Sample records for doubly oriented silicon

  1. A silicon-nanowire memory driven by optical gradient force induced bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, B.; Institute of Microelectronics, A*STAR; Cai, H., E-mail: caih@ime.a-star.edu.sg

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  2. Orientation of doubly rotated quartz plates.

    PubMed

    Sherman, J R

    1989-01-01

    A derivation from classical spherical trigonometry of equations to compute the orientation of doubly-rotated quartz blanks from Bragg X-ray data is discussed. These are usually derived by compact and efficient vector methods, which are reviewed briefly. They are solved by generating a quadratic equation with numerical coefficients. Two methods exist for performing the computation from measurements against two planes: a direct solution by a quadratic equation and a process of convergent iteration. Both have a spurious solution. Measurement against three lattice planes yields a set of three linear equations the solution of which is an unambiguous result.

  3. Highly conducting and crystalline doubly doped tin oxide films fabricated using a low-cost and simplified spray technique

    NASA Astrophysics Data System (ADS)

    Ravichandran, K.; Muruganantham, G.; Sakthivel, B.

    2009-11-01

    Doubly doped (simultaneous doping of antimony and fluorine) tin oxide films (SnO 2:Sb:F) have been fabricated by employing an inexpensive and simplified spray technique using perfume atomizer from aqueous solution of SnCl 2 precursor. The structural studies revealed that the films are highly crystalline in nature with preferential orientation along the (2 0 0) plane. It is found that the size of the crystallites of the doubly doped tin oxide films is larger (69 nm) than that (27 nm) of their undoped counterparts. The dislocation density of the doubly doped film is lesser (2.08×10 14 lines/m 2) when compared with that of the undoped film (13.2×10 14 lines/m 2), indicating the higher degree of crystallinity of the doubly doped films. The SEM images depict that the films are homogeneous and uniform. The optical transmittance in the visible range and the optical band gap of the doubly doped films are 71% and 3.56 eV respectively. The sheet resistance (4.13 Ω/□) attained for the doubly doped film in this study is lower than the values reported for spray deposited fluorine or antimony doped tin oxide films prepared from aqueous solution of SnCl 2 precursor (without using methanol or ethanol).

  4. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    NASA Astrophysics Data System (ADS)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-11-01

    In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  5. Magnetism on a Boron-doped Si(111)-√ 3 × √ 3 Surface

    NASA Astrophysics Data System (ADS)

    Moon, Chang-Youn; Eom, Daejin; Koo, Ja-Yong

    2018-03-01

    We perform first-principles calculation to investigate the possible magnetism on the Si(111)-√ 3 × √ 3 surface, which is stabilized for highly boron-doped samples. When the silicon adatom on top of a boron atom is removed to form a defect structure, three silicon dangling bonds are exposed, generating half-filled doubly degenerate energy levels in the band gap, which stabilizes a local magnetic moment of 2 μ B . When many such defect structures are adjacent to one another, they are found to align antiferromagnetically. However, we demonstrate that the ferromagnetism can be stabilized by adjusting the number of electrons in the defects, suggesting a possibility towards spintronic applications for this unique silicon surface structure.

  6. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  7. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  8. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  9. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  10. Crystallographic Orientation Identification in Multicrystalline Silicon Wafers Using NIR Transmission Intensity

    NASA Astrophysics Data System (ADS)

    Skenes, Kevin; Kumar, Arkadeep; Prasath, R. G. R.; Danyluk, Steven

    2018-02-01

    Near-infrared (NIR) polariscopy is a technique used for the non-destructive evaluation of the in-plane stresses in photovoltaic silicon wafers. Accurate evaluation of these stresses requires correct identification of the stress-optic coefficient, a material property which relates photoelastic parameters to physical stresses. The material stress-optic coefficient of silicon varies with crystallographic orientation. This variation poses a unique problem when measuring stresses in multicrystalline silicon (mc-Si) wafers. This paper concludes that the crystallographic orientation of silicon can be estimated by measuring the transmission of NIR light through the material. The transmission of NIR light through monocrystalline wafers of known orientation were compared with the transmission of NIR light through various grains in mc-Si wafers. X-ray diffraction was then used to verify the relationship by obtaining the crystallographic orientations of these assorted mc-Si grains. Variation of transmission intensity for different crystallographic orientations is further explained by using planar atomic density. The relationship between transmission intensity and planar atomic density appears to be linear.

  11. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  12. A multichip aVLSI system emulating orientation selectivity of primary visual cortical cells.

    PubMed

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2005-07-01

    In this paper, we designed and fabricated a multichip neuromorphic analog very large scale integrated (aVLSI) system, which emulates the orientation selective response of the simple cell in the primary visual cortex. The system consists of a silicon retina and an orientation chip. An image, which is filtered by a concentric center-surround (CS) antagonistic receptive field of the silicon retina, is transferred to the orientation chip. The image transfer from the silicon retina to the orientation chip is carried out with analog signals. The orientation chip selectively aggregates multiple pixels of the silicon retina, mimicking the feedforward model proposed by Hubel and Wiesel. The chip provides the orientation-selective (OS) outputs which are tuned to 0 degrees, 60 degrees, and 120 degrees. The feed-forward aggregation reduces the fixed pattern noise that is due to the mismatch of the transistors in the orientation chip. The spatial properties of the orientation selective response were examined in terms of the adjustable parameters of the chip, i.e., the number of aggregated pixels and size of the receptive field of the silicon retina. The multichip aVLSI architecture used in the present study can be applied to implement higher order cells such as the complex cell of the primary visual cortex.

  13. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Marcie

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  14. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al6Pd

    PubMed Central

    Pauling, Linus

    1989-01-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092

  15. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al(6)Pd.

    PubMed

    Pauling, L

    1989-12-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.

  16. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  17. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    NASA Astrophysics Data System (ADS)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  18. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  19. Three-dimensional analysis of dislocation multiplication during thermal process of grown silicon with different orientations

    NASA Astrophysics Data System (ADS)

    Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.

    2017-09-01

    We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.

  20. Piezoelectric coupling factor calculations for plates of langatate driven in simple thickness modes by lateral-field-excitation.

    PubMed

    Khan, Ajmal; Ballato, Arthur

    2002-07-01

    Piezoelectric coupling factors for langatate (La3Ga5.5Ta0.5O14) single-crystals driven by lateral-field-excitation have been calculated using the extended Christoffel-Bechmann method. Calculations were made using published materials constants. The results are presented in terms of the lateral piezoelectric coupling factor as functions of in-plane (azimuthal) rotation angle for the three simple thickness vibration modes of some non-rotated, singly-rotated, and doubly-rotated orientations. It is shown that lateral-field-excitation offers the potential to eliminate unwanted vibration modes and to achieve considerably greater piezoelectric coupling versus thickness-field-excitation for the rotated cuts considered and for a doubly-rotated cut that is of potential technological interest.

  1. Anisotropic Tribological Properties of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.

  2. The U.S. and Japanese amorphous silicon technology programs A comparison

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1984-01-01

    The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.

  3. Studying the properties of a predicted tetragonal silicon by first principles

    NASA Astrophysics Data System (ADS)

    Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Huang, Xue-Qian; Lv, Zhen-Long; Duan, Man-Yi

    2018-03-01

    Silicon is a very important material in many technological fields. It also has a complicated phase diagram of scientific interest. Here we reported a new allotrope of silicon obtained from crystal structure prediction. We studied its electronic, vibrational, dielectric, elastic and hardness properties by first-principles calculations. The results indicate that it is an indirect narrow-band-gap semiconductor. It is dynamically stable with a doubly degenerate infrared-active mode at its Brillouin zone center. Born effective charges of the constituent element are very small, resulting in a negligible ionic dielectric contribution. Calculated elasticity-related quantities imply that it is mechanically stable but anisotropic. There exist slowly increasing stages in the stress-strain curves of this crystal, which make it difficult to estimate the hardness of the crystal by calculating its ideal strengths. Taking advantage of the hardness model proposed by Šimůnek, we obtained a value of 12.0 GPa as its hardness. This value is lower than that of the cubic diamond-structural Si by about 5.5%.

  4. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  5. Direct Observation of Electron Capture and Reemission by the Divacancy via Charge Transient Positron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Paez, D. J.; Doylend, J. K.; Knights, A. P.

    2013-03-01

    Electron capture during forward bias and reemission at zero bias by divacancies in the depletion region of a silicon diode structure at room temperature have been studied for the first time using monoenergetic positrons. The positron response increases essentially linearly with electron current, as a result of increased positron trapping by negatively charged divacancies. The measurements indicate that ≤1% of the divacancies become negatively charged in the steady state at a forward bias of 1 V. Changes in the mean positron response when applying a square wave bias to the sample (1 V forward bias and 0 V, duty cycle 1∶4, times at 0 V in the range 0.1-100μs), were consistent with a rapid conversion of doubly to singly charged divacancies (in ˜101ns), followed by slower defilling of the singly charged divacancies with a time constant of ˜101μs. These ac measurements allow determination of the relative populations of singly and doubly charged divacancies. The results provide confirmation of consistency between the positron’s response to the silicon divacancy and previously extracted capture and emission kinetics determined through charge transient measurements and assigned to the same defect. The possibility of combining these two, orthogonal techniques suggest a promising new and powerful approach to defect spectroscopy in which the structure and electrical properties of a defect may be determined in a single measurement.

  6. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2013-02-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

  7. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology.

    PubMed

    Llobet, J; Rius, G; Chuquitarqui, A; Borrisé, X; Koops, R; van Veghel, M; Perez-Murano, F

    2018-04-02

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  8. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    NASA Astrophysics Data System (ADS)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  9. Control of Heat and Charge Transport in Nanostructured Hybrid Materials

    DTIC Science & Technology

    2015-07-21

    measurements in our groups have yielded device ZT values of 0.4 on thermoelectric modules consisting of vertically oriented silicon nanowires . This is... nanowires with aspect ratio’s exceeding 10,000. Temperature differences as high as 800 °C are achievable for both types. The bulk nanostructured...thermal conductivity of the silicon nanostructures. Specifically, experiments on an array of 20 nm diameter vertically oriented silicon nanowires have

  10. Silicon Nanowire Growth at Chosen Positions and Orientations

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.

    2009-01-01

    It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays. Nanowires made from silicon and perhaps other semiconductors hold substantial promise for integration into highly miniaturized sensors, field-effect transistors, optoelectronic devices, and other electronic devices. Like bulk semiconductors, inorganic semiconducting nanowires are characterized by electronic energy bandgaps that render them suitable as means of modulating or controlling electronic signals through electrostatic gating, in response to incident light, or in response to molecules of interest close to their surfaces. There is now potential for fabricating arrays of uniform, individually electronically addressable nanowires tailored to specific applications. The method involves formation of metal catalytic particles at the desired positions on a substrate, followed by heating the substrate in the presence of silane gas. The figure illustrates an example in which a substrate includes a silicon dioxide surface layer that has been etched into an array of pillars and the catalytic (in this case, gold) particles have been placed on the right-facing sides of the pillars. The catalytic thermal decomposition of the silane to silicon and hydrogen causes silicon columns (the desired nanowires) to grow outward from the originally catalyzed spots on the substrate, carrying the catalytic particles at their tips. Thus, the position and orientation of each silicon nanowire is determined by the position of its originally catalyzed spot on the substrate surface, and the orientation of the nanowire is perpendicular to the substrate surface at the originally catalyzed spot.

  11. Depth profiling of high energy nitrogen ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals

    NASA Astrophysics Data System (ADS)

    Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.

    2012-03-01

    This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.

  12. Formation of Widmanstätten Austenite in Strip Cast Grain-Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Guo-Dong; Jonas, John J.

    2017-04-01

    The formation of Widmanstätten austenite was studied in strip cast grain-oriented silicon steel. The microstructure was investigated by optical microscopy and scanning electron microscopy. The orientations of the ferrite, Widmanstätten austenite, and martensite were determined using electron backscatter diffraction. The Widmanstätten austenite exhibits a lath-like shape and nucleates directly on the ferrite grain boundaries. This differs significantly from earlier work on duplex stainless steels. The orientation relationship between the Widmanstätten austenite and the parent ferrite is closer to Kurdjumov-Sachs than to Nishiyama-Wassermann. The ferrite boundaries migrate so as to accommodate the habit planes of the laths, leading to the presence of zigzag boundaries in the as-cast strip. Carbon partitioning into the Widmanstätten austenite and silicon partitioning into the parent ferrite were observed.

  13. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  14. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  15. Magnetic field response of doubly clamped magnetoelectric microelectromechanical AlN-FeCo resonators

    NASA Astrophysics Data System (ADS)

    Bennett, S. P.; Baldwin, J. W.; Staruch, M.; Matis, B. R.; LaComb, J.; van't Erve, O. M. J.; Bussmann, K.; Metzler, M.; Gottron, N.; Zappone, W.; LaComb, R.; Finkel, P.

    2017-12-01

    Magnetoelectric (ME) cantilever resonators have been successfully employed as magnetic sensors to measure low magnetic fields; however, high relative resolution enabling magnetometry in high magnetic fields is lacking. Here, we present on-chip silicon based ME microelectromechanical (MEMS) doubly clamped resonators which can be utilized as high sensitivity, low power magnetic sensors. The resonator is a fully suspended thin film ME heterostructure composed of an active magnetoelastic layer (Fe0.3Co0.7), which is strain coupled to a piezoelectric signal/excitation layer (AlN). By controlling uniaxial stress arising from the large magnetoelastic properties of magnetostrictive FeCo, a magnetically driven shift of the resonance frequency of the first fundamental flexural mode is observed. The theoretical intrinsic magnetic noise floor of such sensors reaches a minimum value of 35 p T /√{H z }. This approach shows a magnetic field sensitivity of ˜5 Hz/mT in a bias magnetic field of up to 120 mT. Such sensors have the potential in applications required for enhanced dynamic sensitivity in high-field magnetometry.

  16. Infrared nano-sensor based on doubly splited optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Yeping; Ai, Jie; Xiang, Yanjun; Ma, Liehua; Li, Tao; Ma, Jingfang

    2017-10-01

    Optomechanical crystal (OMC) cavities are simultaneous have photonic and phononic bandgaps. The strong interaction between high co-localized optical mode and mechanical mode are excellent candidates for precision measurements due to their simplicity, sensitivity and all optical operation. Here, we investigate OMC nanobeam cavities in silicon operating at the near-infrared wavelengths to achieve high optomechanical coupling rate and ultra-small motion mass. Numerical simulation results show that the optical Q-factor reached to 1.2×105 , which possesses an optical mode resonating at the wavelength of 1181 nm and the extremely localized mechanical mode vibrating at 9.2GHz. Moreover, a novel type of doubly splited nanocavity tailored to sensitively measure torques and mass. In the nanomechanical resonator central hollow area suspended low-mass elements (<100fg) are sensitive to environmental stimulate. By changing the split width, an ultra-small effective motion mass of only 4fg with a mechanical frequency as high as 11.9GHz can be achieved, while the coupling rate up to 1.58MHz. Potential applications on these devices include sensing mass, acceleration, displacement, and magnetic probing the quantum properties of nanoscale systems.

  17. New Process for the Goss Texture Formation and Magnetic Property in Silicon Steel Sheet by Hot Asymmetric Rolling and Annealing

    NASA Astrophysics Data System (ADS)

    Nam, Su Kwon; Kim, Gwang-Hee; Lee, Dong Nyung; Kim, Insoo

    2018-03-01

    The shear deformation texture of bcc metals is characterized by the Goss orientation, or {110}<001>, which is a highly useful orientation for grain-oriented silicon steels because it gives rise to high magnetic permeability along the <100> direction. To obtain the Goss texture, or {110}<001>, in silicon steel sheets, a silicon steel sheet was subjected to an 89 pct reduction in thickness via asymmetric rolling at 750 °C. This step resulted in the well-developed Goss texture. When multiple asymmetrically rolled steel sheets were subsequently annealed, one at 900 °C for 1 hour and the other at 1200 °C for a short period of 5 minutes in a box furnace with air atmosphere, a strong Goss texture was developed in the silicon steel sheets. The texture was measured via X-ray diffraction and electron backscatter diffraction. The magnetization curve of each specimen was measured by the vibrating sample magnetometer and the measured magnetization curve showed the typical soft magnetic characteristics.

  18. Fabrication and characterization of GaN nanowire doubly clamped resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maliakkal, Carina B., E-mail: carina@tifr.res.in; Mathew, John P.; Hatui, Nirupam

    2015-09-21

    Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are ofmore » the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.« less

  19. AK-cut crystal resonators

    NASA Technical Reports Server (NTRS)

    Kahan, A.; Euler, F. K.

    1983-01-01

    Calculations have predicted the existence of crystallographically doubly rotated quartz orientations with turnover temperatures which are considerably less sensitive to angular misorientation then comparable AT- or BT-cuts. These crystals are arbitrarily designated as the AK-cut. Experimental data is given for seven orientations, phi-angle variations between 30-46 deg and theta-angle variations between 21-28 deg measured on 3.3-3.4 MHz fundamental mode resonators vibrating in the thickness shear c-mode. The experimental turnover temperatures of these resonators are between 80 C and 150 C, in general agreement with calculated values. The normalized frequency change as a function of temperature has been fitted with a cubic equation.

  20. Free-standing epitaxial graphene.

    PubMed

    Shivaraman, Shriram; Barton, Robert A; Yu, Xun; Alden, Jonathan; Herman, Lihong; Chandrashekhar, Mvs; Park, Jiwoong; McEuen, Paul L; Parpia, Jeevak M; Craighead, Harold G; Spencer, Michael G

    2009-09-01

    We report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that the resonators are much stiffer than expected for beams under no tension. Raman spectroscopy suggests that the graphene is not chemically modified during the release of the devices, demonstrating that the technique is a robust means of fabricating large-area suspended graphene structures.

  1. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  2. Electron-impact ionization of silicon tetrachloride (SiCl4).

    PubMed

    Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K

    2005-08-01

    We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westwood-Bachman, J. N.; Diao, Z.; Sauer, V. T. K.

    We demonstrate the actuation and detection of even flexural vibrational modes of a doubly clamped nanomechanical resonator using an integrated photonics transduction scheme. The doubly clamped beam is formed by releasing a straight section of an optical racetrack resonator from the underlying silicon dioxide layer, and a step is fabricated in the substrate beneath the beam. The step causes uneven force and responsivity distribution along the device length, permitting excitation and detection of even modes of vibration. This is achieved while retaining transduction capability for odd modes. The devices are actuated via optical force applied with a pump laser. Themore » displacement sensitivities of the first through third modes, as obtained from the thermomechanical noise floor, are 228 fm Hz{sup −1/2}, 153 fm Hz{sup −1/2}, and 112 fm Hz{sup −1/2}, respectively. The excitation efficiency for these modes is compared and modeled based on integration of the uneven forces over the mode shapes. While the excitation efficiency for the first three modes is approximately the same when the step occurs at about 38% of the beam length, the ability to tune the modal efficiency of transduction by choosing the step position is discussed. The overall optical force on each mode is approximately 0.4 pN μm{sup −1} mW{sup −1}, for an applied optical power of 0.07 mW. We show a potential application that uses the resonant frequencies of the first two vibrational modes of a buckled beam to measure the stress in the silicon device layer, estimated to be 106 MPa. We anticipate that the observation of the second mode of vibration using our integrated photonics approach will be useful in future mass sensing experiments.« less

  4. Search for Exotic S=-2 Baryons in proton-antiproton Collisions at sqrt(s) = 1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abulencia, A.; Adelman, J.; Affolder, T.

    2006-12-01

    A search for a manifestly exotic S = -2 baryon state decaying to {Xi}{sup -}{pi}{sup -}, and its neutral partner decaying to {Xi}{sup -}{pi}{sup +}, has been performed using 220 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The {Xi}{sup -} trajectories were measured in a silicon tracker before their decay, resulting in a sample with low background and excellent position resolution. No evidence was found for S = -2 pentaquark candidates in the invariant mass range of 1600-2100 MeV/c{sup 2}. Upper limits on the product of pentaquark production crossmore » section times its branching fraction to {Xi}{sup -}{pi}{sup +,-}, relative to the cross section of the well established {Xi}(1530) resonance, are presented for neutral and doubly negative candidates with p{sub T} > 2 GeV/c and |y| < 1 as a function of pentaquark mass. At 1862 MeV/c{sup 2}, these upper limits for neutral and doubly negative final states were found to be 3.2% and 1.7% at the 90% confidence level, respectively.« less

  5. Positrons vs electrons channeling in silicon crystal: energy levels, wave functions and quantum chaos manifestations

    NASA Astrophysics Data System (ADS)

    Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Solovyev, I. I.; Isupov, A. Yu.

    2018-01-01

    The motion of fast electrons through the crystal during axial channeling could be regular and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties of energy spectra and morphology of wave functions of the individual stationary states. In this report, we investigate the axial channeling of high and low energy electrons and positrons near [100] direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic motion domain occupies only a small part of the phase space for the channeling electrons whereas the motion of the channeling positrons is substantially chaotic for the almost all initial conditions. The energy levels of transverse motion, as well as the wave functions of the stationary states, have been computed numerically. The group theory methods had been used for classification of the computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy levels. The channeling radiation spectrum for the low energy electrons has been also computed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo

    In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation resultsmore » of the software based on molecular dynamics (MD).« less

  7. Guided ultrasonic wave beam skew in silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  8. Nanostructure size determination in p-type porous silicon by the use of transmission electron diffraction image processing

    NASA Astrophysics Data System (ADS)

    Ramirez-Porras, A.

    2005-06-01

    The structure of p-type porous silicon (PS) has been investigated by the use of transmission electron diffraction (TED) microscopy and image processing. The results suggest the presence of well oriented crystalline phases and polycrystalline phases characterized by random orientation. These phases are believed to be formed by spheres with a mean diameter of 4.3 nm and a standard deviation of 1.3 nm.

  9. Tectonic framework of northeast Egypt and its bearing on hydrocarbon exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, M.; Moustafa, A.R.

    1995-08-01

    Detailed structural study of northern and central Sinai, the northern Eastern Desert, and the northern Gulf of Suez clarified the tectonic framework of northeast Egypt. This framework is related to the movements between the African Plate and the Eurasian and Arabian Plates. Late Cretaceous folding and thrusting in response to oblique convergence between the African and Eurasian Plates formed NE-ENE oriented, doubly plunging, en echelon folds of the northern Egypt fold belt. This fold belt is well exposed in northern Sinai and a few other places but is concealed under younger sediments in the other parts of northern Egypt. Youngermore » folding of local importance is related to dextral slip on the Themed Fault (Central Sinai) in post Middle Eocene-pre Miocene time. Early Miocene rifting of the Afro-Arabian Plate led to the opening of the Suez rift and deposition of significant syn-rift facies. Half grabens and tilted fault blocks dominate the rift. Slightly tilted fault blocks characterize the competent Middle Eocene limestones of the Eastern Desert south of the Cairo-Suez road but north of this road, Middle Eocene rocks are locally dragged on nearby E-W and NW-SE oriented faults forming fault-drag folds. Ductile Upper Eocene and Miocene rocks are also folded about gentle NW-SE oriented doubly plunging folds. The different stages of tectonic activity in northern Egypt contributed to the development of different types of structural traps as well as different source, reservoir, and cap rocks. The sedimentary history of the region indicates well developed marine sediments of Jurassic, Cretaceous, Eocene, and Miocene ages. Basin development in structurally low areas provided good sites for hydrocarbon generation and maturation.« less

  10. Adhesion and friction of iron and gold in contact with elemental semiconductors

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1977-01-01

    Adhesion and friction experiments were conducted with single crystals of iron and gold in contact with single crystals of germanium and silicon. Surfaces were examined in the sputter cleaned state and in the presence of oxygen and a lubricant. All experiments were conducted at room temperature with loads of 1 to 50 grams, and sliding friction was at a sliding velocity of 0.7 mm/min. Results indicate that the friction nature of metals in contact with semiconductors is sensitive to orientation, that strong adhesion of metals to both germanium and silicon occurs, and that friction is lower with silicon than with germanium for the same orientation. Surface effects are highly sensitive to environment. Silicon, for example, behaves in an entirely brittle manner in the clean state, but in the presence of a lubricant the surface deforms plastically.

  11. Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng

    2018-06-01

    The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.

  12. Multiple Aromaticity and Antiaromaticity in Silicon Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hua JIN.; Kuznetsov, A E.; Boldyrev, Alexander I.

    A series of silicon clusters containing four atoms but with different charge states (Si{sub 4}{sup 2+}, Si{sub 4}, Si{sub 4}{sup 2-}, and NaSi{sub 4}{sup -}) were studied by photoelectron spectroscopy and ab initio calculations. Structure evolution and chemical bonding in this series were interpreted in terms of aromaticity and antiaromaticity, which allowed the prediction of how structures of the four-atom silicon clusters change upon addition or removal of two electrons. It is shown that Si{sub 4}{sup 2+} is square-planar, analogous to the recently discovered aromatic Al{sub 4}{sup 2-} cluster. Upon addition of two electrons, neutral Si{sub 4} becomes {sigma}-antiaromatic andmore » exhibits a rhombus distortion. Adding two more electrons to Si{sub 4} leads to two energetically close structures of Si{sub 4}{sup 2-}: either a double antiaromatic parallelogram structure or an aromatic system with a butterfly distortion. Because of the electronic instability of doubly charged Si{sub 4}{sup 2-}, a stabilizing cation (Na{sup +}) was used to produce Si{sub 4}{sup 2-} in the gas phase in the form of Na{sup +}[Si{sub 4}{sup 2-}], which was characterized experimentally by photoelectron spectroscopy. Multiple antiaromaticity in the parallelogram Na{sup +}[Si{sub 4}{sup 2-}] species is highly unusual.« less

  13. Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocke, Fredrik; Pernpeintner, Matthias; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de

    We investigate the mechanical properties of a doubly clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetostrictive, or in more general multiferroicmore » materials.« less

  14. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-12-01

    Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".

  15. Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuleyev, I. I., E-mail: kuleev@imp.uran.ru; Bakharev, S. M.; Kuleyev, I. G.

    2015-04-15

    The effect of phonon focusing on the anisotropy and temperature dependences of the thermal conductivities of silicon nanofilms is analyzed using the three-mode Callaway model. The orientations of the film planes and the directions of the heat flux for maximal or minimal heat removal from silicon chip elements at low temperatures, as well as at room temperature, are determined. It is shown that in the case of diffuse reflection of phonons from the boundaries, the plane with the (100) orientation exhibits the lowest scattering ability (and the highest thermal conductivity), while the plane with the (111) orientation is characterized bymore » the highest scattering ability (and the lowest thermal conductivity). The thermal conductivity of wide films is determined to a considerable extent by the orientation of the film plane, while for nanowires with a square cross section, the thermal conductivity is mainly determined by the direction of the heat flux. The effect of elastic energy anisotropy on the dependences of the thermal conductivity on the geometrical parameters of films is analyzed. The temperatures of transition from boundary scattering to bulk relaxation mechanisms are determined.« less

  16. Material properties of CorCap passive cardiac support device.

    PubMed

    Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E

    2013-01-01

    Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Composite specimens of CorCap (Acorn Cardiovascular, Inc, St. Paul, MN) CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect the parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Silicone specimens exerted a linear behavior, with stiffness of 2.57 MPa. For the composites with 1 fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39 MPa versus 5.66 MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55 MPa versus 9.70 MPa). The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of the CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Neuromorphic VLSI vision system for real-time texture segregation.

    PubMed

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  18. Novel silicon-carbon fullerene-like nanostructures: an Ab initio study on the stability of Si54C6 and Si60C6 clusters.

    PubMed

    Srinivasan, Aravind; Ray, Asok K

    2006-01-01

    Silicon fullerene like nanostructures with six carbon atoms on the surface of Si60 cages by substitution, as well as inside the cage at various symmetry orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set are used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of the nanostructures are presented and discussed in detail. It was found that optimized silicon-carbon fullerene like nanostructures have increased stability compared to bare Si60 cage and the stability depends on the orientation of carbon atoms, as well as on the nature of bonding between silicon and carbon atoms and also on the carbon-carbon bonding.

  19. Measuring the reactivity of a silicon-terminated probe

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stirling, Julian; Jarvis, Samuel Paul; Rahe, Philipp; Moriarty, Philip

    2016-09-01

    It is generally accepted that the exposed surfaces of silicon crystals are highly reactive due to the dangling bonds which protrude into the vacuum. However, surface reconstruction not only modifies the reactivity of bulk silicon crystals, but also plays a key role in determining the properties of silicon nanocrystals. In this study we probe the reactivity of silicon clusters at the end of a scanning probe tip by examining their interaction with closed-shell fullerene molecules. Counter to intuitive expectations, many silicon clusters do not react strongly with the fullerene cage, and we find that only specific highly oriented clusters have sufficient reactivity to break open the existing carbon-carbon bonds.

  20. The Optical Emission and Absorption Properties of Silicon-Germanium Superlattice Structures Grown on Non-Conventional Silicon Substrate Orientation

    DTIC Science & Technology

    1994-08-01

    evidence needed to someday design and build a silicon- based infrared detector that can efficiently detect light at normal incidence. I chose to...detector a. spectral response b. dark current c. qutiantuam efficiency MAKE DEVICE Figure 1. A simple schematic diagram describing a basic materials... based . If we can extend the capabilities of silicon into the near infrared (iR), the nation would be well- positioned to exploit our advantage in this

  1. Nonlinear Control of the Doubly Fed Induction Motor with Copper Losses Minimization for Electrical Vehicle

    NASA Astrophysics Data System (ADS)

    Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.

    2008-06-01

    There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

  2. Quantum quench in an atomic one-dimensional Ising chain.

    PubMed

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  3. Electrically Conductive and Optically Active Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-01-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, and entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer, and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for the novel optoelectronic devices for energy harvesting, conversion and biosensing. PMID:19807130

  4. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (..theta..-2..theta.. scan, ..omega..-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smoothmore » GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.« less

  5. Graded Index Silicon Geranium on Lattice Matched Silicon Geranium Semiconductor Alloy

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor); Stoakley, Diane M. (Inventor)

    2009-01-01

    A lattice matched silicon germanium (SiGe) semiconductive alloy is formed when a {111} crystal plane of a cubic diamond structure SiGe is grown on the {0001} C-plane of a single crystalline Al2O3 substrate such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium. A layer of Si(1-x), ,Ge(x) is formed on the cubic diamond structure SiGe. The value of X (i) defines an atomic percent of germanium satisfying 0.2277

  6. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less

  7. High aspect ratio sub-15 nm silicon trenches from block copolymer templates.

    PubMed

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Chourou, S T; Hong, Sung Woo; Olynick, Deirdre L; Russell, Thomas P

    2012-11-08

    High-aspect-ratio sub-15-nm silicon trenches are fabricated directly from plasma etching of a block copolymer mask. A novel method that combines a block copolymer reconstruction process and reactive ion etching is used to make the polymer mask. Silicon trenches are characterized by various methods and used as a master for subsequent imprinting of different materials. Silicon nanoholes are generated from a block copolymer with cylindrical microdomains oriented normal to the surface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  9. Chiral Lagrangian with Heavy Quark-Diquark Symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Hu; Thomas Mehen

    2005-11-29

    We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.

  10. Experimental study of three-dimensional fin-channel charge trapping flash memories with titanium nitride and polycrystalline silicon gates

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku

    2014-01-01

    Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.

  11. Online SVT Commissioning and Monitoring using a Service-Oriented Architecture Framework

    NASA Astrophysics Data System (ADS)

    Ruger, Justin; Gotra, Yuri; Weygand, Dennis; Ziegler, Veronique; Heddle, David; Gore, David

    2014-03-01

    Silicon Vertex Tracker detectors are devices used in high energy experiments for precision measurement of charged tracks close to the collision point. Early detection of faulty hardware is essential and therefore code development of monitoring and commissioning software is essential. The computing framework for the CLAS12 experiment at Jefferson Lab is a service-oriented architecture that allows efficient data-flow from one service to another through loose coupling. I will present the strategy and development of services for the CLAS12 Silicon Tracker data monitoring and commissioning within this framework, as well as preliminary results using test data.

  12. A Microstructural Analysis of Orientation Variation in Epitaxial AlN on Si, Its Probable Origin, and Effect on Subsequent GaN Growth

    NASA Technical Reports Server (NTRS)

    Beye, R.; George, T.; Yang, J. W.; Khan, M. A.

    1996-01-01

    A structural examination of aluminum nitride growth on [111] silicon was carried out using transmission electron microscopy. Electron diffraction indicates that the basal planes of the wurtzitic overlayer mimic the orientation of the close-packed planes of the substrate. However, considerable, random rotation in the basal plane and random out-of-plane tilts were evident. This article examines these issues with a structural examination of AlN and GaN/AlN on silicon and compares the findings to those reported in the literature.

  13. Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy

    2004-02-01

    We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.

  14. High ferroelectric polarization in c-oriented BaTiO 3 epitaxial thin films on SrTiO 3/Si(001)

    DOE PAGES

    Scigaj, M.; Chao, C. H.; Gázquez, J.; ...

    2016-09-21

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  15. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Kuo, Chih-Yun

    2016-04-15

    Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluatedmore » from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO{sub 2} with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.« less

  16. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less

  17. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.

    2015-09-01

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.

  18. Doubly anharmonic oscillator under the topological effects of a screw dislocation

    NASA Astrophysics Data System (ADS)

    Bakke, Knut

    2018-05-01

    We consider an elastic medium with the distortion of a circular curve into a vertical spiral, and investigate the influence of this topological defect on the doubly anharmonic oscillator. We show that the Schrödinger equation for the doubly anharmonic oscillator in the presence of this linear topological defect can be solved analytically. We also obtain the exact expressions for the permitted energies of the ground state of the doubly anharmonic oscillator, and show that the topology of the screw dislocation modifies the spectrum of energy of the doubly anharmonic oscillator.

  19. Method for making circular tubular channels with two silicon wafers

    DOEpatents

    Yu, Conrad M.; Hui, Wing C.

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  20. Cold crucible Czochralski for solar cells

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1982-01-01

    The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.

  1. Cold crucible Czochralski for solar cells

    NASA Astrophysics Data System (ADS)

    Trumble, T. M.

    The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.

  2. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  3. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  4. Drilling Holes in Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Daniels, J. G.; Ledbetter, Frank E., III; Penn, B. G.; White, W. L.

    1986-01-01

    Slurry of silicon carbide powder in water fed onto bit while drilling. Slurry contains about 60 percent silicon carbide by weight. Slurry recirculated by low-power pump. With slurry, dull tools cut as fast as, or faster than, sharp ones. Holes drilled rapidly and efficiently regardless of ply orientation; whether unidirectional, quasi-isotropic symmetrical, or cross-ply.

  5. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  6. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy.

    PubMed

    Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-01-01

    This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.

  7. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates

    NASA Astrophysics Data System (ADS)

    Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Soshnikov, I. P.

    2018-05-01

    The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young's modulus, Poisson's ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson's ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.

  8. Large-Area Direct Hetero-Epitaxial Growth of 1550-nm InGaAsP Multi-Quantum-Well Structures on Patterned Exact-Oriented (001) Silicon Substrates by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico; Cabinian, Brian C.; Zhao, Hongwei; Oakley, Douglas C.; Bowers, John E.; Klamkin, Jonathan

    2018-02-01

    We employ a simple two-step growth technique to grow large-area 1550-nm laser structures by direct hetero-epitaxy of III-V compounds on patterned exact-oriented (001) silicon (Si) substrates by metal organic chemical vapor deposition. Densely-packed, highly uniform, flat and millimeter-long indium phosphide (InP) nanowires were grown from Si v-grooves separated by silicon dioxide (SiO2) stripes with various widths and pitches. Following removal of the SiO2 patterns, the InP nanowires were coalesced and, subsequently, 1550-nm laser structures were grown in a single overgrowth without performing any polishing for planarization. X-ray diffraction, photoluminescence, atomic force microscopy and transmission electron microscopy analyses were used to characterize the epitaxial material. PIN diodes were fabricated and diode-rectifying behavior was observed.

  9. Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nürnberger, P.; Reinhardt, H.; Kim, H-C.

    2015-10-07

    The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grainmore » size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.« less

  10. Fabrication and characterization of silicon quantum dots in Si-rich silicon carbide films.

    PubMed

    Chang, Geng-Rong; Ma, Fei; Ma, Dayan; Xu, Kewei

    2011-12-01

    Amorphous Si-rich silicon carbide films were prepared by magnetron co-sputtering and subsequently annealed at 900-1100 degrees C. After annealing at 1100 degrees C, this configuration of silicon quantum dots embedded in amorphous silicon carbide formed. X-ray photoelectron spectroscopy was used to study the chemical modulation of the films. The formation and orientation of silicon quantum dots were characterized by glancing angle X-ray diffraction, which shows that the ratio of silicon and carbon significantly influences the species of quantum dots. High-resolution transmission electron microscopy investigations directly demonstrated that the formation of silicon quantum dots is heavily dependent on the annealing temperatures and the ratio of silicon and carbide. Only the temperature of about 1100 degrees C is enough for the formation of high-density and small-size silicon quantum dots due to phase separation and thermal crystallization. Deconvolution of the first order Raman spectra shows the existence of a lower frequency peak in the range 500-505 cm(-1) corresponding to silicon quantum dots with different atom ratio of silicon and carbon.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scigaj, M.; Chao, C. H.; Gázquez, J.

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  12. Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate

    NASA Astrophysics Data System (ADS)

    Hongo, Motoharu; Matsuo, Shigeki

    2016-06-01

    Laser-induced periodic surface structures (LIPSS) were fabricated on a prescratched silicon surface by irradiation with subnanosecond laser pulses. Low-spatial-frequency LIPSS (LSFL) were observed in the central and peripheral regions; both had a period Λ close to the laser wavelength λ, and the wavevector orientation was parallel to the electric field of the laser beam. The LSFL in the peripheral region seemed to be growing, that is, expanding in length with increasing number of pulses, into the outer regions. In addition, high-spatial-frequency LIPSS, Λ ≲ λ /2, were found along the scratches, and their wavevector orientation was parallel to the scratches.

  13. Three dimensional analysis of nanoporous silicon particles for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roiban, Lucian, E-mail: lucian.roiban@insa-lyon.fr

    2017-02-15

    Bulk nanoporous silicon prepared by top-down method form Li-ion batteries was investigated combining different conventional technique such as nitrogen physisorption and high resolution electron microscopy with electron tomography. It was found that the Si nanorods are forming porous aggregates with a half of the volume of the particle occupied by pores. The nanorods are preferentially oriented along the main axis of the aggregate. The porosity and the lack of compaction between the aggregates provide space for the Si expansion during the lithiation process. It was found that the Si nanorods mainly expose the (111) family plane as an external faces.more » The size distributions of the porous and solid phases in a granule were found to be similar. The pores represent 50% of the total volume of an aggregate. The shape orientation of the particles was quantified and it was found to exhibit a narrow distribution. - Highlights: •Bulk nanoporous silicon for Li-ion batteries is studied by HRTEM and electron tomography. •The crystalline facets of Si nanorods are formed by (111) plains. •The lack of compactness between Si nanorods provides 50% of porous volume. •The Si nanorods are oriented along a preferential axis.« less

  14. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  15. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  16. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  17. Doubly charged Higgsinos at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Frank, Mariana; Turan, Ismail

    2009-05-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly charged Higgsinos. In this work we study the signals of doubly charged Higgsinos at the Tevatron in both pair- and single-production modes, and show that it is possible, especially from the events containing same-sign same-flavor isolated leptons, to disentangle the effects of doubly charged Higgsinos in the Tevatron data.

  18. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  19. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  20. Status of Reconstruction of Fragmented Diamond-on-Silicon Collector From Genesis Spacecraft Solar Wind Concentrator

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.

    2009-01-01

    In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.

  1. A deep etching mechanism for trench-bridging silicon nanowires

    NASA Astrophysics Data System (ADS)

    Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.

    2016-03-01

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.

  2. A deep etching mechanism for trench-bridging silicon nanowires.

    PubMed

    Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem

    2016-03-04

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.

  3. Discovery potentials of doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Yu, Fu-Sheng; Jiang, Hua-Yu; Li, Run-Hui; Lü, Cai-Dian; Wang, Wei; Zhao, Zhen-Xing

    2018-05-01

    The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, {{{\\Xi }}}{{cc}}++ and {{{\\Xi }}}{{cc}}+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, {{{\\Xi }}}{{cc}}++\\to {{{Λ }}}{{c}}+{{{K}}}-{{{π }}}+{{{π }}}+ and {{{\\Xi }}}{{c}}+{{{π }}}+ are the most favorable decay modes for experiments to search for doubly heavy baryons. Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)

  4. Properties of epitaxial, (001)- and (110)-oriented (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 films on silicon described by polarization rotation

    PubMed Central

    Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus

    2016-01-01

    Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857

  5. Method for making circular tubular channels with two silicon wafers

    DOEpatents

    Yu, C.M.; Hui, W.C.

    1996-11-19

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si{sub 3}N{sub 4}) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO{sub 3}/CH{sub 3}COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary. 11 figs.

  6. Alkylation of Silicon(111) surfaces

    NASA Astrophysics Data System (ADS)

    Rivillon, S.; Chabal, Y. J.

    2006-03-01

    Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.

  7. Ab initio characterization of coupling strength for all types of dangling-bond pairs on the hydrogen-terminated Si(100)-2 × 1 surface

    NASA Astrophysics Data System (ADS)

    Shaterzadeh-Yazdi, Zahra; Sanders, Barry C.; DiLabio, Gino A.

    2018-04-01

    Recent work has suggested that coupled silicon dangling bonds sharing an excess electron may serve as building blocks for quantum-cellular-automata cells and quantum computing schemes when constructed on hydrogen-terminated silicon surfaces. In this work, we employ ab initio density-functional theory to examine the details associated with the coupling between two dangling bonds sharing one excess electron and arranged in various configurations on models of phosphorous-doped hydrogen-terminated silicon (100) surfaces. Our results show that the coupling strength depends strongly on the relative orientation of the dangling bonds on the surface and on the separation between them. The orientation of dangling bonds is determined by the anisotropy of the silicon (100) surface, so this feature of the surface is a significant contributing factor to variations in the strength of coupling between dangling bonds. The results demonstrate that simple models for approximating tunneling, such as the Wentzel-Kramer-Brillouin method, which do not incorporate the details of surface structure, are incapable of providing reasonable estimates of tunneling rates between dangling bonds. The results provide guidance to efforts related to the development of dangling-bond based computing elements.

  8. High frequency guided wave propagation in monocrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  9. Efficient solar cells by space processing

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.

    1979-01-01

    Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.

  10. Atomic Structure of Interface States in Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    George, B. M.; Behrends, J.; Schnegg, A.; Schulze, T. F.; Fehr, M.; Korte, L.; Rech, B.; Lips, K.; Rohrmüller, M.; Rauls, E.; Schmidt, W. G.; Gerstmann, U.

    2013-03-01

    Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.

  11. Morphology of the porous silicon obtained by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    Bertel H, S. D.; Dussán C, A.; Diaz P, J. M.

    2018-04-01

    In this report, the dependence of porous silicon with the synthesis parameters and their correlation with the optical and morphological properties is studied. The P-type silicon-crystalline samples and orientation <1 0 0> were prepared by electrochemical anodization and were characterized using SEM in order to know the evolution of the pore morphology. It was observed that the porosity and thickness of the samples increased with the increase of the concentration in the solution and a high pore density (70%) with a pore size between 40nm and 1.5μm.

  12. Orthogonally superimposed laser-induced periodic surface structures (LIPSS) upon nanosecond laser pulse irradiation of SiO2/Si layered systems

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.

    2017-12-01

    In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.

  13. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  14. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  15. Fine tuning of the dichroic behavior of Bragg reflectors based on anisotropically nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.

    2003-05-01

    Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.

  16. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.

    PubMed

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-09

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  17. Data-Adaptive Bias-Reduced Doubly Robust Estimation.

    PubMed

    Vermeulen, Karel; Vansteelandt, Stijn

    2016-05-01

    Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.

  18. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  19. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems.

    PubMed

    Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly

    2015-02-01

    MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.

  20. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less

  1. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  2. Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks

    NASA Astrophysics Data System (ADS)

    Mehen, Thomas

    2017-11-01

    We give heavy quark-diquark symmetry predictions for doubly heavy baryons and tetraquarks in light of the recent discovery of the Ξcc ++ by LHCb. For five excited doubly charm baryons that are predicted to lie below the ΛcD threshold, we give predictions for their electromagnetic and strong decays using a previously developed chiral Lagrangian with heavy quark-diquark symmetry. Based on the mass of the Ξcc ++, the existence of a doubly heavy bottom I =0 tetraquark that is stable to strong and electromagnetic decays has been predicted. If the mass of this state is below 10405 MeV, as predicted in some models, we argue using heavy quark-diquark symmetry that the JP=1+ I =1 doubly bottom tetraquark state will lie just below the open bottom threshold and likely be a narrow state as well. In this scenario, we compute strong decay width for this state using a new Lagrangian for doubly heavy tetraquarks which is related to the singly heavy baryon Lagrangian by heavy quark-diquark symmetry.

  3. A Langevin dynamics simulation study of the tribology of polymer loop brushes.

    PubMed

    Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael

    2007-08-28

    The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.

  4. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  5. Thermal oxidation and nitridation of Si nanowalls prepared by metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Behera, Anil K.; Viswanath, R. N.; Lakshmanan, C.; Polaki, S. R.; Sarguna, R. M.; Mathews, Tom

    2018-04-01

    Silicon nanowalls with controlled orientation have been prepared using metal assisted chemical etching process. Thermal oxidation and nitridation processes have been carried out on the prepared silicon nanowalls under a control flow of oxygen/nitrogen gases independently at 1050°C for 900s. The morphology and structural properties of the as-prepared, oxidized and nitridated silicon nanowalls have been studied using the scanning electron microscopy and the Grazing incident X-ray diffraction techniques. The results obtained from the analysis of X-ray diffraction patterns and the microscopy images are discussed.

  6. Scattering rings in optically anisotropic porous silicon

    NASA Astrophysics Data System (ADS)

    Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.

    2002-12-01

    We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.

  7. Trench formation in <110> silicon for millimeter-wave switching device

    NASA Astrophysics Data System (ADS)

    Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.

    1999-11-01

    Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.

  8. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    NASA Technical Reports Server (NTRS)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  9. Study of abrasive wear rate of silicon using n-alcohols

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    The work carried out at the University of Illinois at Chicago for the Flat-Plate Solar Array Project under contract No. 956053 is summarized. The abrasion wear rate of silicon in a number of fluid environments and the parameters that influence the surface mechanical properties of silicon were determined. Three tests were carried out in this study: circular and linear multiple-scratch test, microhardness test and a three-point bend test. The pertinent parameters such as effect of surface orientation, dopant and fluid properties were sorted. A brief review and critique of previous work is presented.

  10. The Influence of the Surface Neutralization of Active Impurities on the Field-Electron Emission Properties of p-Type Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.

    2017-12-01

    Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.

  11. Effect of Anisotropy on Shape Measurement Accuracy of Silicon Wafer Using Three-Point-Support Inverting Method

    NASA Astrophysics Data System (ADS)

    Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori

    This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.

  12. Properties of solar generators with reflectors and radiators

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  13. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  14. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x 10(exp 4) cm(sup -1) for photon energies above 0.2 eV. CrSi2 is of potential utility for detection at photon energies above approximately 0.3 eV.

  15. An innovative large scale integration of silicon nanowire-based field effect transistors

    NASA Astrophysics Data System (ADS)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  16. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  17. Silicon solar cell efficiency improvement: Status and outlook

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1985-01-01

    Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.

  18. Improved Doubly Robust Estimation when Data are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout

    PubMed Central

    Tsiatis, Anastasios A.; Davidian, Marie; Cao, Weihua

    2010-01-01

    Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. PMID:20731640

  19. Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films

    NASA Astrophysics Data System (ADS)

    Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori

    2007-05-01

    Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.

  20. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  1. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity.

    PubMed

    Chan, Jasper; Eichenfield, Matt; Camacho, Ryan; Painter, Oskar

    2009-03-02

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ( (lambdac)(3)). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of lambda?= 1.5 microm indicate that such structures can simultaneously realize an optical Q-factor of 7x10(6), motional mass m(u) approximately 40 picograms, mechanical mode frequency Omega(M)/2pi approximately 170 MHz, and an optomechanical coupling factor (g(OM) identical with domega(c)/dx = omega(c)/L(OM)) with effective length L(OM) approximately lambda= 1.5 microm.

  2. Shell Evolution towards 78Ni: Low-Lying States in 77Cu

    NASA Astrophysics Data System (ADS)

    Sahin, E.; Bello Garrote, F. L.; Tsunoda, Y.; Otsuka, T.; de Angelis, G.; Görgen, A.; Niikura, M.; Nishimura, S.; Xu, Z. Y.; Baba, H.; Browne, F.; Delattre, M.-C.; Doornenbal, P.; Franchoo, S.; Gey, G.; Hadyńska-KlÈ©k, K.; Isobe, T.; John, P. R.; Jung, H. S.; Kojouharov, I.; Kubo, T.; Kurz, N.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Sakurai, H.; Schaffner, H.; Söderström, P.-A.; Sohler, D.; Stefan, I. G.; Sumikama, T.; Suzuki, D.; Taniuchi, R.; Taprogge, J.; Vajta, Z.; Watanabe, H.; Werner, V.; Wu, J.; Yagi, A.; Yalcinkaya, M.; Yoshinaga, K.

    2017-06-01

    The level structure of the neutron-rich 77Cu nucleus is investigated through β -delayed γ -ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of 77Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in 77Cu are identified for the first time by correlating γ rays with the β decay of 77Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near 78Ni and suggests a single-particle nature for both the 5 /21- and 3 /21- states in 77Cu, leading to doubly magic 78Ni.

  3. Spectroscopy of singly, doubly, and triply bottom baryons

    NASA Astrophysics Data System (ADS)

    Wei, Ke-Wei; Chen, Bing; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng

    2017-06-01

    Recently, some singly bottom baryons have been established experimentally, but none of the doubly or triply bottom baryons have been observed. Under the Regge phenomenology, the mass of an unobserved ground-state doubly or triply bottom baryon is expressed as a function of masses of the well-established light baryons and singly bottom baryons. Then, the values of Regge slopes and Regge intercepts for baryons containing one, two, or three bottom quarks are calculated. After that, the masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. Our predictions may be useful for the discovery of these baryons and their JP assignments.

  4. Comparison of doubly labeled water with respirometry at low- and high-activity levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerterp, K.R.; Brouns, F.; Saris, W.H.

    1988-07-01

    In previous studies the doubly labeled water method for measuring energy expenditure in free-living humans has been validated against respirometry under sedentary conditions. In the present investigation, energy expenditure is measured simultaneously with doubly labeled water and respirometry at low- and high-activity levels. Over 6 days, five subjects were measured doing mainly sedentary activities like desk work; their average daily metabolic rate was 1.40 +/- 0.09 (SD) times sleeping metabolic rate. Four subjects were measured twice over 3.5 days, including 2 days with heavy bicycle ergometer work, resulting in an average daily metabolic rate of 2.61 +/- 0.25 (SD) timesmore » sleeping metabolic rate. At the low-activity level, energy expenditures from the doubly labeled water method were on the average 1.4 +/- 3.9% (SD) larger than those from respirometry. At the high-activity level, the doubly labeled water method yielded values that were 1.0 +/- 7.0% (SD) lower than those from respirometry. Results demonstrate the utility of the doubly labeled water method for the determination of energy expenditure in the range of activity levels in daily life.« less

  5. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  6. Optimization of chemical displacement deposition of copper on porous silicon.

    PubMed

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  7. Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method

    NASA Astrophysics Data System (ADS)

    Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.

    2018-06-01

    During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.

  8. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    DOEpatents

    Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  9. Pinhole-free growth of epitaxial CoSi.sub.2 film on Si(111)

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor); Grunthaner, Paula J. (Inventor)

    1991-01-01

    Pinhole-free epitaxial CoSi.sub.2 films (14') are fabricated on (111)-oriented silicon substrates (10) with a modified solid phase epitaxy technique which utilizes (1) room temperature stoichiometric (1:2) codeposition of Co and Si followed by (2) room temperature deposition of an amorphous silicon capping layer (16), and (3) in situ annealing at a temperature ranging from about 500.degree. to 750.degree. C.

  10. Machining of Silicon-Ribbon-Forming Dies

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  11. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.; Ravi, K. V.; Rao, C. V. H.; Surek, T.; Bliss, D. F.; Garone, L. C.; Hogencamp, R. W.

    1976-01-01

    Progress in a program to produce high speed, thin, wide silicon sheets for fabricating 10% efficient solar cells is reported. An EFG ribbon growth system was used to perform growth rate and ribbon thickness experiments. A new, wide ribbon growth system was developed. A theoretical study of stresses in ribbons was also conducted. The EFG ribbons were observed to exhibit a characteristic defect structure which is orientation dependent in the early stages of growth.

  12. Investigation of laser-fired point contacts on KOH structured laser-crystallized silicon by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice

    2016-06-01

    A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.

  13. Establishing low-lying doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2017-08-01

    We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.

  14. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    NASA Astrophysics Data System (ADS)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated. Field reconstruction method provides high precision results at a considerably faster pace as compared to finite element method. Our results indicate that by just-in-time detection of the system unbalance and employment of the optimal rotor currents damaging torque pulsation can be effectively eliminated. The side effects of the proposed method in changing the core, copper, and silicon losses are minor and well justified when reliability of the wind generation units are considered.

  15. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  16. Reliability analysis of structural ceramics subjected to biaxial flexure

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1991-01-01

    The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.

  17. Studies on Amorphizing Silicon Using Silicon Ion Implantation.

    DTIC Science & Technology

    1985-04-01

    for removal from their lattice site, relax or recombine with their original or other vacant lattice site. This effect is also temperature sensitive...The results should be comparable since the samples were oriented to appear like a random lattice target to the incoming ion beam. At the Avionics...times greater than 10- seconds after the impinging ion has come to Il rest. Thus any displaced atoms which relax back onto a lattice site or are able

  18. Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven Brushless Doubly-Fed Reluctance Generator.

    PubMed

    Mousa, Mohamed G; Allam, S M; Rashad, Essam M

    2018-01-01

    This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Form-stable silicone gel breast implants.

    PubMed

    Jewell, Mark

    2009-01-01

    This article addresses the question of what is the optimal shape for a breast implant. It is oriented toward processes, system engineering, and operational excellence versus being a treatise on the author's personal technique.

  20. Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO:Al layers

    NASA Astrophysics Data System (ADS)

    Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.

    2009-10-01

    Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.

  1. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  2. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  3. Inter-Wire Antiferromagnetic Exchange Interaction in Ni/Si-Ferromagnetic/Semiconductor Nanocomposites

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Hofmayer, M.; Krenn, H.; Pölt, P.; Reichmann, A.; Hofer, F.

    2007-04-01

    A matrix of mesoporous silicon offering an array of quasi 1-dimensional oriented pores of high aspect ratio perpendicular to the sample surface has been produced. This porous silicon (PS) skeleton is filled with Ni in a further process-step to achieve ferromagnetic metallic nanostructures within the channels. This produced silicon based nanocomposite is compatible with state-of-the-art silicon technology. Beside the vertical magnetic surface anisotropy of this Ni-filled composite the nearly monodisperse distribution of pore diameters and its regular arrangement in a quasi 2-dimensional lattice provides novel magnetic phenomena like a depression of the magnetization curve at magnetic fields beyond 2T, which can be interpreted as a field induced antiferromagnetic exchange interaction between Ni-wires which is strongly influenced by magnetostrictive stresses at the Ni/Si-interface. 2007 American Institute of Physics

  4. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Hien Thu; Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn; Inorganic Materials Science

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectricmore » properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between grains) of the former films.« less

  5. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  6. Silicon nanowire arrays as thermoelectric material for a power microgenerator

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Fernández-Regúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.

    2011-10-01

    A novel design of a silicon-based thermoelectric power microgenerator is presented in this work. Arrays of silicon nanowires, working as thermoelectric material, have been integrated in planar uni-leg thermocouple microstructures to convert waste heat into electrical energy. Homogeneous, uniformly dense, well-oriented and size-controlled arrays of silicon nanowires have been grown by chemical vapor deposition using the vapor-liquid-solid mechanism. Compatibility issues between the nanowire growth method and microfabrication techniques, such as electrical contact patterning, are discussed. Electrical measurements of the nanowire array electrical conductivity and the Seebeck voltage induced by a controlled thermal gradient or under harvesting operation mode have been carried out to demonstrate the feasibility of the microdevice. A resistance of 240 Ω at room temperature was measured for an array of silicon nanowires 10 µm -long, generating a Seebeck voltage of 80 mV under an imposed thermal gradient of 450 °C, whereas only 4.5 mV were generated under a harvesting operation mode. From the results presented, a Seebeck coefficient of about 150-190 µV K-1 was estimated, which corresponds to typical values for bulk silicon.

  7. Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.

    2013-01-01

    NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.

  8. Inelastic response of silicon to shock compression.

    PubMed

    Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.

  9. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  10. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  11. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  12. Confined in-fiber solidification and structural control of silicon and silicon-germanium microparticles.

    PubMed

    Gumennik, Alexander; Levy, Etgar C; Grena, Benjamin; Hou, Chong; Rein, Michael; Abouraddy, Ayman F; Joannopoulos, John D; Fink, Yoel

    2017-07-11

    Crystallization of microdroplets of molten alloys could, in principle, present a number of possible morphological outcomes, depending on the symmetry of the propagating solidification front and its velocity, such as axial or spherically symmetric species segregation. However, because of thermal or constitutional supercooling, resulting droplets often only display dendritic morphologies. Here we report on the crystallization of alloyed droplets of controlled micrometer dimensions comprising silicon and germanium, leading to a number of surprising outcomes. We first produce an array of silicon-germanium particles embedded in silica, through capillary breakup of an alloy-core silica-cladding fiber. Heating and subsequent controlled cooling of individual particles with a two-wavelength laser setup allows us to realize two different morphologies, the first being a silicon-germanium compositionally segregated Janus particle oriented with respect to the illumination axis and the second being a sphere made of dendrites of germanium in silicon. Gigapascal-level compressive stresses are measured within pure silicon solidified in silica as a direct consequence of volume-constrained solidification of a material undergoing anomalous expansion. The ability to generate microspheres with controlled morphology and unusual stresses could pave the way toward advanced integrated in-fiber electronic or optoelectronic devices.

  13. Spatial distribution of structural defects in Cz-seeded directionally solidified silicon ingots: An etch pit study

    NASA Astrophysics Data System (ADS)

    Lantreibecq, A.; Legros, M.; Plassat, N.; Monchoux, J. P.; Pihan, E.

    2018-02-01

    The PV properties of wafers processed from Cz-seeded directionally solidified silicon ingots suffer from variable structural defects. In this study, we draw an overview on the types of structural defects encountered in the specific case of full 〈1 0 0〉 oriented growth. We found micro twins, background dislocations, and subgrains boundaries. We discuss the possible links between thermomechanical stresses and growth processes with spatial evolution of both background dislocation densities and subgrain boundaries length.

  14. Covariate selection with group lasso and doubly robust estimation of causal effects

    PubMed Central

    Koch, Brandon; Vock, David M.; Wolfson, Julian

    2017-01-01

    Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276

  15. Covariate selection with group lasso and doubly robust estimation of causal effects.

    PubMed

    Koch, Brandon; Vock, David M; Wolfson, Julian

    2018-03-01

    The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.

  16. Doubly robust nonparametric inference on the average treatment effect.

    PubMed

    Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B

    2017-12-01

    Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.

  17. Signatures of doubly-charged Higgsinos at colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, D. A.; Deutsches Elektronen-Synchrotron, DESY, D-22603 Hamburg; Frank, M.

    2008-11-23

    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying its production and decay characteristics.

  18. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact whenmore » compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.« less

  19. Strain and in-plane orientation effects on the ferroelectricity of (111)-oriented tetragonal Pb(Zr0.35Ti0.65)O3 thin films prepared by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kuwabara, Hiroki; Menou, Nicolas; Funakubo, Hiroshi

    2007-05-01

    The growth and characterization of epitaxial (111)-oriented Pb(Zr0.35Ti0.65)O3 films deposited by metal organic chemical vapor deposition on (100)-oriented silicon substrates [(111)SrRuO3‖(111)Pt ‖(100)yttria-stabilizedzirconia‖(100)Si] are reported. The orientation, microstructure, and electric properties of these films are compared to those of fiber-textured highly (111)-oriented lead zirconate titanate (PZT) films deposited on (111)SrRuO3/(111)Pt/TiOx/SiO2/(100)Si substrates and epitaxial (111)-oriented PZT films deposited on (111)SrRuO3‖(111)SrTiO3 substrates. The ferroelectric properties of these films are not drastically influenced by the in-plane orientation of the film and by the strain state imposed by the underlying substrate. These results support the use of fiber-textured highly (111)-oriented films in highly stable ferroelectric capacitors.

  20. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  1. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  2. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2005-01-01

    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  3. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  4. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    NASA Astrophysics Data System (ADS)

    Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi

    2017-03-01

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.

  5. The electrorheological performance of polyaniline-based hybrid particles suspensions in silicone oil: influence of the dispersing medium viscosity

    NASA Astrophysics Data System (ADS)

    Roman, C.; García-Morales, M.; Goswami, S.; Marques, A. C.; Cidade, M. T.

    2018-07-01

    The potential of electrorheological (ER) suspensions based on polarizable particles in simple liquids relies on the particles arrangements which turn their quasi Newtonian behavior into gel-like. However, minor attention has been paid to the effect provoked by the liquid viscosity on the ease of orientation and assembly of the particles. With this aim, a study on the ER behavior, at 25 °C, of 1 wt% suspensions of polyaniline (PANI)-based hybrid particles (—graphene or —tungstene oxide) in silicone oil with varying viscosities (20, 50 and 100 cSt) was carried out. The electric field effect was higher for the PANI-graphene particles suspension in the less viscous silicone oil. However, two drawbacks were observed: (a) higher leakage current flows; and (b) reduced reversibility upon the electric field was turned off. The use of silicone oil with higher viscosity solved these issues.

  6. Molecular dynamics study of ionic liquid confined in silicon nanopore

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Sha, M. L.; Cai, K. Y.

    2017-05-01

    Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.

  7. Silicon Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, Thaddeus D.; Carroll, Malcolm S.

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of amore » single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.« less

  8. Etude de la texture des rubans EPR de silicium polycristallin photovoltaïque

    NASA Astrophysics Data System (ADS)

    Chibani, A.; Gauthier, R.; Pinard, P.; Andonov, P.

    1991-09-01

    EPR polysilicon ribbons are obtained from a 5N-6N purity grade silicon powder melting followed by a recrystallization step. Being assigned to the photocell manufacture, we study the texture by X-ray diffraction method to reveal the majority of the crystal orientations and prove the eventual existence of specific orientations adapted to the best photovoltaic conversion efficiencies such as (100), (110) or (111). Moreover, we tested the possibility to induce the (111) orientation with a monocrystalline seed having this orientation. It appears that the crystal growth is essentially anisotropic and that only the orientation of the grains with their (331) planes parallel to the ribbon surface may be considered as dominant after the recrystallization step; finally, the (111) starting seed has an effect only at the recrystallization onset.

  9. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  10. Electron Transfer Dissociation with Supplemental Activation to Differentiate Aspartic and Isoaspartic Residues in Doubly Charged Peptide Cations

    PubMed Central

    Chan, Wai Yi Kelly; Chan, T. W. Dominic; O’Connor, Peter B.

    2011-01-01

    Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using c + 57 or z• − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues. PMID:20304674

  11. The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    NASA Technical Reports Server (NTRS)

    Schulz, Leslie O.

    1991-01-01

    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations.

  12. Variational Optimization of the Second-Order Density Matrix Corresponding to a Seniority-Zero Configuration Interaction Wave Function.

    PubMed

    Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri

    2015-09-08

    We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.

  13. pH-sensitive ion-selective field-effect transistor with zirconium dioxide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.

    1988-09-20

    Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.

  14. Inelastic response of silicon to shock compression

    DOE PAGES

    Higginbotham, Andrew; Stubley, P. G.; Comley, A. J.; ...

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. Lastly, this modelmore » is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.« less

  15. Inelastic response of silicon to shock compression

    PubMed Central

    Higginbotham, A.; Stubley, P. G.; Comley, A. J.; Eggert, J. H.; Foster, J. M.; Kalantar, D. H.; McGonegle, D.; Patel, S.; Peacock, L. J.; Rothman, S. D.; Smith, R. F.; Suggit, M. J.; Wark, J. S.

    2016-01-01

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported ‘anomalous’ elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature. PMID:27071341

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Yukihito, E-mail: matsuura@chem.nara-k.ac.jp

    The tunneling magnetoresistance (TMR) of a silicon chain sandwiched between nickel electrodes was examined by using first-principles density functional theory. The relative orientation of the magnetization in a parallel-alignment (PA) configuration of two nickel electrodes enhanced the current with a bias less than 0.4 V compared with that in an antiparallel-alignment configuration. Consequently, the silicon chain-nickel electrodes yielded good TMR characteristics. In addition, there was polarized spin current in the PA configuration. The spin polarization of sulfur atoms functioning as a linking bridge between the chain and nickel electrode played an important role in the magnetic effects of the electric current.more » Moreover, the hybridization of the sulfur 3p orbital and σ-conjugated silicon 3p orbital contributed to increasing the total current.« less

  17. Stress modeling of microdiaphragm pressure sensors

    NASA Technical Reports Server (NTRS)

    Tack, P. C.; Busta, H. H.

    1986-01-01

    A finite element program analysis was used to model the stress distribution of two monocrystalline silicon diaphragm pressure sensors. One configuration consists of an anisotropically backside etched diaphragm into a 250 micron thick, (100) oriented, silicon wafer. The diaphragm and total chip dimensions are given. The device is rigidly clamped on the back to a support substrate. Another configuration consists of a monocrystalline, (100), microdiaphragm which is formed on top of the wafer and whose area is reduced by a factor of 25 over the first configuration. The diaphragm is rigidly clamped to the silicon wafer. The stresses were calculated at a gauge pressure of 300 mm Hg and used to estimate the piezoresistive responses of resistor elements which were placed parallel and perpendicular near the diaphragm edges.

  18. Search for doubly-charged Higgs Boson production in the decay H ++ H -- → μ +μ +μ -μ - with the D0 detector at √s = 1.96-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdrazil, Marian

    2004-08-01

    This work presents a search for the pair production of doubly-charged Higgs Bosons in the process pmore » $$\\bar{p}$$ → H ++H -- → μ +μ +μ -μ - using inclusive dimuon events. These data correspond to an integrated luminosity of about 113 pb 1 and were recorded by the D0 experiment between August 2002 and June 2003. In the absence of a signal, 95% confidence level mass limits of M(H$$±±\\atop{L}$$) > 118.6 GeV/c 2 and M(H R ±±) > 98.1 GeV/c 2 are set for left-handed and right-handed doubly-charged Higgs boson, assuming 100% branching into muons and hypercharge |Y| = 2 and Yukawa coupling h μμ > 10 -7. This is the first search for doubly-charged Higgs bosons at hadron colliders. It significantly extends the previous mass limit of 100.5 GeV/c 2 for a left-handed doubly-charged Higgs boson measured in the muon final states by the OPAL collaboration.« less

  19. The influence of preferred orientation and poling temperature on the polarization switching current in PZT thin films

    NASA Astrophysics Data System (ADS)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Zhang, Ping; Lan, Kuibo

    2017-07-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films with different preferred orientation were prepared on platinized silicon substrates by a modified sol-gel method. Our results indicate that the polarization switching current in PZT thin films is dependent on preferred orientation and poling temperature. In our measurements, (111)-oriented PZT has a larger polarization switching current than randomly oriented PZT, and with the increase of the degree of (111) preferred orientation and the poling temperature, the polarization switching current gradually increase. Considering the contact of PZT thin film with electrodes, the space-charged limited conduction (SCLC) combined with domain switching mechanism may be responsible for such phenomena. By analyzing the conduction data, we found the interface-limited Schottky emission (ES) and bulk-limited Poole-Frenkel hopping (PF) are not suitable for our samples.

  20. An analog silicon retina with multichip configuration.

    PubMed

    Kameda, Seiji; Yagi, Tetsuya

    2006-01-01

    The neuromorphic silicon retina is a novel analog very large scale integrated circuit that emulates the structure and the function of the retinal neuronal circuit. We fabricated a neuromorphic silicon retina, in which sample/hold circuits were embedded to generate fluctuation-suppressed outputs in the previous study [1]. The applications of this silicon retina, however, are limited because of a low spatial resolution and computational variability. In this paper, we have fabricated a multichip silicon retina in which the functional network circuits are divided into two chips: the photoreceptor network chip (P chip) and the horizontal cell network chip (H chip). The output images of the P chip are transferred to the H chip with analog voltages through the line-parallel transfer bus. The sample/hold circuits embedded in the P and H chips compensate for the pattern noise generated on the circuits, including the analog communication pathway. Using the multichip silicon retina together with an off-chip differential amplifier, spatial filtering of the image with an odd- and an even-symmetric orientation selective receptive fields was carried out in real time. The analog data transfer method in the present multichip silicon retina is useful to design analog neuromorphic multichip systems that mimic the hierarchical structure of neuronal networks in the visual system.

  1. Stress state of a piecewise uniform layered space with doubly periodic internal cracks

    NASA Astrophysics Data System (ADS)

    Hakobyan, V. N.; Dashtoyan, L. L.

    2018-04-01

    The present paper deals with the stress state of a piecewise homogeneous plane formed by alternation junction of two distinct strips of equal height manufactured of different materials. There is a doubly periodic system of cracks on the plane. The governing system of singular integral equations of the first kind for the density of the crack dislocation is derived. The solution of the problem in the case where only one of the repeated strips contains one doubly-periodic crack is obtained by the method of mechanical quadratures.

  2. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  3. Effect of the temperature and dew point of the decarburization process on the oxide subscale of a 3% silicon steel

    NASA Astrophysics Data System (ADS)

    Cesar, Maria das Graças M. M.; Mantel, Marc J.

    2003-01-01

    The oxide subscale formed on the decarburization annealing of 3% Si-Fe was investigated using microscopy and spectroscopy techniques. It was found that the morphology as well as the molecular structure of the subscale are affected by temperature and dew point. The results suggest that there is an optimum level of internal oxidation and an optimum fayalite/silica ratio in the subscale to achieve a oriented grain silicon steel having a continuous and smooth ceramic film and low core loss.

  4. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.

    PubMed

    Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H

    2013-03-25

    n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

  5. Role of shell corrections in the phenomenon of cluster radioactivity

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Singh, Bir Bikram; Sharma, Manoj K.

    2018-05-01

    The detailed investigation has been carried out to explore the role of shell corrections in the decay of various radioactive parent nuclei in trans-lead region, specifically, which lead to doubly magic 208Pb daughter nucleus through emission of clusters such as 14C, 18,20O, 22,24,26Ne, 28,30 Mg and 34S i. The fragmentation potential comprises of binding energies (BE), Coulomb potential (Vc) and nuclear or proximity potential (VP) of the decaying fragments (or clusters). It is relevant to mention here that the contributions of VLDM (T=0) and δU (T=0) in the BE have been analysed within the Strutinsky renormanlization procedure. In the framework of quantum mechanical fragmentation theory (QMFT), we have investigated the above mentioned cluster decays with and without inclusion of shell corrections in the fragmentation potential for spherical as well as non-compact oriented nuclei. We find that the experimentally observed clusters 14C, 18,20O, 22,24,26 Ne, 28,30 Mg and 34Si having doubly magic 208 Pb daughter nucleus are not strongly minimized, they do so only after the inclusion of shell corrections in the fragmentation potential. The nuclear structure information carried by the shell corrections have been explored via these calculations, within the collective clusterisation process of QMFT, in the study of ground state decay of radioactive nuclei. The role of different parts of fragmentation potentials such as VLDM, δU, Vc and Vp is dually analysed for better understanding of radioactive cluster decay.

  6. Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model

    NASA Astrophysics Data System (ADS)

    Lü, Qi-Fang; Wang, Kai-Lei; Xiao, Li-Ye; Zhong, Xian-Hui

    2017-12-01

    We study the mass spectra and radiative decays of doubly heavy baryons within the diquark picture in a relativized quark model. The mass of the JP=1 /2+ Ξc c ground state is predicted to be 3606 MeV, which is consistent with the mass of Ξcc ++(3621 ) newly observed by the LHCb Collaboration. The predicted mass gap between two S -wave states, Ξcc * (JP=3 /2+) and Ξc c (JP=1 /2+), is 69 MeV. Furthermore, the radiative transitions of doubly heavy baryons are also estimated by using the realistic wave functions obtained from relativized quark model. The radiative decay widths of Ξcc *++→Ξcc ++γ and Ξcc *+→Ξcc +γ are predicted to be about 7 and 4 keV, respectively. These predictions of doubly heavy baryons can provide helpful information for future experimental searches.

  7. Doubly charged coronene clusters—Much smaller than previously observed

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Raggl, Stefan; Renzler, Michael; Goulart, Marcelo; Huber, Stefan E.; Mauracher, Andreas; Scheier, Paul; Echt, Olof

    2018-05-01

    The smallest doubly charged coronene cluster ions reported so far, Cor152+, were produced by charge exchange between bare coronene clusters and He2+ [H. A. B. Johansson et al., Phys. Rev. A 84, 043201 (2011)]. These dications are at least five times larger than the estimated Rayleigh limit, i.e., the size at which the activation barrier for charge separation vanishes. Such a large discrepancy is unheard of for doubly charged atomic or molecular clusters. Here we report the mass spectrometric observation of doubly charged coronene trimers, produced by electron ionization of helium nanodroplets doped with coronene. The observation implies that Cor32+ features a non-zero fission barrier too large to overcome under the present experimental conditions. The height of the barriers for the dimer and trimer has been estimated by means of density functional theory calculations. A sizeable barrier for the trimer has been revealed in agreement with the experimental findings.

  8. Searching for the doubly charged scalars in the Georgi-Machacek model via γγ collisions at the ILC

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Li, Yu-Qi; Liu, Yao-Bei

    2018-04-01

    The Georgi-Machacek (GM) model predicts the existence of the doubly-charged scalars H5±±, which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at 2σ confidence level, we focus on the study of the triple scalar production in γγ collisions at the future International Linear collider (ILC): γγ → hH5++H 5‑‑, where the production cross-sections are very sensitive to the triple scalar coupling parameter ghHH. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.

  9. Hot forming of silicon sheet, silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.

    1978-01-01

    The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.

  10. Electronic structures and thermochemical properties of the small silicon-doped boron clusters B(n)Si (n=1-7) and their anions.

    PubMed

    Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-11-18

    We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Initial investigation of SU-8 photopolymer as a material for noninvasive endothelial cell research platforms

    NASA Astrophysics Data System (ADS)

    Westwood, S.; Gojova, A.; Kuo, B.; Barakat, A. I.; Gray, B. L.

    2007-01-01

    This paper presents a preliminary investigation in the usage of the micromachining polymer material SU-8 for the noninvasive shape control and functional study of vascular endothelial cells (ECs). We previously demonstrated a silicon and glass modular microinstrument platform that allowed for a wide range of EC functional response studies. However, we expect SU-8 to provide a more versatile fabrication technology and material for microchannel fabrication and instrumentation, since it is capable of achieving high aspect ratio sensor-compatible structures through simple photopatterning. In this paper, SU-8 microchannels were fabricated on glass slides for straightforward optical observation and biological sampling. Channel widths ranged from 50 to 210 µm, length varied from 100 to 2100 µm, with depth fixed at 100 µm. We plated bovine aortic endothelial cells (BAECs) in the microchannels and used image analysis to determine cellular elongation and orientation. Similar to silicon-on-glass microchannels, the cells become more elongated and oriented along the microchannel axis as the width of the microchannel decreases. Initial results indicate cells plate in the microchannels and on the SU-8 surfaces, whereas in a previous silicon microchannel study, cells plated exclusively on the glass bottom surfaces. This finding has implications for SU-8 as a structural material for microchannel instrumentation.

  12. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  13. Effect of Environment on Creep Behavior of an Oxide/Oxide CFCC with 45 deg. Fiber Orientation

    DTIC Science & Technology

    2006-06-01

    MPa, the elastic modulus (E) was 45 GPa, and failure strain was 0.265%. The creep -rupture results showed a decrease in creep life with increasing...failure and increased creep life . A qualitative spectral analysis provided evidence of silicon species migration from the mullite phase of the...N720/AS in 0/90˚ and ±45˚ orientation at 1100°C. Shows that high creep rates generally correspond to a short creep life .................... 17

  14. Annealing pressure induced ions transfer in Cobalt-Ferrite thin films on amorphous SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Yu; Chong, Cheong-Wei; Chen, Pin-Hui; Li, Hong-Lin; Li, Min-Kai; Huang, J. C. Andrew

    2017-11-01

    In this work, Cobalt-Ferrite (CFO) films were grown on silicon substrates with 300 nm amorphous silicon dioxide by Pulsed Laser Deposition (PLD) with different annealing conditions. The results of structural analysis prove that the CFO films have high crystalline quality with (1 1 1) preferred orientation. The Raman spectra and X-ray absorption spectra (XAS) indicate that the Co ions can transfer from tetrahedral sites to octahedral sites with increasing the annealing pressure. The site exchange of Co and Fe ions leads to the change of saturation magnetization in the CFO films. Our experiments provide not only a way to control the magnetism of CFO films, but also a suitable magnetic layer to develop silicon and semiconductor based spintronic devices.

  15. On the cause of the flat-spot phenomenon observed in silicon solar cells at low temperatures and low intensities

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Broder, J. D.; Brandhorst, H. W., Jr.; Forestieri, A. F.

    1982-01-01

    A model is presented that explains the "flat-spot" (FS) power loss phenomenon observed in silicon solar cells operating deep space (low temperature, low intensity) conditions. Evidence is presented suggesting that the effect is due to localized metallurgical interactions between the silicon substrate and the contact metallization. These reactions are shown to result in localized regions in which the PN junction is destroyed and replaced with a metal-semiconductor-like interface. The effects of thermal treatment, crystallographic orientation, junction depth, and metallurization are presented along with a method of preventing the effect through the suppression of vacancy formation at the free surface of the contact metallization. Preliminary data indicating the effectiveness of a TiN diffusion barrier in preventing the effect are also given.

  16. STATIC ANALYSIS OF SHELLS OF REVOLUTION USING DOUBLY-CURVED QUADRILATERAL ELEMENTS DERIVED FROM ALTERNATE VARIATIONAL MODELS.

    DTIC Science & Technology

    geometrical shape of the finite element in both of the models is a doubly-curved quadrilateral element whose edge curves are the lines-of-curvature coordinates employed to define the shell midsurface . (Author)

  17. Measurement of Doubly Charged Ions in Ion Thruster Plumes

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Domonkos, Matthew T.; Chavez, Joy M.

    2002-01-01

    The ratio of doubly to singly charged ions was measured in the plumes of a 30 cm and of a 40 cm ion thruster. The measured ratio was correlated with observed erosion rates and thruster operating conditions. The measured and calculated erosion rates paralleled variation in the j(sup ++)/j(sup +) ratio and indicated that the erosion was dominated by Xe III. Simple models of cathode potential surfaces which were developed in support of this work were in agreement with this conclusion and provided a predictive capability of the erosion given the ratio of doubly to singly charged ion currents.

  18. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  19. Texture in thin film silicides and germanides: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Schutter, B., E-mail: bob.deschutter@ugent.be; De Keyser, K.; Detavernier, C.

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is ofmore » utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.« less

  20. Texture in thin film silicides and germanides: A review

    NASA Astrophysics Data System (ADS)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  1. In situ observation of shear-driven amorphization in silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Zhong, Li; Fan, Feifei

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less

  2. Gas phase reactions of doubly charged alkaline earth and transition metal(II)-ligand complexes generated by electrospray ionization

    NASA Astrophysics Data System (ADS)

    Kohler, Martin; Leary, Julie A.

    1997-03-01

    Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.

  3. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  4. Comparison of silicon, nickel, and nickel silicide (Ni 3Si) as substrates for epitaxial diamond growth

    NASA Astrophysics Data System (ADS)

    Tucker, D. A.; Seo, D.-K.; Whangbo, M.-H.; Sivazlian, F. R.; Stoner, B. R.; Bozeman, S. P.; Sowers, A. T.; Nemanich, R. J.; Glass, J. T.

    1995-07-01

    We carried out experimental and theoretical studies aimed at probing interface interactions of diamond with Si, Ni, and Ni 3Si substrates. Oriented diamond films deposited on (100) silicon were characterized by polar Raman, polar XRD, and cross-sectional HRTEM. These studies show that the diamond-(100)/Si(100) interface does not adopt the 45°-rotation but the 3 : 2-match arrangement. Our extended Hückel tight-binding (EHTB) electronic structure calculations for a model system show that the interface interaction favors the 3 : 2-match arrangement. Growth on polycrystalline Ni 3Si resulted in oriented diamond particles while, under the same growth conditions, largely graphite was formed on the nickel substrate. Our EHTB electronic structure calculations for model systems show that the (111) and (100) surfaces of Ni 3Si have a strong preference for diamond-nucleation over graphite-nucleation, but this is not the case for the (111) and (100) surfaces of Ni.

  5. Fabrication and etching processes of silicon-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian

    2001-09-01

    Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.

  6. Orbital photogalvanic effects in quantum-confined structures

    NASA Astrophysics Data System (ADS)

    Karch, J.; Tarasenko, S. A.; Olbrich, P.; Schönberger, T.; Reitmaier, C.; Plohmann, D.; Kvon, Z. D.; Ganichev, S. D.

    2010-09-01

    We report on the circular and linear photogalvanic effects caused by free-carrier absorption of terahertz radiation in electron channels on (001)-oriented and miscut silicon surfaces. The photocurrent behaviour upon variation of the radiation polarization state, wavelength, gate voltage, and temperature is studied. We present the microscopic and phenomenological theory of the photogalvanic effects, which describes well the experimental results. In particular, it is demonstrated that the circular (photon-helicity sensitive) photocurrent in silicon-based structures is of pure orbital nature originating from the quantum interference of different pathways contributing to the absorption of monochromatic radiation.

  7. Projective interpretation of some doubly special relativity theories

    NASA Astrophysics Data System (ADS)

    Jafari, N.; Shariati, A.

    2011-09-01

    A class of projective actions of the orthogonal group on the projective space is being studied. It is shown that the Fock-Lorentz and Magueijo-Smolin transformations known as doubly special relativity are such transformations. The formalism easily leads to new types of transformations.

  8. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  9. Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A.

    PubMed

    Naveas, Nelson; Hernandez-Montelongo, Jacobo; Pulido, Ruth; Torres-Costa, Vicente; Villanueva-Guerrero, Raúl; Predestinación García Ruiz, Josefa; Manso-Silván, Miguel

    2014-03-01

    Nanostructured porous silicon (PSi) elicits as a very attractive material for future biosensing systems due to its high surface area, biocompatibility and well-established fabrication methods. In order to engineer its performance as a biosensor transducer platform, the density of immunoglobulins properly immobilized and oriented onto the surface needs to be optimized. In this work we fabricated and characterized a novel biosensing system focusing on the improvement of the biofunctionalization cascade. The system consists on a chemically oxidized PSi platform derivatized with 3-aminopropyltriethoxysilane (APTS) that is coupled to Staphylococcus protein A (SpA). The chemical oxidation has previously demonstrated to enhance the biofunctionalization process and here "by implementing SpA" a molecularly oriented immunosensor is achieved. The biosensor system is characterized in terms of its chemical composition, wettability and optical reflectance. Finally, this system is successfully exploited to develop a biosensor for detecting asymmetric dimethylarginine (ADMA), an endogenous molecule involved in cardiovascular diseases. Therefore, this work is relevant from the point of view of design and optimization of the biomolecular immobilization cascade on PSi surfaces with the added value of contribution to the development of new assays for detecting ADMA with a view on prevention of cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications

    PubMed Central

    Arab, Abbas; Li, Qiliang

    2015-01-01

    In this work, we have studied thermoelectric properties of monolayer and fewlayer MoS2 in both armchair and zigzag orientations. Density functional theory (DFT) using non-equilibrium Green’s function (NEGF) method has been implemented to calculate the transmission spectra of mono- and fewlayer MoS2 in armchair and zigzag directions. Phonon transmission spectra are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectra. In general, a thermoelectric generator is composed of thermocouples made of both n-type and p-type legs. Based on our calculations, monolayer MoS2 in armchair orientation is found to have the highest ZT value for both p-type and n-type legs compared to all other armchair and zigzag structures. We have proposed a thermoelectric generator based on monolayer MoS2 in armchair orientation. Moreover, we have studied the effect of various dopant species on thermoelectric current of our proposed generator. Further, we have compared output current of our proposed generator with those of Silicon thin films. Results indicate that thermoelectric current of MoS2 armchair monolayer is several orders of magnitude higher than that of Silicon thin films. PMID:26333948

  11. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications.

    PubMed

    Arab, Abbas; Li, Qiliang

    2015-09-03

    In this work, we have studied thermoelectric properties of monolayer and fewlayer MoS2 in both armchair and zigzag orientations. Density functional theory (DFT) using non-equilibrium Green's function (NEGF) method has been implemented to calculate the transmission spectra of mono- and fewlayer MoS2 in armchair and zigzag directions. Phonon transmission spectra are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectra. In general, a thermoelectric generator is composed of thermocouples made of both n-type and p-type legs. Based on our calculations, monolayer MoS2 in armchair orientation is found to have the highest ZT value for both p-type and n-type legs compared to all other armchair and zigzag structures. We have proposed a thermoelectric generator based on monolayer MoS2 in armchair orientation. Moreover, we have studied the effect of various dopant species on thermoelectric current of our proposed generator. Further, we have compared output current of our proposed generator with those of Silicon thin films. Results indicate that thermoelectric current of MoS2 armchair monolayer is several orders of magnitude higher than that of Silicon thin films.

  12. Nuclear spectroscopy of doubly-even130,132Ba

    NASA Astrophysics Data System (ADS)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  13. Dissociation of doubly charged clusters of lithium acetate: Asymmetric fission and breakdown of the liquid drop model: Dissociation of doubly charged clusters of lithium acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil

    2016-06-08

    Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.

  14. Physical activity levels from a meta-analysis of doubly labeled water studies for validating energy intake as measured by dietary assessment.

    PubMed

    Black, A E

    1996-06-01

    Studies using doubly labeled water have identified underreporting of food intake as a problem of dietary surveys. However, reported energy intakes may be evaluated by comparison with energy requirements expressed as multiples of the basal metabolic rate, and a formula for calculating the value below which reported intake cannot be either a valid measure of habitual intake or a true low intake obtained by chance is presented. The energy requirements of different age-sex groups needed for the comparison with energy intakes have been obtained from a meta-analysis of doubly labeled water data.

  15. Pursuit and Synchronization in Hydrodynamic Dipoles

    NASA Astrophysics Data System (ADS)

    Kanso, Eva; Tsang, Alan Cheng Hou

    2015-10-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic Hele-Shaw type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly periodic domains and focus on the dynamics of pairs of swimmers. We obtain two families of "relative equilibria"-type solutions that correspond to pursuit and synchronization of the two swimmers. Interestingly, the pursuit mode is stable for large-tail swimmers, whereas the synchronization mode is stable for large-head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  16. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  17. Structural, Optical and Electrical Properties of ZnS/Porous Silicon Heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Li, Qing-Shan; Lv, Lei; Zhang, Li-Chun; Qi, Hong-Xia; Chen, Hou

    2007-03-01

    ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.

  18. Out of the lab and into the fab: Nano-alignment as an enabler for Silicon Photonics' next chapter

    NASA Astrophysics Data System (ADS)

    Jordan, Scott

    2017-06-01

    The rapid advent of Silicon Photonics presents many challenges for test and packaging. Here we concisely review SiP device attributes that differ significantly from classical photonic configurations, with a view to the future beyond current, connectivity-oriented silicon photonics developments, looking to such endeavors as all-optical computing and quantum computing. The necessity for nano-precision alignment of optical elements in test and packaging operations quickly emerges as the unfilled need. We review the industrial test and packaging solutions developed back in the 1997-2001 photonics boom to address the needs of that era's devices, and map their gaps with the new SiP device classes. Finally we review the new state-of-the-art of recent advances in the field that address these gaps.

  19. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  20. Study of spin-dependent transitions and spin coherence at the (111) oriented phosphorous doped crystalline silicon to silicon dioxide interface using pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung

    A study of spin-dependent electronic transitions at the (111) oriented phosphorous doped crystalline silicon (c-Si) to silicon dioxide (SiO 2) interface is presented for [31P] = 1015 cm-3 and [31P] = 1016 cm -3 and a temperature range between T ≈ 5K and T ≈ 15K. Using pulsed electrically detected magnetic resonance (pEDMR), spin-dependent transitions involving 31P donor states and two different interface states are observed, namely (i) Pb centers which can be identified by their characteristic anisotropy and (ii) the E' center which is attributed to defects of the near interface SiO 2 bulk. Correlation measurements of the dynamics of spin-dependent recombination confirm that previously proposed transitions between 31P and the interface defects take place. The influence of these near interface transitions on the 31P donor spin coherence time T 2 as well as the donor spin-lattice relaxation time T 1 is then investigated by comparison of spin Hahn echo decay measurements obtained from conventional bulk sensitive pulsed electron paramagnetic resonance and surface sensitive pEDMR measurements, as well as surface sensitive electrically detected inversion recovery experiments. The measurements reveal that the T2 times of both interface states and 31P donor electrons spins in proximity of them are consistently shorter than the T1 times, and both T2 and T1 times of the near interface donors are reduced by several orders of magnitude from those in the bulk, at T ≤ 13 K. The T 2 times of the 31P donor electrons are in agreement with the prediction by De Sousa that they are limited by interface defect-induced field noise. To further investigate the dynamic properties of spin-dependent near interface processes, electrical detection of spin beat oscillation between resonantly induced spin-Rabi nutation is conducted at the phosphorous doped (1016cm-3) Si(111)/SiO2 interface. Predictions of Rabi beat oscillations based on several different spin-pair models are compared with measured Rabi beat nutation data. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intra-pair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin-pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. Based on the agreement between hypothesis and data, the experiments confirm the presence of the previously observed 31P-P b transition and the previously hypothesized P b to near interface SiO2 bulk state (E' center) transition.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  2. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    NASA Astrophysics Data System (ADS)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  3. On the transmission of terahertz radiation through silicon-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Anna, E-mail: anna.persano@le.imm.cnr.it; Francioso, Luca; Cola, Adriano

    2014-07-28

    We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO{sub 2} nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75–1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, findingmore » a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO{sub 2} nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range.« less

  4. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  5. The Fifth Cell: Correlation Bias in U.S. Census Adjustment.

    ERIC Educational Resources Information Center

    Wachter, Kenneth W.; Freedman, David A.

    2000-01-01

    Presents a method for estimating the total national number of doubly missing people (missing from Census counts and adjusted counts as well) and their distribution by race and sex. Application to the 1990 U.S. Census yields an estimate of three million doubly-missing people. (SLD)

  6. Design of a doubly-hydrophilic block copolypeptide that directs the formation of calcium carbonate microspheres.

    PubMed

    Euliss, Larken E; Trnka, Tina M; Deming, Timothy J; Stucky, Galen D

    2004-08-07

    The crystallization of calcium carbonate into microspheres has been accomplished using the rationally-designed, doubly-hydrophilic block copolypeptide poly(Nepsilon-2[2-(2-methoxyethoxy)ethoxy]acetyl-L-lysine)(100)-b-poly(L-aspartate sodium salt)30 as a structure-directing agent.

  7. International Education/International Business: A Model for Cooperation.

    ERIC Educational Resources Information Center

    Rookstool, Judy

    In order to strengthen cooperation among institutions of higher education and businesses with global connections in Silicon Valley, a project was undertaken by San Jose City College to compile a list of the internationally oriented business-related courses available at local institutions and identify existing gaps in the curricula. Information…

  8. Discriminating leptonic Yukawa interactions with doubly charged scalar at the ILC

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi; Yokoya, Hiroshi

    2018-04-01

    We explore discrimination of two types of leptonic Yukawa interactions associated with Higgs triplet, LbarLc ΔLL, and with SU (2) singlet doubly charged scalar, ebarRc k++eR. These interactions can be distinguished by measuring the effects of doubly charged scalar boson exchange in the e+e- →ℓ+ℓ- processes at polarized electron-positron colliders. We study a forward-backward asymmetry of scattering angular distribution to estimate the sensitivity for these effects at the ILC. In addition, we investigate prospects of upper bounds on the Yukawa couplings by combining the constraints of lepton flavor violation processes and the e+e- →ℓ+ℓ- processes at the LEP and the ILC.

  9. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  10. Exotic triple-charm deuteronlike hexaquarks

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Wang, Fu-Lai; Hosaka, Atsushi; Liu, Xiang

    2018-06-01

    Adopting the one-boson-exchange model, we perform a systematic investigation of interactions between a doubly charmed baryon (Ξc c) and an S -wave charmed baryon (Λc, Σc(*), and Ξc(',*)). Both the S - D mixing effect and coupled-channel effect are considered in this work. Our results suggest that there may exist several possible triple-charm deuteronlike hexaquarks. Meanwhile, we further study the interactions between a doubly charmed baryon and an S -wave anticharmed baryon. We find that a doubly charmed baryon and an S -wave anticharmed baryon can be easily bound together to form shallow molecular hexaquarks. These heavy flavor hexaquarks predicted here can be accessible at future experiment like LHCb.

  11. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  12. Validity of the remote food photography method against doubly labeled water among minority preschoolers

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine the validity of energy intake (EI) estimations made using the remote food photography method (RFPM) compared to the doubly labeled water (DLW) method in minority preschool children in a free-living environment. Seven days of food intake and spot urine samples...

  13. Design-Based Intervention Research as the Science of the Doubly Artificial

    ERIC Educational Resources Information Center

    Cole, Michael; Packer, Martin

    2016-01-01

    This article uses a variety of principles of cultural-historical activity theory to extend Herbert Simon's (1996) insight into the inherent linkage between the creation of artifacts and design. We argue that design research must grapple with the doubly artificial, as the classrooms in which many educational designs are implemented are themselves…

  14. On Measuring and Reducing Selection Bias with a Quasi-Doubly Randomized Preference Trial

    ERIC Educational Resources Information Center

    Joyce, Ted; Remler, Dahlia K.; Jaeger, David A.; Altindag, Onur; O'Connell, Stephen D.; Crockett, Sean

    2017-01-01

    Randomized experiments provide unbiased estimates of treatment effects, but are costly and time consuming. We demonstrate how a randomized experiment can be leveraged to measure selection bias by conducting a subsequent observational study that is identical in every way except that subjects choose their treatment--a quasi-doubly randomized…

  15. Double ion production in mercury thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Peters, R. R.

    1976-01-01

    The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.

  16. Experimental and Theoretical Investigations of Doubly-excited Sextet States in

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Berry, H. Gordon; Livingston, A. Eugene; Garnir, Henri-Pierre; Bastin, Thierry; Désesquelles, J.

    2002-05-01

    The energies and wave functions of the highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are calculated with the Multi-Configuration Hartree-Fock (MCHF) plus the hydrogen-like QED effects and higher-order corrections method. The highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are well above several ionization levels and metastable, and possible candidates for XUV- and soft x-ray laser and energy storage. Three doubly-excited sextet configurations (1s2s2p3 6So, 1s2s2p23s 6P and 1s2p33s 6So) are studied. The wavelengths of electric dipole transitions from the inner-shell excited terms 1s2s2p23s 6P-1s2p33s 6So are investigated by the beam-foil spectroscopy in the XUV spectral region. The predicted transition wavelengths agree with the experiment to 0.08Å. The higher-order corrections and fine structures are found to be critically important in these comparisons.

  17. Evaluation of a doubly-swept blade tip for rotorcraft noise reduction

    NASA Technical Reports Server (NTRS)

    Wake, Brian E.; Egolf, T. Alan

    1992-01-01

    A computational study was performed for a doubly-swept rotor blade tip to determine its benefit for high-speed impulsive (HSI) and blade-vortex interaction (BVI) noise. This design consists of aft and forward sweep. For the HSI-noise computations, unsteady Euler calculations were performed for several variations to a rotor blade geometry. A doubly-swept planform was predicted to increase the delocalizing Mach number to 0.94 (representative of a 200+ kt helicopter). For the BVI-noise problem, it had been hypothesized that the doubly-swept blade tip, by producing a leading-edge vortex, would reduce the tip-vortex effect on BVI noise. A procedure was used in which the tip vortex velocity profile computed by a Navier-Stokes solver was used to compute the inflow associated with BVI. This inflow was used by a Euler solver to compute the unsteady pressures for an acoustic analysis. The results of this study were inconclusive due to the difficulty in accurately predicting the viscous tip vortex downstream of the blade. Also, for the condition studied, no leading-edge vortex formed at the tip.

  18. Electron Transfer Ion/Ion Reactions in a Three-Dimensional Quadrupole Ion Trap: Reactions of Doubly and Triply Protonated Peptides with SO2·−

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593

  19. Use of doubly labeled water technique in soldiers training for jungle warfare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes-Ewan, C.H.; Morrissey, B.L.; Gregg, G.C.

    1989-07-01

    The doubly labeled water method was used to estimate the energy expended by four members of an Australian Army platoon (34 soldiers) engaged in training for jungle warfare. Each subject received an oral isotope dose sufficient to raise isotope levels by 200-250 ({sup 18}O) and 100-120 ppm ({sup 2}H). The experimental period was 7 days. Concurrently, a factorial estimate of the energy expenditure of the platoon was conducted. Also, a food intake-energy balance study was conducted for the platoon. Mean daily energy expenditure by the doubly labeled water method was 4,750 kcal (range 4,152-5,394 kcal). The factorial estimate of meanmore » daily energy expenditure was 4,535 kcal. Because of inherent inaccuracies in the food intake-energy balance technique, we were able to conclude only that energy expenditure, as measured by this method, was greater than the estimated mean daily intake of 4,040 kcal. The doubly labeled water technique was well tolerated, is noninvasive, and appears to be suitable in a wide range of field applications.« less

  20. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  1. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzez, Shrook A., E-mail: shurouq44@yahoo.com; Hassan, Z.; Alimanesh, M.

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicon substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  2. The structure of 110 tilt boundaries in large area solar silicon

    NASA Technical Reports Server (NTRS)

    Ast, D. G.; Cunningham, B.; Vaudin, M.

    1982-01-01

    The models of Hornstra and their connection to the repeating group description of grain boundaries (7-10) are discussed. A model for the Sigma = 27 boundary containing a zig-zag arrangement of dislocations is constructed and it is shown that zig-zag models can account for the contrast features observed in high resolution transmission electron micrographs of second and third order twin boundaries in silicon. The boundaries discussed are symmetric with a 110 tilt axis and a (110) boundary plane in the median lattice (the median plane). The median lattice is identical in structure and halfway in orientation between the crystal lattices either side of the boundary.

  3. Microstructure and orientation effects on properties of discontinuous silicon carbide/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Hoffman, C. A.

    1984-01-01

    Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.

  4. Use of an automated chromium reduction system for hydrogen isotope ratio analysis of physiological fluids applied to doubly labeled water analysis.

    PubMed

    Schoeller, D A; Colligan, A S; Shriver, T; Avak, H; Bartok-Olson, C

    2000-09-01

    The doubly labeled water method is commonly used to measure total energy expenditure in free-living subjects. The method, however, requires accurate and precise deuterium abundance determinations, which can be laborious. The aim of this study was to evaluate a fully automated, high-throughput, chromium reduction technique for the measurement of deuterium abundances in physiological fluids. The chromium technique was compared with an off-line zinc bomb reduction technique and also subjected to test-retest analysis. Analysis of international water standards demonstrated that the chromium technique was accurate and had a within-day precision of <1 per thousand. Addition of organic matter to water samples demonstrated that the technique was sensitive to interference at levels between 2 and 5 g l(-1). Physiological samples could be analyzed without this interference, plasma by 10000 Da exclusion filtration, saliva by sedimentation and urine by decolorizing with carbon black. Chromium reduction of urine specimens from doubly labeled water studies indicated no bias relative to zinc reduction with a mean difference in calculated energy expenditure of -0.2 +/- 3.9%. Blinded reanalysis of urine specimens from a second doubly labeled water study demonstrated a test-retest coefficient of variation of 4%. The chromium reduction method was found to be a rapid, accurate and precise method for the analysis of urine specimens from doubly labeled water. Copyright 2000 John Wiley & Sons, Ltd.

  5. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  6. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  7. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

  8. Impact of VLSI/VHSIC on satellite on-board signal processing

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; Ruedger, W. H.; Snyder, W. E.; Kelly, W. L.

    Forecasted improvements in IC fabrication techniques, such as the use of X-ray lithography, are expected to yield submicron circuit feature sizes within the decade of the 1980s. As dimensions decrease, reliability, cost, speed, power consumption and density improvements will be realized which have a significant impact on the capabilities of onboard spacecraft signal processing functions. This will in turn result in increases of the intelligence that may be deployed on spaceborne remote sensing platforms. Among programs oriented toward such goals are the silicon-based Very High Speed Integrated Circuit (VHSIC) researches sponsored by the U.S. Department of Defense, and efforts toward the development of GaAs devices which will compete with silicon VLSI technology for future applications. GaAs has an electron mobility which is five to six times that of silicon, and promises commensurate computation speed increases under low field conditions.

  9. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Yaping, E-mail: yaping.dan@sjtu.edu.cn; Chen, Kaixiang; Crozier, Kenneth B.

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arisingmore » from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.« less

  10. Investigation on the structural characterization of pulsed p-type porous silicon

    NASA Astrophysics Data System (ADS)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  11. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  12. Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardinale, G.F.; Howitt, D.G.; Mirkarimi, P.B.

    1994-08-01

    Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Filmsmore » stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.« less

  13. Mechanism of interactions between CMC binder and Si single crystal facets.

    PubMed

    Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F

    2014-09-02

    Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.

  14. Graphoepitaxy integration and pattern transfer of lamellar silicon-containing high-chi block copolymers

    NASA Astrophysics Data System (ADS)

    Bézard, P.; Chevalier, X.; Legrain, A.; Navarro, C.; Nicolet, C.; Fleury, G.; Cayrefourcq, I.; Tiron, R.; Zelsmann, M.

    2018-03-01

    In this work, we present our recent achievements on the integration and transfer etching of a novel silicon-containing high-χ block copolymer for lines/spaces applications. Developed carbo-silane BCPs are synthesized under industrial conditions and present periodicities as low as 14 nm. A full directed self-assembly by graphoepitaxy process is shown using standard photolithography stacks and all processes are performed on 300 mm wafer compatible tools. Specific plasma processes are developed to isolate perpendicular lamellae and sub-12 nm features are finally transferred into silicon substrates. The quality of the final BCP hard mask (CDU, LWR, LER) are also investigated. Finally, thanks to the development of dedicated neutral layers and top-coats allowing perpendicular orientations, it was possible to investigate plasma etching experiments on full-sheets at 7 nm resolution, opening the way to the integration of these polymers in chemoepitaxy stacks.

  15. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    NASA Technical Reports Server (NTRS)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  16. Direct monolithic integration of vertical single crystalline octahedral molecular sieve nanowires on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume

    2013-12-13

    We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less

  17. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  18. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  19. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  20. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  1. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    NASA Astrophysics Data System (ADS)

    Shimoyama, Iwao; Baba, Yuji; Hirao, Norie

    2017-05-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N2+-irradiated substrates, and show no polarization dependence for an Ar+-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N2+-irradiated, and Ar+-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  2. Transmission Electron Microscopy of an In Situ Presolar Silicon Carbide Grain

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; OGrady, Megan; Nittler, Larry R.; Alexander, Conel M. OD.

    2002-01-01

    We used a focused ion beam workstation to prepare ultra-thin sections of a presolar SiC grain. Our TEM studies indicate that the SiC formed by rapid vapor-phase condensation, trapping pre-existing graphite grains in random orientations. Additional information is contained in the original extended abstract.

  3. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  4. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    PubMed Central

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119

  5. Orientation-selective aVLSI spiking neurons.

    PubMed

    Liu, S C; Kramer, J; Indiveri, G; Delbrück, T; Burg, T; Douglas, R

    2001-01-01

    We describe a programmable multi-chip VLSI neuronal system that can be used for exploring spike-based information processing models. The system consists of a silicon retina, a PIC microcontroller, and a transceiver chip whose integrate-and-fire neurons are connected in a soft winner-take-all architecture. The circuit on this multi-neuron chip approximates a cortical microcircuit. The neurons can be configured for different computational properties by the virtual connections of a selected set of pixels on the silicon retina. The virtual wiring between the different chips is effected by an event-driven communication protocol that uses asynchronous digital pulses, similar to spikes in a neuronal system. We used the multi-chip spike-based system to synthesize orientation-tuned neurons using both a feedforward model and a feedback model. The performance of our analog hardware spiking model matched the experimental observations and digital simulations of continuous-valued neurons. The multi-chip VLSI system has advantages over computer neuronal models in that it is real-time, and the computational time does not scale with the size of the neuronal network.

  6. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  7. Three-Space Interaction in Doubly Sinusoidal Periodic Media

    NASA Astrophysics Data System (ADS)

    Tian-Lin, Dong; Ping, Chen

    2006-06-01

    Three-space-harmonic (3SH) interaction in doubly sinusoidal periodic (DSP) medium is investigated. Associated physical effects such as additional gap, defect state, and indirect gaps, are theoretically and numerically revealed. This simple DSP model can facilitate the understanding and utilizing of a series of effects in rather complicated periodic structures with additional defect or modulation.

  8. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  9. Structure of Ni 78 from First-Principles Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  10. Structure of Ni 78 from First-Principles Computations

    DOE PAGES

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.; ...

    2016-10-17

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  11. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Durmus A.; Deutsches Elektronen--Synchrotron, DESY, D-22603 Hamburg; Frank, Mariana

    2008-08-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the {mu} problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model viamore » the measurements at the Large Hadron Collider experiments.« less

  12. Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states

    NASA Astrophysics Data System (ADS)

    Simonsen, A. S.; Bachau, H.; Førre, M.

    2014-02-01

    Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.

  13. Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites

    PubMed Central

    Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.

    2012-01-01

    The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008

  14. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    PubMed

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  15. Porous silicon technology for integrated microsystems

    NASA Astrophysics Data System (ADS)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. (Abstract shortened by UMI.)

  16. Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    A. Betty, C.; N, Padma; Arora, Shalav; Survaiya, Parth; Bhattacharya, Debarati; Choudhury, Sipra; Roy, Mainak

    2018-01-01

    A hybrid solar cell consisting of nanostructured p-type porous silicon (PS) deposited with visible light absorbing dye, Copper Phthalocyanine (CuPc) has been prepared in the photoelectrochemical cell configuration. P-type PS with (100) and (111) orientations which have different porous structures were used for studying the effects of the substrate morphology on the cell efficiency. Heterostructures were prepared by depositing three different thicknesses of CuPc for optimizing the cell efficiency. Structural and surface characterizations were studied using XRD, Raman, SEM and AFM on the PS-CuPc heterostructure. XRD spectrum on both plane silicon and porous silicon indicates the π-π stacking of CuPc with increased disorder for CuPc film on porous silicon. Electrochemical characterizations under sun light type radiation have been carried out to evaluate the photosensitivity of the heterostructure. Between the two different substrates, (100) PS gives better photocurrent, possibly due to the higher surface area and lower series resistance of the structure. Among the (100) PS substrates, (100) PS with 15 nm CuPc film gives Voc more than 1 V resulting in higher efficiency for the cell. The study suggests the scope for optimization of solar cell efficiency using various combinations of the substrate structure and thickness of the sensitizing layer.

  17. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  18. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  19. Doubly labelled water assessment of energy expenditure: principle, practice, and promise.

    PubMed

    Westerterp, Klaas R

    2017-07-01

    The doubly labelled water method for the assessment of energy expenditure was first published in 1955, application in humans started in 1982, and it has become the gold standard for human energy requirement under daily living conditions. The method involves enriching the body water of a subject with heavy hydrogen ( 2 H) and heavy oxygen ( 18 O), and then determining the difference in washout kinetics between both isotopes, being a function of carbon dioxide production. In practice, subjects get a measured amount of doubly labelled water ( 2 H 2 18 O) to increase background enrichment of body water for 18 O of 2000 ppm with at least 180 ppm and background enrichment of body water for 2 H of 150 ppm with 120 ppm. Subsequently, the difference between the apparent turnover rates of the hydrogen and oxygen of body water is assessed from blood-, saliva-, or urine samples, collected at the start and end of the observation interval of 1-3 weeks. Samples are analyzed for 18 O and 2 H with isotope ratio mass spectrometry. The doubly labelled water method is the indicated method to measure energy expenditure in any environment, especially with regard to activity energy expenditure, without interference with the behavior of the subjects. Applications include the assessment of energy requirement from total energy expenditure, validation of dietary assessment methods and validation of physical activity assessment methods with doubly labelled water measured energy expenditure as reference, and studies on body mass regulation with energy expenditure as a determinant of energy balance.

  20. Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems

    NASA Astrophysics Data System (ADS)

    Davis, Alex Benjamin; Scheeres, Daniel

    2018-04-01

    The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters

  1. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  2. A III-V nanowire channel on silicon for high-performance vertical transistors.

    PubMed

    Tomioka, Katsuhiro; Yoshimura, Masatoshi; Fukui, Takashi

    2012-08-09

    Silicon transistors are expected to have new gate architectures, channel materials and switching mechanisms in ten years' time. The trend in transistor scaling has already led to a change in gate structure from two dimensions to three, used in fin field-effect transistors, to avoid problems inherent in miniaturization such as high off-state leakage current and the short-channel effect. At present, planar and fin architectures using III-V materials, specifically InGaAs, are being explored as alternative fast channels on silicon because of their high electron mobility and high-quality interface with gate dielectrics. The idea of surrounding-gate transistors, in which the gate is wrapped around a nanowire channel to provide the best possible electrostatic gate control, using InGaAs channels on silicon, however, has been less well investigated because of difficulties in integrating free-standing InGaAs nanostructures on silicon. Here we report the position-controlled growth of vertical InGaAs nanowires on silicon without any buffering technique and demonstrate surrounding-gate transistors using InGaAs nanowires and InGaAs/InP/InAlAs/InGaAs core-multishell nanowires as channels. Surrounding-gate transistors using core-multishell nanowire channels with a six-sided, high-electron-mobility transistor structure greatly enhance the on-state current and transconductance while keeping good gate controllability. These devices provide a route to making vertically oriented transistors for the next generation of field-effect transistors and may be useful as building blocks for wireless networks on silicon platforms.

  3. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    NASA Technical Reports Server (NTRS)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  4. Spectral representation of the three-body Coulomb problem. I. Nonautoionizing doubly excited states of high angular momentum in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiglsperger, Johannes; Piraux, Bernard; Madronero, Javier

    2010-04-15

    We investigate high-lying doubly excited nonautoionizing states of helium with total angular momentum L=1,2,...,9 with the help of a configuration interaction approach. We provide highly precise nonrelativistic energies of these states and discuss the properties of the wave functions with respect to the particle exchange operator.

  5. Asian/Pacific American Women in Higher Education Administration: Doubly Bound, Doubly Scarce. Issues in Policy, No. 9.

    ERIC Educational Resources Information Center

    Montez, Joni Mina

    This policy brief examines the issue of Asian/Pacific American (APA) women in higher education administration. It reports that APA women face the "double bind" of discrimination because of their minority status and because they are female, and that compared to other minority women fewer APA women enter the education profession. The paper argues…

  6. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1 st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  7. Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core

    NASA Astrophysics Data System (ADS)

    Fazzolari, Fiorenzo A.; Carrera, Erasmo

    2014-02-01

    In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell-Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.

  8. Search for doubly charged Higgs bosons in like-sign dilepton final states at √s¯= 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2012-12-04

    A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb -1 of pp collisions at √s¯ = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-p T leptons with the same electric charge (e ±e ±, e ±μ ±, μ ±μ ±) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross sectionmore » times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for e ±e ±, e ±μ ±, and μ ±μ ±, respectively.« less

  9. Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.

    PubMed

    Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg

    2017-05-02

    We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.

  10. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures

    DOE PAGES

    Pagan, Darren C.; Miller, Matthew P.

    2016-09-01

    A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less

  11. Neutron star merger GW170817 strongly constrains doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Akrami, Yashar; Brax, Philippe; Davis, Anne-Christine; Vardanyan, Valeri

    2018-06-01

    We study the implications of the recent detection of gravitational waves emitted by a pair of merging neutron stars and their electromagnetic counterpart, events GW170817 and GRB170817A, on the viability of the doubly coupled bimetric models of cosmic evolution, where the two metrics couple directly to matter through a composite, effective metric. We demonstrate that the bounds on the speed of gravitational waves place strong constraints on the doubly coupled models, forcing either the two metrics to be proportional at the background level or the models to become singly coupled. Proportional backgrounds are particularly interesting as they provide stable cosmological solutions with phenomenologies equivalent to that of Λ CDM at the background level as well as for linear perturbations, while nonlinearities are expected to show deviations from the standard model.

  12. Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes

    NASA Astrophysics Data System (ADS)

    Vormawah, L. J.; Vilén, M.; Beerwerth, R.; Campbell, P.; Cheal, B.; Dicker, A.; Eronen, T.; Fritzsche, S.; Geldhof, S.; Jokinen, A.; Kelly, S.; Moore, I. D.; Reponen, M.; Rinta-Antila, S.; Stock, S. O.; Voss, A.

    2018-04-01

    Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm 5 s 1/2 2S →5 p 1/2 2P line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyväskylä, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-produced short-lived isotopes using collinear laser spectroscopy and application of the technique to doubly charged ions.

  13. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  14. Binding Energy of 79Cu: Probing the Structure of the Doubly Magic 78Ni from Only One Proton Away

    NASA Astrophysics Data System (ADS)

    Welker, A.; Althubiti, N. A. S.; Atanasov, D.; Blaum, K.; Cocolios, T. E.; Herfurth, F.; Kreim, S.; Lunney, D.; Manea, V.; Mougeot, M.; Neidherr, D.; Nowacki, F.; Poves, A.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-11-01

    The masses of the neutron-rich copper isotopes 75-79Cu are determined using the precision mass spectrometer ISOLTRAP at the CERN-ISOLDE facility. The trend from the new data differs significantly from that of previous results, offering a first accurate view of the mass surface adjacent to the Z =28 , N =50 nuclide 78Ni and supporting a doubly magic character. The new masses compare very well with large-scale shell-model calculations that predict shape coexistence in a doubly magic 78Ni and a new island of inversion for Z <28 . A coherent picture of this important exotic region begins to emerge where excitations across Z =28 and N =50 form a delicate equilibrium with a spherical mean field.

  15. Immobilization of functional oxide nanoparticles on silicon surfaces via Si-C bonded polymer brushes.

    PubMed

    Xu, F J; Wuang, S C; Zong, B Y; Kang, E T; Neoh, K G

    2006-05-01

    A method for immobilizing and mediating the spatial distribution of functional oxide (such as SiO2 and Fe3O4) nanoparticles (NPs) on (100)-oriented single crystal silicon surface, via Si-C bonded poly(3-(trimethoxysilyl)propyl methacrylate) (P(TMSPM)) brushes from surface-initiated atom transfer radical polymerization (ATRP) of (3-(trimethoxysilyl)propyl methacrylate) (TMSPM), was described. The ATRP initiator was covalently immobilized via UV-induced hydrosilylation of 4-vinylbenzyl chloride (VBC) with the hydrogen-terminated Si(100) surface (Si-H surface). The surface-immobilized Fe3O4 NPs retained their superparamagnetic characteristics and their magnetization intensity could be mediated by adjusting the thickness of the P(TMSPM) brushes.

  16. Optical and interfacial electronic properties of diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  17. Electromagnetically Tunable Fluids

    DTIC Science & Technology

    2011-11-29

    Carbon Nanotube (SWNT)-Polyimide Nanocomposites as Electrostrictive Materials”, Sensors and Actuators A: Physical, 155, pp. 246-252, 2009. [6] G. H...12] S. L. Eichmann, B. Smith, G. Meric, D. H. Fairbrother, and M. A. Bevan, “Imaging carbon nanotube interactions, diffusion, and stability in...Toward the Preparation of Nanocomposites with Oriented Fillers: Electric Field-Manipulation of Cellulose Whisker in Silicone Oil’, Smart Materials

  18. Development of Nonelectronic Part Cyclic Failure Rates

    DTIC Science & Technology

    1977-12-01

    Schilling, W. A., "The User-Oriented Connector," Microwave Journal, Octcber 1976 40. Schneider, C., "Military Relay Reliability," Bell Telephone...polyimide B Diallyl phthalate, melamine , -55 to 200 fluorosilicone, silicone rubber, polysulfone, epoxy resin C Polytetrafluoroethylene (teflon) -55 to 125...propagation, solid state sciences, microwave physics and electronic reliability, maintainabilitg andcompatibility. .,% -UT104, , 8. g z

  19. Stereodivergent catalytic doubly diastereoselective nitroaldol reactions using heterobimetallic complexes.

    PubMed

    Sohtome, Yoshihiro; Kato, Yuko; Handa, Shinya; Aoyama, Naohiro; Nagawa, Keita; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2008-06-05

    Stereodivergent construction of three contiguous stereocenters in catalytic doubly diastereoselective nitroaldol reactions of alpha-chiral aldehydes with nitroacetaldehyde dimethyl acetal using two types of heterobimetallic catalysts is described. A La-Li-BINOL (LLB) catalyst afforded anti,syn-nitroaldol products in >20:1-14:1 selectivity, and a Pd/La/Schiff base catalyst afforded complimentary syn,syn-nitroaldol products in 10:1-5:1 selectivity.

  20. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    PubMed

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Doubly Robust Additive Hazards Models to Estimate Effects of a Continuous Exposure on Survival.

    PubMed

    Wang, Yan; Lee, Mihye; Liu, Pengfei; Shi, Liuhua; Yu, Zhi; Abu Awad, Yara; Zanobetti, Antonella; Schwartz, Joel D

    2017-11-01

    The effect of an exposure on survival can be biased when the regression model is misspecified. Hazard difference is easier to use in risk assessment than hazard ratio and has a clearer interpretation in the assessment of effect modifications. We proposed two doubly robust additive hazards models to estimate the causal hazard difference of a continuous exposure on survival. The first model is an inverse probability-weighted additive hazards regression. The second model is an extension of the doubly robust estimator for binary exposures by categorizing the continuous exposure. We compared these with the marginal structural model and outcome regression with correct and incorrect model specifications using simulations. We applied doubly robust additive hazard models to the estimation of hazard difference of long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 microns) on survival using a large cohort of 13 million older adults residing in seven states of the Southeastern United States. We showed that the proposed approaches are doubly robust. We found that each 1 μg m increase in annual PM2.5 exposure was associated with a causal hazard difference in mortality of 8.0 × 10 (95% confidence interval 7.4 × 10, 8.7 × 10), which was modified by age, medical history, socioeconomic status, and urbanicity. The overall hazard difference translates to approximately 5.5 (5.1, 6.0) thousand deaths per year in the study population. The proposed approaches improve the robustness of the additive hazards model and produce a novel additive causal estimate of PM2.5 on survival and several additive effect modifications, including social inequality.

  2. Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods

    PubMed Central

    Jackson, Brian; Liba, Amir; Nelson, Jenny

    2014-01-01

    Recent reports of As concentrations in certain food and drinks have garnered public concern and led to a lowering of the US guideline maximum concentration for inorganic As in apple juice and proposed limits for As in rice products. In contrast Se is an essential micro-nutrient that can be limiting when Se-poor soils yield Se-poor food crops. Rare earth element (REE) doubly charged interferences on As and Se can be significant even when initial ICP-MS tuning minimizes doubly charged formation. We analyzed NIST 1547 (peach leaves) and 1515 (apple leaves), which contain high levels of REEs, by quadrupole ICP-MS with (He) collision mode, H2 reaction mode or triple quadrupole ICP-MS (ICP-QQQ) in mass-shift mode (O2 and O2/H2). Analysis by collision cell ICP-MS significantly over-estimated As and Se concentration due to REE doubly charged formation; mathematical correction increased the accuracy of analysis but is prone to error when analyte concentration and sensitivity is low and interferent is high. For Se, H2 reaction mode was effective in suppressing Gd2+ leading to accurate determination of Se in both SRMs without the need for mathematical correction. ICP-QQQ using mass-shift mode for As+ from m/z 75 to AsO+ at m/z 91 and Se+ from m/z 78 to SeO+ at m/z 94 alleviated doubly charged effects and resulted in accurate determination of As and Se in both SRMs without the need for correction equations. Zr and Mo isobars at 91 and 94 were shown to be effectively rejected by the MS/MS capability of the ICP-QQQ. PMID:25609851

  3. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    PubMed

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  4. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  5. Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.

    2018-05-01

    A one-dimensional surface relief with a 1.20  ±  0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.

  6. Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles

    PubMed Central

    Gumennik, Alexander; Levy, Etgar C.; Grena, Benjamin; Hou, Chong; Rein, Michael; Abouraddy, Ayman F.; Joannopoulos, John D.; Fink, Yoel

    2017-01-01

    Crystallization of microdroplets of molten alloys could, in principle, present a number of possible morphological outcomes, depending on the symmetry of the propagating solidification front and its velocity, such as axial or spherically symmetric species segregation. However, because of thermal or constitutional supercooling, resulting droplets often only display dendritic morphologies. Here we report on the crystallization of alloyed droplets of controlled micrometer dimensions comprising silicon and germanium, leading to a number of surprising outcomes. We first produce an array of silicon−germanium particles embedded in silica, through capillary breakup of an alloy-core silica-cladding fiber. Heating and subsequent controlled cooling of individual particles with a two-wavelength laser setup allows us to realize two different morphologies, the first being a silicon−germanium compositionally segregated Janus particle oriented with respect to the illumination axis and the second being a sphere made of dendrites of germanium in silicon. Gigapascal-level compressive stresses are measured within pure silicon solidified in silica as a direct consequence of volume-constrained solidification of a material undergoing anomalous expansion. The ability to generate microspheres with controlled morphology and unusual stresses could pave the way toward advanced integrated in-fiber electronic or optoelectronic devices. PMID:28642348

  7. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    DOE PAGES

    Gallmeier, F. X.; Iverson, E. B.; Lu, W.; ...

    2016-01-08

    Neutron transport simulation codes are an indispensable tool used for the design and construction of modern neutron scattering facilities and instrumentation. It has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modelled by the existing codes. Particularly, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4 and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential ingredients for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX codemore » to include a single-crystal neutron scattering model and neutron reflection/refraction physics. Furthermore, we have also generated silicon scattering kernels for single crystals of definable orientation with respect to an incoming neutron beam. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal s Bragg cut off at locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon/void layers. Finally the convoluted moderator experiments described by Iverson et al. were simulated and we find satisfactory agreement between the measurement and the results of simulations performed using the tools we have developed.« less

  8. Determination of helix orientations in a flexible DNA by multi-frequency EPR spectroscopy.

    PubMed

    Grytz, C M; Kazemi, S; Marko, A; Cekan, P; Güntert, P; Sigurdsson, S Th; Prisner, T F

    2017-11-15

    Distance measurements are performed between a pair of spin labels attached to nucleic acids using Pulsed Electron-Electron Double Resonance (PELDOR, also called DEER) spectroscopy which is a complementary tool to other structure determination methods in structural biology. The rigid spin label Ç, when incorporated pairwise into two helical parts of a nucleic acid molecule, allows the determination of both the mutual orientation and the distance between those labels, since Ç moves rigidly with the helix to which it is attached. We have developed a two-step protocol to investigate the conformational flexibility of flexible nucleic acid molecules by multi-frequency PELDOR. In the first step, a library with a broad collection of conformers, which are in agreement with topological constraints, NMR restraints and distances derived from PELDOR, was created. In the second step, a weighted structural ensemble of these conformers was chosen, such that it fits the multi-frequency PELDOR time traces of all doubly Ç-labelled samples simultaneously. This ensemble reflects the global structure and the conformational flexibility of the two-way DNA junction. We demonstrate this approach on a flexible bent DNA molecule, consisting of two short helical parts with a five adenine bulge at the center. The kink and twist motions between both helical parts were quantitatively determined and showed high flexibility, in agreement with a Förster Resonance Energy Transfer (FRET) study on a similar bent DNA motif. The approach presented here should be useful to describe the relative orientation of helical motifs and the conformational flexibility of nucleic acid structures, both alone and in complexes with proteins and other molecules.

  9. Quantifying the causal effects of 20mph zones on road casualties in London via doubly robust estimation.

    PubMed

    Li, Haojie; Graham, Daniel J

    2016-08-01

    This paper estimates the causal effect of 20mph zones on road casualties in London. Potential confounders in the key relationship of interest are included within outcome regression and propensity score models, and the models are then combined to form a doubly robust estimator. A total of 234 treated zones and 2844 potential control zones are included in the data sample. The propensity score model is used to select a viable control group which has common support in the covariate distributions. We compare the doubly robust estimates with those obtained using three other methods: inverse probability weighting, regression adjustment, and propensity score matching. The results indicate that 20mph zones have had a significant causal impact on road casualty reduction in both absolute and proportional terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis of γ-Phosphate-Labeled and Doubly Labeled Adenosine Triphosphate Analogs.

    PubMed

    Hacker, Stephan M; Welter, Moritz; Marx, Andreas

    2015-03-09

    This unit describes the synthesis of γ-phosphate-labeled and doubly labeled adenosine triphosphate (ATP) analogs and their characterization using the phosphodiesterase I from Crotalus adamanteus (snake venom phosphodiesterase; SVPD). In the key step of the synthesis, ATP or an ATP analog, bearing a linker containing a trifluoroacetamide group attached to the nucleoside, are modified with an azide-containing linker at the terminal phosphate using an alkylation reaction. Subsequently, different labels are introduced to the linkers by transformation of one functional group to an amine and coupling to an N-hydroxysuccinimide ester. Specifically, the Staudinger reaction of the azide is employed as a straightforward means to obtain an amine in the presence of various labels. Furthermore, the fluorescence characteristics of a fluorogenic, doubly labeled ATP analog are investigated following enzymatic cleavage by SVPD. Copyright © 2015 John Wiley & Sons, Inc.

  11. Contactless Determination of Electrical Conductivity of One-Dimensional Nanomaterials by Solution-Based Electro-orientation Spectroscopy

    DOE PAGES

    Akin, Cevat; Yi, Jingang; Feldman, Leonard C.; ...

    2015-05-05

    For nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical characterization methods are time-consuming, making the statistical survey of highly variable samples essentially impractical. Here, we demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in ac electric fields of different frequencies. In comparison with direct transport measurements by probe-based scanning tunneling microscopy shows that electro-orientation spectroscopy can quantitatively measure nanowire conductivity over a 5-order-of-magnitude range, 10–5–1 Ω–1 m–1 (corresponding to resistivitiesmore » in the range 102–107 Ω·cm). With this method, we statistically characterize the conductivity of a variety of nanowires and find significant variability in silicon nanowires grown by metal-assisted chemical etching from the same wafer. We also find that the active carrier concentration of n-type silicon nanowires is greatly reduced by surface traps and that surface passivation increases the effective conductivity by an order of magnitude. Moreover, this simple method makes electrical characterization of insulating and semiconducting 1D nanomaterials far more efficient and accessible to more researchers than current approaches. Electro-orientation spectroscopy also has the potential to be integrated with other solution-based methods for the high-throughput sorting and manipulation of 1D nanomaterials for postgrowth device assembly.« less

  12. Microstructured Surface Arrays for Injection of Zebrafish Larvae

    PubMed Central

    Irimia, Daniel

    2017-01-01

    Abstract Microinjection of zebrafish larvae is an essential technique for delivery of treatments, dyes, microbes, and xenotransplantation into various tissues. Although a number of casts are available to orient embryos at the single-cell stage, no device has been specifically designed to position hatching-stage larvae for microinjection of different tissues. In this study, we present a reusable silicone device consisting of arrayed microstructures, designed to immobilize 2 days postfertilization larvae in lateral, ventral, and dorsal orientations, while providing maximal access to target sites for microinjection. Injection of rhodamine dextran was used to demonstrate the utility of this device for precise microinjection of multiple anatomical targets. PMID:28151697

  13. Fluorination of silicone rubber by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Fielding, Jennifer Chase

    Plasma polymerized fluorocarbon (PPFC) films were deposited onto various silicone rubber substrates, including O-rings, to decrease oil uptake. Depositions were performed using a radio frequency (rf)-powered plasma reactor and various fluorocarbon monomers, such as C2F6, C2F 5H, C3F6, and 1H,1H,2H-perfluoro-1-dodecene. PPFC films which were most promising for inhibiting oil uptake were deposited with 1H,1H,2H-perfluoro-1-dodecene, and were composed predominantly of perfluoromethylene (CF2) species. These films displayed low critical surface energies (as low as 2.7 mJ/m2), and high contact angles with oil (84°), which were correlated with the amount of CF2 species present in the film. For the films with the highest degree of CF2 (up to 67%), CF2 chains may have been oriented slightly perpendicular to the substrate and terminated by CF3 species. Adhesion of the PPFC films directly to silicone rubber was found to be poor. However, when a plasma polymerized hydrocarbon interlayer was deposited on the silicone rubber prior to the fluorocarbon films, adhesion was excellent. O-rings coated with multilayer fluorocarbon films showed 2.6% oil uptake after soaking in oil for 100 hrs at 100°C. Due to variability in data, and the low quality of the industrial grade silicone rubber, the oil uptake mechanism was determined to be from oil flowing through flaws in the film due to defects within the substrate, not from generalized diffusion through the film. This mechanism was confirmed using higher quality silicone rubber, which showed little or no oil diffusion. Therefore, this film may perform well as an oil-repelling barrier when deposited on a high quality silicone rubber.

  14. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  15. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  16. Effect of heat treatment on phase composition and crystal structure of thin WSi2 films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Biryukov, Y. P.; Dostanko, A. P.; Maltsev, A. A.; Shakhlevich, G. M.

    1984-10-01

    An experimental study of WSi2 films on silicon substrates with either 111 or 100 orientation was made, for the purpose of determining the effect of annealing by heat treatment on their phase composition and crystal structure. Films of 0.2 micron thickness were deposited at a rate of 0.5 nm/s on a silicon surface which was predecontaminated of SiO2 layers and adsorbate atoms by ion sputtering in one vacuum cycle. Deposition was by condensation, with the substrate held at various temperatures from 390 to 500 C, and then annealed in an argon atmosphere at various temperatures from 700 to 1000 C for 30 min. Subsequent phase analysis at room temperature was performed with a DRON-2 X-ray diffractometer, using a CuK (sub alpha)-radiation source and covering the 20 = 10 to 130 deg range of angles by the Debye-Sherer method, while the surface morphology was examined under an electron microscope.

  17. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    PubMed

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  18. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  19. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  20. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.

    PubMed

    Wen, C-Y; Reuter, M C; Tersoff, J; Stach, E A; Ross, F M

    2010-02-10

    We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.

  1. 30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.

    PubMed

    Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2011-04-11

    We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America

  2. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  3. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  4. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  5. A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications

    DOE PAGES

    Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...

    2015-03-09

    A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less

  6. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  7. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE PAGES

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip; ...

    2018-03-29

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  8. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  9. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    NASA Astrophysics Data System (ADS)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-07-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  10. Electrically detected crystal orientation dependent spin-Rabi beat oscillation of c-Si(111)/SiO2 interface states

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; McCamey, Dane R.; Boehme, Christoph

    2011-12-01

    Electrically detected spin-Rabi beat oscillation of pairs of paramagnetic near interface states at the phosphorous doped (1016 cm-3) Si(111)/SiO2 interface is reported. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intrapair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. The experiments confirm the presence of the previously reported 31P-Pb transition and provide direct experimental evidence of the previously hypothesized Pb-E' center (a near interface SiO2 bulk state) transition.

  11. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    NASA Astrophysics Data System (ADS)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  12. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  13. Is there a common orientational order for the liquid phase of tetrahedral molecules?

    PubMed

    Rey, Rossend

    2009-08-14

    The title question is addressed with molecular dynamics simulations for a broad set of molecules: methane (CH4), neopentane (C(CH3)4), carbon tetrafluoride (CF4), carbon tetrachloride (CCl4), silicon tetrachloride (SiCl4), vanadium tetrachloride (VCl4), tin tetrachloride (SnCl4), carbon tetrabromide (CBr4), and tin tetraiodide (SnI4). In all cases the sequence of most populated relative orientations, for increasing distances, is found to be identical: The closest distances correspond to face-to-face followed by a dominant role of edge-to-face, while for larger distances the main configuration is edge-to-edge. The corner-to-face configuration plays an almost negligible role. The range of orientational order is also similar, with remnants of orientational correlation discernible up to the fourth solvation shell. The equivalence does not only hold in the qualitative terms just stated but is also quantitative to a large extent once the center-center distance is properly scaled.

  14. Is there a common orientational order for the liquid phase of tetrahedral molecules?

    NASA Astrophysics Data System (ADS)

    Rey, Rossend

    2009-08-01

    The title question is addressed with molecular dynamics simulations for a broad set of molecules: methane (CH4), neopentane (C(CH3)4), carbon tetrafluoride (CF4), carbon tetrachloride (CCl4), silicon tetrachloride (SiCl4), vanadium tetrachloride (VCl4), tin tetrachloride (SnCl4), carbon tetrabromide (CBr4), and tin tetraiodide (SnI4). In all cases the sequence of most populated relative orientations, for increasing distances, is found to be identical: The closest distances correspond to face-to-face followed by a dominant role of edge-to-face, while for larger distances the main configuration is edge-to-edge. The corner-to-face configuration plays an almost negligible role. The range of orientational order is also similar, with remnants of orientational correlation discernible up to the fourth solvation shell. The equivalence does not only hold in the qualitative terms just stated but is also quantitative to a large extent once the center-center distance is properly scaled.

  15. Surface engineering with functional random copolymers for nanolithographic applications

    NASA Astrophysics Data System (ADS)

    Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Lupi, Federico Ferrarese; Giammaria, Tommaso Jacopo; Seguini, Gabriele; Perego, Michele; Laus, Michele

    2016-05-01

    Hydroxyl-terminated P(S-r-MMA) random copolymers with molecular weight ranging from 1.7 to 69 kg/mol and a styrene unit fraction of 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of domains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film.

  16. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  17. 3D-ICs created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-03-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3D-ICs) exists, distinct from through silicon via centric and monolithic 3D-ICs. Furthermore, it is possible to create devices that are 3D at the device level (i.e. with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of 2D planar device architecture enables a wide range of new interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  18. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  19. Sub-diffraction Laser Synthesis of Silicon Nanowires

    PubMed Central

    Mitchell, James I.; Zhou, Nan; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2014-01-01

    We demonstrate synthesis of silicon nanowires of tens of nanometers via laser induced chemical vapor deposition. These nanowires with diameters as small as 60 nm are produced by the interference between incident laser radiation and surface scattered radiation within a diffraction limited spot, which causes spatially confined, periodic heating needed for high resolution chemical vapor deposition. By controlling the intensity and polarization direction of the incident radiation, multiple parallel nanowires can be simultaneously synthesized. The nanowires are produced on a dielectric substrate with controlled diameter, length, orientation, and the possibility of in-situ doping, and therefore are ready for device fabrication. Our method offers rapid one-step fabrication of nano-materials and devices unobtainable with previous CVD methods. PMID:24469704

  20. Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.

    PubMed

    Hartwig, William T; Sammakia, Tarek

    2017-01-06

    The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.

  1. Strong and radiative decays of the doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Xiao, Li-Ye; Wang, Kai-Lei; Lü, Qi-Fang; Zhong, Xian-Hui; Zhu, Shi-Lin

    2017-11-01

    We have systematically studied the strong and radiative decays of the low-lying 1 P -wave doubly charmed baryons. Some interesting observations are: (i) The states Ξcc * and Ωcc * with JP=3 /2+ have a fairly large decay rate into the Ξc cγ and Ωc cγ channels with a width ˜15 and ˜7 keV , respectively. (ii) The lowest lying excited doubly charmed baryons are dominated by the 1 P ρ mode excitations, which should be quite narrow states. They decay into the ground state with JP=1 /2+ through the radiative transitions with a significant ratio. (iii) The total decay widths of the first orbital excitations of λ mode (1 Pλ states with JP=1 /2-, 3 /2-, 5 /2-) are about Γ ˜100 MeV , and the ratio between the radiative and hadronic decay widths is about O (10-3).

  2. All possible tripartitions of {}(236) 236U isotope in collinear configuration

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Krishnan, Sreejith; Joseph, Jayesh George

    2018-07-01

    Using the recently proposed unified ternary fission model (UTFM), the tripartition of ^{236}U isotope was studied for all possible fragmentations, in which the interacting potential barrier is taken as the sum of the Coulomb and proximity potentials with fragments in collinear configuration. The highest yield is obtained for the fragmentation ^{48}Ca{+}^{58}Ti{+}^{130}Sn and next highest yield is found for ^{58}Cr{+}^{46}Ar{+}^{132}Sn, which stress the importance of doubly magic or near doubly magic nuclei in the tripartition of ^{236}U isotope. The formation of ^{68}Ni and ^{70}Ni as the edge fragments linking the doubly magic nucleus ^{132}Sn by the isotope of Si is in good agreement with experimental and theoretical studies, in the collinear cluster tripartition of ^{236}U isotope which reveals the reliability of our model (UTFM) in ternary fission.

  3. The Born-Infeld vortices induced from a generalized Higgs mechanism.

    PubMed

    Han, Xiaosen

    2016-04-01

    We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a | ϕ | 4 - or | ϕ | 6 -type. For the | ϕ | 4 -model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the | ϕ | 6 -model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the | ϕ | 6 -model are also established.

  4. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  5. The Born–Infeld vortices induced from a generalized Higgs mechanism

    PubMed Central

    2016-01-01

    We construct self-dual Born–Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a |ϕ|4- or |ϕ|6-type. For the |ϕ|4-model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born–Infeld parameter, and the size of the periodic lattice domain. For the |ϕ|6-model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born–Infeld–Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the |ϕ|6-model are also established. PMID:27274694

  6. Entropy production of doubly stochastic quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less

  7. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  8. Neural network based control of Doubly Fed Induction Generator in wind power generation

    NASA Astrophysics Data System (ADS)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  9. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Wang, Aiwen; Chen, Hongyan; Hao, Yuxin; Zhang, Wei

    2018-06-01

    Free vibration and static bending of functionally graded (FG) graphene nanoplatelet (GPL) reinforced composite doubly-curved shallow shells with three distinguished distributions are analyzed. Material properties with gradient variation in the thickness aspect are evaluated by the modified Halpin-Tsai model. Mathematical model of the simply supported doubly-curved shallow shells rests upon Hamilton Principle and a higher order shear deformation theory (HSDT). The free vibration frequencies and bending deflections are gained by taking into account Navier technique. The agreement between the obtained results and ANSYS as well as the prior results in the open literature verifies the accuracy of the theory in this article. Further, parametric studies are accomplished to highlight the significant influence of GPL distribution patterns and weight fraction, stratification number, dimensions of GPLs and shells on the mechanical behavior of the system.

  10. Iron Silicide Formation by Precipitation in a Silicon Bicrystal

    NASA Astrophysics Data System (ADS)

    Portier, X.; Ihlal, A.; Rizk, R.

    1997-05-01

    Segregation and precipitation of iron in a = 25 silicon bicrystal have been carefully investigated by means of high resolution electron microscopy and energy dispersive X-ray analyses, in combination with capacitance and electron beam induced current measurements. After intentional incorporation of iron in the bicrystal by a simple heating procedure, it was shown that a non-equilibrium segregation of iron has occurred after rapid cooling whereas iron precipitates have been produced upon slow cooling. The silicides are formed mainly at the grain boundary area and they were found to belong to the -FeSi cubic or -FeSi2 tetragonal phases. Each precipitate is simply oriented with respect to one of the two grains without any preference between them. The orientation relationships were found in perfect agreement with those observed for the corresponding iron silicides that are epitaxially grown on oriented silicon substrates. Barrier and recombinative effects on the contaminated (1200 °C) and slowly cooled samples have been detected. These effects have been associated with the formation of iron silicides at the grain boundary. La ségrégation ainsi que la précipitation de siliciures de fer au joint de grains = 25 de silicium ont été etudiées en utilisant la dispersion d'énergie des électrons, la microscopie électronique en transmission haute résolution ainsi que des mesures électriques capacitives et des mesures de courants induits par faisceau d'électrons. A la suite d'une contamination volontaire par diffusion thermique du fer au sein du bicristal, nous avons montré qu'une ségrégation hors-équilibre d'atomes de fer est obtenue après un refroidissement rapide alors qu'un refroidissement lent a pour conséquence la formation de siliciures de fer. Ces petits cristaux de siliciures croissent de préférence au niveau du joint de grains et ils ont pour phase, la phase cubique -FeSi ou la phase quadratique α-FeSi2. Chaque précipité est orienté simplement par rapport à l'un ou à l'autre des deux grains et leurs relations d'orientation coincident avec celles observées pour ces mêmes siliciures épitaxiés sur des surfaces de silicium. Les échantillons contaminés (1200 °C) et refroidis lentement présentent des barrières de potentiel et des effets recombinants. Ces activités électriques ont été associées à la présence de siliciures au niveau du joint.

  11. Literacy (Digital) and the Promise of Mobile Devices for Education of the Underpriveleged Students of Silicon Valley, California

    ERIC Educational Resources Information Center

    Gonzalez, Michael

    2014-01-01

    The introduction of the Internet and its hyperlinked content made easily accessible with portable digital devices like smart phones and tablets, posed challenges to the traditional linear and print-oriented notions of what it means to read and write. Now that these traditional notions of read and write literacy have been breached by these…

  12. Alpha decay hindrance factors and reflection asymmetry in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.; Bossinga, B.B.

    1991-07-01

    All available hindrance factors of alpha transitions to low-lying negative-parity states in doubly even nuclei, to odd-{ital A} parity doublets and to doubly odd parity doublet bands, are used to study the systematics of reflection asymmetry in the {ital A}{similar to}218--230 region. Special attention is given to the polarization effect of the odd particle in increasing reflection asymmetry and therefore decreasing hindrance factors to the opposite parity states of octupole bands.

  13. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  14. Highly conducting and preferred <220> oriented boron doped nc–Si films for window layers in nc–Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Praloy; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B{sub 2}H{sub 6}) as the dopant gas. High magnitudeof electrical conductivity (~10{sup 2} S cm{sup −1}) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc–Si solar cells.

  15. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4 . 5H2O).

    PubMed

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  16. Preparation and characterization of oriented silica nanowires

    NASA Astrophysics Data System (ADS)

    Sun, S. H.; Meng, G. W.; Zhang, M. G.; Tian, Y. T.; Xie, T.; Zhang, L. D.

    2003-11-01

    Large-scale of oriented closely packed silica nanowire bunches have been synthesized by using large size (1-10 μm in diameter), low melting point tin droplets as catalyst on silicon wafers at 980 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that the amorphous silica nanowires have lengths of 50-100 μm and diameters of 100-200 nm. Unlike any previous observed results using high melting point metal (such as gold and iron) as catalyst, the Sn catalyst growth exhibits many interesting phenomena. Each Sn ball can simultaneously catalyze the growth of many silica nanowires, which is quite different from the conventional vapor-liquid-solid process.

  17. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  18. Vanadium dioxide thin films prepared on silicon by low temperature MBE growth and ex-situ annealing

    NASA Astrophysics Data System (ADS)

    Homm, Pia; van Bilzen, Bart; Menghini, Mariela; Locquet, Jean-Pierre; Ivanova, Todora; Sanchez, Luis; Sanchis, Pablo

    Vanadium dioxide (VO2) is a material that shows an insulator to metal transition (IMT) near room temperature. This property can be exploited for applications in field effect devices, electro-optical switches and nonlinear circuit components. We have prepared VO2 thin films on silicon wafers by combining a low temperature MBE growth with an ex-situ annealing at high temperature. We investigated the structural, electrical and optical characteristics of films with thicknesses ranging from 10 to 100 nm. We have also studied the influence of the substrate cleaning. The films grown with our method are polycrystalline with a preferred orientation in the (011) direction of the monoclinic phase. For the films produced on silicon with a native oxide, an IMT at around 75 °C is observed. The magnitude of the resistance change across the IMT decreases with thickness while the refractive index at room temperature corresponds with values reported in the literature for thin films. The successful growth of VO2 films on silicon with good electrical and optical properties is an important step towards the integration of VO2 in novel devices. The authors acknowledge financial support from the FWO project G052010N10 and EU-FP7 SITOGA project. PH acknowledges support from Becas Chile - CONICYT.

  19. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  20. Bread board float zone experiment system for high purity silicon

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1982-01-01

    A breadboard float zone experimental system has been established at Westech Systems for use by NASA in the float zone experimental area. A used zoner of suitable size and flexibility was acquired and installed with the necessary utilities. Repairs, alignments and modifications were made to provide for dislocation free zoning of silicon. The zoner is capable of studying process parameters used in growing silicon in gravity and is flexible to allow trying of new features that will test concepts of zoning in microgravity. Characterizing the state of the art molten zones of a growing silicon crystal will establish the data base against which improvements of zoning in gravity or growing in microgravity can be compared. 25 mm diameter was chosen as the reference size, since growth in microgravity will be at that diameter or smaller for about the next 6 years. Dislocation free crystals were growtn in the 100 and 111 orientations, using a wide set of growth conditions. The zone shape at one set of conditions was measured, by simultaneously aluminum doping and freezing the zone, lengthwise slabbing and delineating by etching. The whole set of crystals, grown under various conditions, were slabbed, polished and striation etched, revealing the growth interface shape and the periodic and aperiodic natures of the striations.

  1. A new robust control scheme using second order sliding mode and fuzzy logic of a DFIM supplied by two five-level SVPWM inverters

    NASA Astrophysics Data System (ADS)

    Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj

    2017-02-01

    Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.

  2. The Fold Analysis Challenge: A virtual globe-based educational resource

    NASA Astrophysics Data System (ADS)

    De Paor, Declan G.; Dordevic, Mladen M.; Karabinos, Paul; Tewksbury, Barbara J.; Whitmeyer, Steven J.

    2016-04-01

    We present an undergraduate structural geology laboratory exercise using the Google Earth virtual globe with COLLADA models, optionally including an interactive stereographic projection and JavaScript controls. The learning resource challenges students to identify bedding traces and estimate bedding orientation at several locations on a fold, to fit the fold axis and axial plane to stereographic projection data, and to fit a doubly-plunging fold model to the large-scale structure. The chosen fold is the Sheep Mountain Anticline, a Laramide uplift in the Big Horn Basin of Wyoming. We take an education research-based approach, guiding students through three levels of difficulty. The exercise aims to counter common student misconceptions and stumbling blocks regarding penetrative structures. It can be used in preparation for an in-person field trip, for post-trip reinforcement, or as a virtual field experience in an online-only course. Our KML scripts can be easily transferred to other fold structures around the globe.

  3. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  4. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces.

    PubMed

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-02

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  5. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  6. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  7. Interstellar PAH Emission in the 11-14 micron Region: New Insights and a Tracer of Ionized PAHs

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHs) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For non-adjacent and doubly-adjacent CH groups, the shift is pronounced and consistently toward higher frequencies. The non-adjacent modes are blueshifted by an average of 27 per cm and the doubly-adjacent modes by an average of 17 per cm. For triply- and quadruply-adjacent CH out-of-plane modes the ionization shifts are more erratic and typically more modest. As a result of these ionization shifts, both the non-adjacent and doubly-adjacent CH out-of-plane modes move out of the regions classically associated with their respective vibrations in neutral PAHs. The doubly-adjacent modes of ionized PAHs tend to fall into the frequency range traditionally associated with the non-adjacent modes, while the non-adjacent modes are shifted to frequencies above those normally attributed to out-of-plane bending vibrations. Consequently, the origin of the interstellar infrared emission feature near 11.2 microns, traditionally attributed to the out-of-plane bending of non-adjacent CH groups on PAHs is rendered ambiguous. Instead, this feature likely reflects contributions from both non-adjacent CH units in neutral PAHs and doubly-adjacent CH units in PAH cations, the dominant charge state in the most energetic emission regions. This greatly relieves the structural constraints placed on the interstellar PAH population by the dominance of the 11.2 micron band in this region and eliminates the necessity to invoke extensive dehydrogenation of the emitting species. Furthermore, these results indicate that the emission between 926 and 904 per cm (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the non-adjacent CH out-of-plane bending modes of moderately-sized (fewer than 50 carbon atom) PAH cations making this emission an unequivocal tracer of ionized interstellar PAHs.

  8. Investigations of nanodimensional Al{sup 2}O{sup 3} films deposited by ion-plasma sputtering onto porous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Lenshin, A. S.; Goloshchapov, D. L.

    2015-07-15

    The purpose of this study is the deposition of nanodimensional Al{sup 2}O{sup 3} films on the surface of nanoporous silicon and also fundamental investigations of the structural, optical, and morphological properties of these materials. Analyzing the results obtained here, it is possible to state that ultrathin nanostructured Al{sup 2}O{sup 3} films can be obtained in the form of threads oriented in one direction and located at a distance of 300–500 nm from each other using ion-plasma sputtering on a layer of porous silicon. Such a mechanism of aluminum-oxide growth is conditioned by the crystallographic orientation of the initial single-crystalline siliconmore » wafer used to fabricate the porous layer. The results of optical spectroscopy show that the Al{sup 2}O{sup 3}/por-Si/Si(111) heterophase structure perfectly transmits electromagnetic radiation in the range of 190–900 nm. The maximum in the dispersion of the refractive index obtained for the Al{sup 2}O{sup 3} film grown on por-Si coincides with the optical-absorption edge for aluminum oxide and is located in the region of ∼5.60 eV. This fact is confirmed by the results of calculations of the optical-absorption spectrum of the Al{sup 2}O{sup 3}/por-Si/Si(lll) heterophase structure. The Al{sup 2}O{sup 3} films formed on the heterophase-structure surface in the form of nanodimensional structured threads can serve as channels of optical conduction and can be rather efficiently introduced into conventional technologies, which are of great importance in microelectronics and optoelectronics.« less

  9. Polarization switching behavior of one-axis-oriented lead zirconate titanate films fabricated on metal oxide nanosheet layer

    NASA Astrophysics Data System (ADS)

    Uchida, Hiroshi; Ichinose, Daichi; Shiraishi, Takahisa; Shima, Hiromi; Kiguchi, Takanori; Akama, Akihiko; Nishida, Ken; Konno, Toyohiko J.; Funakubo, Hiroshi

    2017-10-01

    For the application of electronic devices using ferroelectric/piezoelectric components, one-axis-oriented tetragonal Pb(Zr0.40Ti0.60)O3 (PZT) films with thicknesses of up to 1 µm were fabricated with the aid of a Ca2Nb3O10 nanosheet (ns-CN) template for preferential crystal growth for evaluating their polarization switching behavior. The ns-CN template was supported on ubiquitous silicon (Si) wafer by a simple dip coating technique, followed by the repetitive chemical solution deposition (CSD) of PZT films. The PZT films were grown successfully with preferential crystal orientation of PZT(100) up to the thickness of 1020 nm. The (100)-oriented PZT film with ∼1 µm thickness exhibited unique polarization behavior of ferroelectric polarization, i.e., a marked increase in remanent polarization (P r) up to approximately 40 µC/cm2 induced by domain switching under high electric field, whereas the film with a lower thickness showed only a lower P r of approximately 11 µC/cm2 even under a high electric field. The ferroelectric property of the (100)-oriented PZT film after domain switching on ns-CN/Pt/Si can be comparable to those of (001)/(100)-oriented epitaxial PZT films.

  10. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  11. Device-level and module-level three-dimensional integrated circuits created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-07-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3-D-ICs) exists, distinct from through-silicon-via-centric and monolithic 3-D-ICs. Furthermore, it is possible to create devices that are 3-D "at the device level" (i.e., with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of two-dimensional planar device architecture enables a wide range of interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  12. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs.

    PubMed

    Secret, Emilie; Smith, Kevin; Dubljevic, Valentina; Moore, Eli; Macardle, Peter; Delalat, Bahman; Rogers, Mary-Louise; Johns, Terrance G; Durand, Jean-Olivier; Cunin, Frédérique; Voelcker, Nicolas H

    2013-05-01

    We describe the preparation of biodegradable porous silicon nanoparticles (pSiNP) functionalized with cancer cell targeting antibodies and loaded with the hydrophobic anti-cancer drug camptothecin. Orientated immobilization of the antibody on the pSiNP is achieved using novel semicarbazide based bioconjugate chemistry. To demonstrate the generality of this targeting approach, the three antibodies MLR2, mAb528 and Rituximab are used, which target neuroblastoma, glioblastoma and B lymphoma cells, respectively. Successful targeting is demonstrated by means of flow cytometry and immunocytochemistry both with cell lines and primary cells. Cell viability assays after incubation with pSiNPs show selective killing of cells expressing the receptor corresponding to the antibody attached on the pSiNP. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon

    NASA Astrophysics Data System (ADS)

    Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko

    2017-11-01

    We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.

  14. Fault ride-through enhancement using an enhanced field oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults.

    PubMed

    Ananth, D V N; Nagesh Kumar, G V

    2016-05-01

    With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Further improvements in conducting and transparent properties of ZnO:Ga films with perpetual c-axis orientation: Materials optimization and application in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2017-07-01

    Technologically appropriate device friendly ZnO:Ga films have been prepared at a low growth temperature (100 °C) by changing the RF power (P) applied to the magnetron plasma. Structurally preferred c-axis orientation of the ZnO:Ga network has been attained with I〈002〉/I〈103〉 > 5. The c-axis oriented grains of wurtzite ZnO:Ga grows geometrically and settles in tangentially, providing favorable conduction path for stacked layer devices. Nano-sheet like structures produced at the surface are interconnected and provide conducting path across the surface; however, those accommodate a lot of pores in between that help better light trapping and reduce the reflection loss. The optimized ZnO:Ga thin film prepared at RF power of 200 W has 〈002〉 oriented grains of average size ∼10 nm and exhibits a very high conductivity ∼200 S cm-1 and elevated transmission (∼93% at 500 nm) in the visible range. The optimized ZnO:Ga film has been used as the transparent conducting oxide (TCO) window layer of RF-PECVD grown silicon thin film solar cells in glass/TCO/p-i-n-Si/Al configuration. The characteristics of identically prepared p-i-n-Si solar cells are compared by replacing presently developed ZnO:Ga TCO with the best quality U-type SnO2 coated Asahi glass substrates. The ZnO:Ga coated glass substrate offers a higher open circuit voltage (VOC) and the higher fill factor (FF). The ZnO:Ga film being more stable in hydrogen plasma than its SnO2 counterpart, maintains a high transparency to the solar radiation and improves the VOC, while reduced diffusion of Zn across the p-layer creates less defects at the p-i interface in Si:H cells and thereby, increases the FF. Nearly identical conversion efficiency is preserved for both TCO substrates. Excellent c-axis orientation even at low growth temperature promises improved device performance by extended parametric optimization.

  16. Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.

    DTIC Science & Technology

    four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted

  17. Isolation of homoleptic platinum oxyanionic complexes with doubly protonated diazacrown cation

    NASA Astrophysics Data System (ADS)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Korenev, Sergey

    2017-02-01

    Doubly protonated diazacrown ether cation (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane DCH22+) was used for the efficient isolation of the homoleptic platinum complexes [Pt(NO3)6]2- and [Pt(C2O4)2]2- to crystalline solid phases from solutions containing mixtures of related platinum complexes. DCH22+ molecules in nitric acid solution were shown to prevent the condensation of mononuclear [Pt(H2O)n(NO3)6-n]n-2 species.

  18. Vortex motion in doubly connected domains

    NASA Astrophysics Data System (ADS)

    Zannetti, L.; Gallizio, F.; Ottino, G. M.

    The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.

  19. Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Somogyi, Gábor; Trócsányi, Zoltán

    2013-06-01

    In the context of a subtraction method for jet cross sections at NNLO accuracy in the strong coupling, we perform the integration over the two-particle factorised phase space of the collinear-type contributions to the doubly unresolved counterterms. We present the final result as a convolution in colour space of the Born cross section and of an insertion operator, which is written in terms of master integrals that we expand in the dimensional regularisation parameter.

  20. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  1. Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Greene, Brian Joseph

    Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved. For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.

  2. Comparison of hadron shower data in the PAMELA experiment with Geant 4 simulations

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Dunaeva, O. A.; Bogomolov, Yu V.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.

    2017-01-01

    The sampling imaging electromagnetic calorimeter of ≈ 16.3 radiation lengths and ≈ 0.6 nuclear interaction length designed and constructed by the PAMELA collaboration as a part of the large magnetic spectrometer PAMELA. Calorimeter consists of 44 single-sided silicon sensor planes interleaved with 22 plates of tungsten absorber (thickness of each tungsten layer 0.26 cm). Silicon planes are composed of a 3 × 3 matrix of silicon detectors, each segmented into 32 read-out strips with a pitch of 2.4 mm. The orientation of the strips of two consecutive layers is orthogonal and therefore provides two-dimensional spatial information. Due to the high granularity, the development of hadronic showers can be study with a good precision. In this work a Monte Carlo simulations (based on Geant4) performed using different available models, and including detector and physical effects, compared with the experimental data obtained on the near Earth orbit. Response of the PAMELA calorimeter to hadronic showers investigated including total energy release in calorimeter and transverse shower profile characteristics.

  3. Alignment of the CMS Tracker: Latest Results from LHC Run-II

    NASA Astrophysics Data System (ADS)

    Mittag, Gregor; CMS Collaboration

    2017-10-01

    The all-silicon design of the tracking system of the CMS experiment provides excellent measurements of charged-particle tracks and an efficient tagging of jets. Conditions of the CMS tracker changed repeatedly during the 2015/2016 shutdown and the 2016 data-taking period. Still the true position and orientation of each of the 15 148 silicon strip and 1440 silicon pixel modules need to be known with high precision for all intervals. The alignment constants also need to be promptly re-adjusted each time the state of the CMS magnet is changed between 0T and 3.8 T. Latest Run-II results of the CMS tracker alignment and resolution performance are presented, which are obtained using several millions of reconstructed tracks from collision and cosmic-ray data of 2016. The geometries and the resulting performance of physics observables are carefully validated. In addition to the offline alignment, an online procedure has been put in place which continuously monitors movements of the pixel high-level structures and triggers updates of the alignment constants if certain thresholds are exceeded.

  4. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  5. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  6. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.

    PubMed

    Ren, Jian-Guo; Wang, Chundong; Wu, Qi-Hui; Liu, Xiang; Yang, Yang; He, Lifang; Zhang, Wenjun

    2014-03-21

    Toward the increasing demands of portable energy storage and electric vehicle applications, silicon has been emerging as a promising anode material for lithium-ion batteries (LIBs) owing to its high specific capacity. However, serious pulverization of bulk silicon during cycling limits its cycle life. Herein, we report a novel hierarchical Si nanowire (Si NW)-reduced graphene oxide (rGO) composite fabricated using a solvothermal method followed by a chemical vapor deposition process. In the composite, the uniform-sized [111]-oriented Si NWs are well dispersed on the rGO surface and in between rGO sheets. The flexible rGO enables us to maintain the structural integrity and to provide a continuous conductive network of the electrode, which results in over 100 cycles serving as an anode in half cells at a high lithium storage capacity of 2300 mA h g(-1). Due to its [111] growth direction and the large contact area with rGO, the Si NWs in the composite show substantially enhanced reaction kinetics compared with other Si NWs or Si particles.

  7. Silicon Carbide membranes as substrate for Synchrotron measurements

    NASA Astrophysics Data System (ADS)

    Altissimo, M.; Iacopi, A.; Hold, L.; Matruglio, A.; Zucchiatti, P.; Vaccari, L.; Bedolla, D. E.; Ulloa Severino, L.; Parisse, P.; Gianoncelli, A.

    2018-05-01

    Silicon Nitride (SiN) membranes have long been the substrate of choice for many different synchrotron techniques at very different wavelengths (from IR to hard X-rays), due to their ease of production, relative robustness even in films <200 nm in thickness, and compatibility with standard microfabrication techniques. Here we present a set of data referring to custom-made Silicon Carbide (SiC) windows. We measured SiC surface roughness, mechanical robustness and membrane transmission both at IR and soft X-rays wavelengths, and compared the data with standard Si3N4, acquired in the same conditions. Further, we grew HEK293T cells both on Si3N4 and SiC membranes, and analysed them with IR and soft X-ray microscopy. Our data demonstrates how SiC is an excellent choice as membrane material for synchrotron measurements, since it shows higher transmission and higher robustness as compared to Si3N4 of the same thickness, and an improved compatibility for cell culturing, allowing to postulate their use also for bio-oriented research.

  8. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  9. Reflection Properties of Scarabaeidae

    DTIC Science & Technology

    2005-08-01

    coated silicon membrane beam splitters for the division-of-amplitude photopolarimeter (DOAP),” presented at the OSA Annual Meeting, October 2, 2002. SPIE Vol. 5888, Polarization Science and Remote Sensing II ...measures spectral polarization properties of materials in transmission and reflection has been previously designed , patented 10 , and described 11 . The...may be generalized to compensate for systematic errors that result when orientation misalignment and non -ideal retarders are used. If the

  10. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.

  11. Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Li, Fangjie; Li, Huigai; Huang, Di; Zheng, Shaobo; You, Jinglin

    2018-05-01

    This study investigates the mechanism of MnS precipitation on Al2O3-SiO2 inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized Al2O3-SiO2 inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the Al2O3-rich regions of the Al2O3-SiO2 inclusions; this can be explained by the high lattice disregistry between MnS and Al2O3.

  12. Energy expenditure in space flight (doubly labelled water method) (8-IML-1)

    NASA Technical Reports Server (NTRS)

    Parsons, Howard G.

    1992-01-01

    The objective of the Energy Expenditure in Space Flight (ESS) experiment is to demonstrate and evaluate the doubly labeled water method of measuring the energy expended by crew members during approximately 7 days in microgravity. The doubly labeled water technique determines carbon dioxide production which is then used to calculate energy expenditure. The method relies on the equilibrium between oxygen in respiratory carbon dioxide and oxygen in body water. Because of this equilibrium, the kinetic of water turnover and respiration are interdependent. Under normal conditions, man contains small but significant amounts of deuterium and oxygen 18. Deuterium is eliminated from the body as water while oxygen 18 is eliminated as water and carbon dioxide. The difference in the turnover rates in the two isotopes is proportional to the carbon dioxide production. Deliberately enriching the total body water with both of these isotopes allows the isotope turnovers to be accurately measured in urine, plasma, or saliva samples. The samples are taken to the laboratory for analysis using an ion-ratio spectrometer.

  13. Determination of energy expenditure during heavy exercise, normal daily activity, and sleep using the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, T.P.; Hoyt, R.W.; Settle, R.G.

    1987-03-01

    Energy expenditure of four subjects was measured by the doubly-labelled-water (/sup 2/H/sub 2/ 18O) method to determine if energy expenditure could be determined over short periods. Three subjects were studied while they performed 8 h of heavy exercise in a laboratory environment. Urine and blood samples were taken before and after exercise. Estimated energy expended during 8 h of high-intensity exercise for three subjects was 757 +/- 118 kcal/h by the doubly-labelled-water method using urine and a two-point calculation, which compared favorably with 735 +/- 82 kcal/h obtained by respiratory gas exchange. For the fourth subject, daytime, nighttime, and dailymore » energy expenditure was calculated by both the two-pair method and decay-curve analysis of urine and saliva samples collected in the morning and at night. Daytime and nighttime energy expenditures differed significantly (p less than 0.05).« less

  14. Sigma- versus Pi-Dimerization Modes of Triangulene.

    PubMed

    Mou, Zhongyu; Kertesz, Miklos

    2018-04-20

    We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Study on Segmented Multiple-Step Forming of Doubly Curved Thick Plate by Reconfigurable Multi-Punch Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Young Ho; Han, Myoung Soo; Han, Jong Man

    2007-05-17

    Doubly curved thick plate forming in shipbuilding industries is currently performed by a thermal forming process, called as Line Heating by using gas flame torches. Due to the empirical manual work of it, the industries are eager for an alternative way to manufacture curved thick plates for ships. It was envisaged in this study to manufacture doubly curved thick plates by the multi-punch die forming. Experiments and finite element analyses were conducted to evaluate the feasibility of the reconfigurable discrete die forming to the thick plates. Single and segmented multiple step forming procedures were considered from both forming efficiency andmore » accuracy. Configuration of the multi-punch dies suitable for the segmented multiple step forming was also explored. As a result, Segmented multiple step forming with matched dies had a limited formability when the objective shapes become complicate, while a unmatched die configuration provided better possibility to manufacture large curved plates for ships.« less

  16. Analysis of cylindrical wrap-around and doubly conformal patch antennas by way of the finite element-artificial absorber method

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Kempel, L. C.; Sliva, R.; Wang, H. T. G.; Woo, A. G.

    1994-01-01

    The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique.

  17. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    PubMed

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  18. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.

  19. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  20. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  1. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  2. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.

    2016-04-01

    Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.

  3. Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions

    NASA Astrophysics Data System (ADS)

    Hashmi, Galib; Hasanuzzaman, Muhammad; Basher, Mohammad Khairul; Hoq, Mahbubul; Rahman, Md. Habibur

    2018-06-01

    Implementing texturization process on the monocrystalline silicon substrate reduces reflection and enhances light absorption of the substrate. Thus texturization is one of the key elements to increase the efficiency of solar cell. Considering as-cut monocrystalline silicon wafer as base substrate, in this work different concentrations of Na2CO3 and NaHCO3 solution, KOH-IPA (isopropyl alcohol) solution and tetramethylammonium hydroxide solution with different time intervals have been investigated for texturization process. Furthermore, saw damage removal process was conducted with 10% NaOH solution, 20 wt% KOH-13.33 wt% IPA solution and HF/nitric/acetic acid solution. The surface morphology of saw damage, saw damage removed surface and textured wafer were observed using optical microscope and field emission scanning electron microscopy. Texturization causes pyramidal micro structures on the surface of (100) oriented monocrystalline silicon wafer. The height of the pyramid on the silicon surface varies from 1.5 to 3.2 µm and the inclined planes of the pyramids are acute angle. Contact angle value indicates that the textured wafer's surface fall in between near-hydrophobic to hydrophobic range. With respect to base material absolute reflectance 1.049-0.75% within 250-800 nm wavelength region, 0.1-0.026% has been achieved within the same wavelength region when textured with 0.76 wt% KOH-4 wt% IPA solution for 20 min. Furthermore, an alternative route of using 1 wt% Na2CO3-0.2 wt% NaHCO3 solution for 50 min has been exploited in the texturization process.

  4. Phosphorus out-diffusion in laser molten silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köhler, J. R.; Eisele, S. J.

    2015-04-14

    Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less

  5. Modeling spiking behavior of neurons with time-dependent Poisson processes.

    PubMed

    Shinomoto, S; Tsubo, Y

    2001-10-01

    Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly compared with the mean interval between spikes, are found to be consistent with the three statistical coefficients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.

  6. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter.

    PubMed

    Skab, Ihor; Vasylkiv, Yuriy; Krupych, Oleh; Savaryn, Viktoriya; Vlokh, Rostyslav

    2012-04-10

    We show that a system of glass disks compressed along their diameters enables one to induce a doubly charged vortex beam in the emergent light when the incident light is circularly polarized. Using such a disk system, one can control the efficiency of conversion of the spin angular momentum to the orbital angular momentum by a loading force. The consideration presented here can be extended for the case of crystalline materials with high optical damage thresholds in order to induce high-power vortex beams.

  7. Structure of the Lightest Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Morris, T. D.; Simonis, J.; Stroberg, S. R.; Stumpf, C.; Hagen, G.; Holt, J. D.; Jansen, G. R.; Papenbrock, T.; Roth, R.; Schwenk, A.

    2018-04-01

    We link the structure of nuclei around 100Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N =Z =50 ), to nucleon-nucleon (N N ) and three-nucleon (N N N ) forces constrained by data of few-nucleon systems. Our results indicate that 100Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of 101Sn based on three-particle-two-hole excitations of 100Sn, and we find that one interaction accurately reproduces the small splitting between the lowest Jπ=7 /2+ and 5 /2+ states.

  8. Dynamical Evolution of a Doubly Quantized Vortex Imprinted in a Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateo, A. Munoz; Delgado, V.

    2006-11-03

    The recent experiment by Shin et al. [Phys. Rev. Lett. 93, 160406 (2004)] on the decay of a doubly quantized vortex is analyzed by numerically solving the Gross-Pitaevskii equation. Our results demonstrate that the vortex decay is mainly a consequence of dynamical instability. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate.

  9. The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule

    NASA Astrophysics Data System (ADS)

    Eskandari, M. R.; Faghihi, F.; Mahdavi, M.

    The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.

  10. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  11. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  12. Bending cyclic load test for crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  13. Efficient multiscale magnetic-domain analysis of iron-core material under mechanical stress

    NASA Astrophysics Data System (ADS)

    Nishikubo, Atsushi; Ito, Shumpei; Mifune, Takeshi; Matsuo, Tetsuji; Kaido, Chikara; Takahashi, Yasuhito; Fujiwara, Koji

    2018-05-01

    For an efficient analysis of magnetization, a partial-implicit solution method is improved using an assembled domain structure model with six-domain mesoscopic particles exhibiting pinning-type hysteresis. The quantitative analysis of non-oriented silicon steel succeeds in predicting the stress dependence of hysteresis loss with computation times greatly reduced by using the improved partial-implicit method. The effect of cell division along the thickness direction is also evaluated.

  14. Interface effects in the dissolution of silicon into thin gold films

    NASA Technical Reports Server (NTRS)

    Sankur, H.; Mccaldin, J. O.

    1975-01-01

    The dissolution of crystalline Si and amorphous Si substrates into thin films of evaporated Au was studied with an electron microprobe and scanning electron microscopy. The dissolution pattern was found to be nonuniform along the plane of the surface and dependent on the crystalline orientation of the Si substrate. The dissolution is greatly facilitated when a very thin layer of Pd is evaporated between the Si substrate and the Au film.

  15. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    DTIC Science & Technology

    1991-12-01

    gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130

  16. SPM analysis of fibrinogen adsorption on solid surfaces

    NASA Astrophysics Data System (ADS)

    Choukourov, A.; Grinevich, A.; Saito, N.; Takai, O.

    2007-09-01

    The adsorption kinetics, adhesion and orientation of human fibrinogen on solid surfaces have been studied by surface probe microscopy (SPM) and quartz crystal microbalance techniques (QCM). CF 3-, NH 2-terminated organo-silane self-assembled monolayers (SAM) and OH-terminated silicon dioxide have been used as model surfaces. Furthermore, the interaction of fibrinogen with nanocomposite Ti/hydrocarbon plasma polymer films (Ti/ppCH) deposited by dc magnetron sputtering has also been studied.

  17. Surface segregation on Fe3%Si0.04%VC(100) single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Uebing, C.; Viefhaus, H.

    1990-10-01

    Surface segregation phenomena on (100) oriented single crystal surfaces of the ferritic Fe-3%Si-0.04%V-C alloy were investigated by AES and LEED. At temperatures below 635 °C vanadium and carbon cosegregation is observed after prolonged heating. At thermodynamic equilibrium the substrate surface is saturated with the binary surface compound VC. The two-dimensional VC is epitaxially arranged on the substrate surface as indicated by LEED investigations. Its structure corresponds to the (100) plane of the three-dimensional VC with rocksalt structure. Sharp above 635 °C the surface compound VC is dissolved into the bulk. At higher temperatures the substrate surface is covered with segregated silicon forming a c(2 × 2) structure. This surface phase transition is reversible. Because of the low concentration and slow diffusion of vanadium, non-equilibrium surface states are formed as intermediates upon segregation of silicon and carbon. Below 500 °C a disordered graphite layer with a characteristical asymmetrical C Auger peak is observed on the substrate surface. Above 500 °C carbon segregation leads to the formation of an ordered c(2 × 2) structure with a symmetrical C Auger peak being characteristic for carbidic or atomically adsorbed species. At increasing temperatures silicon segregation takes place leading to a c(2 × 2) structure. Between silicon and carbon site competition is effective.

  18. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  19. Surgery for doubly committed ventricular septal defects.

    PubMed

    Shamsuddin, Ahmad Mahir; Chen, Yen Chuan; Wong, Abdul Rahim; Le, Trong-Phi; Anderson, Robert H; Corno, Antonio F

    2016-08-01

    Doubly committed ventricular septal defects (VSDs) account for up to almost one-third of isolated ventricular septal defects in Asian countries, compared with only 1/20th in western populations. In our surgical experience, this type of defect accounted for almost three-quarters of our practice. To date, patch closure has been considered the gold standard for surgical treatment of these lesions. Our objectives are to evaluate the indications and examine the outcomes of surgery for doubly committed VSDs. Between October 2013, when our service of paediatric cardiac surgery was opened, and December 2014, 24 patients were referred for surgical closure of VSDs. Among them, 17 patients (71%), with the median age of 6 years, ranging from 2 to 9 years, and with a median body weight of 19 kg, ranging from 11 to 56 kg, underwent surgical repair for doubly committed defects. In terms of size, the defect was considered moderate in 4 and large in 13. Aortic valvular regurgitation (AoVR) was present in 11 patients (65%) preoperatively, with associated malformations found in 14 (82%), with 5 patients (29%) having two or more associated defects. After surgery, there was trivial residual shunting in 2 patients (12%). AoVR persisted in 6 (35%), reducing to trivial in 5 (29%) and mild in 1 (6%). Mean stays in the intensive care unit and hospital were 2.6 ± 1.2 days, ranging from 2 to 7 days, and 6.8 ± 0.8 days, ranging from 6 to 9 days, respectively. The mean follow-up was 14 ± 4 months, ranging from 6 to 20 months, with no early or late deaths and without clinical deterioration. The incidence of doubly committed lesions is high in our experience, frequently associated with AoVR and other associated malformation. Early detection is crucial to prevent further progression of the disease. Patch closure remains the gold standard in management, not least since it allows simultaneous repair of associated intracardiac defects. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Application of a multivariate normal distribution methodology to the dissociation of doubly ionized molecules: The DMDS (CH3 -SS-CH3 ) case.

    PubMed

    Varas, Lautaro R; Pontes, F C; Santos, A C F; Coutinho, L H; de Souza, G G B

    2015-09-15

    The ion-ion-coincidence mass spectroscopy technique brings useful information about the fragmentation dynamics of doubly and multiply charged ionic species. We advocate the use of a matrix-parameter methodology in order to represent and interpret the entire ion-ion spectra associated with the ionic dissociation of doubly charged molecules. This method makes it possible, among other things, to infer fragmentation processes and to extract information about overlapped ion-ion coincidences. This important piece of information is difficult to obtain from other previously described methodologies. A Wiley-McLaren time-of-flight mass spectrometer was used to discriminate the positively charged fragment ions resulting from the sample ionization by a pulsed 800 eV electron beam. We exemplify the application of this methodology by analyzing the fragmentation and ionic dissociation of the dimethyl disulfide (DMDS) molecule as induced by fast electrons. The doubly charged dissociation was analyzed using the Multivariate Normal Distribution. The ion-ion spectrum of the DMDS molecule was obtained at an incident electron energy of 800 eV and was matrix represented using the Multivariate Distribution theory. The proposed methodology allows us to distinguish information among [CH n SH n ] + /[CH 3 ] + (n = 1-3) fragment ions in the ion-ion coincidence spectra using ion-ion coincidence data. Using the momenta balance methodology for the inferred parameters, a secondary decay mechanism is proposed for the [CHS] + ion formation. As an additional check on the methodology, previously published data on the SiF 4 molecule was re-analyzed with the present methodology and the results were shown to be statistically equivalent. The use of a Multivariate Normal Distribution allows for the representation of the whole ion-ion mass spectrum of doubly or multiply ionized molecules as a combination of parameters and the extraction of information among overlapped data. We have successfully applied this methodology to the analysis of the fragmentation of the DMDS molecule. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Does the gravity orientation of saccular aneurysms influence hemodynamics? An experimental study with and without flow diverter stent.

    PubMed

    Chodzyński, Kamil J; Eker, Omer F; Vanrossomme, Axel E; de Sousa, Daniel Ribeiro; Coussement, Grégory; Vanhamme, Luc; Dubois, Frank; Bonafé, Alain; Chopard, Bastien; Courbebaisse, Guy; Zouaoui Boudjeltia, Karim

    2016-12-08

    Most intracranial aneurysms morphologic studies focused on characterization of size, location, aspect ratio, relationship to the surrounding vasculature and hemodynamics. However, the spatial orientation with respect to the gravity direction has not been taken into account although it could trigger various hemodynamic conditions. The present work addresses this possibility. It was divided in two parts: 1) the orientations of 18, 3D time-of-flight MRI (3D TOF MRI), scans of saccular aneurysms were analyzed. This investigation suggested that there was no privileged orientation for cerebral aneurysms. The aneurysms were oriented in the brain as follows: 9 - down, 9 - up; 11 - right, 7 - left; 6 - front, 12 - back. 2) Based on these results, subsidiary in vitro experiments were performed, analyzing the behavior of red blood cells (RBCs) within a silicone model of aneurysm before and after flow diverter stent (FDS) deployment in the parent vessel. These experiments used a test bench that reproduces physiological pulsatile flow conditions for two orientations: an aneurysm sack pointing either up (opposite to gravitational force) and down (along the gravitational force). The results showed that the orientation of an aneurysm significantly affects the intra-aneurysmal RBCs behavior after stenting, and therefore that gravity can affect the intra-aneurysm behavior of RBCs. This suggests that the patient׳s aneurysm orientation could impact the outcome of the FDS treatment. The implementation of this effect in patient-specific numerical and preoperative decision support techniques could contribute to better understand the intrasaccular biological and hemodynamic events induced by FDS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: coherent two-dimensional optical activity spectroscopy.

    PubMed

    Cheon, Sangheon; Lee, Hochan; Choi, Jun-Ho; Cho, Minhaeng

    2007-02-07

    Theoretical descriptions of doubly resonant two-dimensional (2D) sum-frequency-generation (SFG) and difference-frequency-generation (DFG) spectroscopies of coupled-chromophore systems are presented. Despite that each electronic or vibrational chromophore is achiral, the interaction-induced chirality of a coupled multichromophore system in solution can be measured by using the doubly resonant 2D three-wave-mixing (3WM) spectroscopic method. An electronically coupled dimer, where each monomer is modeled as a simple two-level system, can have nonvanishing SFG (or DFG) properties, e.g., susceptibility in frequency domain or nonlinear response function in time domain, if the induced dipole vector of the dimer is not orthogonal to the vector product of the two monomer electronic transition dipole vectors. In order to demonstrate that these 2D 3WM spectroscopic methods can be used to determine the solution structure of a polypeptide, the authors carried out quantum chemistry calculations for an alanine dipeptide and obtained first- and second-order dipole derivatives associated with the amide I vibrational transitions of the dipeptide. It is shown that the numerically simulated 2D IR-IR SFG spectrum is highly sensitive to the dipeptide secondary structure and provides rich information on the one- and two-exciton states. It is believed that the theoretically proposed doubly resonant 2D 3WM spectroscopy, which can be considered to be an optical activity spectroscopy, will be of use in studying both structural and dynamical aspects of coupled multichromophore systems, such as proteins, nucleic acids, nanoparticle aggregates etc.

  3. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  4. Self-assembled growth of MnSi~1.7 nanowires with a single orientation and a large aspect ratio on Si(110) surfaces

    PubMed Central

    2013-01-01

    MnSi~1.7 nanowires (NWs) with a single orientation and a large aspect ratio have been formed on a Si(110) surface with the molecular beam epitaxy method by a delicate control of growth parameters, such as temperature, deposition rate, and deposition time. Scanning tunneling microscopy (STM) was employed to study the influence of these parameters on the growth of NWs. The supply of free Si atoms per unit time during the silicide reaction plays a critical role in the growth kinetics of the NWs. High growth temperature and low deposition rate are favorable for the formation of NWs with a large aspect ratio. The orientation relationship between the NWs and the reconstruction rows of the Si(110) surface suggests that the NWs grow along the 11¯0 direction of the silicon substrate. High-resolution STM and backscattered electron scanning electron microscopy images indicate that the NWs are composed of MnSi~1.7. PMID:23339353

  5. First-principles investigations of proton generation in α-quartz

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang; Song, Yu; Zuo, Xu

    2018-03-01

    Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated {E}2^{\\prime } center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices. Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405).

  6. On Applications of Pyramid Doubly Joint Bilateral Filtering in Dense Disparity Propagation

    NASA Astrophysics Data System (ADS)

    Abadpour, Arash

    2014-06-01

    Stereopsis is the basis for numerous tasks in machine vision, robotics, and 3D data acquisition and processing. In order for the subsequent algorithms to function properly, it is important that an affordable method exists that, given a pair of images taken by two cameras, can produce a representation of disparity or depth. This topic has been an active research field since the early days of work on image processing problems and rich literature is available on the topic. Joint bilateral filters have been recently proposed as a more affordable alternative to anisotropic diffusion. This class of image operators utilizes correlation in multiple modalities for purposes such as interpolation and upscaling. In this work, we develop the application of bilateral filtering for converting a large set of sparse disparity measurements into a dense disparity map. This paper develops novel methods for utilizing bilateral filters in joint, pyramid, and doubly joint settings, for purposes including missing value estimation and upscaling. We utilize images of natural and man-made scenes in order to exhibit the possibilities offered through the use of pyramid doubly joint bilateral filtering for stereopsis.

  7. Dynamic mass exchange in doubly degenerate binaries. I - 0.9 and 1.2 solar mass stars

    NASA Technical Reports Server (NTRS)

    Benz, W.; Cameron, A. G. W.; Press, W. H.; Bowers, R. L.

    1990-01-01

    The dynamic mass exchange process in doubly degenerate binaries was investigated using a three-dimensional numerical simulation of the evolution of a doubly degenerate binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9-solar-mass dwarf. The results show that, in a little more than two orbital periods, the secondary is completely destroyed and transformed into a thick disk orbiting about the primary. Since only a very small fraction of the mass (0.0063 solar mass) escapes the system, the evolution of the binary results in the formation of a massive object. This object is composed of three parts, the initial white dwarf primary, a very hot pressure-supported spherical envelope, and a rotationally supported outer disk. The evolution of the system can be understood in terms of a simple analytical model where it is shown that the angular momentum carried by the mass during the transfer and stored in the disk determines the evolution of the system.

  8. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver.

    PubMed

    Liu, Fan; Lin, Yi; Walsh, Anthony J; Yu, Yonglin; Barry, Liam P

    2018-04-02

    A coherent optical packet transceiver based on doubly differential star 16-ary quadrature amplitude modulation (DD-star-16-QAM) is presented for spectrally and energy efficient reconfigurable networks. The coding and decoding processes for this new modulation format are presented, simulations and experiments are then performed to investigate the performance of the DD-star-16-QAM in static and dynamic scenarios. The static results show that the influence of frequency offset (FO) can be cancelled out by doubly differential (DD) coding and the correction range is only limited by the electronic bandwidth of the receivers. In the dynamic scenario with a time-varying FO and linewidth, the DD-star-16-QAM can overcome the time-varying FO, and the switching time of around 70 ns is determined by the time it takes the dynamic linewidth to reach the requisite level. This format can thus achieve a shorter waiting time after switching tunable lasers than the commonly used square-16-QAM, in which the transmission performance is limited by the frequency transients after the wavelength switch.

  9. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  10. Doubly charmed baryon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojun; Müller, Berndt

    2018-04-01

    We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.

  11. Applications of Ko Displacement Theory to the Deformed Shape Predictions of the Doubly-Tapered Ikhana Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. Lance; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.

  12. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  13. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ait Oumeziane, Amina, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir; Parisse, Jean-Denis

    2016-03-15

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e.,more » temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.« less

  14. High resolution spectroscopy of the disk chromosphere. II - Time sequence observations of Ca II H and K emissions.

    NASA Technical Reports Server (NTRS)

    Wilson, P. R.; Rees, D. E.; Beckers, J. M.; Brown, D. R.

    1972-01-01

    Two independent sets of high resolution time series spectra of the Ca II H and K emission obtained at the Solar Tower and at the Big Dome of the Sacramento Peak Observatory on September 11th, 1971 are reported. The evolutionary behavior of the emission first reported by Wilson and Evans is confirmed, but the detail of the evolution is found to be more complex. In one case, a doubly peaked feature showing some K3 emission evolves into a single K2 (red) peak with no K3 emission. Coincidentally, a neighboring doubly peaked feature evolves to a very strong blue peak. In an entirely independent sequence a doubly peaked feature evolves into a single red peak. The K2 emission then fades completely although the continuum threads are still strong. Finally a strong K2 blue peak appears. It is concluded that the observed evolution of the K2 emission is due to temporal variations in the physical conditions which give rise to them.

  15. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  16. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiriolo, Raffaele; Rangnekar, Neel; Zhang, Han

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservationmore » of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.« less

  17. Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.

    2012-01-01

    We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.

  18. A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao

    2001-04-01

    Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).

  19. Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires.

    PubMed

    Xu, Mingkun; Xue, Zhaoguo; Wang, Jimmy; Zhao, Yaolong; Duan, Yao; Zhu, Guangyao; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-12-14

    The heteroepitaxial growth of crystal silicon thin films on sapphire, usually referred to as SoS, has been a key technology for high-speed mixed-signal integrated circuits and processors. Here, we report a novel nanoscale SoS heteroepitaxial growth that resembles the in-plane writing of self-aligned silicon nanowires (SiNWs) on R-plane sapphire. During a low-temperature growth at <350 °C, compared to that required for conventional SoS fabrication at >900 °C, the bottom heterointerface cultivates crystalline Si pyramid seeds within the catalyst droplet, while the vertical SiNW/catalyst interface subsequently threads the seeds into continuous nanowires, producing self-oriented in-plane SiNWs that follow a set of crystallographic directions of the sapphire substrate. Despite the low-temperature fabrication process, the field effect transistors built on the SoS-SiNWs demonstrate a high on/off ratio of >5 × 10 4 and a peak hole mobility of >50 cm 2 /V·s. These results indicate the novel potential of deploying in-plane SoS nanowire channels in places that require high-performance nanoelectronics and optoelectronics with a drastically reduced thermal budget and a simplified manufacturing procedure.

  20. Impurity and phonon scattering in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Persson, M. P.; Mera, H.; Delerue, C.; Niquet, Y. M.; Allan, G.; Wang, E.

    2011-03-01

    We model the scattering of electrons by phonons and dopant impurities in ultimate [110]-oriented gate-all-around silicon nanowires with an atomistic valence force field and tight-binding approach. All electron-phonons interactions are included. We show that impurity scattering can reduce with decreasing nanowire diameter due to the enhanced screening by the gate. Donors and acceptors however perform very differently : acceptors behave as tunnel barriers for the electrons, while donors behave as quantum wells which introduce Fano resonances in the conductance. As a consequence the acceptors are much more limiting the mobility than the donors. The resistances of single acceptors are also very dependent on their radial position in the nanowire, which might be a significant source of variability in ultimate silicon nanowire devices. Concerning phonons, we show that, as a result of strong confinement, i) electrons couple to a wide and complex distribution of phonons modes, and ii) the mobility has a non-monotonic variation with wire diameter and is strongly reduced with respect to bulk. French National Research Agency ANR project QUANTAMONDE Contract No. ANR-07-NANO-023-02 and by the Délégation Générale pour l'Armement, French Ministry of Defense under Grant No. 2008.34.0031.

  1. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  2. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  3. Investigation of environmental effects on coatings for thermal control of large space vehicles

    NASA Technical Reports Server (NTRS)

    Zerlaunt, G. A.; Gilligan, J. E.; Ashford, N. A.

    1971-01-01

    The objective of significantly advancing the state-of-the-art of white, spacecraft-radiator coatings has been realized in a comprehensive goal-oriented, pigmented-coatings research program. Considered were inorganic pigments and coatings, silicone polymers and coatings, the design and construction of a combined ultraviolet-plus-proton irradiation facility, the development of zinc orthotitanate pigment and coatings, and the effects on several low alpha sub s/epsilon paints of combined ultraviolet and proton irradiation.

  4. Growth of cubic silicon carbide on oxide using polysilicon as a seed layer for micro-electro-mechanical machine applications

    NASA Astrophysics Data System (ADS)

    Frewin, C. L.; Locke, C.; Wang, J.; Spagnol, P.; Saddow, S. E.

    2009-08-01

    The growth of highly oriented 3C-SiC directly on an oxide release layer, composed of a 20-nm-thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (1 1 1)Si substrate, was investigated as an alternative to using silicon-on-insulator (SOI) substrates for freestanding SiC films for MEMS applications. The resulting SiC film was characterized by X-ray diffraction (XRD) with the X-ray rocking curve of the (1 1 1) diffraction peak displaying a FWHM of 0.115° (414″), which was better than that for 3C-SiC films grown directly on (1 1 1)Si during the same deposition process. However, the XRD peak amplitude for the 3C-SiC film on the poly-Si seed layer was much less than for the (1 1 1)Si control substrate, due to slight in-plane misorientations in the film. Surprisingly, the film was solely composed of (1 1 1) 3C-SiC grains and possessed no 3C-SiC grains oriented along the <3 1 1> and <1 1 0> directions which were the original directions of the poly-Si seed layer. With this new process, MEMS structures such as cantilevers and membranes can be easily released leaving behind high-quality 3C-SiC structures.

  5. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  6. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less

  7. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Cheung, C L; Lin, T

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groupsmore » at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.« less

  8. Vertically oriented metamaterial broadband linear polariser

    DOE PAGES

    Campione, Salvatore; Burckel, David Bruce

    2018-03-14

    Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single andmore » back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.« less

  9. Dictionary Indexing of Electron Channeling Patterns.

    PubMed

    Singh, Saransh; De Graef, Marc

    2017-02-01

    The dictionary-based approach to the indexing of diffraction patterns is applied to electron channeling patterns (ECPs). The main ingredients of the dictionary method are introduced, including the generalized forward projector (GFP), the relevant detector model, and a scheme to uniformly sample orientation space using the "cubochoric" representation. The GFP is used to compute an ECP "master" pattern. Derivative free optimization algorithms, including the Nelder-Mead simplex and the bound optimization by quadratic approximation are used to determine the correct detector parameters and to refine the orientation obtained from the dictionary approach. The indexing method is applied to poly-silicon and shows excellent agreement with the calibrated values. Finally, it is shown that the method results in a mean disorientation error of 1.0° with 0.5° SD for a range of detector parameters.

  10. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  11. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Alex Brown, B.

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960's and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  12. Nonparametric methods for doubly robust estimation of continuous treatment effects.

    PubMed

    Kennedy, Edward H; Ma, Zongming; McHugh, Matthew D; Small, Dylan S

    2017-09-01

    Continuous treatments (e.g., doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve, and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.

  13. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  14. Study of transitional doubly-odd /sup 186/Ir and /sup 184/Ir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Braham, A.; Bourgeois, C.; Kilcher, P.

    1987-12-10

    The transitional doubly-odd iridium nuclei with A = 184 and 186 have been studied from the ..beta../sup +//EC decay of the corresponding platinum isotopes using the on-line mass separator ISOCELE. Configurations can be reasonably Attributed to the low-lying states of /sup 184/Ir in agreement with results already known. On the other hand an E3 transition observed in /sup 186/Ir suggests that the known long-lived 1.7h 2/sup -/ state is located at 137.5 keV above the 16h 5/sup +/ state, raising questions about structure of this latter state.

  15. First evidence of γ collectivity close to the doubly magic core Sn 132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, W.; Sieja, K.; Rząca-Urban, T.

    2016-03-01

    The Te-138 and Xe-140 nuclei have been reinvestigated using prompt gamma-ray data from spontaneous fission of Cm-248, collected with the EUROGAM2 Ge array. gamma bands have been identified in both nuclei. The gamma band observed in Te-138, a nucleus with only six valence nucleons, indicates the presence of collectivity very close to the doubly magic Sn-132 core. Such band is even more pronounced in Xe-140, the N = 86 isotone of Te-138. The newly observed bands are interpreted within the shell model, which reproduce well the. collectivity at N = 86.

  16. Search for doubly charged Higgs bosons with lepton-flavor-violating decays involving tau leptons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-09-19

    We search for pair production of doubly charged Higgs particles (H+/- +/-) followed by decays into electron-tau (etau) and muon-tau (mutau) pairs using data (350 pb(-1) collected from [over]pp collisions at sqrt[s]=1.96 TeV by the CDF II experiment. We search separately for cases where three or four final-state leptons are detected, and combine results for exclusive decays to left-handed etau (mutau) pairs. We set an H+/- +/- lower mass limit of 114(112) GeV/c(2) at the 95% confidence level.

  17. Research on grid connection control technology of double fed wind generator

    NASA Astrophysics Data System (ADS)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  18. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.

  19. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    PubMed

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  20. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film.

    PubMed

    Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G

    2018-01-31

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  1. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  2. Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon.

    PubMed

    Wu, Ko-Li; Chou, Yi; Su, Chang-Chou; Yang, Chih-Chaing; Lee, Wei-I; Chou, Yi-Chia

    2017-12-20

    We report single crystalline gallium nitride nanowire growth from Ni and Ni-Au catalysts on silicon using hydride vapor phase epitaxy. The growth takes place rapidly; efficiency in time is higher than the conventional nanowire growth in metal-organic chemical vapor deposition and thin film growth in molecular beam epitaxy. The effects of V/III ratio and carrier gas flow on growth are discussed regarding surface polarity and sticking coefficient of molecules. The nanowires of gallium nitride exhibit excellent crystallinity with smooth and straight morphology and uniform orientation. The growth mechanism follows self-assembly from both catalysts, where Au acts as a protection from etching during growth enabling the growth of ultra-long nanowires. The photoluminescence of such nanowires are adjustable by tuning the growth parameters to achieve blue emission. The practical range of parameters for mass production of such high crystal quality and uniformity of nanowires is suggested.

  3. Tellurium nano-structure based NO gas sensor.

    PubMed

    Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K

    2009-09-01

    Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material.

  4. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  5. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    NASA Astrophysics Data System (ADS)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  6. Towards a 'siliconeural computer': technological successes and challenges.

    PubMed

    Hughes, Mark A; Shipston, Mike J; Murray, Alan F

    2015-07-28

    Electronic signals govern the function of both nervous systems and computers, albeit in different ways. As such, hybridizing both systems to create an iono-electric brain-computer interface is a realistic goal; and one that promises exciting advances in both heterotic computing and neuroprosthetics capable of circumventing devastating neuropathology. 'Neural networks' were, in the 1980s, viewed naively as a potential panacea for all computational problems that did not fit well with conventional computing. The field bifurcated during the 1990s into a highly successful and much more realistic machine learning community and an equally pragmatic, biologically oriented 'neuromorphic computing' community. Algorithms found in nature that use the non-synchronous, spiking nature of neuronal signals have been found to be (i) implementable efficiently in silicon and (ii) computationally useful. As a result, interest has grown in techniques that could create mixed 'siliconeural' computers. Here, we discuss potential approaches and focus on one particular platform using parylene-patterned silicon dioxide.

  7. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard

    2016-10-01

    The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.

  8. Sharpness and intensity modulation of the metal-insulator transition in ultrathin VO2 films by interfacial structure manipulation

    NASA Astrophysics Data System (ADS)

    McGee, Ryan; Goswami, Ankur; Pal, Soupitak; Schofield, Kalvin; Bukhari, Syed Asad Manzoor; Thundat, Thomas

    2018-03-01

    Vanadium dioxide (VO2) undergoes a structural transformation from monoclinic (insulator) to tetragonal (metallic) upon heating above 340 K, accompanied by abrupt changes to its electronic, optical, and mechanical properties. Not only is this transition scientifically intriguing, but there are also numerous applications in sensing, memory, and optoelectronics. Here we investigate the effect different substrates and the processing conditions have on the characteristics metal-insulator transition (MIT), and how the properties can be tuned for specific applications. VO2 thin films were grown on c -plane sapphire (0001) and p-type silicon <100 > by pulsed laser deposition. High-resolution x-ray diffraction along with transmission electron microscopy reveals textured epitaxial growth on sapphire by domain-matching epitaxy, while the presence of a native oxide layer on silicon prevented any preferential growth resulting in a polycrystalline film. An orientation relationship of <001 > (010)VO2||<11 ¯00 > (0001)Al 2O3 was established for VO2 grown on sapphire, while no such relationship was found for VO2 grown on silicon. Surface-energy minimization is the driving force behind grain growth, as the lowest energy VO2 plane grew on silicon, while on sapphire the desire for epitaxial growth was dominant. Polycrystallinity of films grown on silicon caused a weaker and less prominent MIT than observed on sapphire, whose MIT was higher in magnitude and steeper in slope. The position of the MIT was shown to depend on the competing effects of misfit strain and grain growth. Higher deposition temperatures caused an increase in the MIT, while compressive strain resulted in a decreased MIT.

  9. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    NASA Astrophysics Data System (ADS)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  10. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  11. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  12. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Chen, Andrew

    1994-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.

  13. Conveying 3D shape with texture: recent advances and experimental findings

    NASA Astrophysics Data System (ADS)

    Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh

    2002-06-01

    If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.

  14. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  15. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  16. First Spectroscopic Studies and Detection in SgrB2 of 13C-DOUBLY Substitued Ethyl Cyanide

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Müller, Holger S. P.; Belloche, Arnaud

    2015-06-01

    Ethyl cyanide (CH_3CH_2CN) is one of the most abundant complex organic molecules in the interstellar medium firstly detected in OMC-1 and Sgr B2 in 1977. The vibrationally excited states are enough populated under ISM conditions and could be detected. Apart from the deuterated ones, all mono-substituted isotopologues of ethyl cyanide (13C and 15N have been detected in the ISM. The detection of isotopologues in the ISM is important: it can give information about the formation process of complex organic molecules, and it is essential to clean the ISM spectra from the lines of known molecules in order to detect new ones. The 12C/13C ratio found in SgrB2: 20-30 suggests that the doubly 13C could be present in the spectral line survey recently obtained with ALMA (EMoCA), but no spectroscopic studies exist up to now. We measured and analyzed the spectra of the 13C-doubly-substitued species up to 1 THz with the Lille solid-state based spectrometer. The spectroscopic results and and the detection of the doubly 13C species in SgrB2 will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS. Support by the Deutsche Forschungsgemeinschaft via SFB 956, project B3 is acknowledged D.~R.~Johnson, et al., Astrophys.~J. 1977, 218, L370 A.~Belloche, et al., A&A 2013, 559, A47 A.M.~Daly, et al., Astrophys.~J. 2013, 768, 81 K.~Demyk, et al. A&A 2007 466, 255 Margulès, et al. A&A 2009, 493, 565 Belloche et al. 2014, Science, 345, 1584

  17. Loss of protein phosphatase 6 in mouse keratinocytes enhances K-rasG12D -driven tumor promotion.

    PubMed

    Kurosawa, Koreyuki; Inoue, Yui; Kakugawa, Yoichiro; Yamashita, Yoji; Kanazawa, Kosuke; Kishimoto, Kazuhiro; Nomura, Miyuki; Momoi, Yuki; Sato, Ikuro; Chiba, Natsuko; Suzuki, Mai; Ogoh, Honami; Yamada, Hidekazu; Miura, Koh; Watanabe, Toshio; Tanuma, Nobuhiro; Tachi, Masahiro; Shima, Hiroshi

    2018-05-14

    Here, we address the function of protein phosphatase 6 (PP6) loss on K-ras-initiated tumorigenesis in keratinocytes. To do so, we developed tamoxifen-inducible double mutant (K-ras G12D -expressing and Ppp6c-deficient) mice in which K-ras G12D expression is driven by the cytokeratin 14 (K14) promoter. Doubly-mutant mice showed early onset tumor formation in lip, nipples, external genitalia, anus and palms, and had to be sacrificed by three weeks after induction by tamoxifen, while comparably-treated K-ras G12D -expressing mice did not. HE-staining of lip tumors before euthanasia revealed that all were papillomas, some containing focal squamous cell carcinoma. Immunohistochemical analysis of lip of doubly-mutant versus K-ras G12D mice revealed that cell proliferation and cell size increased approximately two-fold relative to K-ras G12D -expressing mutants, and epidermal thickness of lip tissue greatly increased relative to that seen in K-ras G12D only mice. Moreover, AKT phosphorylation increased in K-ras G12D -expressing/Ppp6c-deficient cells, as did phosphorylation of the downstream effectors 4EBP1, S6, and GSK3, suggesting that protein synthesis and survival signals are enhanced in lip tissues of doubly-mutant mice. Finally, increased numbers of K14-positive cells were present in the suprabasal layer of doubly-mutant mice, indicating abnormal keratinocyte differentiation, and γH2AX-positive cells accumulated, indicating perturbed DNA repair. Taken together, Ppp6c deficiency enhances K-ras G12D -dependent tumor promotion. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  19. Detection of singly- and doubly-charged quaternary ammonium drugs in equine urine by liquid chromatography/tandem mass spectrometry.

    PubMed

    Ho, Emmie N M; Kwok, W H; Wong, April S Y; Wan, Terence S M

    2012-01-13

    Quaternary ammonium drugs (QADs) are anticholinergic agents some of which are known to have been abused or misused in equine sports. A recent review of literature shows that the screening methods reported thus far for QADs mainly cover singly-charged QADs. Doubly-charged QADs are extremely polar substances which are difficult to be extracted and poorly retained on reversed-phase columns. It would be ideal if a comprehensive method can be developed which can detect both singly- and doubly-charged QADs. This paper describes an efficient liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous detection and confirmation of 38 singly- and doubly-charged QADs at sub-parts-per-billion (ppb) to low-ppb levels in equine urine after solid-phase extraction. Quaternary ammonium drugs were extracted from equine urine by solid-phase extraction (SPE) using an ISOLUTE(®) CBA SPE column and analysed by LC/MS/MS in the positive electrospray ionisation mode. Separation of the 38 QADs was achieved on a polar group embedded C18 LC column with a mixture of aqueous ammonium formate (pH 3.0, 10 mM) and acetonitrile as the mobile phase. Detection and confirmation of the 38 QADs at sub-ppb to low-ppb levels in equine urine could be achieved within 16 min using selected reaction monitoring (SRM). Matrix interference of the target transitions at the expected retention times was not observed. Other method validation data, including precision and recovery, were acceptable. The method was successfully applied to the analyses of drug-administration samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. SNPs in Entire Mitochondrial Genome Sequences (≈15.4 kb) and cox1 Sequences (≈486 bp) Resolve Body and Head Lice From Doubly Infected People From Ethiopia, China, Nepal, and Iran But Not France.

    PubMed

    Xiong, H; Campelo, D; Boutellis, A; Raoult, D; Alem, M; Ali, J; Bilcha, K; Shao, R; Pollack, R J; Barker, S C

    2014-11-01

    Some people host lice on the clothing as well as the head. Whether body lice and head lice are distinct species or merely variants of the same species remains contentious. We sought to ascertain the extent to which lice from these different habitats might interbreed on doubly infected people by comparing their entire mitochondrial genome sequences. Toward this end, we analyzed two sets of published genetic data from double-infections of body lice and head lice: 1) entire mitochondrial coding regions (≈15.4 kb) from body lice and head lice from seven doubly infected people from Ethiopia, China, and France; and 2) part of the cox1 gene (≈486 bp) from body lice and head lice from a further nine doubly infected people from China, Nepal, and Iran. These mitochondrial data, from 65 lice, revealed extraordinary variation in the number of single nucleotide polymorphisms between the individual body lice and individual head lice of double-infections: from 1.096 kb of 15.4 kb (7.6%) to 2 bps of 15.4 kb (0.01%). We detected coinfections of lice of Clades A and C on the scalp hair of three of the eight people from Nepal: one person of the two people from Kathmandu and two of the six people from Pokhara. Lice of Clades A and B coinfected the scalp hair of one person from Atherton, Far North Queensland, Australia. These findings argue for additional large-scale studies of the body lice and head lice of double-infected people. © 2014 Entomological Society of America.

Top