unsuccessful at our institution. We hypothesized that a quality and process improvement approach would result in sustained reductions in intraoperative RBC wastage in a large academic medical center. STUDY DESIGN AND METHODS Utilizing a failure mode and effects analysis supplemented with time and temperature data, key drivers of perioperative RBC wastage were identified and targeted for process improvement. RESULTS Multiple contributing factors, including improper storage and transport and lack of accurate, locally relevant RBC wastage event data were identified as significant contributors to ongoing intraoperative RBC unit wastage. Testing and implementation of improvements to the process of transport and storage of RBC units occurred in liver transplant and adult cardiac surgical areas due to their history of disproportionately high RBC wastage rates. Process interventions targeting local drivers of RBC wastage resulted in a significant reduction in RBC wastage (p <0.0001; adjusted odds ratio, 0.24; 95% confidence interval, 0.15–0.39), despite an increase in operative case volume over the period of the study. Studied process interventions were then introduced incrementally in the remainder of the perioperative areas. CONCLUSIONS These results show that a multidisciplinary team focused on the process of blood product ordering, transport, and storage was able to significantly reduce operative RBC wastage and its associated costs using quality and process improvement methods. PMID:26202213

  9. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    PubMed

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Portale, Giuseppe; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2017-05-01

    The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Using stochastic cell division and death to probe minimal units of cellular replication

    NASA Astrophysics Data System (ADS)

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  12. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit

    PubMed Central

    Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2016-01-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg−1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg−1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg−1 predicted body weight and 7.9(±1.8) ml kg−1 predicted body weight for pressure-controlled ventilation (P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level. PMID:28979556

  13. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    PubMed

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  14. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    PubMed

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  15. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  16. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties

    PubMed Central

    Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.

    2015-01-01

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037

  17. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties.

    PubMed

    Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A

    2015-04-21

    It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).

  18. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney.

    PubMed

    Guggino, W B; Oberleithner, H; Giebisch, G

    1985-07-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.

  19. Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney

    PubMed Central

    1985-01-01

    The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway. PMID:2411847

  20. Cell dispensing in low-volume range with the immediate drop-on-demand technology (I-DOT).

    PubMed

    Schober, Lena; Büttner, Evy; Laske, Christopher; Traube, Andrea; Brode, Tobias; Traube, Andreas Florian; Bauernhansl, Thomas

    2015-04-01

    Handling and dosing of cells comprise the most critical step in the microfabrication of cell-based assay systems for screening and toxicity testing. Therefore, the immediate drop-on-demand technology (I-DOT) was developed to provide a flexible noncontact liquid handling system enabling dispensing of cells and liquid without the risk of cross-contamination down to a precise volume in the nanoliter range. Liquid is dispensed from a source plate within nozzles at the bottom by a short compressed air pulse that is given through a quick release valve into the well, thus exceeding the capillary pressure in the nozzle. Droplets of a defined volume can be spotted directly onto microplates or other cell culture devices. We present a study on the performance and biological impact of this technology by applying the cell line MCF-7, human fibroblasts, and human mesenchymal stem cells (hMSCs). For all cell types tested, viability after dispensing is comparable to the control and exhibits similar proliferation rates in the absence of apoptotic cells, and the differentiation potential of hMSCs is not impaired. The immediate drop-on-demand technology enables accurate cell dosage and offers promising potential for single-cell applications. © 2014 Society for Laboratory Automation and Screening.

  1. Effects of Cationic Microbubble Carrying CD/TK Double Suicide Gene and αVβ3 Integrin Antibody in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Li, Jiale; Zhou, Ping; Li, Lan; Zhang, Yan; Shao, Yang; Tang, Li; Tian, Shuangming

    2016-01-01

    Hepatocellular carcinoma (HCC), mostly derived from hepatitis or cirrhosisis, is one of the most common types of liver cancer. T-cell mediated immune response elicited by CD/TK double suicide gene has shown a substantial antitumor effect in HCC. Integrin αVβ3 over expresssion has been suggested to regulate the biology behavior of HCC. In this study, we investigated the strategy of incorporating CD/TK double suicide gene and anti-αVβ3 integrin monoclonal antibodies into cationic microbubbles (CMBsαvβ3), and evaluated its killing effect in HCC cells. To improve the transfection efficiency of targeted CD/TK double suicide gene, we adopted cationic microbubbles (CMBs), a cationic delivery agent with enhanced DNA-carrying capacity. The ultrasound and high speed shearing method was used to prepare the non-targeting cationic microbubbles (CMBs). Using the biotin-avidin bridge method, αVβ3 integrin antibody was conjugated to CMBs, and CMBsαvβ3 was generated to specifically target to HepG2 cells. The morphology and physicochemical properties of the CMBsαvβ3 was detected by optical microscope and zeta detector. The conjugation of plasmid and the antibody in CMBsαvβ3 were examined by immunofluorescent microscopy and flow cytometry. The binding capacities of CMBsαvβ3 and CMBs to HCC HepG2 and normal L-02 cells were compared using rosette formation assay. To detect EGFP fluorescence and examine the transfection efficiencies of CMBsαvβ3 and CMBs in HCC cells, fluorescence microscope and contrast-enhanced sonography were adopted. mRNA and protein level of CD/TK gene were detected by RT-PCR and Western blot, respectively. To evaluate the anti-tumor effect of CMBsαvβ3, HCC cells with CMBsαvβ3 were exposed to 5-flurocytosine / ganciclovir (5-FC/GCV). Then, cell cycle distribution after treatment were detected by PI staining and flow cytometry. Apoptotic cells death were detected by optical microscope and assessed by MTT assay and TUNEL-staining assay. CMBs

  2. Biobran/MGN-3, an arabinoxylan rice bran, enhances NK cell activity in geriatric subjects: A randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Elsaid, Ahmed F; Shaheen, Magda; Ghoneum, Mamdooh

    2018-03-01

    Aging is associated with a decline in natural killer (NK) and natural killer T (NKT) cell function that may contribute to increased susceptibility to malignancy and infection. A preliminary investigation was conducted examining the hypothesis that arabinoxylan rice bran (Biobran/MGN-3), a denatured hemicellulose with known immunomodulatory activity, could counteract this decline in NK/NKT cell activity in geriatrics. A total of 12 healthy geriatric subjects of both sexes and over 56 years old, participated in a randomized, double-blind, placebo-controlled clinical trial. A total of six subjects served as control and six subjects ingested Biobran/MGN-3 (500 mg/day) for 30 days. The effect of Biobran/MGN-3 supplementation on NK/NKT cell activity was assessed using the degranulation assay. All study subjects were monitored for the development of any inadvertent side effects. In addition, the pharmacological effects of Biobran/MGN-3 on blood cell components and liver and kidney functions were also assessed. Results demonstrated that Biobran/MGN-3 had no effect on the total percentage of NK cells, however it enhanced the cytotoxic activity of induced NK cell expression of cluster of differentiation 107a, when compared with baseline values and with the placebo group (P<0.05). Furthermore, there were no side effects observed, indicating that Biobran/MGN-3 supplementation was safe at the utilized dosage and for the duration of administration. Various additional beneficial effects were observed, including improved mean corpuscular volume and reduced hepatic aspartate aminotransferase enzyme levels, which suggested improved liver function. It was concluded that Biobran/MGN-3 induces a significant increase in NK activity which may increase resistance to viral infections and cancers in the geriatric population. However, additional clinical trials should be conducted in the future to verify these findings.

  3. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    PubMed Central

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; van Raaij, Mark J.

    2007-01-01

    The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals. PMID:17565188

  4. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    NASA Astrophysics Data System (ADS)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  5. SU-E-J-53: Dosimetric Evaluation at Volumetric Modulated Arc Therapy for Treatment of Prostate Cancer Using Single Or Double Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, D; Salmon, H; Pavan, G

    2014-06-01

    Purpose: Evaluate and compare retrospective prostate treatment plan using Volumetric Modulated Arc Therapy (RapidArc™ - Varian) technique with single or double arcs at COI Group. Methods: Ten patients with present prostate and seminal vesicle neoplasia were replanned as a target treatment volume and a prescribed dose of 78 Gy. A baseline planning, using single arc, was developed for each case reaching for the best result on PTV, in order to minimize the dose on organs at risk (OAR). Maintaining the same optimization objectives used on baseline plan, two copies for optimizing single and double arcs, have been developed. The plansmore » were performed with 10 MV photon beam energy on Eclipse software, version 11.0, making use of Trilogy linear accelerator with Millenium HD120 multileaf collimator. Comparisons on PTV have been performed, such as: maximum, minimum and mean dose, gradient dose, as well as the quantity of monitor units, treatment time and homogeneity and conformity index. OARs constrains dose have been evaluated, comparing both optimizations. Results: Regarding PTV coverage, the difference of the minimum, maximum and mean dose were 1.28%, 0.7% and 0.2% respectively higher for single arc. When analyzed the index of homogeneity found a difference of 0.99% higher when compared with double arcs. However homogeneity index was 0.97% lower on average by using single arc. The doses on the OARs, in both cases, were in compliance to the recommended limits RTOG 0415. With the use of single arc, the quantity of monitor units was 10,1% lower, as well as the Beam-On time, 41,78%, when comparing double arcs, respectively. Conclusion: Concerning the optimization of patients with present prostate and seminal vesicle neoplasia, the use of single arc reaches similar objectives, when compared to double arcs, in order to decrease the treatment time and the quantity of monitor units.« less

  6. Intestinal double-positive CD4+CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines.

    PubMed

    Pahar, Bapi; Lackner, Andrew A; Veazey, Ronald S

    2006-03-01

    Peripheral blood and intestinal CD4+CD8+ double-positive (DP) T cells have been described in several species including humans, but their function and immunophenotypic characteristics are still not clearly understood. Here we demonstrate that DP T cells are abundant in the intestinal lamina propria of normal rhesus macaques (Macaca mulatta). Moreover, DP T cells have a memory phenotype and are capable of producing different and/or higher levels of cytokines and chemokines in response to mitogen stimulation compared to CD4+ single-positive T cells. Intestinal DP T cells are also highly activated and have higher expression of CCR5, which makes them preferred targets for simian immunodeficiency virus/HIV infection. Increased levels of CD69, CD25 and HLA-DR, and lower CD62L expression were found on intestinal DP T cells populations compared to CD4+ single-positive T cells. Collectively, these findings demonstrate that intestinal and peripheral blood DP T cells are effector cells and may be important in regulating immune responses, which distinguishes them from the immature DP cells found in the thymus. Finally, these intestinal DP T cells may be important target cells for HIV infection and replication due to their activation, memory phenotype and high expression of CCR5.

  7. Approximating the stress field within the unit cell of a fabric reinforced composite using replacement elements

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1993-01-01

    This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.

  8. Release of Taurine and Glutamate contributes to cell volume regulation in human retinal Müller cells: Differences in modulation by calcium.

    PubMed

    Netti, Vanina; Pizzoni, Alejandro; Peréz-Domínguez, Martha; Ford, Paula; Pasantes-Morales, Herminia; Ramos-Mandujano, Gerardo; Capurro, Claudia

    2018-05-23

    Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca 2+ release from intracellular stores. Here we investigate the contribution of Taurine (Tau) and Glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca 2+ -dependency in MIO-M1 cells. Swelling-induced [ 3 -H]-Tau/[ 3 H]-Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [ 3 H]-Tau and [ 3 H]-Glu (Tau > Glu) blunted by the VRAC inhibitors DCPIB and CBX, reducing RVD. Only [ 3 H]-Tau efflux was dependent on Ca 2+ release from intracellular stores. RVD was unaffected in a Ca 2+ -free medium, probably due to Ca 2+ -independent Tau and Glu release, but was reduced by chelating intracellular Ca 2+ . The inhibition of phosphatidylinositol-3-kinase reduced [ 3 H]-Glu efflux but also the Ca 2+ -insensitive [ 3 H]-Tau fraction and decreased RVD, evidencing the relevance of this Ca 2+ -independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca 2+ influence on amino acid release support the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology.

  9. Polymer electrolyte fuel cell mini power unit for portable application

    NASA Astrophysics Data System (ADS)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.

  10. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  11. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  12. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

    PubMed

    Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J

    2004-05-01

    Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation

  13. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  14. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo

    2016-01-01

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that

  15. UNITED PRESBYTERIAN NATIONAL EDUCATION SURVEY, AN INTERDISCIPLINARY RESEARCH PROJECT. VOLUMES IIA AND IIB, COMMUNICATIONS VARIABLES IN THE CHURCH.

    ERIC Educational Resources Information Center

    WHITMAN, LAURIS B.; AND OTHERS

    THE DEPARTMENT OF RESEARCH OF THE NATIONAL COUNCIL OF CHURCHES CONDUCTED A SURVEY FOR THE UNITED PRESBYTERIAN CHURCH OF ITS MEMBERSHIP AND RELIGIOUS BELIEFS. THE AIM WAS TO COMPARE VARIOUS POPULATIONS (CLERGY, COMMUNICANTS, CHURCH SCHOOL TEACHERS, AND YOUTH), CONCERNING THE EXTENT OF THEIR ORTHODOXY. VOLUMES IIA AND IIB OF THE REPORT RELATE TO THE…

  16. Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics: a phase III, randomized, double-blind, placebo-controlled study (QUEST study).

    PubMed

    Matsuzaki, Masunori; Hori, Masatsugu; Izumi, Tohru; Fukunami, Masatake

    2011-12-01

    Diuretics are recommended to treat volume overload with heart failure (HF), however, they may cause serum electrolyte imbalance, limiting their use. Moreover, patients with advanced HF could poorly respond to these diuretics. In this study, we evaluated the efficacy and safety of Tolvaptan, a competitive vasopressin V2-receptor antagonist developed as a new drug to treat volume overload in HF patients. A phase III, multicenter, randomized, double-blind, placebo-controlled parallel study was performed to assess the efficacy and safety of tolvaptan in treating HF patients with volume overload despite the use of conventional diuretics. One hundred and ten patients were randomly assigned to receive either placebo or 15 mg/day tolvaptan for 7 consecutive days. Compared with placebo, tolvaptan administered for 7 days significantly reduced body weight and improved symptoms associated with volume overload. The safety profile of tolvaptan was considered acceptable for clinical use with minimal adverse effects. Tolvaptan reduced volume overload and improved congestive symptoms associated with HF by a potent water diuresis (aquaresis).

  17. Emergency department blood transfusion: the first two units are free.

    PubMed

    Ley, Eric J; Liou, Douglas Z; Singer, Matthew B; Mirocha, James; Melo, Nicolas; Chung, Rex; Bukur, Marko; Salim, Ali

    2013-09-01

    Studies on blood product transfusions after trauma recommend targeting specific ratios to reduce mortality. Although crystalloid volumes as little as 1.5 L predict increased mortality after trauma, little data is available regarding the threshold of red blood cell (RBC) transfusion volume that predicts increased mortality. Data from a level I trauma center between January 2000 and December 2008 were reviewed. Trauma patients who received at least 100 mL RBC in the emergency department (ED) were included. Each unit of RBC was defined as 300 mL. Demographics, RBC transfusion volume, and mortality were analyzed in the nonelderly (<70 y) and elderly (≥70 y). Multivariate logistic regression was performed at various volume cutoffs to determine whether there was a threshold transfusion volume that independently predicted mortality. A total of 560 patients received ≥100 mL RBC in the ED. Overall mortality was 24.3%, with 22.5% (104 deaths) in the nonelderly and 32.7% (32 deaths) in the elderly. Multivariate logistic regression demonstrated that RBC transfusion of ≥900 mL was associated with increased mortality in both the nonelderly (adjusted odds ratio 2.06, P = 0.008) and elderly (adjusted odds ratio 5.08, P = 0.006). Although transfusion of greater than 2 units in the ED was an independent predictor of mortality, transfusion of 2 units or less was not. Interestingly, unlike crystalloid volume, stepwise increases in blood volume were not associated with stepwise increases in mortality. The underlying etiology for mortality discrepancies, such as transfusion ratios, hypothermia, or immunosuppression, needs to be better delineated. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Orbiter multiplexer-demultiplexer (MDM)/Space Lab Bus Interface Unit (SL/BIU) serial data interface evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Tobey, G. L.

    1978-01-01

    Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).

  19. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  20. Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells

    PubMed Central

    Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975

  1. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1992-01-01

    Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory

  2. Trends in Fatalities From Distracted Driving in the United States, 1999 to 2008

    PubMed Central

    Stimpson, Jim P.

    2010-01-01

    Objectives. We examined trends in distracted driving fatalities and their relation to cell phone use and texting volume. Methods. The Fatality Analysis Reporting System (FARS) records data on all road fatalities that occurred on public roads in the United States from 1999 to 2008. We studied trends in distracted driving fatalities, driver and crash characteristics, and trends in cell phone use and texting volume. We used multivariate regression analysis to estimate the relation between state-level distracted driving fatalities and texting volumes. Results. After declining from 1999 to 2005, fatalities from distracted driving increased 28% after 2005, rising from 4572 fatalities to 5870 in 2008. Crashes increasingly involved male drivers driving alone in collisions with roadside obstructions in urban areas. By use of multivariate analyses, we predicted that increasing texting volumes resulted in more than 16 000 additional road fatalities from 2001 to 2007. Conclusions. Distracted driving is a growing public safety hazard. Specifically, the dramatic rise in texting volume since 2005 appeared to be contributing to an alarming rise in distracted driving fatalities. Legislation enacting texting bans should be paired with effective enforcement to deter drivers from using cell phones while driving. PMID:20864709

  3. Trends in fatalities from distracted driving in the United States, 1999 to 2008.

    PubMed

    Wilson, Fernando A; Stimpson, Jim P

    2010-11-01

    We examined trends in distracted driving fatalities and their relation to cell phone use and texting volume. The Fatality Analysis Reporting System (FARS) records data on all road fatalities that occurred on public roads in the United States from 1999 to 2008. We studied trends in distracted driving fatalities, driver and crash characteristics, and trends in cell phone use and texting volume. We used multivariate regression analysis to estimate the relation between state-level distracted driving fatalities and texting volumes. After declining from 1999 to 2005, fatalities from distracted driving increased 28% after 2005, rising from 4572 fatalities to 5870 in 2008. Crashes increasingly involved male drivers driving alone in collisions with roadside obstructions in urban areas. By use of multivariate analyses, we predicted that increasing texting volumes resulted in more than 16,000 additional road fatalities from 2001 to 2007. Distracted driving is a growing public safety hazard. Specifically, the dramatic rise in texting volume since 2005 appeared to be contributing to an alarming rise in distracted driving fatalities. Legislation enacting texting bans should be paired with effective enforcement to deter drivers from using cell phones while driving.

  4. Rare transformation to double hit lymphoma in Waldenstrom's macroglobulinemia.

    PubMed

    Okolo, Onyemaechi N; Johnson, Ariel C; Yun, Seongseok; Arnold, Stacy J; Anwer, Faiz

    2017-08-01

    Waldenström macroglobulinemia (WM) is a lymphoproliferative lymphoma that is characterized by monoclonal immunoglobulin M (IgM) protein and bone marrow infiltration. Its incidence is rare and rarer still is its ability to transform to a B-cell lymphoma, particularly the aggressive diffuse large B-cell lymphoma, which bodes a poor prognosis. When transformation includes mutations of MYC, BCL-2 and/or BCL-6, it is known as a 'double hit' or 'triple hit' lymphoma respectively. This paper presents a rare case of WM with mutations positive for MYC and BCL2, making it a case of double hit B-cell lymphoplasmacytic lymphoma with plasmatic differentiation without morphological transformation to aggressive histology like DLBCL. The paper also broadens to include discussions on current topics in the classification, diagnosis, possible causes of transformation, and treatment of WM, including transformation to double hit lymphoma. The significance of this case lies in that the presence of double hit lymphoma-like genetic mutations in WM have not been previously described in the literature and potentially such changes are harbinger of extra-nodal presentation, aggressive growth, and possibly poor prognosis, if data from other double-hit lymphoma are extrapolated.

  5. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  6. United States Air Force Summer Research Program -- 1991. High School Apprenticeship Program (HSAP) Reports, Volume 12: Rome Laboratory, Arnold Engineering Development Plan

    DTIC Science & Technology

    1991-12-01

    UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 19k’ HIGH SCF-0)OL APPRENTICESHIP PROGRAM (HSAP) REtFOC2TS VOLUME 12 ROME LABORATORY ARNOLD...capacity requirements. In the United States and Japan, it has 1.544 Mbps channels (23B+D), and Europe has 2.048 Mbps channels (30B+D). Both are provided over...because of the standard 64 kbps and the layered protocols. Even though the United States and Europe have different primary access channels, the basic

  7. SBLOCA outside containment at Browns Ferry Unit One. Volume 2. Iodine, cesium, and noble gas distribution and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Wright, A.L.

    1983-09-01

    This is the second volume of a two-part study regarding the response of Browns Ferry Unit 1 to a postulated break in the scram discharge volume of the control rod drive hydraulic system immediately following a scram. The material in this second volume pertains to the second aspect of the study, the resultant transport of fission products from their original locations in the fuel to a series of repositories within the primary system, the primary and secondary containment structures, and ultimately the release of a small portion to the environment. Transport models are developed for the noble gases krypton andmore » xenon and for iodine and cesium to describe the release of these fission products from the overheated fuel and their subsequent movement under the conditions predicted to exist in the various repositories during the course of the accident.« less

  8. Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian

    2004-01-01

    A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.

  9. Repair of DNA double-strand breaks and cell killing by charged particles

    NASA Astrophysics Data System (ADS)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  10. Effect of cell-size on the energy absorption features of closed-cell aluminium foams

    NASA Astrophysics Data System (ADS)

    Nammi, S. K.; Edwards, G.; Shirvani, H.

    2016-11-01

    The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.

  11. Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection

    NASA Astrophysics Data System (ADS)

    Okita, Y.; Katagiri, T.; Matsuura, Y.

    2011-03-01

    The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.

  12. Report of the United Nations Interregional Seminar on the Employment, Development and Role of Scientists and Technical Personnel in the Public Service of Developing Countries, Volume III: Technical Papers.

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Dept. of Economic and Social Affairs.

    This collection of papers is the third of three volumes presenting the proceedings of the United Nations Interregional Seminar on the Employment, Development and Role of Scientists and Technical Personnel in the Public Service of Developing Countries (Volume I, Report of the Seminar; Volume II, Country Papers; and Volume III, Technical Papers).…

  13. Relapsed or Refractory Double-Expressor and Double-Hit Lymphomas Have Inferior Progression-Free Survival After Autologous Stem-Cell Transplantation.

    PubMed

    Herrera, Alex F; Mei, Matthew; Low, Lawrence; Kim, Haesook T; Griffin, Gabriel K; Song, Joo Y; Merryman, Reid W; Bedell, Victoria; Pak, Christine; Sun, Heather; Paris, Tanya; Stiller, Tracey; Brown, Jennifer R; Budde, Lihua E; Chan, Wing C; Chen, Robert; Davids, Matthew S; Freedman, Arnold S; Fisher, David C; Jacobsen, Eric D; Jacobson, Caron A; LaCasce, Ann S; Murata-Collins, Joyce; Nademanee, Auayporn P; Palmer, Joycelynne M; Pihan, German A; Pillai, Raju; Popplewell, Leslie; Siddiqi, Tanya; Sohani, Aliyah R; Zain, Jasmine; Rosen, Steven T; Kwak, Larry W; Weinstock, David M; Forman, Stephen J; Weisenburger, Dennis D; Kim, Young; Rodig, Scott J; Krishnan, Amrita; Armand, Philippe

    2017-01-01

    Purpose Double-hit lymphomas (DHLs) and double-expressor lymphomas (DELs) are subtypes of diffuse large B-cell lymphoma (DLBCL) associated with poor outcomes after standard chemoimmunotherapy. Data are limited regarding outcomes of patients with relapsed or refractory (rel/ref) DEL or DHL who undergo autologous stem-cell transplantation (ASCT). We retrospectively studied the prognostic impact of DEL and DHL status on ASCT outcomes in patients with rel/ref DLBCL. Methods Patients with chemotherapy-sensitive rel/ref DLBCL who underwent ASCT at two institutions and in whom archival tumor material was available were enrolled. Immunohistochemistry for MYC, BCL2, and BCL6 and fluorescence in situ hybridization (FISH) for MYC were performed. In cases with MYC rearrangement or copy gain, FISH for BCL2 and BCL6 was also performed. Results A total of 117 patients were included; 44% had DEL and 10% had DHL. DEL and DHL were associated with inferior progression-free survival (PFS), and DHL was associated with poorer overall survival (OS). The 4-year PFS in patients with DEL compared with those with non-DEL was 48% versus 59% ( P = .049), and the 4-year OS was 56% versus 67% ( P = .10); 4-year PFS in patients with DHL compared with those with non-DHL was 28% versus 57% ( P = .013), and 4-year OS was 25% versus 61% ( P = .002). The few patients with concurrent DEL and DHL had a poor outcome (4-year PFS, 0%). In multivariable models, DEL and DHL were independently associated with inferior PFS, whereas DHL and partial response ( v complete response) at transplant were associated with inferior OS. Conclusion DEL and DHL are both associated with inferior outcomes after ASCT in patients with rel/ref DLBCL. Although ASCT remains a potentially curative approach, these patients, particularly those with DHL, are a high-risk subset who should be targeted for investigational strategies other than standard ASCT.

  14. Relapsed or Refractory Double-Expressor and Double-Hit Lymphomas Have Inferior Progression-Free Survival After Autologous Stem-Cell Transplantation

    PubMed Central

    Herrera, Alex F.; Mei, Matthew; Low, Lawrence; Kim, Haesook T.; Griffin, Gabriel K.; Song, Joo Y.; Merryman, Reid W.; Bedell, Victoria; Pak, Christine; Sun, Heather; Paris, Tanya; Stiller, Tracey; Brown, Jennifer R.; Budde, Lihua E.; Chan, Wing C.; Chen, Robert; Davids, Matthew S.; Freedman, Arnold S.; Fisher, David C.; Jacobsen, Eric D.; Jacobson, Caron A.; LaCasce, Ann S.; Murata-Collins, Joyce; Nademanee, Auayporn P.; Palmer, Joycelynne M.; Pihan, German A.; Pillai, Raju; Popplewell, Leslie; Siddiqi, Tanya; Sohani, Aliyah R.; Zain, Jasmine; Rosen, Steven T.; Kwak, Larry W.; Weinstock, David M.; Forman, Stephen J.; Weisenburger, Dennis D.; Kim, Young; Rodig, Scott J.; Krishnan, Amrita

    2017-01-01

    Purpose Double-hit lymphomas (DHLs) and double-expressor lymphomas (DELs) are subtypes of diffuse large B-cell lymphoma (DLBCL) associated with poor outcomes after standard chemoimmunotherapy. Data are limited regarding outcomes of patients with relapsed or refractory (rel/ref) DEL or DHL who undergo autologous stem-cell transplantation (ASCT). We retrospectively studied the prognostic impact of DEL and DHL status on ASCT outcomes in patients with rel/ref DLBCL. Methods Patients with chemotherapy-sensitive rel/ref DLBCL who underwent ASCT at two institutions and in whom archival tumor material was available were enrolled. Immunohistochemistry for MYC, BCL2, and BCL6 and fluorescence in situ hybridization (FISH) for MYC were performed. In cases with MYC rearrangement or copy gain, FISH for BCL2 and BCL6 was also performed. Results A total of 117 patients were included; 44% had DEL and 10% had DHL. DEL and DHL were associated with inferior progression-free survival (PFS), and DHL was associated with poorer overall survival (OS). The 4-year PFS in patients with DEL compared with those with non-DEL was 48% versus 59% (P = .049), and the 4-year OS was 56% versus 67% (P = .10); 4-year PFS in patients with DHL compared with those with non-DHL was 28% versus 57% (P = .013), and 4-year OS was 25% versus 61% (P = .002). The few patients with concurrent DEL and DHL had a poor outcome (4-year PFS, 0%). In multivariable models, DEL and DHL were independently associated with inferior PFS, whereas DHL and partial response (v complete response) at transplant were associated with inferior OS. Conclusion DEL and DHL are both associated with inferior outcomes after ASCT in patients with rel/ref DLBCL. Although ASCT remains a potentially curative approach, these patients, particularly those with DHL, are a high-risk subset who should be targeted for investigational strategies other than standard ASCT. PMID:28034071

  15. Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-01-01

    Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the

  16. A randomized, double-blind, controlled clinical trial to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, in healthy volunteers.

    PubMed

    Jang, Hee-Chang; Kim, Choong Jong; Kim, Kye Hyoung; Lee, Kwang-Hee; Byun, Young-Ho; Seong, Baik-Lin; Saletti, Giulietta; Czerkinsky, Cecil; Park, Wan Beom; Park, Sang-Won; Kim, Hong-Bin; Kim, Nam Joong; Oh, Myoung-don

    2010-08-16

    A randomized, double-blind, controlled clinical trial was conducted to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, and to determine its minimum effective dose. The overall rates of cutaneous "take" reaction and humoral and cellular immunogenicity in CJ-50300 vaccinees were 100% (123/123), 99.2% (122/123), and 90.8% (109/120), respectively, and these rates did not differ significantly between the conventional-dose and the low-dose CJ-50300 (1.0x10(8) and 1.0x10(7) plaque-forming units/mL, respectively) (P>0.05 for each). No serious adverse reaction was observed. However, one case of possible generalized vaccinia occurred in the conventionally dosed group [ClinicalTrials.gov Identifier: NCT00607243].

  17. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  18. Evaluation of the impact of banking umbilical cord blood units with high cell dose for ethnically diverse patients.

    PubMed

    Stritesky, Gretta; Wadsworth, Kimberly; Duffy, Merry; Buck, Kelly; Dehn, Jason

    2018-02-01

    Umbilical cord blood units provide an important stem cell source for transplantation, particularly for patients of ethnic diversity who may not have suitably matched available, adult-unrelated donors. However, with the cost of cord blood unit acquisition from public banks significantly higher than that for adult-unrelated donors, attention is focused on decreasing cost yet still providing cord blood units to patients in need. Historical practices of banking units with low total nucleated cell counts, including units with approximately 90 × 10 7 total nucleated cells, indicates that most banked cord blood units have much lower total nucleated cell counts than are required for transplant. The objective of this study was to determine the impact on the ability to identify suitable cord blood units for transplantation if the minimum total nucleated cell count for banking were increased from 90 × 10 7 to 124 or 149 × 10 7 . We analyzed ethnically diverse patients (median age, 3 years) who underwent transplantation of a single cord blood unit in 2005 to 2016. A cord blood unit search was evaluated to identify units with equal or greater human leukocyte antigen matching and a greater total nucleated cell count than that of the transplanted cord blood unit (the replacement cord blood unit). If the minimum total nucleated cell count for banking increased to 124 or 149 × 10 7 , then from 75 to 80% of patients would still have at least 1 replacement cord blood unit in the current (2016) cord blood unit inventory. The best replacement cord blood units were often found among cords with the same ethnic background as the patient. The current data suggest that, if the minimum total nucleated cell count were increased for banking, then it would likely lead to an inventory of more desirable cord blood units while having minimal impact on the identification of suitable cord blood units for transplantation. © 2017 AABB.

  19. Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.H.; Harrington, R.M.; Greene, S.R.

    1981-11-01

    This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less

  20. Accuracy of the lattice-Boltzmann method using the Cell processor

    NASA Astrophysics Data System (ADS)

    Harvey, M. J.; de Fabritiis, G.; Giupponi, G.

    2008-11-01

    Accelerator processors like the new Cell processor are extending the traditional platforms for scientific computation, allowing orders of magnitude more floating-point operations per second (flops) compared to standard central processing units. However, they currently lack double-precision support and support for some IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann (LB) code to run on the Cell processor and test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary conditions, and Reynolds numbers in the range Re=6 350 . In one case, simulation results show a reduced mass and momentum conservation compared to an equivalent double-precision LB implementation. All other cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding mode is possibly as important as double-precision support for this specific scientific application.

  1. Cell-centered high-order hyperbolic finite volume method for diffusion equation on unstructured grids

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong

    2018-02-01

    We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.

  2. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  3. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  4. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

    PubMed

    Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J

    2011-10-21

    High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.

  5. Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate.

    PubMed

    Siegel, Georg; Fleck, Erika; Elser, Stefanie; Hermanutz-Klein, Ursula; Waidmann, Marc; Northoff, Hinnak; Seifried, Erhard; Schäfer, Richard

    2018-05-01

    Endothelial colony-forming progenitor cells (ECFCs) are promising candidates for cell therapies. However, ECFC translation to the clinic requires optimized isolation and manufacture technologies according to good manufacturing practice (GMP). ECFCs were manufactured from steady-state peripheral blood (PB) leukapheresis (11 donors), using GMP-compliant technologies including pooled human platelet (PLT) lysate, and compared to human umbilical cord endothelial cells, human aortic endothelial cells, and human cerebral microvascular endothelial cells. Specific variables assessed were growth kinetics, phenotype, trophic factors production, stimulation of tube formation, and Dil-AcLDL uptake. ECFCs could be isolated from PB leukapheresis units with mean processed volume of 5411 mL and mean white blood cell (WBC) concentration factor of 8.74. The mean frequency was 1.44 × 10 -8 ECFCs per WBC, corresponding to a mean of 177.8 ECFCs per apheresis unit. Expandable for up to 12 cumulative population doublings, calculated projection showed that approximately 730 × 10 3 ECFCs could be manufactured from 1 apheresis unit. ECFCs produced epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor (VEGF)-A, PLT-derived growth factor-B, interleukin-8, and monocyte chemoattractant protein-1, featured high potential for capillary-like tubes formation, and showed no telomerase activity. They were characterized by CD29, CD31, CD44, CD105, CD117, CD133, CD144, CD146, and VEGF-R2 expression, with the most common subpopulation CD34+CD117-CD133-. Compared to controls, ECFCs featured greater Dil-AcLDL uptake and higher expression of CD29, CD31, CD34, CD44, CD144, and VEGF-R2. Here we show that isolation of ECFCs with proangiogenic profile from steady-state PB leukapheresis is feasible, marking a first step toward ECFC product manufacture according to GMP. © 2018 AABB.

  6. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity.

    PubMed

    Nagaria, Pratik; Robert, Carine; Rassool, Feyruz V

    2013-02-01

    Embryonic stem cells (ESCs) represent the point of origin of all cells in a given organism and must protect their genomes from both endogenous and exogenous genotoxic stress. DNA double-strand breaks (DSBs) are one of the most lethal forms of damage, and failure to adequately repair DSBs would not only compromise the ability of SCs to self-renew and differentiate, but will also lead to genomic instability and disease. Herein, we describe the mechanisms by which ESCs respond to DSB-inducing agents such as reactive oxygen species (ROS) and ionizing radiation, compared to somatic cells. We will also discuss whether the DSB response is fully reprogrammed in induced pluripotent stem cells (iPSCs) and the role of the DNA damage response (DDR) in the reprogramming of these cells. ESCs have distinct mechanisms to protect themselves against DSBs and oxidative stress compared to somatic cells. The response to damage and stress is crucial for the maintenance of self-renewal and differentiation capacity in SCs. iPSCs appear to reprogram some of the responses to genotoxic stress. However, it remains to be determined if iPSCs also retain some DDR characteristics of the somatic cells of origin. The mechanisms regulating the genomic integrity in ESCs and iPSCs are critical for its safe use in regenerative medicine and may shed light on the pathways and factors that maintain genomic stability, preventing diseases such as cancer. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of Comprehensive Low-Volume Pavement Design

    DOT National Transportation Integrated Search

    2000-07-01

    Historically, "low-volume" pavements (less than 500 ADT) in Arkansas were typically constructed using a "standard" section, i.e. a double surface treatment over a specified thickness of granular base. Subsequent analysis indicated these sections were...

  8. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction

    PubMed Central

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-01-01

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474

  9. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction.

    PubMed

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-07-29

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.

  10. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  11. Improvement in transmission loss of aircraft double wall with resonators

    NASA Astrophysics Data System (ADS)

    Sun, Jincai; Shi, Liming; Ye, Xining

    1991-08-01

    A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.

  12. Recursion Relations for Double Ramification Hierarchies

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper we study various properties of the double ramification hierarchy, an integrable hierarchy of hamiltonian PDEs introduced in Buryak (CommunMath Phys 336(3):1085-1107, 2015) using intersection theory of the double ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the topological recursion relations and the divisor equation both for the Hamiltonian densities and for the string solution of the double ramification hierarchy. This machinery is very efficient and we apply it to various computations for the trivial and Hodge cohomological field theories, and for the r -spin Witten's classes. Moreover, we prove the Miura equivalence between the double ramification hierarchy and the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended Toda hierarchy).

  13. Quality of red blood cells washed using a second wash sequence on an automated cell processor.

    PubMed

    Hansen, Adele L; Turner, Tracey R; Kurach, Jayme D R; Acker, Jason P

    2015-10-01

    Washed red blood cells (RBCs) are indicated for immunoglobulin (Ig)A-deficient recipients when RBCs from IgA-deficient donors are not available. Canadian Blood Services recently began using the automated ACP 215 cell processor (Haemonetics Corporation) for RBC washing, and its suitability to produce IgA-deficient RBCs was investigated. RBCs produced from whole blood donations by the buffy coat (BC) and whole blood filtration (WBF) methods were washed using the ACP 215 or the COBE 2991 cell processors and IgA and total protein levels were assessed. A double-wash procedure using the ACP 215 was developed, tested, and validated by assessing hemolysis, hematocrit, recovery, and other in vitro quality variables in RBCs stored after washing, with and without irradiation. A single wash using the ACP 215 did not meet Canadian Standards Association recommendations for washing with more than 2 L of solution and could not consistently reduce IgA to levels suitable for IgA-deficient recipients (24/26 BC RBCs and 0/9 WBF RBCs had IgA levels < 0.05 mg/dL). Using a second wash sequence, all BC and WBF units were washed with more than 2 L and had levels of IgA of less than 0.05 mg/dL. During 7 days' postwash storage, with and without irradiation, double-washed RBCs met quality control criteria, except for the failure of one RBC unit for inadequate (69%) postwash recovery. Using the ACP 215, a double-wash procedure for the production of components for IgA-deficient recipients from either BC or WBF RBCs was developed and validated. © 2015 AABB.

  14. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting: A Systematic Review.

    PubMed

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor; Herly, Mikkel; Trojahn Kølle, Stig-Frederik; Fischer-Nielsen, Anne; Drzewiecki, Krzysztof Tadeusz

    2017-07-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  15. Multiple-reflection optical gas cell

    DOEpatents

    Matthews, Thomas G.

    1983-01-01

    A multiple-reflection optical cell for Raman or fluorescence gas analysis consists of two spherical mirrors positioned transverse to a multiple-pass laser cell in a confronting plane-parallel alignment. The two mirrors are of equal diameter but possess different radii of curvature. The spacing between the mirrors is uniform and less than half of the radius of curvature of either mirror. The mirror of greater curvature possesses a small circular portal in its center which is the effective point source for conventional F1 double lens collection optics of a monochromator-detection system. Gas to be analyzed is flowed into the cell and irradiated by a multiply-reflected composite laser beam centered between the mirrors of the cell. Raman or fluorescence radiation originating from a large volume within the cell is (1) collected via multiple reflections with the cell mirrors, (2) partially collimated and (3) directed through the cell portal in a geometric array compatible with F1 collection optics.

  16. Feasibility of Autologous Cord Blood Cells for Infants with Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Cotten, C. Michael; Murtha, Amy P.; Goldberg, Ronald N.; Grotegut, Chad A.; Smith, P. Brian; Goldstein, Ricki F.; Fisher, Kimberley A.; Gustafson, Kathryn E.; Waters-Pick, Barbara; Swamy, Geeta K.; Rattray, Benjamin; Tan, Siddhartha; Kurtzberg, Joanne

    2014-01-01

    Objective To assess feasibility and safety of providing autologous umbilical cord blood (UCB) cells to neonates with hypoxic-ischemic encephalopathy (HIE). Study design We enrolled infants in the Intensive Care Nursery who were cooled for HIE and had available UCB in an open-label study of non-cyropreserved autologous volume- and red blood cell-reduced UCB cells (up to four doses adjusted for volume and RBC content,1 – 5 × 107cells/dose). We recorded UCB collection and cell infusion characteristics, and pre- and post- infusion vital signs. As exploratory analyses we compared cell recipients’ hospital outcomes (mortality, oral feeds at discharge) and one year survival with Bayley III scores ≥ 85 in 3 domains (cognitive, language, and motor development) with cooled infants who did not have available cells. Results Twenty-three infants were cooled and received cells. Median collection and infusion volumes were 36 and 4.3 milliliters. Vital signs including oxygen saturation were similar before and after infusions in the first 48 postnatal hours. Cell recipients and concurrent cooled infants had similar hospital outcomes. Thirteen of 18 (74%) cell recipients and 19 of 46 (41%) concurrent cooled infants with known 1 year outcomes survived with scores ≥ 85. Conclusions Collection, preparation and infusion of fresh autologous UCB cells for use in infants with HIE is feasible. A randomized double-blind study is needed. PMID:24388332

  17. Light scattering management of dye-sensitized solar cells based on double-layered photoanodes aided by uniform TiO{sub 2} aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshayesh, A.M., E-mail: bakhshayesh@alum.sharif.edu

    2016-01-15

    Highlights: • A new architecture of double-layered TiO{sub 2} electrodes is presented. • The electrode contains two alternate layers of TiO{sub 2} nanoparticles and aggregates. • The aggregates layers are deposited onto the nanocrystalline layer. • The new design showed improved efficiency compared to conventional cells. - Abstract: This study presents a new double-layered TiO{sub 2} film containing a nanocrystalline under-layer and a uniform, sponge-like light scattering over-layer for dye-sensitized solar cells (DSCs) application. The over-layer is composed of 2-μm-diameter uniform aggregates, containing small nanoparticles with the average grain size of 20 nm. X-ray diffraction reveals that the light scatteringmore » layer has a mixture of anatase and rutile phases, whereas the nanocrystalline layer has a pure anatase phase. Ultraviolet–visible (UV–vis) spectra show that the light scattering layer has lower band gap energy than the nanocrystalline under-layer, extending the absorption of TiO{sub 2} into visible region. Diffuse reflectance spectroscopy demonstrates that the double-layered electrode enjoyed better light scattering ability. The double-layered DSC shows the highest power conversion efficiency of 7.69% and incident photon-to-current efficiency of 88% as a result of higher light harvesting and less recombination which is demonstrated by electrochemical impedance spectroscopy.« less

  18. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  19. Adverse events and retention of donors of double red cell units by apheresis

    PubMed Central

    Keshelashvili, Ketevan; O’Meara, Alix; Stern, Martin; Jirout, Zuzana; Pehlic, Vildana; Holbro, Andreas; Buser, Andreas; Sigle, Jörg; Infanti, Laura

    2016-01-01

    Background Safety of double-erythrocyte (2RBC) collection and reasons for ceasing 2RBC donation were retrospectively analysed in the blood donor population of Basel, Switzerland. Methods Donors with at least 1 2RBC apheresis were included in the study. Minimal requirements were Hb ≥140 g/L and body weight ≥70 kg; serum ferritin (SF) values were measured routinely, but were not part of the selection criteria. 2RBC collections were performed with ALYX devices at 6-month intervals. Adverse events (AEs) were systematically recorded and classified according to the ISBT EHN 2008 criteria. Data of procedures were retrieved from the ALYX software. Demographics, apheresis data and AEs were analysed with descriptive statistics. Results Data of 4,377 2RBC aphereses performed in 793 donors (779 males) between 1st January 2003 and 31st May 2015 were evaluated. Mean donor age at first 2RBC donation was 44 years (standard deviation [SD] 21), median number of donations was 4 (interquartile range [IQR] 8); 32% of the donors underwent a single procedure. There were 161 AEs, mostly local haematomas (55%) and vasovagal reactions (20%); fatigue was reported in 6% of the cases and was more frequent than citrate toxicity. Two severe AEs were observed. The most frequent reasons for abandoning 2RBC donation were low SF levels and donor choice (both 11%), but most donors simply did not reply to invitations (16%). Overall, procedure-related causes (AEs, low SF levels, no time for apheresis, inadequate venous access) were observed in 14% of the cases. At the end of the observation period, 40% of the donors were still active blood donors, but only 20% were donating 2RBC. Discussion 2RBC donation is overall safe. Donor retention was low over a period of 11 years. An important reason for abandoning 2RBC was the detection of low SF levels. The impact of fatigue on donor retention and the course of iron stores after repeated 6-monthly 2RBC apheresis require further investigation. PMID:27136442

  20. Adverse events and retention of donors of double red cell units by apheresis.

    PubMed

    Keshelashvili, Ketevan; O'meara, Alix; Stern, Martin; Jirout, Zuzana; Pehlic, Vildana; Holbro, Andreas; Buser, Andreas; Sigle, Jörg; Infanti, Laura

    2016-09-01

    Safety of double-erythrocyte (2RBC) collection and reasons for ceasing 2RBC donation were retrospectively analysed in the blood donor population of Basel, Switzerland. Donors with at least 1 2RBC apheresis were included in the study. Minimal requirements were Hb ≥140 g/L and body weight ≥70 kg; serum ferritin (SF) values were measured routinely, but were not part of the selection criteria. 2RBC collections were performed with ALYX devices at 6-month intervals. Adverse events (AEs) were systematically recorded and classified according to the ISBT EHN 2008 criteria. Data of procedures were retrieved from the ALYX software. Demographics, apheresis data and AEs were analysed with descriptive statistics. Data of 4,377 2RBC aphereses performed in 793 donors (779 males) between 1(st) January 2003 and 31(st) May 2015 were evaluated. Mean donor age at first 2RBC donation was 44 years (standard deviation [SD] 21), median number of donations was 4 (interquartile range [IQR] 8); 32% of the donors underwent a single procedure. There were 161 AEs, mostly local haematomas (55%) and vasovagal reactions (20%); fatigue was reported in 6% of the cases and was more frequent than citrate toxicity. Two severe AEs were observed. The most frequent reasons for abandoning 2RBC donation were low SF levels and donor choice (both 11%), but most donors simply did not reply to invitations (16%). Overall, procedure-related causes (AEs, low SF levels, no time for apheresis, inadequate venous access) were observed in 14% of the cases. At the end of the observation period, 40% of the donors were still active blood donors, but only 20% were donating 2RBC. 2RBC donation is overall safe. Donor retention was low over a period of 11 years. An important reason for abandoning 2RBC was the detection of low SF levels. The impact of fatigue on donor retention and the course of iron stores after repeated 6-monthly 2RBC apheresis require further investigation.

  1. Characterization of circulating CD4+ CD8+ double positive and CD4- CD8- double negative T-lymphocyte in children with β-thalassemia major.

    PubMed

    Zahran, Asmaa M; Saad, Khaled; Elsayh, Khalid I; Alblihed, Mohamd A

    2017-03-01

    Infectious complications represent the second most common cause of mortality and a major cause of morbidity in β-thalassemia major (BTM), with a prevalence of 12-13%. The data on unconventional T-lymphocyte subsets in BTM children are limited. The aim of the present study was to investigate and evaluate phenotypic alterations in CD4 + CD8 + double positive (DP), CD4 - CD8 - double negative (DN), and natural killer T-lymphocytes (NKT) in BTM children in comparison to healthy controls. Our case control study included 80 children with BTM and 40 healthy children as controls. Assessment of unconventional T-lymphocyte populations was done using sensitive four-color flow cytometry (FACSCalibur). Our analysis of the data showed a significantly higher frequency CD4 + CD8 + (double-positive) T cells, CD4 - CD8 - (double negative) T cells, and natural killer T cells in the peripheral blood of both BTM groups (splenectomized and non-splenectomized) as compared to healthy controls, suggesting that these cells may play a role in the clinical course of BTM. The relationship of the unconventional T-lymphocytes to immune disorders in BTM children remains to be determined. Further longitudinal study with a larger sample size is warranted to elucidate the role these cells in BTM. TRIAL NUMBER: UMIN000018950.

  2. Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells.

    PubMed

    Yamauchi, Kaori; Li, Junjun; Morikawa, Kumi; Liu, Li; Shirayoshi, Yasuaki; Nakatsuji, Norio; Elliott, David A; Hisatome, Ichiro; Suemori, Hirofumi

    2018-01-01

    Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5 eGFP/w and MLC2v mCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5 eGFP/w and MLC2v mCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Regulation of inflammatory factors by double-stranded RNA receptors in breast cancer cells.

    PubMed

    Venkatesh, Amritha; Nandigam, Harika; Muccioli, Maria; Singh, Manindra; Loftus, Tiffany; Lewis, Deana; Pate, Michelle; Benencia, Fabian

    Malignant cells are not the only components of a tumor mass since other cells (e.g., fibroblasts, infiltrating leukocytes and endothelial cells) are also part of it. In combination with the extracellular matrix, all these cells constitute the tumor microenvironment. In the last decade the role of the tumor microenvironment in cancer progression has gained increased attention and prompted efforts directed to abrogate its deleterious effects on anti-cancer therapies. The immune system can detect and attack tumor cells, and tumor-infiltrating lymphocytes (particularly CD8 T cells) have been associated with improved survival or better response to therapies in colorectal, melanoma, breast, prostate and ovarian cancer patients among others. Contrariwise, tumor-associated myeloid cells (myeloid-derived suppressor cells [MDSCs], dendritic cells [DCs], macrophages) or lymphoid cells such as regulatory T cells can stimulate tumor growth via inhibition of immune responses against the tumor or by participating in tumor neoangiogenesis. Herewith we analyzed the chemokine profile of mouse breast tumors regarding their capacity to generate factors capable of attracting and sequestering DCs to their midst. Chemoattractants from tumors were investigated by molecular biology and immunological techniques and tumor infiltrating DCs were investigated for matched chemokine receptors. In addition, we investigated the inflammatory response of breast cancer cells, a major component of the tumor microenvironment, to double-stranded RNA stimulation. By using molecular biology techniques such as qualitative and quantitative PCR, PCR arrays, and immunological techniques (ELISA, cytokine immunoarrays) we examined the effects of dsRNA treatment on the cytokine secretion profiles of mouse and human breast cancer cells and non-transformed cells. We were able to determine that tumors generate chemokines that are able to interact with receptors present on the surface of tumor infiltrating DCs. We

  4. Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 2

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list and NASA FMEA to IOA worksheet cross references and recommendations.

  5. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    PubMed

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  6. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 1

    DTIC Science & Technology

    1986-12-01

    Oxidant Damage Mediates Variant Red Cell Resistance to Malaria. Nature. 280 (1979) p. 245-47. 14. Geary, Timothy G. and James B. Jensen. Effects of...for research in the physical sciences, engineering, life sciences, business, and administrative sciences. The program has been effective in providing...Researcher Volume I 1 The Effects of Fourier Limited Targets Susan M. Abrams Upon Peripheral Perception 2 Studies of the Dimenslonality of William H

  7. Bubble Jet agent release cartridge for chemical single cell stimulation.

    PubMed

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d <30 μm) on-demand micro gradients can be generated for the specific manipulation of single cells. A single channel and a double channel agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  8. Prediction of Packed Cell Volume after Whole Blood Transfusion in Small Ruminants and South American Camelids: 80 Cases (2006-2016).

    PubMed

    Luethy, D; Stefanovski, D; Salber, R; Sweeney, R W

    2017-11-01

    Calculation of desired whole blood transfusion volume relies on an estimate of an animal's circulating blood volume, generally accepted to be 0.08 L/kg or 8% of the animal's body weight in kilograms. To use packed cell volume before and after whole blood transfusion to evaluate the accuracy of a commonly used equation to predict packed cell volume after transfusion in small ruminants and South American camelids; to determine the nature and frequency of adverse transfusion reactions in small ruminants and camelids after whole blood transfusion. Fifty-eight small ruminants and 22 alpacas that received whole blood transfusions for anemia. Retrospective case series; medical record review for small ruminants and camelids that received whole blood transfusions during hospitalization. Mean volume of distribution of blood as a fraction of body weight in sheep (0.075 L/kg, 7.5% BW) and goats (0.076 L/kg, 7.6% BW) differed significantly (P < 0.01) from alpacas (0.103 L/kg, 10.3% BW). Mild transfusion reactions were noted in 16% of transfusions. The generally accepted value of 8% for circulating blood volume (volume of distribution of blood) is adequate for calculation of transfusion volumes; however, use of the species-specific circulating blood volume can improve calculation of transfusion volume to predict and achieve desired packed cell volume. The incidence of transfusion reactions in small ruminants and camelids is low. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    PubMed Central

    Xu, Mei; Chen, Gang; Wang, Siying; Liao, Mingjun; Frank, Jacqueline A.; Bower, Kimberly A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway. PMID:23112838

  10. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    PubMed

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  11. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  12. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    PubMed

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  13. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lei, Danni; Zhang, Guanhua; Li, Qiuhong; Lu, Bingan; Wang, Taihong

    2013-05-01

    SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of

  14. Process Improvement to Enhance Quality in a Large Volume Labor and Birth Unit.

    PubMed

    Bell, Ashley M; Bohannon, Jessica; Porthouse, Lisa; Thompson, Heather; Vago, Tony

    The goal of the perinatal team at Mercy Hospital St. Louis is to provide a quality patient experience during labor and birth. After the move to a new labor and birth unit in 2013, the team recognized many of the routines and practices needed to be modified based on different demands. The Lean process was used to plan and implement required changes. This technique was chosen because it is based on feedback from clinicians, teamwork, strategizing, and immediate evaluation and implementation of common sense solutions. Through rapid improvement events, presence of leaders in the work environment, and daily huddles, team member engagement and communication were enhanced. The process allowed for team members to offer ideas, test these ideas, and evaluate results, all within a rapid time frame. For 9 months, frontline clinicians met monthly for a weeklong rapid improvement event to create better experiences for childbearing women and those who provide their care, using Lean concepts. At the end of each week, an implementation plan and metrics were developed to help ensure sustainment. The issues that were the focus of these process improvements included on-time initiation of scheduled cases such as induction of labor and cesarean birth, timely and efficient assessment and triage disposition, postanesthesia care and immediate newborn care completed within approximately 2 hours, transfer from the labor unit to the mother baby unit, and emergency transfers to the main operating room and intensive care unit. On-time case initiation for labor induction and cesarean birth improved, length of stay in obstetric triage decreased, postanesthesia recovery care was reorganized to be completed within the expected 2-hour standard time frame, and emergency transfers to the main hospital operating room and intensive care units were standardized and enhanced for efficiency and safety. Participants were pleased with the process improvements and quality outcomes. Working together as a team

  15. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    PubMed

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.

    PubMed

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-07-07

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.

  17. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.

    PubMed

    Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-03-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials

  18. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    NASA Astrophysics Data System (ADS)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  19. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports onmore » the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.« less

  20. Centrifugal microfluidic platforms: advanced unit operations and applications.

    PubMed

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  1. Development of Nano/Micro Probes for Femtoliter Volume and Single Cell Measurements

    NASA Astrophysics Data System (ADS)

    Gao, Yang

    Single cell analysis has recently emerged as an important field of biomedical re- search. It is now clear that heterogeneity of cell metabolism functions in complex biological systems is correlated to changes in biological function and disease processes. A variety of nano/micro probes were developed to enable investigation of cells properties such as membrane stiffness, pH value. However, very few designs were focused on single cell metabolic function studies. There is a critical need for technologies that provide analysis of heterogeneity of cell metabolic functions, especially on metabolism. Nevertheless, the few existing approaches suffer from fundamental defects and need to be improved. This work focused on developing nano/micro probes that are suitable for single cell functionality investigation. Both types of probes are designed to measure cell-to-cell/time-to-time heterogeneity in metabolic functions over a long period of time. Lab-made carbon nanoprobes were developed especially for electro-physiological measurement. The unique structure of the carbon nanoprobes makes them suitable for important intracellular applications like trans-membrane potential measurements and various electrochemical measurement for cell function studies. While it is important of have ability to carry out intracellular measure, there are also occasions where the information of a cell as a whole is collected. One of the most important indicator of a cells metabolic functions is cell respiration rate/oxygen consumption rate. A micro-perfusion based multi-functional single cell sensing probe was the developed to carry out measurements on cell as a whole. Formed by a double-barrel theta pipette, the perfusion flow enables the direct measurement of the metabolic flux for example oxygen consumption rate. In conclusion, this work developed nano/micro-probes as novel single cell investigation tools. The data acquired from these tools could provide valuable assistance on applications

  2. Wharton's Jelly Derived Mesenchymal Stem Cells: Comparing Human and Horse.

    PubMed

    Merlo, Barbara; Teti, Gabriella; Mazzotti, Eleonora; Ingrà, Laura; Salvatore, Viviana; Buzzi, Marina; Cerqueni, Giorgia; Dicarlo, Manuela; Lanci, Aliai; Castagnetti, Carolina; Iacono, Eleonora

    2018-08-01

    Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.

  3. Agriculture Supplies & Services. Volume 3 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The third of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains twenty-five units of instruction in the area of agricultural mechanics. Among the unit topics included are (1) Farm Safety, (2) Ignition Systems; (3) Servicing Wheel Bearings, (4) Oxyacetylene Cutting, (5) Servicing the…

  4. Agriculture Supplies & Services. Volume 2 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The second of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains units of instruction in three major areas: (1) Animal Science, (2) Supervised Training Programs--Farm Business Management, and (3) Career Selection/Public Relations. Typical of the sixteen units included in the first…

  5. Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO2 films as photoanode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Jing, Jing; Fang, Biaopeng

    2017-07-01

    Improving the photovoltaic performance of CdSe/CdS/PbS co-sensitized double-layered TiO2 solar cells is reported. Double-layered TiO2 films with TiO2 microspheres as the light blocking layers were prepared. PbS, CdS and CdSe quantum dots (QDs) were assembled onto TiO2 photoanodes by simple successive ionic layer absorption and reaction (SILAR) to fabricate CdSe/CdS/PbS co-sensitized solar cells. An improved power conversion efficiency (PCE) of 5.11% was achieved for CdSe/CdS/PbS co-sensitized solar cells at one sun illumination (AM 1.5 G, 100 mW cm-2), which had an improvement of 22.6% over that of the CdSe/CdS co-sensitized solar cells (4.17%). This enhancement is mainly attributed to their better ability of the absorption of solar light with the existence of PbS QDs, the reduction of charge recombination of the excited electron and longer lifetime of electrons, which have been proved with the photovoltaic studies and electrochemical impedance spectroscopy (EIS).

  6. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  7. Low usage rate of banked sibling cord blood units in hematopoietic stem cell transplantation for children with hematological malignancies: implications for directed cord blood banking policies.

    PubMed

    Goussetis, Evgenios; Peristeri, Ioulia; Kitra, Vasiliki; Papassavas, Andreas C; Theodosaki, Maria; Petrakou, Eftichia; Spiropoulos, Antonia; Paisiou, Anna; Soldatou, Alexandra; Stavropoulos-Giokas, Catherine; Graphakos, Stelios

    2011-02-15

    Directed sibling cord blood banking is indicated in women delivering healthy babies who already have a sibling with a disease that is potentially treatable with an allogeneic cord blood transplant. We evaluated the effectiveness of a national directed cord blood banking program in sibling HLA-identical stem cell transplantation for hematological malignancies and the factors influencing the usage rate of the stored cord blood units. Fifty families were enrolled from which, 48 cord blood units were successfully collected and 2 collections failed due to damaged cord/placenta at delivery. Among enrolled families 4 children needed transplantation; however, only one was successfully transplanted using the collected cord blood unit containing 2×10(7) nucleated cells/kg in conjunction with a small volume of bone marrow from the same HLA-identical donor. Two children received grafts from matched unrelated donors because their sibling cord blood was HLA-haploidentical, while the fourth one received bone marrow from his HLA-identical brother, since cord blood could not be collected due to damaged cord/placenta at delivery. With a median follow-up of 6 years (range, 2-12) for the 9 remaining HLA-matched cord blood units, none from the prospective recipients needed transplantation. The low utilization rate of sibling cord blood in the setting of hematopoietic stem cell transplantation for pediatric hematological malignant diseases necessitates the development of directed cord blood banking programs that limit long-term storage for banked cord blood units with low probability of usage such as non-HLA-identical or identical to patients who are in long-term complete remission. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Placement-aware decomposition of a digital standard cells library for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Wassal, Amr G.; Sharaf, Heba; Hammouda, Sherif

    2012-11-01

    To continue scaling the circuit features down, Double Patterning (DP) technology is needed in 22nm technologies and lower. DP requires decomposing the layout features into two masks for pitch relaxation, such that the spacing between any two features on each mask is greater than the minimum allowed mask spacing. The relaxed pitches of each mask are then processed on two separate exposure steps. In many cases, post-layout decomposition fails to decompose the layout into two masks due to the presence of conflicts. Post-layout decomposition of a standard cells block can result in native conflicts inside the cells (internal conflict), or native conflicts on the boundary between two cells (boundary conflict). Resolving native conflicts requires a redesign and/or multiple iterations for the placement and routing phases to get a clean decomposition. Therefore, DP compliance must be considered in earlier phases, before getting the final placed cell block. The main focus of this paper is generating a library of decomposed standard cells to be used in a DP-aware placer. This library should contain all possible decompositions for each standard cell, i.e., these decompositions consider all possible combinations of boundary conditions. However, the large number of combinations of boundary conditions for each standard cell will significantly increase the processing time and effort required to obtain all possible decompositions. Therefore, an efficient methodology is required to reduce this large number of combinations. In this paper, three different reduction methodologies are proposed to reduce the number of different combinations processed to get the decomposed library. Experimental results show a significant reduction in the number of combinations and decompositions needed for the library processing. To generate and verify the proposed flow and methodologies, a prototype for a placement-aware DP-ready cell-library is developed with an optimized number of cell views.

  9. Corpus luteum function following single and double ovulation during estrous cycle in Sanjabi ewes.

    PubMed

    Shabankareh, H Karami; Habibizad, J; Torki, M

    2009-09-01

    This study compared the effect of double and single ovulation on serum progesterone concentrations and luteal characteristics in Sanjabi ewes at different days of the estrous cycle. The estrous cycles of 197 Sanjabi ewes were synchronized by a 12-day treatment with intravaginal sponges (Chronogest). Estrus was detected in 144 ewes 27-39 h after sponge removal. Daily blood samples were taken every morning and analyzed for serum progesterone (P4). Ewes were then transported to a local abattoir, where nine ewes were slaughtered on each experimental day (days 1-16 after estrus) for ovary collection. The ovarian follicles were measured and categorized by size (very small <2mm; small 2-3.5mm; medium 3.5-5mm; large >5mm). On each slaughter day, the number of corpora lutea per ewe was classified as single and double ovulation. The results show that the effect of dominant follicles was less during the mid-luteal phase. Ovulation rate of right, left and both ovaries were (54.9%), (23.6%) and (21.5%), respectively. The incidence of double ovulations was 40.2%. In the case of ewes exhibiting double ovulation, 46.6% occurred unilateral (ewes exhibited both ovulations on the right ovary); whereas 53.4% occurred bilateral (ewes exhibited ovulations on the right and left ovaries). Unilateral double ovulation was not observed in the left ovary. The right ovary appeared to play a significantly greater role in ewes showing single and double ovulations than the left ovary (P<0.05). Serum progesterone concentration showed minimum and maximum levels of 0.29+/-0.15 and 5.51+/-0.75 ng/ml on days 16 and 11 post-estrous, respectively (P<0.001). The mean volume of individual corpus lutea in ewes with single ovulations was significantly higher than in ewes with double ovulations (P<0.01). However, the total volume of corpus lutea in ewes with single ovulation was significantly lower than in ewes with double ovulations in some days of estrous cycle (P<0.01). The serum progesterone

  10. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells.

    PubMed

    Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A

    2015-10-01

    The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.

  11. Simulation of Double-Seaming in a Two-piece Aluminum Can

    NASA Astrophysics Data System (ADS)

    Romanko, Anne; Berry, Dale; Fox, David

    2004-06-01

    The aluminum can industry in the United States and Canada manufactures over 100 billion cans per year. Two-piece aluminum cans are commonly used to seal and deliver foodstuffs such as soft drinks, beer, pet food, and other perishable items. In order to ensure product safety and performance, the double seam between the can body and lid is a critical component of the package. Double-seaming is a method by which the flange of the can body and the curl of the end are folded over together such that the final joint is composed of five metal thicknesses. There are a number of design challenges involved with the art of double seaming, especially with the push to lightweight. Although the requirements vary by product, the typical beer package must be able to hold pressures in excess of 90psi. In addition, in production, double seaming is a high-speed operation with speeds as high as 3000 cans/minute on an 18-spindle seamer. For this high volume, low cost industry, understanding and optimizing the seaming process can advance the industry as well as help prevent various manufacturing problems that produce a poor seal between the two pieces of the can. To aid in understanding the mechanics of the can parts during double-seaming, a simulation procedure was developed and carried out on a 202 diameter beverage can and lid. Simulations were run with the explicit dynamics solver ABAQUS/Explicit using the continuum shell element technology available in the ABAQUS general purpose FEA program. The continuum shell is a shear-deformable shell element with the topology of an eight node brick. The element's formulation allows continuously varying, solution-dependent shell thickness and through-thickness pinching stress. One important advantage of using the continuum shell as opposed to a traditional shell element is that true contact interactions at the top and bottom surfaces of the can body and lid can be accurately modeled. With a conventional shell element, contact is performed at the

  12. Double-cross hydrostatic pressure sample injection for chip CE: variable sample plug volume and minimum number of electrodes.

    PubMed

    Luo, Yong; Wu, Dapeng; Zeng, Shaojiang; Gai, Hongwei; Long, Zhicheng; Shen, Zheng; Dai, Zhongpeng; Qin, Jianhua; Lin, Bingcheng

    2006-09-01

    A novel sample injection method for chip CE was presented. This injection method uses hydrostatic pressure, generated by emptying the sample waste reservoir, for sample loading and electrokinetic force for dispensing. The injection was performed on a double-cross microchip. One cross, created by the sample and separation channels, is used for formation of a sample plug. Another cross, formed by the sample and controlling channels, is used for plug control. By varying the electric field in the controlling channel, the sample plug volume can be linearly adjusted. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip, without any electrode or external pressure pump, thus allowing a sample injection with a minimum number of electrodes. The potential of this injection method was demonstrated by a four-separation-channel chip CE system. In this system, parallel sample separation can be achieved with only two electrodes, which is otherwise impossible with conventional injection methods. Hydrostatic pressure maintains the sample composition during the sample loading, allowing the injection to be free of injection bias.

  13. Volume moiré tomography based on projection extraction by spatial phase shifting of double crossed gratings

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun

    2018-01-01

    To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.

  14. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, William C.

    1988-01-01

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached.

  15. Micromachined nanocalorimetric sensor for ultra-low-volume cell-based assays.

    PubMed

    Johannessen, Erik A; Weaver, John M R; Bourova, Lenka; Svoboda, Petr; Cobbold, Peter H; Cooper, Jonathan M

    2002-05-01

    Current strategies for cell-based screening generally focus on the development of highly specific assays, which require an understanding of the nature of the signaling molecules and cellular pathways involved. In contrast, changes in temperature of cells provides a measure of altered cellular metabolism that is not stimulus specific and hence could have widespread applications in cell-based screening of receptor agonists and antagonists, as well as in the assessment of toxicity of new lead compounds. Consequently, we have developed a micromachined nanocalorimetric biological sensor using a small number of isolated living cells integrated within a subnanoliter format, which is capable of detecting 13 nW of generated power from the cells, upon exposure to a chemical or pharmaceutical stimulus. The sensor comprises a 10-junction gold and nickel thermopile, integrated on a silicon chip which was back-etched to span a 800-nm-thick membrane of silicon nitride. The thin-film membrane, which supported the sensing junctions of the thermoelectric transducer, gave the system a temperature resolution of 0.125 mK, a low heat capacity of 1.2 nJ mK(-1), and a rapid (unfiltered) response time of 12 ms. The application of the system in ultra-low-volume cell-based assays could provide a rapid endogenous screen. It offers important additional advantages over existing methods in that it is generic in nature, it does not require the use of recombinant cell lines or of detailed assay development, and finally, it can enable the use of primary cell lines or tissue biopsies.

  16. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine-Suzuki, Emiko; Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522; Yu, Dong

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may notmore » be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.« less

  17. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    PubMed

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  18. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    PubMed Central

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  19. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    PubMed

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shan-Shan; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing; Jiang, Teng

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells tomore » investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.« less

  1. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines,more » the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.« less

  2. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells

    PubMed Central

    XU, YE; XIE, QI; WU, SHAOHUA; YI, DAN; YU, YANG; LIU, SHIBING; LI, SONGYAN; LI, ZHIXIN

    2016-01-01

    The mechanisms underlying myricetin-induced cancer cell apoptosis remain to be elucidated. Certain previous studies have shown that myricetin induces apoptosis through the mitochondrial pathway. Apoptosis, however, can also be induced by other classical pathways, including endoplasmic reticulum (ER) stress and DNA double-strand breaks (DSBs). The aim of the present study was to assess whether these two apoptotic pathways are involved in myricetin-induced cell death in SKOV3 ovarian cancer cells. The results revealed that treatment with myricetin inhibited viability of SKOV3 cells in a dose-dependent manner. Myricetin induced nuclear chromatin condensation and fragmentation, and also upregulated the protein levels of active caspase 3 in a time-dependent manner. In addition, myricetin upregulated ER stress-associated proteins, glucose-regulated protein-78 and C/EBP homologous protein in SKOV3 cells. Phosphorylation of H2AX, a marker of DNA DSBs, was revealed to be upregulated in myricetin-treated cells. The data indicated that myricetin induces DNA DSBs and ER stress, which leads to apoptosis in SKOV3 cells. PMID:26782830

  3. A Prediction Formula for Double Product in Pregnancy.

    PubMed

    Teli, Anita; Bagali, Shrilaxmi; Ghatanatti, Ravi

    2016-02-01

    Maternal cardiovascular changes in pregnancy are numerous and increase in double product throughout pregnancy is the part of the same process. Double product is a cardinal surrogate of the myocardial oxygen demand and cardiac workload. It is the product of heart rate and systolic blood pressure and an important determinant of cardiovascular risk in hypertensive patients. This study was intended to determine the double product by comparing normal individuals with different trimesters of pregnancy. A cross sectional study was conducted in 220 healthy women in the age range of 18-35 years with 60 subjects each in 1(st), 2(nd) and 3(rd) trimesters and 40 non pregnant subjects as control group. Cardiovascular parameters were recorded in both the groups. Statistical analysis was done by comparison of parameters using one-way ANOVA and post-hoc by Tukey-Krammer test. Correlation of double product and weeks of pregnancy was done using Pearson's correlation. Regression analysis was done to know the predictor of double product. It was observed that there was statistically very highly significant increase (p=0.000) in the double product throughout the pregnancy and duration of pregnancy was found to be the predictor of the product. The increase in the double product is due to increase in heart rate and stroke volume. Double product is the useful predictor for early identification of preeclampsia and acute myocardial infarction in pregnant women when compared to normal non- pregnant women and hence helps in the early management of complications.

  4. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio

    PubMed Central

    Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.

    2014-01-01

    Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768

  5. Agriculture Supplies & Services. Volume 1 of 3.

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The first of three volumes included in a secondary agricultural supplies and services curriculum guide, this volume contains units of instruction in two major areas: (1) plant and soil science and (2) leadership (Future Farmers of America). Typical of the nineteen units included in the first section are the following: Plant Insect Control, Plant…

  6. United States Food and Drug Administration Regulation of Gene and Cell Therapies.

    PubMed

    Bailey, Alexander M; Arcidiacono, Judith; Benton, Kimberly A; Taraporewala, Zenobia; Winitsky, Steve

    2015-01-01

    The United States (US) Food and Drug Administration (FDA) is a regulatory agency that has oversight for a wide range of products entering the US market, including gene and cell therapies. The regulatory approach for these products is similar to other medical products within the United States and consists of a multitiered framework of statutes, regulations, and guidance documents. Within this framework, there is considerable flexibility which is necessary due to the biological and technical complexity of these products in general. This chapter provides an overview of the US FDA regulatory oversight of gene and cell therapy products.

  7. Sodium chloride-induced volume changes of freshwater cyanobacterium Synechococcus sp. PCC 7942 cells can be probed by chlorophyll a fluorescence.

    PubMed

    Stamatakis, K; Ladas, N P; Alygizaki-Zorba, A; Papageorgiou, G C

    1999-10-15

    Freshwater species of the cyanobacterial genus Synechococcus import NaCl passively, and export Na(+) actively, by means of primary and secondary extrusion mechanisms. As a result of the ion and water fluxes, cell volumes are enlarged. We show in this paper that the NaCl-induced volume enlargement of Synechococcus sp. PCC 7942 cells is attended by a rapid (k = 0.39 s(-1)) increase in chlorophyll (Chl) a fluorescence. The cell turgor threshold (measured by osmotic titration of Chl a fluorescence) was lower in the absence of NaCl (0.195 Osm kg(-1)) than in the presence of 0.4 M NaCl (0.248 Osm kg(-1)) indicating NaCl uptake by the cells. Turgor thresholds of cells suspended in NaCl-containing medium were enlarged further by protonophoric uncouplers, P-type ATPase inhibitors, and light starvation, conditions that are known to interfere with the active extrusion of Na(+) ions. Cell swelling exerts probably a regulation on the distribution of phycobilisome (PBS) excitation between photosystem II (fluorescent Chl a) and photosystem I (nonfluorescent Chl a), since it affects PBS-sensitized Chl a fluorescence, but not directly excited Chl a fluorescence. The dependence of the Chl a fluorescence of cyanobacteria on cell volumes allows probing of bioenergetic phenomena that are related to dynamic osmotic volume changes, transmembrane solute and water fluxes, plasma membrane permeabilities, and internal osmotic conditions of cyanobacterial cells. Thus, cyanobacteria may serve as quite convenient models of aquatic microorganisms in experimental studies directed toward the elucidation of perception mechanisms and defense mechanisms of water and solute stresses. Copyright 1999 Academic Press.

  8. Detection of internal fields in double-metal terahertz resonators

    DOE PAGES

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; ...

    2017-02-06

    (THz) plasmonic double-metal resonators enable enhanced light-matter coupling by utilizing strong localization of the resonant field. The closed resonator design however restricts investigations of the light-matter interaction effects. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal resonant THz fields in plasmonic double-metal THz resonators. We use the aperture-type scanning near-field THz time-domain microscopy and the concept of image charges to probe the THz fields confined within the resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

  9. Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with Graphite Anodes and NMC532 Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Seong Jin; Li, Jianlin; Mohanty, Debasish

    2017-01-01

    The work herein reports on studies aimed at exploring the correlation between electrolyte volume and electrochemical performance of full cell, pouch-cells consisting of graphite/ Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC-532) as the electrodes and 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate (EC:EMC) as the electrolyte. It is demonstrated that a minimum electrolyte volume factor of 1.9 times the total pore volume of cell components (cathode, anode, and separator) is needed for long-term cyclability and low impedance. Less electrolyte results in an increase of the measured ohmic resistances. Increased resistance ratios for charge transfer and passivation layers at cathode, relativemore » to initial values, were 1.5–2.0 after 100 cycles. At the cathode, the resistance from charge transfer was 2–3 times higher than for passivation layers. Differential voltage analysis showed that anodes were less delithiated after discharging as the cells were cycled.« less

  10. Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with Graphite Anodes and NMC532 Cathodes

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Mohanty, Debasish; ...

    2017-04-07

    The work herein reports on studies aimed at exploring the correlation between electrolyte volume and electrochemical performance of full cell, pouch-cells consisting of graphite/ Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC-532) as the electrodes and 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate (EC:EMC) as the electrolyte. In addition, it is demonstrated that a minimum electrolyte volume factor of 1.9 times the total pore volume of cell components (cathode, anode, and separator) is needed for long-term cyclability and low impedance. Less electrolyte results in an increase of the measured Ohmic resistances. Increased resistance ratios for charge transfer and passivation layersmore » at cathode, relative to initial values, were 1.5 2.0 after 100 cycles. At the cathode, the resistance from charge transfer was 2-3 times higher than for passivation layers. Lastly, differential voltage analysis showed that anodes were less delithiated after discharging as the cells were cycled.« less

  11. Socially Disadvantaged Students in Socially Disadvantaged Schools: Double Jeopardy in Mathematics Achievement in the G8 Countries

    ERIC Educational Resources Information Center

    Dundas, Traci Lynne

    2010-01-01

    Using the G8 countries' (Canada, France, Germany, Italy, Japan, the Russian Federation, the United Kingdom, and the United States) samples from the 2003 Programme for International Student Assessment (PISA), this study aimed to explore the phenomenon of double jeopardy in mathematics achievement for socially disadvantaged students. Double jeopardy…

  12. Volume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).

    PubMed

    Koomoa, D L; Musch, M W; MacLean, A V; Goldstein, L

    2001-09-01

    The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.

  13. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus

    PubMed Central

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-01-01

    Abstract DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure. PMID:29800455

  14. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus.

    PubMed

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-05-01

    DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.

  15. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease

    PubMed Central

    Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS

    2017-01-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  16. Single nucleotide-level mapping of DNA double-strand breaks in human HEK293T cells.

    PubMed

    Pope, Bernard J; Mahmood, Khalid; Jung, Chol-Hee; Georgeson, Peter; Park, Daniel J

    2017-03-01

    Constitutional biological processes involve the generation of DNA double-strand breaks (DSBs). The production of such breaks and their subsequent resolution are also highly relevant to neurodegenerative diseases and cancer, in which extensive DNA fragmentation has been described Stephens et al. (2011), Blondet et al. (2001). Tchurikov et al. Tchurikov et al. (2011, 2013) have reported previously that frequent sites of DSBs occur in chromosomal domains involved in the co-ordinated expression of genes. This group report that hot spots of DSBs in human HEK293T cells often coincide with H3K4me3 marks, associated with active transcription Kravatsky et al. (2015) and that frequent sites of DNA double-strand breakage are likely to be relevant to cancer genomics Tchurikov et al. (2013, 2016) . Recently, they applied a RAFT (rapid amplification of forum termini) protocol that selects for blunt-ended DSB sites and mapped these to the human genome within defined co-ordinate 'windows'. In this paper, we re-analyse public RAFT data to derive sites of DSBs at the single-nucleotide level across the built genome for human HEK293T cells (https://figshare.com/s/35220b2b79eaaaf64ed8). This refined mapping, combined with accessory ENCODE data tracks and ribosomal DNA-related sequence annotations, will likely be of value for the design of clinically relevant targeted assays such as those for cancer susceptibility, diagnosis, treatment-matching and prognostication.

  17. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  18. A double-pulse approach for electrotransfection.

    PubMed

    Pasquet, L; Bellard, E; Golzio, M; Rols, M P; Teissie, J

    2014-12-01

    Gene transfer and expression can be obtained by delivering calibrated electric pulses on cells in the presence of plasmids coding for the activity of interest. The electric treatment affects the plasma membrane and induces the formation of a transient complex between nucleic acids and the plasma membrane. It results in a delivery of the plasmid in the cytoplasm. Expression is only obtained if the plasmid is translocated inside the nucleus. This is a key limit in the process. We previously showed that delivery of a high-field short-duration electric pulse was inducing a structural alteration of the nuclear envelope. This study investigates if the double-pulse approach (first pulse to transfer the plasmid to the cytoplasm, and second pulse to induce the structural alteration of the envelope) was a way to enhance the protein expression using the green fluorescent protein as a reporter. We observed that not only the double-pulse approach induced the transfection of a lower number of cells but moreover, these transfected cells were less fluorescent than the cells treated only with the first pulse.

  19. Double bevel construction of a diamond anvil

    DOEpatents

    Moss, W.C.

    1988-10-11

    A double or multiple bevel culet geometry is used on a diamond anvil in a high pressure cell apparatus to provide increased sample pressure and stability for a given force applied to the diamond tables. Double or multiple bevel culet geometries can also be used for sapphire or other hard crystal anvils. Pressures up to and above 5 Megabars can be reached. 8 figs.

  20. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    PubMed

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  1. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  2. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis.

    PubMed

    Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  3. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis

    PubMed Central

    Adragna, Norma C.; Ravilla, Nagendra B.; Lauf, Peter K.; Begum, Gulnaz; Khanna, Arjun R.; Sun, Dandan; Kahle, Kristopher T.

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD. PMID:26217182

  4. The Comprehensive Health Challenge: Promoting Health through Education. Volume One; Volume Two.

    ERIC Educational Resources Information Center

    Cortese, Peter, Ed.; Middleton, Kathleen, Ed.

    The 32 chapters in this book (presented in two volumes) cover a continuum of issues in comprehensive school health education, including a review of the past and a vision of the future. Volume 1 opens with a foreword by Dr. M. Jocelyn Elders (Surgeon General of the United States) and provides the following chapters: (1) "School Health…

  5. Wide-Band Circularly Polarized ReflectarrayUsing Graphene-Based Pancharatnam-Berry Phase Unit-Cells for Terahertz Communication.

    PubMed

    Deng, Li; Zhang, Yuanyuan; Zhu, Jianfeng; Zhang, Chen

    2018-06-05

    A wide-band and high gain circularly polarized (CP) graphene-based reflectarray operating in the THz regime is proposed and theoretically investigated in this paper. The proposed reflectarray consists of a THz CP source and several graphene-based unit-cells. Taking advantages of the Pancharatnam Berry (PB) phase principle, the graphene-based unit-cell is capable of realizing a tunable phase range of 360° in a wide-band (1.4⁻1.7 THz) by unit-cell rotating, overcoming the restriction of intrinsic narrow-band resonance in graphene. Therefore, this graphene-based unit-cell exhibits superior bandwidth and phase tunability to its previous counterparts. To demonstrate this, a wide-band (1.4⁻1.7 THz) focusing metasurface based on the proposed unit-cell that exhibits excellent focusing effect was designed. Then, according to the reversibility of the optical path, a CP reflectarray was realized by placing a wide-band CP THz source at the focal point of the metasurface. Numerical simulation demonstrates that this reflectarray can achieve a stable high gain up to 15 dBic and an axial ratio around 2.1 dB over the 1.4⁻1.7 THz band. The good radiation performance of the proposed CP reflectarray, as demonstrated, underlines its suitability for the THz communication applications. Moreover, the design principle of this graphene-based reflectarray with a full 360° phase range tunable unit-cells provides a new pathway to design high-performance CP reflectarray in the THz regime.

  6. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  7. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  8. Biology 23. Unit One -- The Cell: Structure and Physiology.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  9. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  10. Early Growth Response of Slash Pine to Double-Bedding on a Flatwoods Site in Georgia

    Treesearch

    Curtis L. VanderSchaaf; David B. South

    2004-01-01

    A somewhat poorly-drained site in the Georgia flatwoods was prepared with single- and double-bedding and was planted with slash pine (Pinus elliottii Engelm.) seedlings in October. Half of the plots were treated with imazypyr in March. Double-bedding increased 7 th year volume by 5 m3 per ha, but due to insufficient control of...

  11. A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration.

    PubMed Central

    Lew, V L; Freeman, C J; Ortiz, O E; Bookchin, R M

    1991-01-01

    We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper. PMID:1985088

  12. Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique

    NASA Astrophysics Data System (ADS)

    Chaisantikulwat, W.; Mouis, M.; Ghibaudo, G.; Cristoloveanu, S.; Widiez, J.; Vinet, M.; Deleonibus, S.

    2007-11-01

    Double-gate transistor with ultra-thin body (UTB) has proved to offer advantages over bulk device for high-speed, low-power applications. There is thus a strong need to obtain an accurate understanding of carrier transport and mobility in such device. In this work, we report for the first time an experimental evidence of mobility enhancement in UTB double-gate (DG) MOSFETs using magnetoresistance mobility extraction technique. Mobility in planar DG transistor operating in single- and double-gate mode is compared. The influence of different scattering mechanisms in the channel is also investigated by obtaining mobility values at low temperatures. The results show a clear mobility improvement in double-gate mode compared to single-gate mode mobility at the same inversion charge density. This is explained by the role of volume inversion in ultra-thin body transistor operating in DG mode. Volume inversion is found to be especially beneficial in terms of mobility gain at low-inversion densities.

  13. Aptamer cell sensor based on porous graphene oxide decorated ion-selective-electrode: Double sensing platform for cell and ion.

    PubMed

    Zhang, Rong; Gu, Yajun; Wang, Zhongrong; Li, Yueguo; Fan, Qingjie; Jia, Yunfang

    2018-06-15

    Enlightened by the emerging cell-ion detection based on ion-selective-electrode (ISE), an aptamer capturing and ISE transducing (AC&IT) strategy is proposed on the porous graphene oxide (PGO) decorated ISE (PGO-ISE), its performances in both cell and ion detections are examined by use of AS1411 targeted A549 cell detection and iodide-ISE as proof-of-concept. Firstly, GO flakes, exfoliated from graphite by modified Hummers method, are cross-linked by thiourea mediated hydrothermal process, to 3-dimension networked PGO which is identified by scanning-electron-microscope, UV-visible absorbance and X-ray photoelectron spectroscopy; its enhancing effect for cell capturing is evaluated by microscopy. Then, PGO-ISE is constructed by drop-coating PGO film on the surface of ISE and followed by covalently anchoring AS1411. Electrochemistry measurements for different state ISE (blank, PGO coated, AS1411 anchored and A549 captured) are performed by our home-made ISE-measuring system. It is demonstrated that the best cell-sensitivity in buffer is - 25.21 mV/log 10 C A549 (R 2 = 0.91), resolution in blood is 10 cells/ml. Interestingly, due to PGO's scaffold protection to the ionophore, I - -sensitivity is preserved as - 42.98 mV/pI (R 2 = 0.95, pI = -log 10 (C I )). Theoretical explanations are provided for the double-sensing phenomenon according to basic ISE principle. It is believed the PGO-ISE based aptamer cell sensor will be a promising experimental means for biomedical researches. Copyright © 2018. Published by Elsevier B.V.

  14. Microbial fuel cells as pollutant treatment units: Research updates.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects

  16. The human urothelium consists of multiple clonal units, each maintained by a stem cell.

    PubMed

    Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A

    2011-10-01

    Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Tumor Volume Is a Prognostic Factor in Non-Small-Cell Lung Cancer Treated With Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Brian M.; Othus, Megan; Caglar, Hale B.

    2011-04-01

    Purpose: To investigate whether primary tumor and nodal volumes defined on radiotherapy planning scans are correlated with outcome (survival and recurrence) after combined-modality treatment. Methods and Materials: A retrospective review of patients with Stage III non-small-cell lung cancer treated with chemoradiation at Brigham and Women's Hospital/Dana-Farber Cancer Institute from 2000 to 2006 was performed. Tumor and nodal volume measurements, as computed by Eclipse (Varian, Palo Alto, CA), were used as independent variables, along with existing clinical factors, in univariate and multivariate analyses for association with outcomes. Results: For patients treated with definitive chemoradiotherapy, both nodal volume (hazard ratio [HR], 1.09;more » p < 0.01) and tumor volume (HR, 1.03; p < 0.01) were associated with overall survival on multivariate analysis. Both nodal volume (HR, 1.10; p < 0.01) and tumor volume (HR, 1.04; p < 0.01) were also associated with local control but not distant metastases. Conclusions: In addition to traditional surgical staging variables, disease burden, measured by primary tumor and nodal metastases volume, provides information that may be helpful in determining prognosis and identifying groups of patients for which more aggressive local therapy is warranted.« less

  18. Brilliant Blue G double staining enhances successful internal limiting membrane peeling with minimal adverse effect by low cellular permeability into live cells.

    PubMed

    Hisatomi, Toshio; Notomi, Shoji; Tachibana, Takashi; Oishi, Seiichiro; Asato, Ryo; Yamashita, Takehiro; Murakami, Yusuke; Ikeda, Yasuhiro; Enaida, Hiroshi; Sakamoto, Taiji; Ishibashi, Tatsuro

    2015-02-01

    Brilliant Blue G is used as a surgical adjuvant for retinal surgery. Although BBG double or multiple staining was reported, the effectiveness and safety of repeated staining is still elusive. To further examine the effectiveness and safety, we examined BBG in clinical cases in vivo, primary cell culture in vitro, and surgically resected specimen ex vivo. A retrospective interventional case series with in vitro and ex vivo studies were performed. Vitrectomy was performed in 28 cases of epiretinal membrane with BBG single to multiple staining. The surgically resected membranes were stained by BBG with or without cellular fixation. Primary cell cultures were examined with BBG and live/death cell markers, such as Calcein AM and TUNEL. Single staining provided satisfactory staining in seven cases. Double or multiple staining substantially visualized internal limiting membrane (21 cases), especially the edges of remaining internal limiting membrane (11 cases). Adverse retinal staining was not noted and the final visual acuity showed no difference with multiple staining. The live cells barely stained with BBG, while some dead cells were stained. Brilliant Blue G multiple staining substantially enhanced the visualization of internal limiting membrane. The absence of abnormal staining supports the safety of repeated BBG staining.

  19. An implantable seal-less centrifugal pump with integrated double-disk motor.

    PubMed

    Schima, H; Schmallegger, H; Huber, L; Birgmann, I; Reindl, C; Schmidt, C; Roschal, K; Wieselthaler, G; Trubel, W; Losert, U

    1995-07-01

    Thrombus formation and sealing problems at the shaft as well as the compact and efficient design of the driving unit have been major difficulties in the construction of a long-term implantable centrifugal pump. To eliminate the problems of the seal, motor size, and efficiency, two major steps were taken by modifying the Vienna implantable centrifugal pump. First, a special driving unit was developed, in which the permanent magnets of the motor themselves are used for coupling the force into the rotor. Second, the rotor shaft in the pumping chamber was eliminated by adopting a concept recently presented by Ohara. The rotor is supported by 3 pins, which run on a carbon disk, whose concave shape leads to stabilization. The device has the following specifications: size: 65 mm (diameter) by 35 mm (height), 101 cm3; priming volume 30 cm3, 240 g; and a 6-pole brushless double disk DC motor. The required input power of the described prototype is 15 W at 150 mm Hg, 5 L/min (overall eta = 11%), and has an in vitro index of hemolysis (IH) of 0.0046 g/100 L. The test for in vitro thrombus growth exhibited far less thrombus formation in the new design than in designs with axles. In conclusion, the design of a special driving unit and the elimination of the axle led to the construction of a small pump with very low blood traumatization.

  20. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    NASA Astrophysics Data System (ADS)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  1. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  2. Relationship between volume and survival in closed intensive care units is weak and apparent only in mechanically ventilated patients.

    PubMed

    Fernández, Rafael; Altaba, Susana; Cabre, Lluis; Lacueva, Victoria; Santos, Antonio; Solsona, Jose-Felipe; Añon, Jose-Manuel; Catalan, Rosa-Maria; Gutierrez, Maria-Jose; Fernandez-Cid, Ramon; Gomez-Tello, Vicente; Curiel, Emilio; Fernandez-Mondejar, Enrique; Oliva, Joan-Carles; Tizon, Ana Isabel; Gonzalez, Javier; Monedero, Pablo; Sanchez, Manuela Garcia; de la Torre, M Victoria; Ibañez, Pedro; Frutos, Fernando; Del Nogal, Frutos; Gomez, M Jesus; Marcos, Alfredo; Vera, Paula; Serrano, Jose Manuel; Umaran, Isabel; Carrillo, Andres; Lopez-Pueyo, M-Jose; Rascado, Pedro; Balerdi, Begoña; Suberviola, Borja; Hernandez, Gonzalo

    2013-10-01

    Recent studies have found an association between increased volume and increased intensive care unit (ICU) survival; however, this association might not hold true in ICUs with permanent intensivist coverage. Our objective was to determine whether ICU volume correlates with survival in the Spanish healthcare system. Post hoc analysis of a prospective study of all patients admitted to 29 ICUs during 3 months. At ICU discharge, the authors recorded demographic variables, severity score, and specific ICU treatments. Follow-up variables included ICU readmission and hospital mortality. Statistics include logistic multivariate analyses for hospital mortality according to quartiles of volume of patients. The authors studied 4,001 patients with a mean predicted risk of death of 23% (range at hospital level: 14-46%). Observed hospital mortality was 19% (range at hospital level: 11-35%), resulting in a standardized mortality ratio of 0.81 (range: 0.5-1.3). Among the 1,923 patients needing mechanical ventilation, the predicted risk of death was 32% (14-60%) and observed hospital mortality was 30% (12-61%), resulting in a standardized mortality ratio of 0.96 (0.5-1.7). The authors found no correlation between standardized mortality ratio and ICU volume in the entire population or in mechanically ventilated patients. Only mechanically ventilated patients in very low-volume ICUs had slightly worse outcome. In the currently studied healthcare system characterized by 24/7 intensivist coverage, the authors found wide variability in outcome among ICUs even after adjusting for severity of illness but no relationship between ICU volume and outcome. Only mechanically ventilated patients in very low-volume centers had slightly worse outcomes.

  3. Epinigericin toxicity towards Tetrahymena pyriformis GL; changes in cell volume and intracellular pH.

    PubMed

    Bamdad, M; David, L; Grolière, C A

    1995-12-01

    A study of the toxicity of epinigericin, an antibiotic ionophor, towards the ciliate Tetrahymena pyriformis showed that this molecule stopped cell division, increased cell volume and led to a more basic intracellular pH. The action of epinigericin was probably linked to its function as an ionophor. The ionic selectivity of this molecule is still not known. The raising of the intracellular pH of ciliates by this antibiotic may be linked to its toxic action and its iontransport mechanism in Tetrahymena.

  4. Site Environmental Report for 2005 Volume I and Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the

  5. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters.

    PubMed

    Ben Naceur, Chiraz; Maxime, Valérie; Ben Mansour, Hedi; Le Tilly, Véronique; Sire, Olivier

    2016-11-01

    Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a

  6. Endocrine considerations in the red-cell-mass and plasma volume changes of the Skylab 2 and 3 crews

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Driscoll, T.

    1975-01-01

    The effect of unknown endocrine changes on blood volume of crewmembers was investigated. The results are presented in tabular form. The fact that some of the changes were in the wrong direction suggests that changes in endocrine function were not the primary cause of the decreases in the plasma volume and red cell mass.

  7. Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.

    PubMed

    Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi

    2013-09-01

    An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. The United Kingdom Primary Immune Deficiency (UKPID) registry 2012 to 2017.

    PubMed

    Shillitoe, B; Bangs, C; Guzman, D; Gennery, A R; Longhurst, H J; Slatter, M; Edgar, D M; Thomas, M; Worth, A; Huissoon, A; Arkwright, P D; Jolles, S; Bourne, H; Alachkar, H; Savic, S; Kumararatne, D S; Patel, S; Baxendale, H; Noorani, S; Yong, P F K; Waruiru, C; Pavaladurai, V; Kelleher, P; Herriot, R; Bernatonienne, J; Bhole, M; Steele, C; Hayman, G; Richter, A; Gompels, M; Chopra, C; Garcez, T; Buckland, M

    2018-06-01

    This is the second report of the United Kingdom Primary Immunodeficiency (UKPID) registry. The registry will be a decade old in 2018 and, as of August 2017, had recruited 4758 patients encompassing 97% of immunology centres within the United Kingdom. This represents a doubling of recruitment into the registry since we reported on 2229 patients included in our first report of 2013. Minimum PID prevalence in the United Kingdom is currently 5·90/100 000 and an average incidence of PID between 1980 and 2000 of 7·6 cases per 100 000 UK live births. Data are presented on the frequency of diseases recorded, disease prevalence, diagnostic delay and treatment modality, including haematopoietic stem cell transplantation (HSCT) and gene therapy. The registry provides valuable information to clinicians, researchers, service commissioners and industry alike on PID within the United Kingdom, which may not otherwise be available without the existence of a well-established registry. © 2018 British Society for Immunology.

  9. A hypothesis of target cell formation in sickle cell disease.

    PubMed

    Wong, P

    2016-08-01

    A fraction of erythrocytes appear as target cells in stained blood smears in sickle cell disease, due to a inheritance of the hemoglobin variant Hb S, polymerizing upon deoxygenation. These cells appear in a three dimension as thin cups. A process of their formation in this disease is proposed based on a band 3-based mechanism of the erythrocyte shape control, able to explain the erythrocyte echinocytosis by glucose depletion. It indicates that their formation is due to a stomatocytogenic slow outward transport of the dibasic form of endogenous Pi with an H(+) by band 3, promoted by the decrease of the Donnan ratio, which decreases cell pH and volume, attributed by a decrease of cell KCl concentration by the higher efflux of K(+)Cl(-) cotransport and Ca(2+) activation of the Gardos channel. Its implications are briefly discussed with respect to target cells per se, target cell formation in other hemoglobinopathies, acquired and inherited disorders of the lipid metabolism and dehydrated hereditary stomatocytosis as well as a stomatocyte presence in a double heterozygote of Hb S and Hb C and of an involvement of the process of target cell formation in acanthocytosis in acquired and inherited disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 56. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT GENERAL, DOUBLE EFFECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT GENERAL, DOUBLE EFFECT EVAPORATOR UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  11. 57. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT GENERAL, DOUBLE EFFECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT GENERAL, DOUBLE EFFECT EVAPORATOR UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  12. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    PubMed

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Nursing Skills for Allied Health Services. Volume 2.

    ERIC Educational Resources Information Center

    Wood, Lucile A., Ed.

    Volume 2 of the two-volume textbook on nursing skills presents instructional materials (units 21-36) on nursing skills based on 184 activities designated by the Allied Health Professions Projects national survey as those which are accomplished by all levels of nursing. Unit titles are: (21) urine elimination; (22) bowel elimination; (23)…

  14. Relationship of Terminal Duct Lobular Unit Involution of the Breast with Area and Volume Mammographic Densities

    PubMed Central

    Gierach, Gretchen L.; Patel, Deesha A.; Pfeiffer, Ruth M.; Figueroa, Jonine D.; Linville, Laura; Papathomas, Daphne; Johnson, Jason M.; Chicoine, Rachael E.; Herschorn, Sally D.; Shepherd, John A.; Wang, Jeff; Malkov, Serghei; Vacek, Pamela M.; Weaver, Donald L.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Palakal, Maya; Xiang, Jackie; Oh, Hannah; Horne, Hisani N.; Sprague, Brian L.; Hewitt, Stephen M.; Brinton, Louise A.; Sherman, Mark E.

    2016-01-01

    Elevated mammographic density (MD) is an established breast cancer risk factor. Reduced involution of terminal duct lobular units (TDLUs), the histologic source of most breast cancers, has been associated with higher MD and breast cancer risk. We investigated relationships of TDLU involution with area and volumetric MD, measured throughout the breast and surrounding biopsy targets (peri-lesional). Three measures inversely related to TDLU involution (TDLU count/mm2, median TDLU span, median acini count/TDLU) assessed in benign diagnostic biopsies from 348 women, ages 40–65, were related to MD area (quantified with thresholding software) and volume (assessed with a density phantom) by analysis of covariance, stratified by menopausal status and adjusted for confounders. Among premenopausal women, TDLU count was directly associated with percent peri-lesional MD (P-trend=0.03), but not with absolute dense area/volume. Greater TDLU span was associated with elevated percent dense area/volume (P-trend<0.05) and absolute peri-lesional MD (P=0.003). Acini count was directly associated with absolute peri-lesional MD (P=0.02). Greater TDLU involution (all metrics) was associated with increased nondense area/volume (P-trend≤0.04). Among postmenopausal women, TDLU measures were not significantly associated with MD. Among premenopausal women, reduced TDLU involution was associated with higher area and volumetric MD, particularly in peri-lesional parenchyma. Data indicating that TDLU involution and MD are correlated markers of breast cancer risk suggest that associations of MD with breast cancer may partly reflect amounts of at-risk epithelium. If confirmed, these results could suggest a prevention paradigm based on enhancing TDLU involution and monitoring efficacy by assessing MD reduction. PMID:26645278

  15. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants.

    PubMed

    Kudo, Madoka; Kidokoro, Satoshi; Yoshida, Takuya; Mizoi, Junya; Todaka, Daisuke; Fernie, Alisdair R; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2017-04-01

    Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology

  16. Automated assembling of single fuel cell units for use in a fuel cell stack

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  17. Renewable Electricity Futures Study - Volume One

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, Maureen; Mai, Treui; Baldwin, Sam

    Renewable Electricity Futures Study - Volume One. This is part of a series of four volumes describing exploring a high-penetration renewable electricity future for the United States of America. This data set is provides data for the entire volume one document and includes all data for the charts and graphs included in the document.

  18. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting.

    PubMed

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H

    2014-08-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection.

  19. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting

    PubMed Central

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H.

    2014-01-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection. PMID:25084331

  20. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when