Method and apparatus of assessing down-hole drilling conditions
Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT
2007-04-24
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
Environmental Measurement-While-Drilling system for real-time field screening of contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, G.J.; Normann, R.A.; Bishop, L.B.
Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ``steer`` the drill bit in or out hazardous zones. During measurement-while-drilling,more » down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented.« less
Rugged, Low Cost, Environmental Sensors for a Turbulent World
NASA Astrophysics Data System (ADS)
Schulz, B.; Sandell, C. T.; Wickert, A. D.
2017-12-01
Ongoing scientific research and resource management require a diverse range of high-quality and low-cost sensors to maximize the number and type of measurements that can be obtained. To accomplish this, we have developed a series of diversified sensors for common environmental applications. The TP-DownHole is an ultra-compact temperature and pressure sensor designed for use in CMT (Continuous Multi-channel Tubing) multi-level wells. Its 1 mm water depth resolution, 30 cm altitude resolution, and rugged design make it ideal for both water level measurements and monitoring barometric pressure and associated temperature changes. The TP-DownHole sensor has also been incorporated into a self-contained, fully independent data recorder for extreme and remote environments. This device (the TP-Solo) is based around the TP-DownHole design, but has self-contained power and data storage and is designed to collect data independently for up to 6 months (logging at once an hour), creating a specialized tool for extreme environment data collection. To gather spectral information, we have also developed a very low cost photodiode-based Lux sensor to measure spectral irradiance; while this does not measure the entire solar radiation spectrum, simple modeling to rescale the remainder of the solar spectrum makes this a cost-effective alternative to a thermopile pyranometer. Lastly, we have developed an instrumentation amplifier which is designed to interface a wide range of sensitive instruments to common data logging systems, such as thermopile pyranometers, thermocouples, and many other analog output sensors. These three instruments are the first in a diverse family aimed to give researchers a set of powerful and low-cost tools for environmental instrumentation.
HT/HP x-tree and downhole fiber optic connectors and their use on subsea intelligent wells
NASA Astrophysics Data System (ADS)
Wright, Perry; Barlow, Stewart
2004-12-01
Offshore Oil and Gas R&D has been committed to improved reservoir performance through production monitoring. Technology improvements in these areas offer the greatest potential returns through increased knowledge of the reservoir, and the improvements in real-time production control that the technology and knowledge base can provide. One area of technology that supports this development is the growing application of fiber optic sensors for reservoir and production monitoring. These sensors cannot function in isolation, and need support in the form of fiber optic connection systems for x-tree penetrations. ODI have been developing products for fiber optic tree penetrations and down-hole wet connections for the last 4 years, working with Intelligent Wells Group at BP America Production Company in Houston. This paper discusses the application and reliability of fiber optic connectors, and reviews the development of the ODI I-CONN connection system and its application for vertical and horizontal x-trees, work-over systems and running tools, and down-hole systems.
Deep bore hole instrumentation along San Francisco Bay Bridges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakun, W.; Bowman, J.; Clymer, R.
1998-10-01
The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program,more » and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.« less
Remote down-hole well telemetry
Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Coates, Don M [Santa Fe, NM; Freund, Samuel M [Los Alamos, NM
2004-07-20
The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.
In-Soil and Down-Hole Soil Water Sensors: Characteristics for Irrigation Management
USDA-ARS?s Scientific Manuscript database
The past use of soil water sensors for irrigation management was variously hampered by high cost, onerous regulations in the case of the neutron probe (NP), difficulty of installation or maintenance, and poor accuracy. Although many sensors are now available, questions of their utility still abound....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nygaard, Runar; Xiao, Hai; He, Xiaoming
Energy generation by use of fossil fuels produces large volumes of CO 2 and other greenhouse gases, whose accumulation in the atmosphere is widely seen as undesirable. CO 2 Capture followed by sequestration has been identified as the solution. Subsurface geologic formations offer a potential location for long-term storage of CO 2 because of their requisite size. Unfortunately, the inaccessibility and complexity of the subsurface, the wide range of scales of variability, and the coupled nonlinear processes, impose tremendous challenges to determine the transport and predict the fate of the stored CO 2. Among the various monitoring approaches, in situmore » down-hole monitoring of the various state parameters provides critical and direct data points that can be used to validate the models, optimize the injection, detect leakage and track the CO 2 plume. However, down-hole sensors that can withstand the harsh conditions and operate over decades of the project lifecycle remain unavailable. Given that the widespread of carbon capture and storage will be the necessity and reality in the future, fundamental and applied research is required to address the significant challenges and technological gaps in lack of long-term reliable down-hole sensors This project focused on the development and demonstration of a novel, low-cost, distributed, robust ceramic coaxial cable sensor platform for in situ down-hole monitoring of geologic CO 2 injection and storage with high spatial and temporal resolutions. The coaxial cable Fabry-Perot interferometer (CCFPI) has been studied as a general sensor platform for in situ, long-term, measurement of temperature, pressure and strain, which are critical to CO 2 injection and storage. A novel signal processing scheme has been developed and demonstrated for dense multiplexing of the sensors for low-cost distributed sensing with high spatial resolution. The developed temperature, pressure and strain sensors have been extensively tested under laboratory conditions that are similar to the downhole CO 2 storage environment, showing excellent capability for in situ monitoring the various parameters that are important to model, optimize the injection, detect leakage and track the CO 2 plume. In addition, the interactions between the sensor datum and the geological models have been investigated in details for the purposes of model validation, guiding sensor installation/placement, enhancement of model prediction capability and optimization of the injection processes. This project has resulted in the successful development of new ceramic coaxial cable based sensor systems that can monitor directly the changes in pressure, temperature, and strain caused by increased reservoir pressure and reduced reservoir temperature due to the supercritical CO 2 injection. Integrated with geological models, the sensors and measurement data can improve the possibility to identify plume movement and leakage in the cap rock and wells with higher precision and more accuracy. The low cost, ease of deployment, small size and dense multiplexing features of the new sensing technology will allow a large number of sensors to be deployed to address the objective to demonstrate that 99% of the CO 2 remains in the injection zone.« less
Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.
There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.
Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Sandvik; Stanislav Soloviev; Emad Andarawis
2007-08-10
The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less
USDA-ARS?s Scientific Manuscript database
Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...
Real Time Oil Reservoir Evaluation Using Nanotechnology
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Meyyappan, Meyya (Inventor)
2011-01-01
A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
Testing various modes of installation for permanent broadband stations in open field environment
NASA Astrophysics Data System (ADS)
Vergne, Jérôme; Charade, Olivier; Arnold, Benoît; Louis-Xavier, Thierry
2014-05-01
In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, we plan to install more than one hundred new permanent broadband stations in metropolitan France within the next 6 years. Whenever possible, the sensors will be installed in natural or artificial underground cavities that provide a stable thermal environment. However such places do not exist everywhere and we expect that about half the future stations will have to be set up in open fields. For such sites, we are thus looking for a standard model of hosting infrastructure for the sensors that would be easily replicated and would provide good noise level performances at long periods. Since early 2013, we have been operating a prototype station at Clévilliers, a small location in the sedimentary Beauce plain, where we test three kinds of buried seismic vaults and a down-hole installation. The cylindrical seismic vaults are 3m deep and 1m wide and only differ by the type of coupling between the casing and the concrete slab where we installed insulated Trillium T120PA seismometers. The down-hole installation consists in a 3m deep well hosting a Trillium Posthole seismometer. For reference, another sensor has been installed in a ~50cm deep hole, similarly to the way we test every new potential site. Here we compare the noise level in each infrastructure at different frequencies. We observe quite similar performances for the vertical component recorded in the different wells. Conversely, the noise levels on the horizontal components at periods greater than 10s vary by more than 20dB depending on the installation condition. The best results are obtained in the completely decoupled vault and for the down-hole setting, both showing performances comparable to some of our permanent stations installed in tunnels. The amplitude of the horizontal noise also appears to be highly correlated to wind speed recorded on site, even at long periods. The variable response of each vault to such external forcing can partly explain the variations of the seismic noise levels.
NASA Astrophysics Data System (ADS)
Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin
2018-04-01
The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.
Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor
NASA Astrophysics Data System (ADS)
Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Seh Joong; Park, Nam Kyou; Park, Doo Jae; Choi, Soo Bong; Kim, Yong-Sang
2017-05-01
The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
Active Wireline Heave Compensation for Ocean Drilling
NASA Astrophysics Data System (ADS)
Goldberg, D.; Liu, T.; Swain, K.; Furman, C.; Iturrino, G. J.
2014-12-01
The up-and-down heave motion of a ship causes a similar motion on any instruments tethered on wireline cable below it. If the amplitude of this motion is greater than a few tens of cm, significant discrepancy in the depth below the ship is introduced, causing uncertainty in the acquired data. Large and irregular cabled motions also increase the risk of damaging tethered instruments, particularly those with relatively delicate sensors. In 2005, Schlumberger and Deep Down, Inc built an active wireline heave compensator (AHC) system for use onboard the JOIDES Resolution to compensate for heave motion on wireline logging tools deployed in scientific drill holes. The goals for the new AHC system were to (1) design a reliable heave compensation system; and (2) devise a robust and quantitative methodology for routine assessment of compensation efficiency (CE) during wireline operations. Software programs were developed to monitor CE and the dynamics of logging tools in real-time, including system performance under variable parameters such as water depth, sea state, cable length, logging speed and direction. We present the CE results from the AHC system on the JOIDES Resolution during a 5-year period of recent IODP operations and compare the results to those from previous compensation systems deployed during ODP and IODP. Based on new data under heave conditions of ±0.2-2.0 m and water depths of 300-4,800 m in open holes, the system reduces 65-80% of downhole tool displacement under stationary conditions and 50-60% during normal logging operations. Moreover, down/up tool motion at low speeds (300-600 m/h) reduces the system's CE values by 15-20%, and logging down at higher speeds (1,000-1,200 m/h) reduces CE values by 55-65%. Furthermore, the system yields slightly lower CE values of 40-50% without tension feedback of the downhole cable while logging. These results indicate that the new system's compensation efficiency is comparable to or better than previous systems, with additional advantages that include upgradable compensation control software and the capability for continued assessment under varying environmental conditions. Future integration of downhole cable dynamics as an input feedback could further improve CE during logging operations.
A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints
NASA Astrophysics Data System (ADS)
Rakow, Alexi Schroder
Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.
Down-hole periodic seismic generator
Hardee, H.C.; Hills, R.G.; Striker, R.P.
1982-10-28
A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Down hole periodic seismic generator
Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.
1989-01-01
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
NASA Astrophysics Data System (ADS)
Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.
2014-06-01
The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.
Etching holes in graphene supercapacitor electrodes for faster performance.
Ervin, Matthew H
2015-06-12
Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
NASA Astrophysics Data System (ADS)
Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.
2018-03-01
Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity distribution possibly biased. This result also emphasizes that it is still necessary to properly describe the seismic propagation medium even though the addition of down-hole sensors increases the coverage of a surface network.
Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui
2016-01-01
Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situmore » CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or Smart Wells along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
Plastic optical fiber level measurement sensor based on side holes
NASA Astrophysics Data System (ADS)
Park, Young June; Shin, Jong-Dug; Park, Jaehee
2014-10-01
Plastic optical fiber level measurement sensor based on in-line side holes is investigated theoretically and experimentally. The sensor consists of a plastic optical fiber with in-line side holes spaced about 5 cm apart. The 0.9 diameter in-line side holes were fabricated by micro-drilling. An analytical expression of the sensor transmittance was obtained using a simple ray optics approach. The measurements of the sensor transmittance were performed with a 55 cm height Mass cylinder. Both results show that the sensor transmittance increases as the number of side holes filled with water increases. The research results indicate that the plastic optical fiber based on in-line side holes can be used for water level measurement.
Observing the San Andreas Fault at Depth
NASA Astrophysics Data System (ADS)
Ellsworth, W.; Hickman, S.; Zoback, M.; Davis, E.; Gee, L.; Huggins, R.; Krug, R.; Lippus, C.; Malin, P.; Neuhauser, D.; Paulsson, B.; Shalev, E.; Vajapeyam, B.; Weiland, C.; Zumberge, M.
2005-12-01
Extending 4 km into the Earth along a diagonal path that crosses the divide between Salinian basement accreted to the Pacific Plate and Cretaceous sediments of North America, the main hole at the San Andreas Fault Observatory at Depth (SAFOD) was designed to provide a portal into the inner workings of a major plate boundary fault. The successful drilling and casing of the main hole in the summer of 2005 to a total vertical depth of 3.1 km make it possible to conduct spatially extensive and long-duration observations of active tectonic processes within the actively deforming core of the San Andreas Fault. In brief, the observatory consists of retrievable seismic, deformation and environmental sensors deployed inside the casing in both the main hole (maximum temperature 135 C) and the collocated pilot hole (1.1 km depth), and a fiber optic strainmeter installed behind casing in the main hole. By using retrievable systems deployed on either wire line or rigid tubing, each hole can be used for a wide range of scientific purposes, with instrumentation that takes maximum advantage of advances in sensor technology. To meet the scientific and technical challenges of building the observatory, borehole instrumentation systems developed for use in the petroleum industry and by the academic community in other deep research boreholes have been deployed in the SAFOD pilot hole and main hole over the past year. These systems included 15Hz omni-directional and 4.5 Hz gimbaled seismometers, micro-electro-mechanical accelerometers, tiltmeters, sigma-delta digitizers, and a fiber optic interferometeric strainmeter. A 1200-m-long, 3-component 80-level clamped seismic array was also operated in the main hole for 2 weeks of recording in May of 2005, collecting continuous seismic data at 4000 sps. Some of the observational highlights include capturing one of the M 2 SAFOD target repeating earthquakes in the near-field at a distance of 420 m, with accelerations of up to 200 cm/s and a static displacement of a few microns. Numerous other local events were observed over the summer by the tilt and seismic instruments in the pilot hole, some of which produced strain offsets of several nanostrain on the fiber optic strainmeter. We were fortunate to observe several episodes of non-volcanic tremor on the 80-level seismic array in May, 2005. These spatially unaliased recordings of the tremor wavefield reveal that the complex tremor time series is comprised of up-and down-going shear waves that produce a spatially stationary interference pattern over time scales of 10s of seconds. All data collected at SAFOD as part of the EarthScope project are open and freely available to all. The Northern California Earthquake Data Center at U.C. Berkeley is the principal data repository for SAFOD. The more than 2 TB of 80-level array data are also available at the IRIS DMC as an assembled data collection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.
A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.
Deployment operation of NanTroSEIZE C0002 riserless LTBMS
NASA Astrophysics Data System (ADS)
Kyo, N.; Saruhashi, T.; Sawada, I.; Namba, Y.; Kitada, K.; Kimura, T.; Toczko, S.; Araki, E.; Kopf, A.; IODP EXP 332 Scientists
2011-12-01
The installation of LTBMS (Long Term Borehole Monitoring System) for NanTroSEIZE (Nankai Trough Seismogenic Zone Experiment) C0002 riserless hole was successfully carried out as part of IODP Expedition 332 operations by DV Chikyu in November - December 2010. The water depth of the site and penetration depth of the hole are 1937.5 m and 980 mbsf respectively. Casing (9-5/8") was set to the depth of 888 mbsf and below the CORK head, 3-1/2" tubing was deployed inside the casing as the support structure for the downhole instruments. Within the rat hole section, two pressure ports, a strain meter, a tilt meter, a broadband seismometer, geophone, and accelerometer were deployed. These seismic and geodetic sensors were set within the borehole, and coupled to the formation via cement whose physical properties (Young's modulus, Poisson's ratio, density) were adjusted to fit the formation's properties. Screen sections were set to access the pore fluids, while isolating them from the sea floor and the lower lithological units by a swellable packer, and cement, respectively. At the top of wellhead, and at the apex of the 3-1/2" tubing assembly, a CORK head was landed. The CORK head holds the pressure sensor unit (4 pressure sensors), underwater mateable data connectors (connected to the cemented sensors), and hydraulic valves to access and sample formation fluids by ROV. The major scientific features of the Hole C0002G (riserless) LTBMS are sensors monitoring multiple parameters related to seismic, geodetic and pore fluid behavior simultaneously at distinct, multiple, layers within the same borehole. The main technical difficulties in the LTBMS development are as follows: (1) Reduction method for current-induced VIV (Vortex Induced Vibration) (2) Borehole coupling for seismic and geodetic sensors (3) Anti-vibration/shock and protection method for borehole sensors/instruments (4) Attachment and protection for sensor cables and pressure lines (5) Zone isolation for multi-layer pressure measurements (6) Wellhead system (CORK) for data connection to submarine cable network (7) Downsizing borehole instruments (installation with 3-1/2-in tubing) (8) System reliability (redundant sensor system) We carried out sea trials using a dummy sensor assembly to study the effects of deploying the assembly in strong currents, and also carried out additional pool experiments and numerical simulations to evaluate VIV countermeasures. Through shock and vibration mechanical tests, we improved the robustness of sensors and the sensor carrier. As part of these investigations, we conducted risk analysis based on the operation, science, and engineering points of view from, which helped clarify operational procedures for actual deployment. Future plans include returning to Hole C0002G site to deploy a data logger and battery for temporary observations. After examining the data quality, we'll finally connect the LTBMS to the DONET (Dense Oceanfloor Network System for Earthquakes and Tsunamis) submarine cabled network. Plans are also underway for deploying more LTBMS's into Site C0010 (riserless) and Site C0002 (riser).
Design and Implementation of Multifunctional Automatic Drilling End Effector
NASA Astrophysics Data System (ADS)
Wang, Zhanxi; Qin, Xiansheng; Bai, Jing; Tan, Xiaoqun; Li, Jing
2017-03-01
In order to realize the automatic drilling in aircraft assembly, a drilling end effector is designed by integrating the pressure unit, drilling unit, measurement unit, control system and frame structure. In order to reduce the hole deviation, this paper proposes a vertical normal adjustment program based on 4 laser distance sensors. The actual normal direction of workpiece surface can be calculated through the sensors measurements, and then robot posture is adjusted to realize the hole deviation correction. A base detection method is proposed to detect and locate the hole automatically by using the camera and the reference hole. The experiment results show that the position accuracy of the system is less than 0.3mm, and the normal precision is less than 0.5°. The drilling end effector and robot can greatly improve the efficiency of the aircraft parts and assembly quality, and reduce the product development cycle.
Pressure-Sensor Assembly Technique
NASA Technical Reports Server (NTRS)
Pruzan, Daniel A.
2003-01-01
Nielsen Engineering & Research (NEAR) recently developed an ultrathin data acquisition system for use in turbomachinery testing at NASA Glenn Research Center. This system integrates a microelectromechanical- systems- (MEMS-) based absolute pressure sensor [0 to 50 psia (0 to 345 kPa)], temperature sensor, signal-conditioning application-specific integrated circuit (ASIC), microprocessor, and digital memory into a package which is roughly 2.8 in. (7.1 cm) long by 0.75 in. (1.9 cm) wide. Each of these components is flip-chip attached to a thin, flexible circuit board and subsequently ground and polished to achieve a total system thickness of 0.006 in. (0.15 mm). Because this instrument is so thin, it can be quickly adhered to any surface of interest where data can be collected without disrupting the flow being investigated. One issue in the development of the ultrathin data acquisition system was how to attach the MEMS pressure sensor to the circuit board in a manner which allowed the sensor s diaphragm to communicate with the ambient fluid while providing enough support for the chip to survive the grinding and polishing operations. The technique, developed by NEAR and Jabil Technology Services Group (San Jose, CA), is described below. In the approach developed, the sensor is attached to the specially designed circuit board, see Figure 1, using a modified flip-chip technique. The circular diaphragm on the left side of the sensor is used to actively measure the ambient pressure, while the diaphragm on the right is used to compensate for changes in output due to temperature variations. The circuit board is fabricated with an access hole through it so that when the completed system is installed onto a wind tunnel model (chip side down), the active diaphragm is exposed to the environment. After the sensor is flip-chip attached to the circuit board, the die is underfilled to support the chip during the subsequent grinding and polishing operations. To prevent this underfill material from getting onto the sensor s diaphragms, the circuit board is fabricated with two 25- micrometer-tall polymer rings, sized so that the diaphragms fit inside the rings once the chip is attached.
Electric motor for laser-mechanical drilling
Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.
2015-07-07
A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.
A new fiber optic sensor for inner surface roughness measurement
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Liu, Shoubin; Hu, Hong
2009-11-01
In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.
A novel dynamic sensing of wearable digital textile sensor with body motion analysis.
Yang, Chang-Ming; Lin, Zhan-Sheng; Hu, Chang-Lin; Chen, Yu-Shih; Ke, Ling-Yi; Chen, Yin-Rui
2010-01-01
This work proposes an innovative textile sensor system to monitor dynamic body movement and human posture by attaching wearable digital sensors to analyze body motion. The proposed system can display and analyze signals when individuals are walking, running, veering around, walking up and down stairs, as well as falling down with a wearable monitoring system, which reacts to the coordination between the body and feet. Several digital sensor designs are embedded in clothing and wear apparel. Any pressure point can determine which activity is underway. Importantly, wearable digital sensors and a wearable monitoring system allow adaptive, real-time postures, real time velocity, acceleration, non-invasive, transmission healthcare, and point of care (POC) for home and non-clinical environments.
An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks.
Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin
2016-03-17
In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols.
Braunstein, Samuel L; Pati, Arun K
2007-02-23
Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen matter with an external system we show that the black-hole information paradox becomes more severe, even for cosmologically sized black holes. We rule out the possibility that the information about the in-fallen matter might hide in correlations between the Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semiclassical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.
High-Speed Research Surveillance Symbology Assessment Experiment
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Norman, R. Michael
2000-01-01
Ten pilots flew multiple approach and departure scenarios in a simulation experiment of the High-Speed Civil Transport to evaluate the utility of different airborne surveillance display concepts. The primary eXternal Visibility System (XVS) display and the Navigation Display (ND) were used to present tactical and strategic surveillance information, respectively, to the pilot. Three sensors, the Traffic Alert and Collision Avoidance System, radar, and the Automatic Dependent Surveillance-Broadcast system, were modeled for this simulation and the sensors surveillance information was presented in two different symbology sets to the pilot. One surveillance symbology set used unique symbol shapes to differentiate among the sensors, while the other set used common symbol shapes for the sensors. Surveillance information in the form of escape guidance from threatening traffic was also presented to the pilots. The surveillance information (sensors and escape guidance) was either presented head-up on the primary XVS display and head-down on the ND or head-down on the ND only. Both objective and subjective results demonstrated that the display concepts having surveillance information presented head-up and head-down have surveillance performance benefits over those concepts having surveillance information displayed head-down only. No significant symbology set differences were found for surveillance task performance.
Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L.; Kasameyer, P.; Turpin, C.
2000-03-01
This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.« less
Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks
ERIC Educational Resources Information Center
Zhang, Guyu
2013-01-01
This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks
Kumar Sahoo, Prasan; Chiang, Ming-Jer; Wu, Shih-Lin
2016-01-01
In wireless sensor networks (WSNs), certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols. PMID:26999143
The art and science of missile defense sensor design
NASA Astrophysics Data System (ADS)
McComas, Brian K.
2014-06-01
A Missile Defense Sensor is a complex optical system, which sits idle for long periods of time, must work with little or no on-board calibration, be used to find and discriminate targets, and guide the kinetic warhead to the target within minutes of launch. A short overview of the Missile Defense problem will be discussed here, as well as, the top-level performance drivers, like Noise Equivalent Irradiance (NEI), Acquisition Range, and Dynamic Range. These top-level parameters influence the choice of optical system, mechanical system, focal plane array (FPA), Read Out Integrated Circuit (ROIC), and cryogenic system. This paper will not only discuss the physics behind the performance of the sensor, but it will also discuss the "art" of optimizing the performance of the sensor given the top level performance parameters. Balancing the sensor sub-systems is key to the sensor's performance in these highly stressful missions. Top-level performance requirements impact the choice of lower level hardware and requirements. The flow down of requirements to the lower level hardware will be discussed. This flow down directly impacts the FPA, where careful selection of the detector is required. The flow down also influences the ROIC and cooling requirements. The key physics behind the detector and cryogenic system interactions will be discussed, along with the balancing of subsystem performance. Finally, the overall system balance and optimization will be discussed in the context of missile defense sensors and expected performance of the overall kinetic warhead.
NASA Astrophysics Data System (ADS)
Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan
2016-11-01
Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.
Development of robots and application to industrial processes
NASA Technical Reports Server (NTRS)
Palm, W. J.; Liscano, R.
1984-01-01
An algorithm is presented for using a robot system with a single camera to position in three-dimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accomodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.
Electrooptic polymer voltage sensor and method of manufacture thereof
NASA Technical Reports Server (NTRS)
Gottsche, Allan (Inventor); Perry, Joseph W. (Inventor)
1993-01-01
An optical voltage sensor utilizing an electrooptic polymer is disclosed for application to electric power distribution systems. The sensor, which can be manufactured at low cost in accordance with a disclosed method, measures voltages across a greater range than prior art sensors. The electrooptic polymer, which replaces the optical crystal used in prior art sensors, is sandwiched directly between two high voltage electrodes. Voltage is measured by fiber optical means, and no voltage division is required. The sample of electrooptic polymer is fabricated in a special mold and later mounted in a sensor housing. Alternatively, mold and sensor housing may be identical. The sensor housing is made out of a machinable polymeric material and is equipped with two opposing optical windows. The optical windows are mounted in the bottom of machined holes in the wall of the mold. These holes provide for mounting of the polarizing optical components and for mounting of the fiber optic connectors. One connecting fiber is equipped with a light emitting diode as a light source. Another connecting fiber is equipped with a photodiode as a detector.
NASA Astrophysics Data System (ADS)
Prevedel, P.,; Wohlgemuth, L.; Legarth, B.; Henninges, J.; Schütt, H.; Schmidt-Hattenberger, C.; Norden, B.; Förster, A.; Hurter, S.
2009-04-01
This paper reports the CO2SINK drilling and permanent monitoring completions, as well as the well testing techniques applied in Europe's first scientific carbon dioxide onshore storage test in a saline aquifer near the town of Ketzin, 40 km east of Berlin/Germany. Three boreholes, one injection and two observation wells have been drilled in 2007 to a total depth of about 800 m. The wells were completed as "smart" wells containing a variety of permanently installed down-hole sensors, which have successfully proven their functionality during over their first injection year and are the key instruments for the continuous monitoring of the CO2 inside the reservoir during the storage phase. Constructing three wells in close proximity of 50 to 100m distance to each other with a dense sensor and monitoring cable population requires detailed planning and employment of high-end project management tools. All wells were cased with stainless final casings equipped with pre-perforated sand filters in the pay-zone and wired on the outside with two fibre-optical, one multi-conductor copper, and a PU-heating cable to the surface. The reservoir casing section is externally coated with a fibre-glass-resin wrap for electrical insulation of the 15 geo-electrical toroid antennas in the open hole section. A staged cementation program was selected in combination with the application of a newly developed swellable rubber packer technology and specialized cementation down-hole tools. This technology was given preference over perforation work inside the final casing at the reservoir face, which would have created unmanageable risks of potential damage of the outside casing cables. Prior to the start of the injection phase, an extensive production and injection well test program as well as well-to-well interference tests were performed in order to determine the optimum CO2 injection regime.
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.
2006-10-17
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids
Lewis, Nathan S [La Canada, CA; Freund, Michael S [Winnipeg, CA; Briglin, Shawn S [Chittenango, NY; Tokumaru, Phillip [Moorpark, CA; Martin, Charles R [Gainesville, FL; Mitchell, David [Newtown, PA
2009-09-29
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.
1996-10-01
A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.
A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand Swanson
2005-04-01
This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfindermore » minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.« less
A variational Monte Carlo study of different spin configurations of electron-hole bilayer
NASA Astrophysics Data System (ADS)
Sharma, Rajesh O.; Saini, L. K.; Bahuguna, Bhagwati Prasad
2018-05-01
We report quantum Monte Carlo results for mass-asymmetric electron-hole bilayer (EHBL) system with different-different spin configurations. Particularly, we apply a variational Monte Carlo method to estimate the ground-state energy, condensate fraction and pair-correlations function at fixed density rs = 5 and interlayer distance d = 1 a.u. We find that spin-configuration of EHBL system, which consists of only up-electrons in one layer and down-holes in other i.e. ferromagnetic arrangement within layers and anti-ferromagnetic across the layers, is more stable than the other spin-configurations considered in this study.
Informed peg-in-hole insertion using optical sensors
NASA Astrophysics Data System (ADS)
Paulos, Eric; Canny, John F.
1993-08-01
Peg-in-hole insertion is not only a longstanding problem in robotics but the most common automated mechanical assembly task. In this paper we present a high precision, self-calibrating peg-in-hole insertion strategy using several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us to achieve successful dead-reckoning insertions with tolerances of 25 microns without any accurate initial position information for the robot, pegs, or holes. The program we implemented works for any cylindrical peg, and the sensing steps do not depend on the peg diameter, which the program does not know. The key to the strategy is the use of a fixed sensor to localize both a mobile sensor and the peg, while the mobile sensor localizes the hole. Our strategy is extremely fast, localizing pegs as they are in route to their insertion location without pausing. The result is that insertion times are dominated by the transport time between pick and place operations.
Pilot randomised controlled trial of face-down positioning following macular hole surgery.
Lange, C A K; Membrey, L; Ahmad, N; Wickham, L; Maclaren, R E; Solebo, L; Xing, W; Bunce, C; Ezra, E; Charteris, D; Aylward, B; Yorston, D; Gregor, Z; Zambarakji, H; Bainbridge, J W
2012-02-01
This was a pilot randomised controlled trial (RCT) to investigate the effect of post-operative face-down positioning on the outcome of macular hole surgery and to inform the design of a larger definitive study. In all, 30 phakic eyes of 30 subjects with idiopathic full-thickness macular holes underwent vitrectomy with dye-assisted peeling of the ILM and 14% perfluoropropane gas. Subjects were randomly allocated to posture face down for 10 days (posturing group) or to avoid a face-up position only (non-posturing group). The primary outcome was anatomical hole closure. Macular holes closed in 14 of 15 eyes (93.3%; 95% confidence interval (CI) 68-100%) in the posturing group and in 9 of 15 (60%; 95% CI 32-84%) in the non-posturing group. In a subgroup analysis of outcome according to macular hole size, all holes smaller than 400 μm closed regardless of posturing (100%). In contrast, holes larger than 400 μm closed in 10 of 11 eyes (91%; 95% CI 58-99%) in the posturing group and in only 4 of 10 eyes (40%; 95% CI 12-74%) in the non-posturing group (Fisher's exact test P=0.02). Post-operative face-down positioning may improve the likelihood of macular hole closure, particularly for holes larger than 400 μm. These results support the case for a RCT.
Bell, Lauren; Hooper, Richard; Bunce, Catey; Pasu, Saruban; Bainbridge, James
2017-06-13
The treatment of idiopathic full-thickness macular holes involves surgery to close the hole. Some surgeons advise patients to adopt a face-down position to increase the likelihood of successful macular hole closure. However, patients often find the face-down positioning arduous. There is a lack of conclusive evidence that face-down positioning improves the outcome. The 'Positioning In Macular hole Surgery' (PIMS) trial will assess whether advice to position face-down after surgery improves the surgical success rate for the closure of large (≥400 μm) macular holes. The PIMS trial is a multicentre, parallel-group, superiority clinical trial with 1:1 randomisation. Patients (n = 192) with macular holes (≥400 μm) will be randomised after surgery to either face-down positioning or face-forward positioning for at least 8 h (which can be either consecutive or nonconsecutive) a day, for 5 days following surgery. Inclusion criteria are: presence of an idiopathic full-thickness macular hole ≥400 μm in diameter, as measured by optical coherence tomography (OCT) scans, on either or both eyes; patients electing to have surgery for a macular hole, with or without simultaneous phacoemulsification and intraocular lens implant; ability and willingness to position face-down or in an inactive face-forward position; a history of visual loss suggesting a macular hole of 12 months' or less duration. The primary outcome is successful macular hole closure at 3 months post surgery. The treatment effect will be reported as an odds ratio with 95% confidence interval, adjusted for size of macular hole and phakic lens status at baseline. Secondary outcome measures at 3 months are: further surgery for macular holes performed or planned (of those with unsuccessful closure); patient-reported experience of positioning; whether patients report they would still have elected to have the operation given what they know at follow-up; best-corrected visual acuity (BCVA) measured using Snellen charts at a standard distance of 6 m; patient-reported health and quality of life assessed using the National Eye Institute Visual Function Questionnaire (VFQ-25). The PIMS trial is the first multicentre randomised control trial to investigate the value of face-down positioning following macular hole standardised surgery. International Standard Randomised Controlled Trials Number registry, ID: ISRCTN12410596. Registered on 11 February 2015. United Kingdom Clinical Research Network, ID: UKCRN17966 . Registered on 26 November 2014.
Analysis of Global Ultrasonic Sensor Data from a Full Scale Wing Panel Test
NASA Astrophysics Data System (ADS)
Michaels, Jennifer E.; Michaels, Thomas E.; Martin, Ramaldo S.
2009-03-01
A full scale wing panel fatigue test was undertaken in 2007 as a part of the DARPA Structural Integrity Prognosis System (SIPS) program. Both local and global ultrasonic sensors were installed on the wing panel and data were recorded periodically over a period of about seven weeks. The local ultrasonic sensors interrogated a small number of selected fastener holes, and the global ultrasonic sensors were arranged in a spatially distributed array surrounding an area encompassing multiple fastener holes of interest. The global ultrasonic sensor data is the focus of the work reported here. Waveforms were recorded from all pitch-catch sensor pairs as a function of static load while fatiguing was paused. The time windows over which the waveforms were recorded were long enough to include most of the reverberating energy. Partway through the test simulated defects were temporarily introduced by gluing masses onto the surface of the wing panel, and waveforms were recorded immediately before their attachment and after their removal. The overall fatigue test was terminated while cracks originating from the fastener holes were still relatively small and before they reached the surface of the wing panel. Both detection and localization results are shown for the artificial damage, and the overall repeatability and stability of the signals are analyzed. Also shown is an analysis of how the reverberating signals change as a function of applied load. The fastener hole fatigue cracks were not detected by the global transducer array, which is not surprising given the final sizes of the cracks as determined by later destructive analysis. However, signals were stable throughout the entire fatigue test, and effects of load on the received signals were significant, both in the short-time and long-time signal regimes.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Oliver, Emerson; Smith, Austin
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... document refers to a system comprised of a head-up display, imaging sensor(s), and avionics interfaces that display the sensor imagery on the HUD, and which overlay that imagery with alpha-numeric and symbolic... the sensor imagery, with or without other flight information, on a head-down display. For clarity, the...
Reciprocating down-hole sand pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhle, J.L.
1987-04-28
This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring systemmore » also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.« less
Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes
Burnham, Alan K.; Cooper, John F.
2006-02-21
A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.
GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).
Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.
1985-01-01
Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.
Novel fiber-based technique for inspection of holes in narrow-bore tubes
NASA Astrophysics Data System (ADS)
Bernard, Fabien; Flaherty, Tony; O'Connor, Gerard M.
2009-06-01
Optical tools offer a route to increasing throughput and efficiency in industrial inspection operations, one of the most time-consuming and labour-intensive aspects of modern manufacturing. One prominent example in the medical device industry is inspection of drilled holes, particularly in narrow-bore tubes (precision-flow devices, such as catheters for drug delivery, radio-opaque contrast agents, etc). The products in which these holes feature are increasing in complexity (reduced dimensions, increasing number of drilled features- in some products now reaching into the hundreds). These trends present a number of technical challenges, not least to ensure that holes are completed and that no damage to the part occurs as a result of over-drilling, for example. This paper will present a novel sensor based on back-side illumination of the drilled hole using side-glowing optical fibers to detect, qualify and quantify drilled holes. The concept is based on inserting a laser-coupled side-glowing optical fiber into the lumen of the tube to be drilled, and imaging the light emitted from this fiber through a drilled hole using a vision system mounted external to the tube. The light from the fiber allows rapid determination of hole completion, shape and size, as well as quantity in the case of products with multiple holes. If the fiber is mounted in the tube prior to drilling, the light emitted from the fiber can be used as a real-time hole breakthrough sensor, preventing under or overdrilling of the tube.
Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-09
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.
Khan, Anwar; Anisi, Mohammad Hossein; Javaid, Nadeem; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-01
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay. PMID:29315247
NASA Technical Reports Server (NTRS)
Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.
2012-01-01
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.
Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
Noble, D.T.; Braymen, S.D.; Anderson, M.S.
1996-10-01
A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.
Qualitative Features Extraction from Sensor Data using Short-time Fourier Transform
NASA Technical Reports Server (NTRS)
Amini, Abolfazl M.; Figueroa, Fernando
2004-01-01
The information gathered from sensors is used to determine the health of a sensor. Once a normal mode of operation is established any deviation from the normal behavior indicates a change. This change may be due to a malfunction of the sensor(s) or the system (or process). The step-up and step-down features, as well as sensor disturbances are assumed to be exponential. An RC network is used to model the main process, which is defined by a step-up (charging), drift, and step-down (discharging). The sensor disturbances and spike are added while the system is in drift. The system runs for a period of at least three time-constants of the main process every time a process feature occurs (e.g. step change). The Short-Time Fourier Transform of the Signal is taken using the Hamming window. Three window widths are used. The DC value is removed from the windowed data prior to taking the FFT. The resulting three dimensional spectral plots provide good time frequency resolution. The results indicate distinct shapes corresponding to each process.
Pasu, Saruban; Bunce, Catey; Hooper, Richard; Thomson, Ann; Bainbridge, James
2015-11-17
Idiopathic macular holes are an important cause of blindness. They have an annual incidence of 8 per 100,000 individuals, and prevalence of 0.2 to 3.3 per 1000 individuals with visual impairment. The condition occurs more frequently in adults aged 75 years or older. Macular holes can be repaired by surgery in which the causative tractional forces in the eye are released and a temporary bubble of gas is injected. To promote successful hole closure individuals may be advised to maintain a face-down position for up to 10 days following surgery. The aim of this study is to determine whether advice to position face-down improves the surgical success rate of closure of large (>400 μm) macular holes, and thereby reduces the need for further surgery. This will be a multicentre interventional, comparative randomised controlled clinical trial comparing face-down positioning with face-forward positioning. At the conclusion of standardised surgery across all sites, participants still eligible for inclusion will be allocated randomly 1:1 to 1 of the 2 treatment arms stratified by site, using random permuted blocks of size 4 or 6 in equal proportions. We will recruit 192 participants having surgery for large macular holes (>400 μm); 96 in each of the 2 arms of the study. The primary objective is to determine the impact of face-down positioning on the likelihood of closure of large (≥400 μm) full-thickness macular holes following surgery. This will be the first multicentre randomised control trial to investigate the value of face-down positioning following macular hole standardised surgery. UK CRN: 17966 (date of registration 26 November 2014).
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
...), imaging sensor(s), and avionics interfaces that display the sensor imagery on the HUD and overlay it with... that display the sensor imagery, with or without other flight information, on a head-down display. To... infrared sensors can be much different from that detected by natural pilot vision. On a dark night, thermal...
Valerio, Stephane; Clark, Benjamin J.; Chan, Jeremy H. M.; Frost, Carlton P.; Harris, Mark J.; Taube, Jeffrey S.
2010-01-01
Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of its directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 30 days of training. Animals in the 1-start point group reached criterion after about 6 training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when required to navigate to the escape hole from a novel starting point. This absence of flexibility while navigating upside-down was confirmed in experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks. PMID:20109566
Apparatus for advancing a wellbore using high power laser energy
Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.
2014-09-02
Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.
The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-10-01
The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.
Field tests of a down-hole TDR profiling water content measurement system
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...
Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L.; Kasameyer, P.; Long, L.
2001-05-01
This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. This report list earthquakes and stations where recordings were obtained during the period February 29, 2000 to November 11, 2000. Also, preliminary results on noise analysis for up and down hole recordings at Yerba Buena Island is presented.« less
Sensor Selection and Data Validation for Reliable Integrated System Health Management
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Melcher, Kevin J.
2008-01-01
For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down-select iteration, and the final selection analysis. The knowledge base required for productive use of S4 consists of system design information and heritage experience together with a focus on components with health implications. The sensor suite down-selection is an iterative process for identifying a group of sensors that provide good fault detection and isolation for targeted fault scenarios. In the final selection analysis, a statistical evaluation algorithm provides the final robustness test for each down-selected sensor suite. NASA GRC has developed an approach to sensor data qualification that applies empirical relationships, threshold detection techniques, and Bayesian belief theory to a network of sensors related by physics (i.e., analytical redundancy) in order to identify the failure of a given sensor within the network. This data quality validation approach extends the state-of-the-art, from red-lines and reasonableness checks that flag a sensor after it fails, to include analytical redundancy-based methods that can identify a sensor in the process of failing. The focus of this effort is on understanding the proper application of analytical redundancy-based data qualification methods for onboard use in monitoring Upper Stage sensors.
NASA Astrophysics Data System (ADS)
Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan
2014-10-01
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan
2014-10-06
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2018-01-01
A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.
Modular Apparatus and Method for Attaching Multiple Devices
NASA Technical Reports Server (NTRS)
Okojie, Robert S (Inventor)
2015-01-01
A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Santos, J. A.; White, T. R.; Bruce, W. E.; Kuhl, C. A.; Wright, H. S.
2017-01-01
Mars 2020 will fly the Mars Entry, Descent, and Landing Instrumentation II (MEDLI2) sensor suite consisting of a total of seventeen instrumented thermal sensor plugs, eight pressure transducers, two heat flux sensors, and one radiometer embedded in the thermal protection system (TPS). Of the MEDLI2 instrumentation, eleven instrumented thermal plugs and seven pressure transducers will be installed on the heatshield of the Mars 2020 vehicle while the rest will be installed on the backshell. The goal of the MEDLI2 instrumentation is to directly inform the large performance uncertainties that contribute to the design and validation of a Mars entry system. A better understanding of the entry environment and TPS performance could lead to reduced design margins enabling a greater payload mass-fraction and smaller landing ellipses. To prove that the MEDLI2 system will not degrade the performance of the Mars 2020 TPS, an Aerothermal Do No Harm (DNH) test series was designed and conducted. Like Mars 2020's predecessor, Mars Science Laboratory (MSL), the heatshield material will be Phenolic Impregnated Carbon Ablator (PICA); the Mars 2020 entry conditions are enveloped by the MSL design environments, therefore the development and qualification testing performed during MEDLI is sufficient to show that the similar MEDLI2 heatshield instrumentation will not degrade PICA performance. However, given that MEDLI did not include any backshell instrumentation, the MEDLI2 team was required to design and execute a DNH test series utilizing the backshell TPS material (SLA-561V) with the intended flight sensor suite. To meet the requirements handed down from Mars 2020, the MEDLI2 DNH test series emphasized the interaction between the MEDLI2 sensors and sensing locations with the surrounding backshell TPS and substrucutre. These interactions were characterized by performing environmental testing of four 12" by 12" test panels, which mimicked the construction of the backshell TPS and the integration of the MEDLI2 sensors as seen in Figure 1. The testing included thermal vacuum/ cycling, random vibration, shock, and arc jet testing. The test panels were fabricated by Lockheed Martin, establishing techniques that will be utilized during the Mars 2020 vehicle installation. Each test panel included one thermal sensor plug (two embedded thermocouples), one heat flux sensor, and multiple pressure port holes for evaluation. This presentation will discuss the planning and execution of the MEDLI2 DNH test series. Selected highlights and results of each environmental test will be presented, and lessons learned will be addressed that will feed forward into the planning for the MEDLI2 flight system certification testing.
Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot
Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang
2017-01-01
This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully. PMID:28862691
Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.
Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang
2017-09-01
This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully.
Development and recent results from the Subaru coronagraphic extreme adaptive optics system
NASA Astrophysics Data System (ADS)
Jovanovic, N.; Guyon, O.; Martinache, F.; Clergeon, C.; Singh, G.; Kudo, T.; Newman, K.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Stewart, P.; Huby, E.; Perrin, G.; Lacour, S.; Vievard, S.; Murakami, N.; Fumika, O.; Minowa, Y.; Hayano, Y.; White, J.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.
2014-07-01
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been successfully tested on-sky. In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems. Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of ~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of 2014.
Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror
NASA Astrophysics Data System (ADS)
Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu
2017-02-01
Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.
Erratic Black Hole Regulates Itself
NASA Astrophysics Data System (ADS)
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don't entirely understand, the other one gets the upper hand." GRS 1915+105 Chandra X-ray Image of GRS 1915+105 The latest Chandra results also show that the wind and the jet carry about the same amount of matter away from the black hole. This is evidence that the black hole is somehow regulating its accretion rate, which may be related to the toggling between mass expulsion via either a jet or a wind from the accretion disk. Self-regulation is a common topic when discussing supermassive black holes, but this is the first clear evidence for it in stellar-mass black holes. "It is exciting that we may be on the track of explaining two mysteries at the same time: how black hole jets can be shut down and also how black holes regulate their growth," said co-author Julia Lee, assistant professor in the Astronomy department at the Harvard-Smithsonian Center for Astrophysics. "Maybe black holes can regulate themselves better than the financial markets!" Although micro-quasars and quasars differ in mass by factors of millions, they should show a similarity in behavior when their very different physical scales are taken into account. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image Celebrate the International Year of Astronomy Ghost Remains After Black Hole Eruption "If quasars and micro-quasars behave very differently, then we have a big problem to figure out why, because gravity treats them the same," said Neilsen. "So, our result is actually very reassuring, because it's one more link between these different types of black holes." The timescale for changes in behavior of a black hole should vary in proportion to the mass. For example, an hour-long timescale for changes in GRS 1915 would correspond to about 10,000 years for a supermassive black hole that weighs a billion times the mass of the Sun. "We cannot hope to explore at this level of detail in any single supermassive black hole system," said Lee. "So, we can learn a tremendous amount about black holes by just studying stellar-mass black holes like this one." It is not known what causes the jet to turn on again once the wind dies down, and this remains one of the major unsolved mysteries in astronomy. "Every major observatory, ground and space, has been used to study this black hole for the past two decades," said Neilsen. "Although we still don't have all the answers, we think our work is a step in the right direction." This was work made using Chandra's High Energy Transmission Gratings Spectrometer. These results appear in the March 26th issue of Nature. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
New hydrologic instrumentation in the U.S. Geological Survey
Latkovich, V.J.; Shope, W.G.; ,
1991-01-01
New water-level sensing and recording instrumentation is being used by the U.S. Geological Survey for monitoring water levels, stream velocities, and water-quality characteristics. Several of these instruments are briefly described. The Basic Data Recorder (BDR) is an electronic data logger, that interfaces to sensor systems through a serial-digital interface standard (SDI-12), which was proposed by the data-logger industry; the Incremental Shaft Encoder is an intelligent water-level sensor, which interfaces to the BDR through the SDI-12; the Pressure Sensor is an intelligent, nonsubmersible pressure sensor, which interfaces to the BDR through the SDI-12 and monitors water levels from 0 to 50 feet; the Ultrasonic Velocity Meter is an intelligent, water-velocity sensor, which interfaces to the BDR through the SDI-12 and measures the velocity across a stream up to 500 feet in width; the Collapsible Hand Sampler can be collapsed for insertion through holes in the ice and opened under the ice to collect a water sample; the Lighweight Ice Auger, weighing only 32 pounds, can auger 6- and 8-inch holes through approximately 3.5 feet of ice; and the Ice Chisel has a specially hardened steel blade and 6-foot long, hickory D-handle.
A Small Diameter Rosette for Sampling Ice Covered Waters
NASA Astrophysics Data System (ADS)
Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.
2011-12-01
A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at some shallow stations) and with a miss-fire rate within two percent of those achieved with traditional over-the-side CTD/rosette systems.
Depth map generation using a single image sensor with phase masks.
Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki
2016-06-13
Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.
Resolution enhancement of fiber Bragg grating temperature sensor using a cavity ring-down technique
NASA Astrophysics Data System (ADS)
Yarai, Atsushi; Hara, Katsuyuki
2018-02-01
A new technique for enhancing the measurement resolution of a fiber Bragg grating (FBG) temperature sensor is proposed. This technique uses a cavity ring-down approach to amplify optical intensity by accumulating unremarkable intensity changes. A wavelength-stabilized optical pulse with a width of 10 ns rotates several times inside an optical fiber loop that contains a FBG sensor. In other words, the loop system functions as an integrator of slight intensity transition. A temperature resolution of at least 0.02 °C was achieved at 20.0 °C. Resolution with this technique is at least five times higher than previous techniques.
Wireless Multiplexed Surface Acoustic Wave Sensors Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2014-01-01
Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).
Fujisaki, Ikuko; Mazzotti, Frank J.; Hart, Kristen M.; Rice, Kenneth G.; Ogurcak, Danielle; Rochford, Michael; Jeffery, Brian M.; Brandt, Laura A.; Cherkiss, Michael S.
2012-01-01
Use of indicator species as a measure of ecosystem conditions is an established science application in environmental management. Because of its role in shaping wetland systems, the American alligator (Alligator mississippiensis) is one of the ecological indicators for wetland restoration in south Florida, USA. We conducted landscape-level aerial surveys of alligator holes in two different habitats in a wetland where anthropogenic modification of surface hydrology has altered the natural system. Alligator holes were scarcer in an area where modified hydrology caused draining and frequent dry-downs compared to another area that maintains a functional wetland system. Lower abundance of alligator holes indicates lack of alligator activities, lower overall species diversity, and lack of dry-season aquatic refugia for other organisms. The occupancy rate of alligator holes was lower than the current restoration target for the Everglades, and was variable by size class with large size-class alligators predominantly occupying alligator holes. This may indicate unequal size-class distribution, different habitat selection by size classes, or possibly a lack of recruitment. Our study provides pre-restoration baseline information about one indicator species for the Everglades. Success of the restoration can be assessed via effective synthesis of information derived by collective research efforts on the entire suite of selected ecological indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Po; Shaddock, David; Sandvik, Peter
2012-11-30
A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can bemore » used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.« less
76 FR 4744 - Bentley Motors, Inc., Grant of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... Federal Docket Management System Web site at: http://www.regulations.gov/ . Then follow the online search..., when the engine cover is removed the screw is still hidden down a small dark guide hole, so the screw...
Georgia tech catalog of gravitational waveforms
NASA Astrophysics Data System (ADS)
Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-10-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.
In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber.
Yang, Jing; Guan, Chunying; Tian, Peixuan; Yuan, Tingting; Zhu, Zheng; Li, Ping; Shi, Jinhui; Yang, Jun; Yuan, Libo
2017-11-01
We propose a novel and simple in-fiber refractive index sensor based on resonant coupling, constructed by a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) spliced between two single-mode fibers. The coupling characteristics of the SEHADCF are calculated numerically. The strong resonant coupling occurs when the fundamental mode of the center core phase-matches to that of the suspended core in the air hole. The effective refractive index of the fundamental mode of the suspended core can be obviously changed by injecting solution into the air hole. The responses of the proposed devices to the refractive index and temperature are experimentally measured. The refractive index sensitivity is 627.5 nm/refractive index unit in the refractive index range of 1.335-1.385. The sensor without solution filling is insensitive to temperature in the range of 30-90°C. The proposed refractive index sensor has outstanding advantages, such as simple fabrication, good mechanical strength, and excellent microfluidic channel, and will be of importance in biological detection, chemical analysis, and environment monitoring.
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2017-04-01
Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.
A Fast Measuring Method for the Inner Diameter of Coaxial Holes.
Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie
2017-03-22
A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod's rotation angles, so all diameters of coaxial holes can be calculated by sensors' values. While revolving, the changing angles of each sensor's laser beams are approximately equal in the rod's radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS's mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use.
Compressive Sensing for DoD Sensor Systems
2012-11-01
Schmidt (1963) [45] indicated a cosmologically distant, extremely luminous object, the first example of a quasar - an accretion-powered black hole at...evaluating cosmological models and for determining key cos- mological parameters. Sparsity up to the m-degeneracy is independent of the choice of
Deep data fusion method for missile-borne inertial/celestial system
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao
2018-05-01
Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.
NASA Astrophysics Data System (ADS)
Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto
2017-03-01
With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.
Ultrafast Radiation Detection by Modulation of an Optical Probe Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, S P; Lowry, M E
2006-02-22
We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors aremore » proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x-ray energies {approx} 10 keV.« less
Geothermal pump down-hole energy regeneration system
Matthews, Hugh B.
1982-01-01
Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.
Feasibility of fatigue crack detection and tracking with a multi-sensor in-situ monitoring system
NASA Astrophysics Data System (ADS)
Zhao, Xiaoliang; Qi, Kevin; Qian, Tao; Mei, Gang
2014-02-01
Fatigue crack is a common problem for steel bridges. A cost effective and reliable method for detecting and verifying growth of a crack is desired. In this work, feasibilities of fatigue crack monitoring with acoustic emission sensors and strain gauges were studied on an A36 steel compact-tension coupon under cyclic tensile loading. By examining the ultrasonic signal time-of-arrival and frequency spectrum, acoustic emissions from a crack growth can be distinguished from other structural borne noises such as those from the interaction of loading bolts with the bolt holes on the plate. Strain sensor and clip gauge sensor data were also correlated well with the growth of the crack.
New Gas Polarographic Hydrogen Sensor
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Barile, Ron
2004-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.
Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios
2016-09-15
Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.
Unmanned Systems Integrated Roadmap, FY2013-2038
2014-01-01
29 4.1.7 Sensor Air Drop...Force MQ-1/9 Pilot & Sensor Operator Training Flow ...................................... 106 Figure 39. UAS Training Objectives...the Nation’s 10 years of war wind down, DoD inventories and funding of UGS are expected to decrease in 2014, followed by a gradual upward trend in 2016
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.
2006-03-01
The Mars Analog Research and Technology (MARTE) experiment has developed an automated drilling system on a simulated Mars lander platform including drilling, sample handling, core analysis and down-hole instruments relevant to searching for life in the Martian subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doug Blankenship
ArcGIS Map Package with MT Station Locations, 2D Seismic Lines, Well data, Known Regional Hydrothermal Systems, Regional Historic Earthquake Seismicity, Regional Temperature Gradient Data, Regional Heat Flow Data, Regional Radiogenic Heat Production, Local Geology, Land Status, Cultural Data, 2m Temperature Probe Data, and Gravity Data. Also a detailed down-hole lithology notes are provided.
Decoupling a hole spin qubit from the nuclear spins.
Prechtel, Jonathan H; Kuhlmann, Andreas V; Houel, Julien; Ludwig, Arne; Valentin, Sascha R; Wieck, Andreas D; Warburton, Richard J
2016-09-01
A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.
Visualization and Analysis of a Numerical Simulation of GW150914
NASA Astrophysics Data System (ADS)
Rosato, Nicole
We present a visualization and analysis of a supercomputer simulation displaying the apparent horizons' curvature and radiation emitted from a binary black hole system modeling the LIGO observed signal GW150914. The simulation follows the system from seven orbits prior to merger down to the resultant final Kerr black hole. Apparent horizons are calculated during the simulation with mean curvature data displayed on them. Radiation data was visualized via the real part of the Psi4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in using the quasi-Kinnersley and PsiKadelia tetrads to construct Psi4 and the benefits, particularly in the strong field region of a binary black hole system, of using a tetrad in a transverse (Psi1 = Psi3 = 0) frame. The second part of our studies focus on the relationship between the mean curvature displayed on the apparent horizons and the trajectories of the black holes. We notice that prior to merger, for each black hole, the directionality of the mean curvature tracks that of the trajectory with either a positive or negative phase shift between the two curves. Finally, we provide a brief analysis suggesting that the phase shift and the frame dragging effects are likely related.
NASA Technical Reports Server (NTRS)
Stieler, B.
1971-01-01
An inertial navigation system is described and analyzed based on two two-degree-of-freedom Schuler-gyropendulums and one two-degree-of-freedom azimuth gyro. The three sensors, each base motion isolated about its two input axes, are mounted on a common base, strapped down to the vehicle. The up and down pointing spin vectors of the two properly tuned gyropendulums track the vertical and indicate physically their velocity with respect to inertial space. The spin vector of the azimuth gyro is pointing northerly parallel to the earth axis. The system can be made self-aligning on a stationary base. If external measurements for the north direction and the vertical are available, initial disturbance torques can be measured and easily biased out. The error analysis shows that the system is practicable with today's technology.
2017-11-16
This image from NASA's Solar Dynamics Observatory shows a broad coronal hole was the dominant feature this week on the sun (Nov. 7-9, 2017). It was easily recognizable as the dark expanse across the top of the sun and extending down in each side. Coronal holes are magnetically open areas on the sun that allow high-speed solar wind to gush out into space. They always appear darker in extreme ultraviolet. This one was likely the source of bright aurora that shimmered for numerous observers, with some reaching down even to Nebraska. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22113
Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.
Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta
2018-06-22
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.
Colloidal lithography nanostructured Pd/PdO x core–shell sensor for ppb level H2S detection
NASA Astrophysics Data System (ADS)
Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta
2018-06-01
In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core–shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV–vis spectroscopy and x-ray photoemission spectroscopy.
Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1
NASA Technical Reports Server (NTRS)
Park, Thomas; Smith, Austin; Oliver, T. Emerson
2018-01-01
The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus; Barile, Ron
2006-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Nondestructive testing of moisture separator reheater tubing system using Hall sensor array
NASA Astrophysics Data System (ADS)
Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi
2018-01-01
This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.
Kathiresan, Meena
2017-01-01
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity. PMID:28451256
Black Holes Masses in Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Macchetto, F. D.
2004-01-01
There is increasing evidence for the existence of supermassive black holes at the centers of all galaxies, and much work is being devoted to understand the process that lead to their formation, the duty cycle for the active phase of these black holes and the relevant fueling mechanisms. Seyfert galaxies determined by HST high spatial resolution observations of the kinematics of the central regions. The study of the gas kinematics provides a unique tool to probe the gravitational potential of the nuclear regions of Seyfert galaxies down to a limit radius of a few parsecs. This is particularly important to detect and measure the mass associated with any central massive black hole. We have obtained high spatial resolution spectra of a number of Seyfert galaxies, with the STIS G430M and G750M gratings, and we have been able to separate the emission line components associated with different velocity systems. We have derived two-dimensional velocity fields and determined the mass of the central black hole with good precision for each of the galaxies.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes.
Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C
2015-10-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes
Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.
2015-01-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307
Integrated Sensor Systems for UAS
2008-04-01
2. Optical particle counter 0.27 5.4 3. Pyranometer 0.17 ɘ.2 4. Temp. & relative humidity 0.05 ɘ.1 5. Data acquisition system 0.15 ɘ.2 6...payload volume showing sensor instrument installation. The insert shows the Manta exterior with the cloud droplet probe and pyranometer mounted on...Instrumentation Above- 2.7 Aethalometer cloud 14 Optical particle counter Up and down pyranometers Condensation particle counter In- 3.7
NASA Technical Reports Server (NTRS)
1976-01-01
This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration.
Black Hole Spin Evolution and Cosmic Censorship
NASA Astrophysics Data System (ADS)
Chen, W.; Cui, W.; Zhang, S. N.
1999-04-01
We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.
Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.
López, David; Ríos, Susana
2010-04-20
A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.
A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network
Tokumitsu, Masahiro; Ishida, Yoshiteru
2014-01-01
This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing. PMID:24803190
A space weather forecasting system with multiple satellites based on a self-recognizing network.
Tokumitsu, Masahiro; Ishida, Yoshiteru
2014-05-05
This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.
Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer
NASA Astrophysics Data System (ADS)
Liu, Feng; Guo, Xuan; Zhang, Qing; Fu, Xinghu
2017-12-01
A refractive-index (RI) sensor and its sensing characteristics based on intermodal interference of dual-hole Polarization Maintaining Photonic Crystal Fiber (PM-PCF) are demonstrated in this letter. The sensor works from the interference between LP01 and LP11 modes of hydrofluoric acid etched PM-PCF. The influence of corrosion zone radius on the RI sensing sensitivity is also discussed. Via choosing a 2.5 cm etched PM-PCF(the etched area radius is 27.5 μm) and 650 nm laser, the sensor exhibits the RI sensitivity of 7.48 V/RIU. The simple sensor structure and inexpensive demodulation method can make this technology for online refractive index measurement in widespread areas.
Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies
NASA Astrophysics Data System (ADS)
Hauptmann, Peter R.
2006-03-01
The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.
Mars2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Do No Harm Test Series
NASA Technical Reports Server (NTRS)
Swanson, Gregory; Santos, Jose; White, Todd; Bruce, Walt; Kuhl, Chris; Wright, Henry
2017-01-01
A total of seventeen instrumented thermal sensor plugs, eight pressure transducers, two heat flux sensors, and one radiometer are planned to be utilized on the Mars 2020 missions thermal protection system (TPS) as part of the Mars Entry, Descent, and Landing Instrumentation II (MEDLI2) project. Of the MEDLI2 instrumentation, eleven instrumented thermal plugs and seven pressure transducers will be installed on the heatshield of the Mars 2020 vehicle while the rest will be installed on the backshell. The goal of the MEDLI2 instrumentation is to directly inform the large performance uncertainties that contribute to the design and validation of a Mars entry system. A better understanding of the entry environment and TPS performance could lead to reduced design margins enabling a greater payload mass-fraction and smaller landing ellipses. To prove that the MEDLI2 system will not degrade the performance of the Mars 2020 TPS, an Aerothermal Do No Harm (DNH) test series was designed and conducted. Like Mars 2020s predecessor, Mars Science Laboratory (MSL), the heatshield material will be Phenolic Impregnated Carbon Ablator (PICA); the Mars 2020 entry conditions are enveloped by the MSL design environments, therefore the development and qualification testing performed during MEDLI is sufficient to show that the similar MEDLI2 heatshield instrumentation will not degrade PICA performance. However, given that MEDLI did not include any backshell instrumentation, the MEDLI2 team was required to design and execute a DNH test series utilizing the backshell TPS material (SLA-561V) with the intended flight sensor suite. To meet the requirements handed down from Mars 2020, the MEDLI2 DNH test series emphasized the interaction between the MEDLI2 sensors and sensing locations with the surrounding backshell TPS and substrucutre. These interactions were characterized by performing environmental testing of four 12 by 12 test panels, which mimicked the construction of the backshell TPS and the integration of the MEDLI2 sensors as seen in Figure 1. The testing included thermal vacuumcycling, random vibration, shock, and arc jet testing. The test panels were fabricated by Lockheed Martin, establishing techniques that will be utilized during the Mars 2020 vehicle installation. Each test panel included one thermal sensor plug (two embedded thermocouples), one heat flux sensor, and multiple pressure port holes for evaluation.This presentation will discuss the planning and execution of the MEDLI2 DNH test series. Selected highlights and results of each environmental test will be presented, and lessons learned will be addressed that will feed forward into the planning for the MEDLI2 flight system certification testing.
Highly sensitive biological sensor based on photonic crystal fiber
NASA Astrophysics Data System (ADS)
Azzam, Shaimaa I. H.; Hameed, Mohamed F.; Obayya, S. S. A.
2014-05-01
A photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor is proposed and analysed. The proposed sensor consists of microuidic slots enclosing a dodecagonal layer of air holes cladding and a central air hole. The sensor can perform analyte detection using both HEx 11 and HEy 11 modes with a relatively high sensitivities up to 4000 nm=RIU and 3000 nm=RIU and resolutions of 2.5×10-5 RIU-1 and 3.33×10-5 RIU-1 with HEx11 and HEy11, respectively, with regards to spectral interrogation which to our knowledge are higher than those reported in the literature. Moreover, the structure of the suggested sensor is simple with no fabrication complexities which makes it easy to fabricate with standard PCF fabrication technologies.
NASA Astrophysics Data System (ADS)
Pasek, W. J.; Maialle, M. Z.; Degani, M. H.
2018-03-01
An idea of employing the Landau-Zener-Stückelberg-Majorana dynamics to flip a spin of a single ground state hole is introduced and explored by a time-dependent simulation. This configuration interaction study considers a hole confined in a quantum molecule formed in an InSb 〈111 〉 quantum wire by application of an electrostatic potential. An up-down spin-mixing avoided crossing is formed by nonaxial terms in the Kohn-Luttinger Hamiltonian and the Dresselhaus spin-orbit one. Manipulation of the system is possible by the dynamic change of an external vertical electric field, which enables the consecutive driving of the hole through two anticrossings. Moreover, a simple model of the power-law-type noise that impedes precise electric control of the system is included in the form of random telegraph noise to estimate the limitations of the working conditions. We show that in principle the process is possible, but it requires precise control of the parameters of the driving impulse.
LUMOS--A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range.
Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M; Revsbech, Niels-Peter; Glud, Ronnie N; Canfield, Donald E; Klimant, Ingo
2015-01-01
Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented.
Extraction of Qualitative Features from Sensor Data Using Windowed Fourier Transform
NASA Technical Reports Server (NTRS)
Amini, Abolfazl M.; Figueroa, Fenando
2003-01-01
In this paper, we use Matlab to model the health monitoring of a system through the information gathered from sensors. This implies assessment of the condition of the system components. Once a normal mode of operation is established any deviation from the normal behavior indicates a change. This change may be due to a malfunction of an element, a qualitative change, or a change due to a problem with another element in the network. For example, if one sensor indicates that the temperature in the tank has experienced a step change then a pressure sensor associated with the process in the tank should also experience a step change. The step up and step down as well as sensor disturbances are assumed to be exponential. An RC network is used to model the main process, which is step-up (charging), drift, and step-down (discharging). The sensor disturbances and spike are added while the system is in drift. The system is allowed to run for a period equal to three time constant of the main process before changes occur. Then each point of the signal is selected with a trailing data collected previously. Two trailing lengths of data are selected, one equal to two time constants of the main process and the other equal to two time constants of the sensor disturbance. Next, the DC is removed from each set of data and then the data are passed through a window followed by calculation of spectra for each set. In order to extract features the signal power, peak, and spectrum are plotted vs time. The results indicate distinct shapes corresponding to each process. The study is also carried out for a number of Gaussian distributed noisy cases.
LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range
Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M.; Revsbech, Niels-Peter; Glud, Ronnie N.; Canfield, Donald E.; Klimant, Ingo
2015-01-01
Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented. PMID:26029920
Optical fiber strain sensor for application in intelligent intruder detection systems
NASA Astrophysics Data System (ADS)
Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz
2017-10-01
Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.
McCormick, S.H.; Pigott, W.R.
1997-12-30
A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.
McCormick, Steve H.; Pigott, William R.
1997-01-01
A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.
Method For Characterizing Residual Stress In Metals
Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.
2002-12-03
A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-06-29
The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less
The Electrophysiological Biosensor for Batch-Measurement of Cell Signals
NASA Astrophysics Data System (ADS)
Suzuki, Kengo; Tanabe, Masato; Ezaki, Takahiro; Konishi, Satoshi; Oka, Hiroaki; Ozaki, Nobuhiko
This paper presents the development of electrophysiological biosensor. The developed sensor allows a batch-measurement by detecting all signals from a large number of cells together. The developed sensor employs the same measurement principle as the patch-clamp technique. A single cell is sucked and clamped in a micro hole with detecting electrode. Detecting electrodes in arrayed micro holes are connected together for the batch-measurement of signals a large number of cell signals. Furthermore, an array of sensors for batch-measurement is designed to improve measurement-throughput to satisfy requirements for the drug screening application.
NASA Astrophysics Data System (ADS)
Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard
2012-06-01
The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.
Trapping in irradiated p +-n-n - silicon sensors at fluences anticipated at the HL-LHC outer tracker
Adam, W.
2016-04-22
The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 x 10 15 neq/cm 2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulationmore » assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. Furthermore, the effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.« less
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
Calibration Shots Recorded for the Salton Seismic Imaging Project, Salton Trough, California
NASA Astrophysics Data System (ADS)
Murphy, J. M.; Rymer, M. J.; Fuis, G. S.; Stock, J. M.; Goldman, M.; Sickler, R. R.; Miller, S. A.; Criley, C. J.; Ricketts, J. W.; Hole, J. A.
2009-12-01
The Salton Seismic Imaging Project (SSIP) is a collaborative venture between the U.S. Geological Survey, California Institute of Technology, and Virginia Polytechnic Institute and State University, to acquire seismic reflection/wide angle refraction data, and currently is scheduled for data acquisition in 2010. The purpose of the project is to get a detailed subsurface 3-D image of the structure of the Salton Trough (including both the Coachella and Imperial Valleys) that can be used for earthquake hazards analysis, geothermal studies, and studies of the transition from ocean-ocean to continent-continent plate-boundary. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley with specific goals in mind. First, these shots were used to measure peak particle velocity and acceleration at various distances from the shots. Second, the shots were used to calibrate the propagation of energy through sediments of the Imperial Valley. Third, the shots were used to test the effects of seismic energy on buried clay drainage pipes, which are abundant throughout the irrigated parts of the Salton Trough. Fourth, we tested the ODEX drilling technique, which uses a down-hole casing hammer for a tight casing fit. Information obtained from the calibration shots will be used for final planning of the main project. The shots were located in an unused field adjacent to Hwy 7, about 6 km north of the U.S. /Mexican border (about 18 km southeast of El Centro). Three closely spaced shot points (16 meters apart) were aligned N-S and drilled to 21-m, 23.5-m, and 27-m depth. The holes were filled with 23-kg, 68-kg, and 123-kg of ammonium-nitrate explosive, respectively. Four instrument types were used to record the seismic energy - six RefTek RT130 6-channel recorders with a 3-component accelerometer and a 3-component 2-Hz velocity sensor, seven RefTek RT130 3-channel recorders with a 3-component 4.5-Hz velocity sensor, 35 Texans with a vertical component 4.5-Hz velocity sensor, and a 60-channel cabled array with 40-Hz sensors. Irrigation districts in both the Coachella Valley and Imperial Valley use clay drainage pipes buried beneath fields to remove irrigation water and prevent ponding. To determine the effect of seismic energy on the drain pipes, we exposed sections of pipe several meters long with a backhoe at distances of 7-15 meters from the shot holes, and, after each shot, visually inspected the pipes. Our shots produced no pipe damage.
NASA Astrophysics Data System (ADS)
Kim, D.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Lattuca, A.; Mager, M.; Sielewicz, K. M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Pham, T. H.; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. W.; Yang, P.
2016-02-01
ALICE plans to replace its Inner Tracking System during the second long shut down of the LHC in 2019 with a new 10 m2 tracker constructed entirely with monolithic active pixel sensors. The TowerJazz 180 nm CMOS imaging Sensor process has been selected to produce the sensor as it offers a deep pwell allowing full CMOS in-pixel circuitry and different starting materials. First full-scale prototypes have been fabricated and tested. Radiation tolerance has also been verified. In this paper the development of the charge sensitive front end and in particular its optimization for uniformity of charge threshold and time response will be presented.
Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Lanzi, Raymond J.
2010-01-01
The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.
NASA Astrophysics Data System (ADS)
Alsing, P. M.; Fanto, M. L.
2016-05-01
In this work we argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete. We present an analytical formulation of the recent one-shot decoupling model that was numerically analyzed in Bradler and Adami Phys. Rev. Lett. 116, 101301 (2016) [arXiv:1505.0284]. We compute the resulting "Page Information" curves, which describe the rate at which information escapes form the black hole as it evaporates, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. The present work reviews and attempts to elucidate the trilinear Hamiltonian models for black hole evaporation/particle production recently investigated by the authors in Class. Quant. Grav 32, 075010 (2015) [arXiv:1408.4491] and Class. Quant. Grav 33, 015005 (2016) [arXiv:1507.00429].
Fate of hydraulic fracturing chemicals under down-hole conditions
NASA Astrophysics Data System (ADS)
Blotevogel, J.; Kahrilas, G.; Corrin, E. R.; Borch, T.
2013-12-01
Hydraulic fracturing is a method to increase the yield of oil and natural gas extraction from unconventional rock formations. The process of hydrofracturing occurs via injecting water, sand, and chemicals into the production well and subjecting this mixture to high pressures to crack the rock shale, allowing increased amounts of gas and oil to seep out of the target formation. Typical constituents of the chemical mixtures are biocides, which are applied to inhibit growth of sulfate reducing bacteria in order to prevent pipe corrosion and production of hazardous gases. However, very little is known about the persistence, fate, and activity of biocides when subjected to the high temperatures and pressures of down-hole conditions. Thus, the objective of this talk is to present data from ongoing experiments focused on determining the fate of biocides commonly used for hydraulic fracturing under conditions simulating down-hole environments. Using stainless steel reactors, the high pressures and temperatures of down-hole conditions in the Marcellus shale are simulated, while concentration, speciation, and degradation of priority biocides are observed as a function of time, using primarily LC/MS techniques. The impact of water quality, shale, temperature, and pressure on the transformation kinetics and pathways of biocides will be discussed. Finally, field samples (both sediments and flowback brine) from the Marcellus shale are analyzed to verify that our lab simulations mirror real-life conditions and results.
NASA Astrophysics Data System (ADS)
Shi, Min; Li, Shuguang; Chen, Hailiang
2018-06-01
A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.
View southeast of weldment assembly floor in structures shop, building ...
View southeast of weldment assembly floor in structures shop, building 57; the floor is fabricated of cast iron and features a grillwork of 1 1/2 square holes which are used as sockets for gripping positioning or lock down pins; a lock down pin is shown left and below the center of the photograph; the vertical section of the pin is placed into a hole in the cast steel floor while the angles section of the pin rests on the piece under construction; the pin is hammered into the hole and spring tension in the pin holds the work piece in position. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
Time dependent Schrödinger equation for black hole evaporation: No information loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corda, Christian, E-mail: cordac.galilei@gmail.com
2015-02-15
In 1976 S. Hawking claimed that “Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state”. This was the starting point of the popular “black hole (BH) information paradox”. In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model,more » a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking’s claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect ’t Hooft’s assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.« less
Massive Binary Black Holes in the Cosmic Landscape
NASA Astrophysics Data System (ADS)
Colpi, Monica; Dotti, Massimo
2011-02-01
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Pilot Alan Poindexter heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Stanley Love heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Commander Steve Frick heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Leland Melvin heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Liu, Ying-gang; Liu, Xin; Ma, Cheng-ju; Zhou, Yu-min
2018-03-01
Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry-Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid's refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry-Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid's temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 ×10-5 RIU. These characteristics are what other single-type sensors don't have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.
2017-10-01
The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.
Confidence Hills -- The First Mount Sharp Drilling Site
2014-11-04
This image shows the first holes drilled by NASA Mars rover Curiosity at Mount Sharp. The loose material near the drill holes is drill tailings and an accumulation of dust that slid down the rock during drilling.
Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips
NASA Technical Reports Server (NTRS)
Bae, Youngsam (Inventor); Manohara, Harish (Inventor); Mobasser, Sohrab (Inventor); Lee, Choonsup (Inventor)
2011-01-01
Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.
Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips
NASA Technical Reports Server (NTRS)
Bae, Youngsman (Inventor); Mooasser, Sohrab (Inventor); Manohara, Harish (Inventor); Lee, Choonsup (Inventor); Bae, Kungsam (Inventor)
2009-01-01
Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.
NASA Astrophysics Data System (ADS)
McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish
2006-05-01
The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.
NASA Astrophysics Data System (ADS)
Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario
2015-09-01
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.
Geoethical Approach to Antarctic Subglacial Lakes Exploration
NASA Astrophysics Data System (ADS)
Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail
2014-05-01
Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the Antarctic ice sheet above subglacial lake. All equipment is got into working trim, the bottom hot-point is powered, and the sonde starts to melt down to the ice sheet bed. The personnel leave the site, and all further operations are going on in semi-automatic mode. The melted water does not recover from the hole and refreezes behind the sonde. Electric line for power supply and communication with down-hole sensors is released from the coil installed inside the sonde. Since the sonde enters into the subglacial lake, it samples the water and examines subglacial conditions. After sampling, the motor connected with coil is switched on, and the top hot-point is put into action. The sonde begins to recover itself to the surface by spooling the cable and melting overlying ice with the help of the upper hot-point. Since 8-9 months from starting, the sonde reaches the surface and waits the personnel for servicing and moving to the next site. The big advantage of the proposed technology is that subglacial lake would be measured and sampled while subglacial water is reliably isolated from surface environment.
Quantum interference of highly-dispersive surface plasmons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tokpanov, Yury S.; Fakonas, James S.; Atwater, Harry A.
2016-09-01
Previous experiments have shown that surface plasmon polaritons (SPPs) preserve their entangled state and do not cause measurable decoherence. However, essentially all of them were done using SPPs whose dispersion was in the linear "photon-like" regime. We report in this presentation on experiments showing how transition to "true-plasmon" non-linear dispersion regime, which occurs near SPP resonance frequency, will affect quantum coherent properties of light. To generate a polarization-entangled state we utilize type-I parametric down-conversion, occurring in a pair of non-linear crystals (BiBO), glued together and rotated by 90 degrees with respect to each other. For state projection measurements, we use a pair of polarizers and single-photon avalanche diode coincidence count detectors. We interpose a plasmonic hole array in the path of down-converted light before the polarizer. Without the hole array, we measure visibility V=99-100% and Bell's number S=2.81±0.03. To study geometrical effects we fabricated plasmonic hole arrays (gold on optically polished glass) with elliptical holes (axes are 190nm and 240nm) using focused ion beam. When we put this sample in our system we measured the reduction of visibility V=86±5% using entangled light. However, measurement using classical light gave exactly the same visibility; hence, this reduction is caused only by the difference in transmission coefficients of different polarizations. As samples with non-linear dispersion we fabricated two-layer (a-Si - Au) and three-layer (a-Si - Au - a-Si) structures on optically polished glass with different pitches and circular holes. The results of measurements with these samples will be discussed along with the theoretical investigations.
Toward Optical Sensors: Review and Applications
NASA Astrophysics Data System (ADS)
Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.
2013-04-01
Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.
Intelligent Sensors: An Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
Method and system for advancement of a borehole using a high power laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.
2014-09-09
There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.
Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.
Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E
2009-06-22
An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.
Intelligent sensor-model automated control of PMR-15 autoclave processing
NASA Technical Reports Server (NTRS)
Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.
1992-01-01
An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.
PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables
NASA Astrophysics Data System (ADS)
Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.
Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.
Colgate, Stirling A.
1984-01-01
Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.
Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.
NASA Technical Reports Server (NTRS)
1992-01-01
Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.
Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar
NASA Astrophysics Data System (ADS)
Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.
2013-12-01
Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Fabrication of a sensing module using micromachined biosensors.
Suzuki, H; Arakawa, H; Karube, I
2001-12-01
Micromachining is a powerful tool in constructing micro biosensors and micro systems which incorporate them. A sensing module for blood components was fabricated using the technology. The analytes include glucose, urea, uric acid, creatine, and creatinine. Transducers used to construct the corresponding sensors were a Severinghaus-type carbon dioxide electrode for the urea sensor and a Clark-type oxygen electrode for the other analytes. In these electrodes, detecting electrode patterns were formed on a glass substrate by photolithography and the micro container for the internal electrolyte solution was formed on a silicon substrate by anisotropic etching. A through-hole was formed in the sensitive area, where a silicone gas-permeable membrane was formed and an enzyme was immobilized. The sensors were characterized in terms of pH and temperature dependence and calibration curves along with detection limits. Furthermore, the sensors were incorporated in an acrylate flow cell. Simultaneous operation of these sensors was successfully conducted and distinct and stable responses were observed for respective sensors.
The bright future of unconventional σ/π-hole interactions.
Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio
2015-08-24
Non-covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host-guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non-covalent component (e.g. protein folding, recognition) and rational interference in such 'living' devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ-hole and π-hole interactions. A σ- or π-hole can be seen as positive electrostatic potential on unpopulated σ* or π(() *()) orbitals, which are thus capable of interacting with some electron dense region. A σ-hole is typically located along the vector of a covalent bond such as XH or XHlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ-holes can also be found along a covalent bond with chalcogen (XCh), pnictogen (XPn) and tetrel (XTr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π-hole is typically located perpendicular to the molecular framework of diatomic π-systems such as carbonyls, or conjugated π-systems such as hexafluorobenzene. Anion-π and lone-pair-π interactions are examples of named π-hole interactions between conjugated π-systems and anions or lone-pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well-established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ- and π-hole interactions, present a selection of inquiries that utilise σ- and π-holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid-state structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance.
Wu, JunJun; Li, Shuguang; Wang, Xinyu; Shi, Min; Feng, Xinxing; Liu, Yundong
2018-05-20
We propose a D-shaped photonic crystal fiber (PCF) refractive index sensor with ultrahigh sensitivity and a wide detection range. The gold layer is deposited on the polished surface, avoiding filling or coating inside the air holes of the PCF. The influences of the gold layer thickness and the diameter of the larger air holes are investigated. The sensing characteristics of the proposed sensor are analyzed by the finite element method. The maximum sensitivity can reach 31,000 nm/RIU, and the refractive index detection range is from 1.32 to 1.40. Our proposed PCF has excellent sensing characteristics and is competitive in sensing devices.
NASA Astrophysics Data System (ADS)
Yüksel, Kivilcim; Yilmaz, Anil
2018-07-01
We present the analysis of a remote sensor based on fiber Cavity Ring-Down (CRD) loop interrogated by an Optical Time Domain Reflectometer (OTDR) taking into account both practical limitations and the related signal processing. A commercial OTDR is used for both pulse generation and sensor output detection. This allows obtaining a compact and simple design for intensity-based sensor applications. This novel sensor interrogation approach is experimentally demonstrated by placing a variable attenuator inside the fiber loop that mimics a sensor head.
In-Situ MVA of CO 2 Sequestration Using Smart Field Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
2014-09-01
Capability of underground carbon dioxide storage to confine and sustain injected CO 2 for a long period of time is the main concern for geologic CO 2 sequestration. If a leakage from a geological CO 2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO 2 . This study aims to monitor themore » integrity of CO 2 storage at the reservoir level. This work proposes developing in-situ CO 2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO 2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO 2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO 2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS is able to detect leakage characteristics in a short period of time (less than a day from its occurrence) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS is examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
Wellbore inertial directional surveying system
Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.
1982-09-08
A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.
Wellbore inertial directional surveying system
Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.
1991-01-01
A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.
Cosmic microwave background radiation of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.
2010-11-01
Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.
Perception as Abduction: Turning Sensor Data into Meaningful Representation
ERIC Educational Resources Information Center
Shanahan, Murray
2005-01-01
This article presents a formal theory of robot perception as a form of abduction. The theory pins down the process whereby low-level sensor data is transformed into a symbolic representation of the external world, drawing together aspects such as incompleteness, top-down information flow, active perception, attention, and sensor fusion in a…
Apparatus and method for gas turbine active combustion control system
NASA Technical Reports Server (NTRS)
Knobloch, Aaron (Inventor); Mancini, Alfred Albert (Inventor); Myers, William J. (Inventor); Fortin, Jeffrey B. (Inventor); Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor)
2011-01-01
An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.
Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska
NASA Astrophysics Data System (ADS)
Coyle, B. J.; Lundgren, M.; Busby, R. W.
2014-12-01
Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing and cementing it in place. Our next step is to build a dedicated DTH drilling system that will be light enough to mobilize to sites in one helicopter sling, including an air compressor. This rig is currently on the drawing board and we expect to build it this winter for field testing in the spring.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.
Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-07-21
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
Wadud, Zahid; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-01-01
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime. PMID:28753990
Side-hole fiber sensor based on surface plasmon resonance.
Wang, Anna; Docherty, Andrew; Kuhlmey, Boris T; Cox, Felicity M; Large, Maryanne C J
2009-12-15
Surface plasmon resonance (SPR) is demonstrated in a microstructured optical fiber sensor for the first time (to our knowledge). SPR features were observed at 560 and 620 nm when sample fluids of refractive indices n=1.38 and n=1.41, respectively, were applied to the sensor. This study also identifies a new approach to improve the resolution of fiber SPR sensors.
Bruck, R; Melnik, E; Muellner, P; Hainberger, R; Lämmerhofer, M
2011-05-15
We report the development of a Mach-Zehnder interferometer biosensor based on a high index contrast polymer material system and the demonstration of label-free online measurement of biotin-streptavidin binding on the sensor surface. The surface of the polyimide waveguide core layer was functionalized with 3-mercaptopropyl trimethoxy silane and malemide tagged biotin. Several concentrations of Chromeon 642-streptavidin dissolved in phosphate buffered saline solution were rinsed over the functionalized sensor surface by means of a fluidic system and the biotin-streptavidin binding process was observed in the output signal of the interferometer at a wavelength of 1310 nm. Despite the large wavelength and the comparatively low surface sensitivity of the sensor system due to the low index contrast in polymer material systems compared to inorganic material systems, we were able to resolve streptavidin concentrations of down to 0.1 μg/ml. The polymer-based optical sensor design is fully compatible with cost-efficient mass production technologies such as injection molding and spin coating, which makes it an attractive alternative to inorganic optical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.C.; Ricco, A.J.; Butler, M.A.
There is a need for sensitive detection of organophosphonates by, inexpensive, portable instruments. Two kinds of chemical sensors, based on surface acoustic wave (SAW) devices and fiber optic micromirrors, show promise for such sensing systems. Chemically sensitive coatings are required for detection and data for thin films of the polymer polysiloxane are reported for both kinds of physical transducers. Both kinds of sensor are shown to be capable of detecting concentrations of diisopropylmethylphosphonate (DIMP) down to 1 ppM.
SUCCESSFUL CLOSURE OF FULL-THICKNESS MACULAR HOLES SECONDARY TO MACULAR VITELLIFORM LESIONS.
Galvin, Justin C; Chua, Brian E; Fung, Adrian T
2017-03-22
To describe the first reported cases of full-thickness macular holes secondary to vitelliform lesions that were successfully closed with vitrectomy surgery and gas tamponade. Two female patients developed visual loss secondary to bilateral vitelliform lesions and associated full-thickness macular holes. The patients underwent 25-gauge pars plana vitrectomy, internal limiting membrane peeling, and 26% sulfur hexafluoride gas, followed by 3 days of face-down positioning. In both patients, the macular holes remain closed 3 and 25 months postoperatively. Vitrectomy surgery with gas tamponade may successfully close full-thickness macular holes secondary to macular vitelliform lesions.
Advanced end-to-end fiber optic sensing systems for demanding environments
NASA Astrophysics Data System (ADS)
Black, Richard J.; Moslehi, Behzad
2010-09-01
Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.
Analysis, testing, and operation of the MAGI thermal control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.
2014-01-29
The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the opticalmore » assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.« less
Quasiperiodic Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.; Murdin, P.
2000-11-01
The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...
NASA Technical Reports Server (NTRS)
Bagwell, Ross; Peters, Byron; Berrick, Stephen
2017-01-01
NASAs Earth Observing System Data Information System (EOSDIS) manages Earth Observation satellites and the Distributed Active Archive Centers (DAACs), where the data is stored and processed. The challenge is that Earth Observation data is complicated. There is plenty of data available, however, the science teams have had a top-down approach: define what it is you are trying to study -select a set of satellite(s) and sensor(s), and drill down for the data.Our alternative is to take a bottom-up approach using eight environmental fields of interest as defined by the Group on Earth Observations (GEO) called Societal Benefit Areas (SBAs): Disaster Resilience (DR) Public Health Surveillance (PHS) Energy and Mineral Resource Management (EMRM) Water Resources Management (WRM) Infrastructure and Transport Management (ITM) Sustainable Urban Development (SUD) Food Security and Sustainable Agriculture (FSSA) Biodiversity and Ecosystems Sustainability (BES).
Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test
NASA Astrophysics Data System (ADS)
Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.
2017-11-01
Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.
Observation of Gravitational Waves from a Binary Black Hole Merger
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.;
2016-01-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Putten, Maurice H. P. M.
2015-09-01
Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBsmore » and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.« less
Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.
Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai
2014-03-31
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.
Sensor readout detector circuit
Chu, Dahlon D.; Thelen, Jr., Donald C.
1998-01-01
A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.
Sensor readout detector circuit
Chu, D.D.; Thelen, D.C. Jr.
1998-08-11
A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.
2015-12-01
AFRL-RY-WP-TR-2015-0144 COGNITIVE RADIO LOW-ENERGY SIGNAL ANALYSIS SENSOR INTEGRATED CIRCUITS (CLASIC) A Broadband Mixed-Signal Iterative Down...See additional restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE...Signature// TODD KASTLE, Chief Spectrum Warfare Division Sensors Directorate This report is published in the interest of scientific and technical
Optimal management of idiopathic macular holes
Madi, Haifa A; Masri, Ibrahim; Steel, David H
2016-01-01
This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm), it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use. PMID:26834454
Optimal management of idiopathic macular holes.
Madi, Haifa A; Masri, Ibrahim; Steel, David H
2016-01-01
This review evaluates the current surgical options for the management of idiopathic macular holes (IMHs), including vitrectomy, ocriplasmin (OCP), and expansile gas use, and discusses key background information to inform the choice of treatment. An evidence-based approach to selecting the best treatment option for the individual patient based on IMH characteristics and patient-specific factors is suggested. For holes without vitreomacular attachment (VMA), vitrectomy is the only option with three key surgical variables: whether to peel the inner limiting membrane (ILM), the type of tamponade agent to be used, and the requirement for postoperative face-down posturing. There is a general consensus that ILM peeling improves primary anatomical hole closure rate; however, in small holes (<250 µm), it is uncertain whether peeling is always required. It has been increasingly recognized that long-acting gas and face-down positioning are not always necessary in patients with small- and medium-sized holes, but large (>400 µm) and chronic holes (>1-year history) are usually treated with long-acting gas and posturing. Several studies on posturing and gas choice were carried out in combination with ILM peeling, which may also influence the gas and posturing requirement. Combined phacovitrectomy appears to offer more rapid visual recovery without affecting the long-term outcomes of vitrectomy for IMH. OCP is licensed for use in patients with small- or medium-sized holes and VMA. A greater success rate in using OCP has been reported in smaller holes, but further predictive factors for its success are needed to refine its use. It is important to counsel patients realistically regarding the rates of success with intravitreal OCP and its potential complications. Expansile gas can be considered as a further option in small holes with VMA; however, larger studies are required to provide guidance on its use.
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-01-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-08-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.
Site 765: Sediment Lithostratigraphy
,
1990-01-01
A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.
Measurement system for nitrous oxide based on amperometric gas sensor
NASA Astrophysics Data System (ADS)
Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.
2017-03-01
It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.
Photonic crystal fiber refractive-index sensor based on multimode interferometry
NASA Astrophysics Data System (ADS)
Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei
2014-11-01
We report a type of multimode fiber interferometers (MMI) formed in photonic crystal fiber (PCF). To excite the cladding modes from the fundamental core mode of a PCF, a coupling point is formed. To form the coupling point, we used the method that is blowing compressed gas into the air-holes and discharging at one point, and the air-holes in this point will expand due to gas expansion in the discharge process. By placing two coupling points in series, a very simple all-fiber MMI can be implemented. The detailed fabrication process is that the one end of the PCF is tightly sealed by a short section of single mode fiber (SMF) spliced to the PCF. The other end of the PCF is sealed into a gas chamber and the opened air holes are pressurized. The PCF is then heated locally by the fusion splicer and the holes with higher gas pressure will expand locally where two bubbles formed. We tested the RI responses of fabricated sensors at room temperature by immersing the sensor into solutions with different NaCl concentration. Experimental results show that as refractive-index (RI) increases, the resonance wavelength of the MMI moves toward longer wavelengths. The sensitivity coefficients are estimated by the linear fitting line, which is 46nm/RIU, 154mn/RIU with the interferometer lengths (IL) of 3mm and 6mm. The interferometer with larger IL has higher RI sensitivity. The temperature cross-sensitivity of the sensor is also tested. The temperature sensitivity can be as low as -16.0pm/°C.
Reconfigurable wavefront sensor for ultrashort pulses.
Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger
2012-04-01
A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.
Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph
2017-01-01
With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344
Plunge waveforms from inspiralling binary black holes.
Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R
2001-09-17
We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.
Entropy in the interior of a higher-dimensional black hole
NASA Astrophysics Data System (ADS)
Yang, Jian-Zhi; Liu, Wen-Biao
2018-07-01
Recently Christodoulou and Rovelli brought out a sensible description for the black hole volume as the largest volume. Later the entropy related to this volume in a 4-dimensional Schwarzschild black hole was investigated, which showed that such entropy is proportional to the surface area of the black hole. We will probe into these issues in the context of higher-dimensional case. It is found that the proportion between this entropy and the Bekenstein-Hawking entropy will go down through dramatic change along with the increase of spacetime dimension.
Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas
NASA Astrophysics Data System (ADS)
Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro
2013-11-01
Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.
Thermal analysis of the WFI on the ATHENA observatory
NASA Astrophysics Data System (ADS)
Fürmetz, Maria; Pietschner, Daniel; Meidinger, Norbert
2016-07-01
The WFI (Wide-Field Imager) instrument is one of two instruments of the ATHENA (Advanced Telescope for High- ENergy Astrophysics) mission. ATHENA is the second L-class mission in ESA's Cosmic Vision plan with launch in 2028 and will address the science theme "The Hot and Energetic Universe" by measuring hot gas in clusters and groups of galaxies as well as matter flow in black holes. A moveable mirror assembly focusses the X-ray light to the focal plane of the WFI. The instrument consists of two separate detectors, one with a large DEPFET array of 512x512 pixels and one small and fast detector with 64x64 DEPFET pixels and a readout time of only 80 μs. The mirror system will achieve an angular resolution of 5" HEW. The rather large field of view of 40'x40' in combination with rather high power consumption is challenging not only for the thermal control system. DEPFET sensors as well as front-end electronics and electronics boxes have to be cooled, where a completely passive cooling system with radiators and heat pipes is highly favored. In order to reduce the necessary radiator area, three separate cooling chains with three different temperature levels have been foreseen. So only the DEPFET sensors are cooled down to the lowest temperature of about 190K, while the front-end electronics is supposed to be operated between 250K and 290K. The electronics boxes can be operated at room temperature, nevertheless the excess heat has to be removed. After first estimations of heat loads and radiator areas, a more detailed model of the camera head has been used to identify gradients between the cooling interfaces and the components to be cooled. This information is used within phase A1 of the project to further optimize the design of the instrument, e.g. material selection.
Time dependent Schrödinger equation for black hole evaporation: No information loss
NASA Astrophysics Data System (ADS)
Corda, Christian
2015-02-01
In 1976 S. Hawking claimed that "Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state".1 In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model, a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking's claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect 't Hooft's assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.
The remnants in Reissner-Nordström-de Sitter quintessence black hole
NASA Astrophysics Data System (ADS)
Feng, Zhongwen; Zhang, Li; Zu, Xiaotao
2014-08-01
According to the effects of quantum gravity, we investigated the fermion tunneling from the Reissner-Nordström-de Sitter quintessence (RN-dSQ) black hole. The corrected temperature is not only determined by the mass and charge of the black hole, but also depended on the quantum number of the emitted fermion and β, which is a small value representing the effects of quantum gravity. The effects of quantum gravity slowed down the increase of the temperature and led to the remnants of the black hole. We think it is a method to avoid the information loss paradox of black holes.
Development of a Portable Taste Sensor with a Lipid/Polymer Membrane
Tahara, Yusuke; Nakashi, Kenichi; Ji, Ke; Ikeda, Akihiro; Toko, Kiyoshi
2013-01-01
We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor's performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm) with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm). The working electrode consists of a taste-sensing site comprising a poly(hydroxyethyl)methacrylate (pHEMA) hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC) membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor's response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research. PMID:23325168
A Prototype Windflow Modeling System for Tactical Weather Support Operations.
1987-05-07
a system of numerical models that covers the mesoscale from horizontal scales of 200 km down to 5 km. Veazey and Tabor 2 1 used the windflow model to...821785 West Conference, Long Beach, Calif. 21. Veazey , D.R., and Tabor, P.A. (1985) Meteorological sensor density on the battlefield, Workshop on
Planckian charged black holes in ultraviolet self-complete quantum gravity
NASA Astrophysics Data System (ADS)
Nicolini, Piero
2018-03-01
We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, J.A.
During the summer of 1975, the Department of Geology and Geophysics drilled nine drill thermal gradient/heat flow holes. Total footage drilled was 2125 feet. Seven holes were drilled with a Mayhew 1000 drill using various combinations of down the hole hammer drilling, rotary drilling, and NX diamond core drilling. Three of these were heat flow holes--one in the Mineral Range, one in the Tushar Range near Beaver, Utah, and one near Monroe, Utah. Two were alteration study holes in the Roosevelt KGRA and two were temperature gradient holes, in alluvium in the Roosevelt KGRA. The average depth of the holesmore » drilled with the Mayhew 1000 drill was 247 feet. Holes ranged from 135 feet to 492 feet. Cost per foot averaged $18.53. Two holes were core drilled with a Joy 12, BX-size drill. One was to 75 feet, in perlite. This hole was abandoned. The other was to 323 feet in granite.« less
Defence against Black Hole and Selective Forwarding Attacks for Medical WSNs in the IoT †
Mathur, Avijit; Newe, Thomas; Rao, Muzaffar
2016-01-01
Wireless sensor networks (WSNs) are being used to facilitate monitoring of patients in hospital and home environments. These systems consist of a variety of different components/sensors and many processes like clustering, routing, security, and self-organization. Routing is necessary for medical-based WSNs because it allows remote data delivery and it facilitates network scalability in large hospitals. However, routing entails several problems, mainly due to the open nature of wireless networks, and these need to be addressed. This paper looks at two of the problems that arise due to wireless routing between the nodes and access points of a medical WSN (for IoT use): black hole and selective forwarding (SF) attacks. A solution to the former can readily be provided through the use of cryptographic hashes, while the latter makes use of a neighbourhood watch and threshold-based analysis to detect and correct SF attacks. The scheme proposed here is capable of detecting a selective forwarding attack with over 96% accuracy and successfully identifying the malicious node with 83% accuracy. PMID:26797620
Defence against Black Hole and Selective Forwarding Attacks for Medical WSNs in the IoT.
Mathur, Avijit; Newe, Thomas; Rao, Muzaffar
2016-01-19
Wireless sensor networks (WSNs) are being used to facilitate monitoring of patients in hospital and home environments. These systems consist of a variety of different components/sensors and many processes like clustering, routing, security, and self-organization. Routing is necessary for medical-based WSNs because it allows remote data delivery and it facilitates network scalability in large hospitals. However, routing entails several problems, mainly due to the open nature of wireless networks, and these need to be addressed. This paper looks at two of the problems that arise due to wireless routing between the nodes and access points of a medical WSN (for IoT use): black hole and selective forwarding (SF) attacks. A solution to the former can readily be provided through the use of cryptographic hashes, while the latter makes use of a neighbourhood watch and threshold-based analysis to detect and correct SF attacks. The scheme proposed here is capable of detecting a selective forwarding attack with over 96% accuracy and successfully identifying the malicious node with 83% accuracy.
Self-diagnostic thermal protection systems for future spacecraft
NASA Astrophysics Data System (ADS)
Hanlon, Alaina B.
The thermal protection system (TPS) represents the greatest risk factor after propulsion for any transatmospheric mission (Dr. Charles Smith, NASA ARC). Any damage to the TPS leaves the space vehicle vulnerable and could result in the loss of human life as happened in the Columbia accident. Aboard the current Space Shuttle Orbiters no system exists to notify the astronauts or ground control if the thermal protection system has been damaged. Through this research, a proof-of-concept monitoring system was developed. The system has two specific applications for thermal protection systems: (1) Improving models used to predict thermal and mechanical response of TPS materials, and (2) Self-diagnosing damage within regions of the TPS and communicating the damage to the appropriate personnel over a potentially unstable network. Mechanical damage is among the most important things to protect the TPS against. Methods to detect the primary types of mechanical damage suffered by thermal protection systems have been developed. Lightweight, low-power sensors were developed to detect any cracks in small regions of a TPS. Implementation of a network of these sensors within 10's to 1000's of regions will eventually provide high spatial resolution of damage detection; allowing for detection of holes in the TPS. Also important in thermal protection material development is to know the ablation rates and time/temperature response of the materials. A new type of sensor has been developed to monitor temperature at different depths within thermal protection materials. The signals being transmitted through the sensors can be multiplexed to allow for mechanical damage and temperature to be monitored using the same sensor.
Simulations of binary black hole mergers
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
Hierarchical classification in high dimensional numerous class cases
NASA Technical Reports Server (NTRS)
Kim, Byungyong; Landgrebe, D. A.
1990-01-01
As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.
Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S
2012-03-26
A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.
Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Vera, Jerry
2015-01-01
Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.
NASA Astrophysics Data System (ADS)
Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.
2018-01-01
We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.
The National Transonic Facility
NASA Technical Reports Server (NTRS)
Holmes, H. K.
1986-01-01
The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.
Resonance: The science behind the art of sonic drilling
NASA Astrophysics Data System (ADS)
Lucon, Peter Andrew
The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground
NASA Technical Reports Server (NTRS)
1991-01-01
The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.
Ishihara, Shinsuke; Labuta, Jan; Nakanishi, Takashi; Tanaka, Takeshi; Kataura, Hiromichi
2017-10-27
We report amperometric detection of formaldehyde (HCHO) using hydroxylamine hydrochloride and single-walled carbon nanotubes (SWCNTs). Hydroxylamine hydrochloride reacts with HCHO to emit HCl vapor, which injects a hole carrier into semiconducting SWCNTs. The increase of conductivity in SWCNTs is easily monitored using an ohmmeter. The debundling of SWCNTs with a metallo-supramolecular polymer (MSP) increased the active surface area in the SWCNTs network, leading to excellent sensitivity to HCHO with a limit of detection (LoD) of 0.016 ppm. The response of sensor is reversible, and the sensor is reusable. The selectivity to HCHO is 10 5 -10 6 times higher than interferences with other volatiles such as water, methanol, and toluene. Moreover, false-positive responses caused by a significant variation of humidity and/or temperature are successfully discriminated from true-positive responses by using two sensors, one with and the other without hydroxylamine hydrochloride, in a referenced system.
Karimov, K S; Qazi, I; Khan, T A; Draper, P H; Khalid, F A; Mahroof-Tahir, M
2008-06-01
In this investigation properties of organic semiconductor copper phthalocyanine (CuPc) capacitive humidity and illumination sensors were studied. Organic thin film was deposited by vacuum evaporation on a glass substrate with silver surface-type electrodes to form the Ag/CuPc/Ag sensor. The capacitance of the samples was evaluated at room temperature in the relative humidity range of 35-92%. It was observed that capacitance of the Ag/CuPc/Ag sensor increases with increase in humidity. The ratio of the relative capacitance to relative humidity was about 200. It is assumed that in general the capacitive response of the sensor is associated with polarization due to absorption of water molecules and transfer of charges (electrons and holes). It was observed that under filament lamp illumination of up to 1,000 lx the capacitance of the Ag/CuPc/Ag photo capacitive detectors increased continuously by 20% as compared to dark condition. It is assumed that photo capacitive response of the sensor is associated with polarization due to transfer of photo-generated electrons and holes. An equivalent circuit of the Ag/CuPc/Ag capacitive humidity and illumination sensor was developed. Humidity and illumination dependent capacitance properties of this sensor make it attractive for use in humidity and illumination multi-meters. The sensor may be used in instruments for environmental monitoring of humidity and illumination.
Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide
NASA Astrophysics Data System (ADS)
Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey
We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.
Chatterjee, Ayan; Sarkar, Sudipta
2012-03-02
We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.
Graphene Electronic Device Based Biosensors and Chemical Sensors
NASA Astrophysics Data System (ADS)
Jiang, Shan
Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems. In the last part of my thesis, I demonstrate the construction of few-layer molybdenum disulfide (MoS2) based field-effect transistor (FET) device for highly sensitive detection of Hg2+ ion in aquatic solutions. The detection of mercury in aquatic environment is of great importance because mercury is an environment pollutant with severe toxicity. High binding affinity between mercury and sulfur makes MoS2 a promising candidate for mercury sensing. Our studies demonstrate that MoS2 sensors can selectively respond to Hg2+ ion with a detection limit of 30 pM. This MoS2 FET based mercury sensor promises great potential for highly sensitive, label-free, low-cost, fast and non-aggressive detection of mercury in aquatic environment.
Active hold-down for heat treating
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr. (Inventor)
1986-01-01
The object of the disclosure is to provide a vacuum hold-down for holding thin sheets to a support surface, which permits the thin sheet to change dimensions as it is held down. The hold-down includes numerous holes in the support surface, through which a vacuum is applied from a vacuum source. The holes are arranged in zones. The vacuum is repeatedly interrupted at only one or a few zones, while it continues to be applied to other zones, to allow the workpiece to creep along that interrupted zone. The vacuum to different zones is interrupted at different times, as by a slowly turning valve number, to allow each zone of the workpiece to creep. A positive pressure may be applied from a pressured air source to a zone when the vacuum is interrupted there, to help lift the corresponding workpiece zone off the surface to aid in creeping. The workpiece may undergo dimensional changes because of heating, cooling, drying, or other procedure.
Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.
Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw
2018-01-08
This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.
Increased ISR operator capability utilizing a centralized 360° full motion video display
NASA Astrophysics Data System (ADS)
Andryc, K.; Chamberlain, J.; Eagleson, T.; Gottschalk, G.; Kowal, B.; Kuzdeba, P.; LaValley, D.; Myers, E.; Quinn, S.; Rose, M.; Rusiecki, B.
2012-06-01
In many situations, the difference between success and failure comes down to taking the right actions quickly. While the myriad of electronic sensors available today can provide data quickly, it may overload the operator; where only a contextualized centralized display of information and intuitive human interface can help to support the quick and effective decisions needed. If these decisions are to result in quick actions, then the operator must be able to understand all of the data of his environment. In this paper we present a novel approach in contextualizing multi-sensor data onto a full motion video real-time 360 degree imaging display. The system described could function as a primary display system for command and control in security, military and observation posts. It has the ability to process and enable interactive control of multiple other sensor systems. It enhances the value of these other sensors by overlaying their information on a panorama of the surroundings. Also, it can be used to interface to other systems including: auxiliary electro-optical systems, aerial video, contact management, Hostile Fire Indicators (HFI), and Remote Weapon Stations (RWS).
Two Coronal Holes on the Sun Viewed by SDO
2015-03-17
NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M
2015-07-15
Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.
NASA Astrophysics Data System (ADS)
Gupta, Anshu; Krishnan, Badri; Nielsen, Alex B.; Schnetter, Erik
2018-04-01
The behavior of quasilocal black hole horizons in a binary black hole merger is studied numerically. We compute the horizon multipole moments, fluxes, and other quantities on black hole horizons throughout the merger. These lead to a better qualitative and quantitative understanding of the coalescence of two black holes: how the final black hole is formed, initially grows, and then settles down to a Kerr black hole. We calculate the rate at which the final black hole approaches equilibrium in a fully nonperturbative situation and identify a time at which the linear ringdown phase begins. Finally, we provide additional support for the conjecture that fields at the horizon are correlated with fields in the wave zone by comparing the in-falling gravitational wave flux at the horizon to the outgoing flux as estimated from the gravitational waveform.
Planning for execution monitoring on a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Firby, R. James; Miller, David P.
1990-01-01
A planetary rover will be traversing largely unknown and often unknowable terrain. In addition to geometric obstacles such as cliffs, rocks, and holes, it may also have to deal with non-geometric hazards such as soft soil and surface breakthroughs which often cannot be detected until rover is in imminent danger. Therefore, the rover must monitor its progress throughout a traverse, making sure to stay on course and to detect and act on any previously unseen hazards. Its onboard planning system must decide what sensors to monitor, what landmarks to take position readings from, and what actions to take if something should go wrong. The planning systems being developed for the Pathfinder Planetary Rover to perform these execution monitoring tasks are discussed. This system includes a network of planners to perform path planning, expectation generation, path analysis, sensor and reaction selection, and resource allocation.
Polymer Thin Film Stabilization.
NASA Astrophysics Data System (ADS)
Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.
1998-03-01
We study the dewetting dynamics of thin polystyrene (PS) films deposited on silicon oxide surfaces using optical (OM) and atomic force (AFM) microscopes. Quantitative analysis of the hole diameter as a function of annealing time at 175^oC shows that blending poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) with PS acts to dramatically slow down the dewetting rate and even stops holes growth before they impinge. AFM studies show that the hole floor is smooth for a pure PS film but contains residual polymer for the blend. At 5% vol., a PS-b-PMMA with high molar mass and low PMMA is a more effective stabilizing agent than a low molar mass/high PMMA additive. The optimum copolymer concentration is 3% vol. beyond which film stability doesn't improve. Although dewetting is slowed down relative to pure PS, PS/PS-b-PMMA bilayers dewet at a faster rate than blends having the same overall additive concentration.
Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus.
Long, Gen; Maryenko, Denis; Shen, Junying; Xu, Shuigang; Hou, Jianqiang; Wu, Zefei; Wong, Wing Ki; Han, Tianyi; Lin, Jiangxiazi; Cai, Yuan; Lortz, Rolf; Wang, Ning
2016-12-14
We demonstrate that a field-effect transistor (FET) made of few-layer black phosphorus (BP) encapsulated in hexagonal boron nitride (h-BN) in vacuum exhibits a room-temperature hole mobility of 5200 cm 2 /(Vs), being limited just by the phonon scattering. At cryogenic temperatures, the FET mobility increases up to 45 000 cm 2 /(Vs), which is five times higher compared to the mobility obtained in earlier reports. The unprecedentedly clean h-BN-BP-h-BN heterostructure exhibits Shubnikov-de Haas oscillations and a quantum Hall effect with Landau level (LL) filling factors down to v = 2 in conventional laboratory magnetic fields. Moreover, carrier density independent effective mass of m * = 0.26 m 0 is measured, and a Landé g-factor of g = 2.47 is reported. Furthermore, an indication for a distinct hole transport behavior with up- and down-spin orientations is found.
Influence of Berdan and Boxer Primer Spit-Hole Diameter on 7.62-mm Cartridge Performance
2014-06-01
pressure transducer, Kistler Model 6215 (4), is consistent with previous experiments. Pressure is measured through a 3/32-in hole drilled into the...cartridge case forward of the midpoint, and case holes are sealed with 1-mil- thick DuPont Kapton* tape. The force transducer selected is the Kistler ...April 1986. 3. M14 Barrel, Drawing 7790190, Rev R, January 1986. 4. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215, Kistler
Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)
2001-01-01
Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.
NASA Astrophysics Data System (ADS)
Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik
2018-02-01
We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.
High-temperature Y267 epdm elastomer - field and laboratory experiences, August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, A.R.; Friese, G.J.; Stephens, G.A.
1982-01-01
During the period 1976 to 1979 L'Garde, Inc. developed geothermal elastomer compounds under a U.S. Department of Energy - Division of Geothermal Energy (DOE-DGE) contract. The resulting developments yielded compounds from 4 polymer systems which successfully exceeded the contract requirements. Since completion of the compound development, significant laboratory and down-hole experience occurred, primarily on the Y267 EPDM compound. This work summarizes those experiences. 11 references.
Supervised autonomous rendezvous and docking system technology evaluation
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.
1991-01-01
Technology for manned space flight is mature and has an extensive history of the use of man-in-the-loop rendezvous and docking, but there is no history of automated rendezvous and docking. Sensors exist that can operate in the space environment. The Shuttle radar can be used for ranges down to 30 meters, Japan and France are developing laser rangers, and considerable work is going on in the U.S. However, there is a need to validate a flight qualified sensor for the range of 30 meters to contact. The number of targets and illumination patterns should be minimized to reduce operation constraints with one or more sensors integrated into a robust system for autonomous operation. To achieve system redundancy, it is worthwhile to follow a parallel development of qualifying and extending the range of the 0-12 meter MSFC sensor and to simultaneously qualify the 0-30(+) meter JPL laser ranging system as an additional sensor with overlapping capabilities. Such an approach offers a redundant sensor suite for autonomous rendezvous and docking. The development should include the optimization of integrated sensory systems, packaging, mission envelopes, and computer image processing to mimic brain perception and real-time response. The benefits of the Global Positioning System in providing real-time positioning data of high accuracy must be incorporated into the design. The use of GPS-derived attitude data should be investigated further and validated.
Open Path Trace Gas Laser Sensors for UAV Deployment
NASA Astrophysics Data System (ADS)
Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.
2015-12-01
Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from natural gas infrastructure, and to deploy both sensors together to study emissions from dairies and feedlots. The latter measurement campaign will also examine ammonia deposition to the ground, and bi-directional ammonia fluxes, using methane as a conservative tracer and examining the change in the ratio of ammonia to methane as a function of downwind position.
Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects
NASA Astrophysics Data System (ADS)
Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.
2018-02-01
We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.
2008-06-01
IR )/laser designator (LD)/laser range finder (LRF) sensor. The Class I UAS consists of a Class I UAV, a cen- tralized controller and a minimal set...utility of a backpackable, affordable, easy-to- operate and responsive reconnais- sance and surveillance system through experimentation. • Use EO/ IR ...ARMY AL&T 33APRIL - JUNE 2008 • “The IR sensor pinpointed the enemy even after the sun went down. We could have really used this in Iraq.” • “The UAV
Explosive fluid transmitted shock method for mining deeply buried coal
Archibald, Paul B.
1976-06-22
A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.
NASA Astrophysics Data System (ADS)
Good, Michael R. R.; Ong, Yen Chin
2015-02-01
A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.
NASA Astrophysics Data System (ADS)
Benaouda, D.; Wadge, G.; Whitmarsh, R. B.; Rothwell, R. G.; MacLeod, C.
1999-02-01
In boreholes with partial or no core recovery, interpretations of lithology in the remainder of the hole are routinely attempted using data from downhole geophysical sensors. We present a practical neural net-based technique that greatly enhances lithological interpretation in holes with partial core recovery by using downhole data to train classifiers to give a global classification scheme for those parts of the borehole for which no core was retrieved. We describe the system and its underlying methods of data exploration, selection and classification, and present a typical example of the system in use. Although the technique is equally applicable to oil industry boreholes, we apply it here to an Ocean Drilling Program (ODP) borehole (Hole 792E, Izu-Bonin forearc, a mixture of volcaniclastic sandstones, conglomerates and claystones). The quantitative benefits of quality-control measures and different subsampling strategies are shown. Direct comparisons between a number of discriminant analysis methods and the use of neural networks with back-propagation of error are presented. The neural networks perform better than the discriminant analysis techniques both in terms of performance rates with test data sets (2-3 per cent better) and in qualitative correlation with non-depth-matched core. We illustrate with the Hole 792E data how vital it is to have a system that permits the number and membership of training classes to be changed as analysis proceeds. The initial classification for Hole 792E evolved from a five-class to a three-class and then to a four-class scheme with resultant classification performance rates for the back-propagation neural network method of 83, 84 and 93 per cent respectively.
Fatigue crack detection and identification by the elastic wave propagation method
NASA Astrophysics Data System (ADS)
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
NASA Astrophysics Data System (ADS)
Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.
2011-12-01
We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts z<8. We evaluate the contributions of the inspiral, merger, and ring-down signals to the GWB, and discuss how these depend on the parameters which critically affect the number of coalescing (BH-BH) systems. We find that Advanced LIGO/Virgo have a chance to detect the GWB signal from the inspiral phase with a (S/N)=10 only for the most optimistic model, which predicts the highest local merger rate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.
NASA Astrophysics Data System (ADS)
Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin
2018-05-01
The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.
A data-management system using sensor technology and wireless devices for port security
NASA Astrophysics Data System (ADS)
Saldaña, Manuel; Rivera, Javier; Oyola, Jose; Manian, Vidya
2014-05-01
Sensor technologies such as infrared sensors and hyperspectral imaging, video camera surveillance are proven to be viable in port security. Drawing from sources such as infrared sensor data, digital camera images and processed hyperspectral images, this article explores the implementation of a real-time data delivery system. In an effort to improve the manner in which anomaly detection data is delivered to interested parties in port security, this system explores how a client-server architecture can provide protected access to data, reports, and device status. Sensor data and hyperspectral image data will be kept in a monitored directory, where the system will link it to existing users in the database. Since this system will render processed hyperspectral images that are dynamically added to the server - which often occupy a large amount of space - the resolution of these images is trimmed down to around 1024×768 pixels. Changes that occur in any image or data modification that originates from any sensor will trigger a message to all users that have a relation with the aforementioned. These messages will be sent to the corresponding users through automatic email generation and through a push notification using Google Cloud Messaging for Android. Moreover, this paper presents the complete architecture for data reception from the sensors, processing, storage and discusses how users of this system such as port security personnel can use benefit from the use of this service to receive secure real-time notifications if their designated sensors have detected anomalies and/or have remote access to results from processed hyperspectral imagery relevant to their assigned posts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org
2015-09-01
The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less
NASA Astrophysics Data System (ADS)
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico
2017-11-01
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Fiber based photonic-crystal acoustic sensor
NASA Astrophysics Data System (ADS)
Kilic, Onur
Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic-crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).
Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Li, Jing; Lu, Yijiang
2009-01-01
A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.
Low Frequency Radar Sensor Observations of Tropical Forests in the Panama Canal Area
NASA Technical Reports Server (NTRS)
Imhoff, M. L.; Lawrence, W.; Condit, R.; Wright, J.; Johnson, P.; Hyer, J.; May, L.; Carson, S.; Smith, David E. (Technical Monitor)
2000-01-01
A synthetic aperture radar sensor operating in 5 bands between 80 and 120 MHz was flown over forested areas in the canal zone of the Republic of Panama in an experiment to measure biomass in heavy tropical forests. The sensor is a pulse coherent SAR flown on a small aircraft and oriented straight down. The doppler history is processed to collect data on the ground in rectangular cells of varying size over a range of incidence angles fore and aft of nadir (+45 to - 45 degrees). Sensor data consists of 5 frequency bands with 20 incidence angles per band. Sensor data for over 12+ sites were collected with forest stands having biomass densities ranging from 50 to 300 tons/ha dry above ground biomass. Results are shown exploring the biomass saturation thresholds using these frequencies, the system design is explained, and preliminary attempts at data visualization using this unique sensor design are described.
Essex, Rohan W; Kingston, Zabrina S; Moreno-Betancur, Margarita; Shadbolt, Bruce; Hunyor, Alex P; Campbell, William G; Connell, Paul P; McAllister, Ian L
2016-05-01
To determine whether sulfur hexafluoride (SF6) gas is noninferior to longer-acting gases in macular hole surgery and whether withholding postoperative face-down positioning (FDP) is noninferior to FDP. Registry-style, prospective, nonrandomized, observational cohort study. Patients with idiopathic macular holes undergoing primary surgery. Surgeons were invited to submit clinical details of all macular hole cases receiving surgery. Baseline demographic and clinical information were collected, as well as details of surgical intervention and postoperative posturing advice. Primary follow-up data were collected 3 months postoperatively. Macular hole closure at 3 months. A noninferiority approach was used, with a noninferiority margin set at 5% decreased frequency of success. A total of 2456 eyes of 2367 patients were included in the study. Outcomes were available in 94.9% of cases (2330/2456). The rate of macular hole closure was 95.0% (2214/2330). Sulfur hexafluoride gas was found to be noninferior to longer-acting gases (95% confidence interval [CI] for adjusted effect on success, -1.76 to +2.25), and noninferiority was demonstrated regardless of macular hole size. Although withholding FDP was found to be noninferior to FDP for the study population as a whole (95% CI for adjusted effect on success, -4.21 to +0.64), the result was inconclusive in holes >400 μm in diameter (95% CI, -9.31 to +1.04). Lack of internal limiting membrane (ILM) peel, increasing hole size, hole duration ≥9 months, increasing age, and 20-gauge surgery all were associated with lower odds of success. Vitreous attachment to the hole margin was not associated with outcome when corrected for hole size, and combined phacovitrectomy surgery was not observed to affect the odds of success in phakic eyes. Sulfur hexafluoride gas tamponade was noninferior to longer-acting gases in the surgical management of macular hole. Withholding FDP was noninferior to FDP in holes ≤400 μm in diameter. In holes >400 μm in diameter, noninferiority of withholding FDP could not be concluded. We would advise caution if posturing is withheld in this group on the basis of the results of this study and of others. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.
2011-04-01
We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.
1991-01-01
It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Yi; Buonanno, Alessandra; McWilliams, Sean T.
2008-01-15
We compare waveforms obtained by numerically evolving nonspinning binary black holes to post-Newtonian (PN) template families currently used in the search for gravitational waves by ground-based detectors. We find that the time-domain 3.5PN template family, which includes the inspiral phase, has fitting factors (FFs) {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. The time-domain 3.5PN effective-one-body template family, which includes the inspiral, merger, and ring-down phases, gives satisfactory signal-matching performance with FFs {>=}0.96 for binary systems with total mass M=10-120M{sub {center_dot}}. If we introduce a cutoff frequency properly adjusted to the final black-hole ring-down frequency, we find that themore » frequency-domain stationary-phase-approximated template family at 3.5PN order has FFs {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. However, to obtain high matching performances for larger binary masses, we need to either extend this family to unphysical regions of the parameter space or introduce a 4PN order coefficient in the frequency-domain gravitational wave (GW) phase. Finally, we find that the phenomenological Buonanno-Chen-Vallisneri family has FFs {>=}0.97 with total mass M=10-120M{sub {center_dot}}. The main analyses use the noise-spectral density of LIGO, but several tests are extended to VIRGO and advanced LIGO noise-spectral densities.« less
NASA Astrophysics Data System (ADS)
Matthews, H. B.
The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.
NASA Astrophysics Data System (ADS)
Kalinowski, Paweł; Woźniak, Łukasz; Jasiński, Grzegorz; Jasiński, Piotr
2016-11-01
Gas analyzers based on gas sensors are the devices which enable recognition of various kinds of volatile compounds. They have continuously been developed and investigated for over three decades, however there are still limitations which slow down the implementation of those devices in many applications. For example, the main drawbacks are the lack of selectivity, sensitivity and long term stability of those devices caused by the drift of utilized sensors. This implies the necessity of investigations not only in the field of development of gas sensors construction, but also the development of measurement procedures or methods of analysis of sensor responses which compensate the limitations of sensors devices. One of the fields of investigations covers the dynamic measurements of sensors or sensor-arrays response with the utilization of flow modulation techniques. Different gas delivery patterns enable the possibility of extraction of unique features which improves the stability and selectivity of gas detecting systems. In this article three utilized flow modulation techniques are presented, together with the proposition of the evaluation method of their usefulness and robustness in environmental pollutants detecting systems. The results of dynamic measurements of an commercially available TGS sensor array in the presence of nitrogen dioxide and ammonia are shown.
Gear-box fault detection using time-frequency based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odgaard, Peter Fogh; Stoustrup, Jakob
2015-01-01
Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less
NASA Astrophysics Data System (ADS)
Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza
2015-04-01
Eskers and glaciofluvial interlobate formations, mainly composed of sands and gravels and deposited in winding ridges, define the locations of glacial melt-water streams. These sediments, porous and permeable, form the most important aquifers in Finland and are often used as aggregates or for artificial aquifer recharge. The Virttaankangas interlobate suite and artificial aquifer recharge plant provides the entire water supply for the city of Turku and therefore an accurate delineation of the aquifer is critical for long term planning and sustainable use of these natural resources. The study area is part of the Säkylänharju-Virttaankangas Glaciofluvial esker-chain complex and lies on an igneous, crystalline basement rocks. To provide complementary information to existing boreholes and GPR studies at the site, such as identification of potential esker cores, planning for a water extraction, fractured bedrock and possible kettle holes, a new seismic investigation was designed and carried out during summer 2014. Two seismic profiles each about 1 km long were acquired using a newly developed 200 m long prototype, comprising of 80-3C MEMs-based, landstreamer system. To provide velocity information at larger depths (and longer offsets), fifty-two 10-Hz 1C wireless sensors spaced at about every 20 m were used. A Bobcat mounted drop-hammer source, generating three hits per source location, was used as the seismic source. This proved to be a good choice given the attenuative nature of the dry sediments down to about 20 m depth. One of the seismic lines overlaps an existing streamer survey and thus allows a comparison between the system used in this study and the one employed before. Except at a few places where the loose sands mixed with leaves affected the coupling, the data quality is excellent with several reflections identifiable in the raw shot gathers. First arrivals were easily identifiable in almost all the traces and shots and this allowed obtaining velocity information down to the bedrock, 50-80 m depth, using a diving-wave travel-time tomographic inversion method. The reflection data processing was challenging due to the large velocity contrasts between the dry sediments and the saturated ones. A careful velocity analysis was the key-processing step apart from filtering source-generated noise. The seismic refraction and reflection sections correlate well with the existing borehole information. Depth to the bedrock from the boreholes matches well the high velocity zones. A zone of low velocity associated with a flat reflection at about 20 m depth below the topography shows a good correspondence with the groundwater table. A major morphologically undetectable kettle hole (MUKH) is clearly observed in the reflection data as a concave reflectivity zone, with indication of normal faulting. The deposits show alternating coarse- and fine-grained sediments with channel structures representing subaqueous fans. An esker core is defined from a zone of reflectivity from coarser-grained materials overlaid by proximal fan sediments of the main aquifer. Acknowledgments: Formas (http://www.trust-geoinfra.se), Turku Region Water Ltd., University of Turku, GTK
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Gleadhill, Sam; Lee, James Bruce; James, Daniel
2016-05-03
This research presented and validated a method of assessing postural changes during resistance exercise using inertial sensors. A simple lifting task was broken down to a series of well-defined tasks, which could be examined and measured in a controlled environment. The purpose of this research was to determine whether timing measures obtained from inertial sensor accelerometer outputs are able to provide accurate, quantifiable information of resistance exercise movement patterns. The aim was to complete a timing measure validation of inertial sensor outputs. Eleven participants completed five repetitions of 15 different deadlift variations. Participants were monitored with inertial sensors and an infrared three dimensional motion capture system. Validation was undertaken using a Will Hopkins Typical Error of the Estimate, with a Pearson׳s correlation and a Bland Altman Limits of Agreement analysis. Statistical validation measured the timing agreement during deadlifts, from inertial sensor outputs and the motion capture system. Timing validation results demonstrated a Pearson׳s correlation of 0.9997, with trivial standardised error (0.026) and standardised bias (0.002). Inertial sensors can now be used in practical settings with as much confidence as motion capture systems, for accelerometer timing measurements of resistance exercise. This research provides foundations for inertial sensors to be applied for qualitative activity recognition of resistance exercise and safe lifting practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
A coaxial cable Fabry-Perot interferometer for sensing applications.
Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming
2013-11-07
This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.
Cai, Lili; McClellan, Connor J; Koh, Ai Leen; Li, Hong; Yalon, Eilam; Pop, Eric; Zheng, Xiaolin
2017-06-14
Two-dimensional (2D) molybdenum trioxide (MoO 3 ) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO 3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO 3 . Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO 3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS 2 , graphene, and WSe 2 , based on van der Waals epitaxy. The flame-grown ultrathin MoO 3 sheet functions as an efficient hole doping layer for WSe 2 , enabling WSe 2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·μm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.
Fault Detection and Isolation for Hydraulic Control
NASA Technical Reports Server (NTRS)
1987-01-01
Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.
1025: MAGIC 2010 Multi Autonomous Ground International Challenge. Volume I
2010-10-22
the creation of software required to interact with the sensors for each subsystem. Most of the systems have been extensively developed and tested with...varying levels of success. All of the systems have been developed from the ground up and have been discussed in the report. 15. SUBJECT TERMS...the system . The system was broken down into several components. These were: (i) The ability to perform accurate localisation both indoors and outside
Sensor-based laser ablation for tissue specific cutting: an experimental study.
Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas
2004-01-01
The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.
NASA Astrophysics Data System (ADS)
Lee, Jun Ho; Hwang, Sunglyoung; Jeong, Dohwan; Hong, Jinsuk; Kim, Youngsoo; Kim, Yeonsoo; Kim, Hyunsook
2017-09-01
We report an innovative simple alignment method for a VNIR spectrometer in the wavelength region of 400-900 nm; this device is later combined with fore-optics (a telescope) to form a f/2.5 hyperspectral imaging spectrometer with a field of view of +/-7.68°. The detector at the final image plane is a 640×480 charge-coupled device with a 24 μm pixel size. We first assembled the fore-optics and the spectrometer separately and then combined them via a slit co-located on the image plane of the fore-optics and the object plane of the spectrometer. The spectrometer was assembled in three steps. In the initial step, the optics was simply assembled with an optical axis guiding He-Ne laser. In the second step, we located a pin-hole on the slit plane and a Shack-Hartmann sensor on the detector plane. The wavefront errors over the full field were scanned simply by moving the point source along the slit direction while the Shack-Hartmann sensor was constantly conjugated to the pin-hole position by a motorized stage. Optimal alignment was then performed based on the reverse sensitivity method. In the final stage, the pin-hole and the Shack-Hartmann sensor were exchanged with an equispaced 10 pin-hole slit called a field identifier and a detector. The light source was also changed from the laser (single wavelength source) to a krypton lamp (discrete multi-wavelength source). We were then easily able to calculate the distortion and keystone on the detector plane without any scanning or moving optical components; rather, we merely calculated the spectral centroids of the 10 pin-holes on the detector. We then tuned the clocking angles of the convex grating and the detector to minimize the distortion and keystone. The final assembly was tested and found to have an RMS WFE < 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm.
Electromagnetic power of merging and collapsing compact objects
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2011-06-01
Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is expected to be relatively small. We also discuss the nature of short gamma-ray bursts and suggest that if the magnetic field is amplified to ˜1014G during the merger or the core collapse, the similarity of the early afterglow properties of long and short gamma-ray bursts can be related to the fact that in both cases a spinning black hole can retain a magnetic field for a sufficiently long time to extract a large fraction of its rotational energy and produce high energy emission via the internal dissipation in the wind.
Temperature insensitive curvature sensor based on cascading photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong
2018-03-01
A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.
Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens
NASA Technical Reports Server (NTRS)
Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.
2008-01-01
A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-10-12
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-01-01
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316
Methods and apparatus for removal and control of material in laser drilling of a borehole
Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F
2014-01-28
The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.
Methods and apparatus for removal and control of material in laser drilling of a borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.
2016-12-06
The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.
Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?
NASA Technical Reports Server (NTRS)
2005-01-01
Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.
EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors
NASA Astrophysics Data System (ADS)
Brugger, Jürgen
2009-10-01
A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although radically different from each other, these techniques represent a formidable toolset for structuring materials at the nanoscale in a multitude of fashions. The availability of these new nanopatterning techniques are increasingly implemented in the manufacturing of advanced sensor systems, and we can expect in the next decade an increased emergence of micro- and nanosensor systems that implement novel nano-functionalities thanks to cost-effective fabrication. Moreover, some of these techniques are desktop tools that can be used on your kitchen table at home. Thus, over the past 20 years we have witnessed a democratization of nanotechnology. More and more researchers, engineers, and even schoolchildren, can benefit from and use these new methods and devise novel applications for nanosystems. This is certainly beneficial to expediting a further dramatic increase in knowledge and the development of actual devices and applications that put gains in our understanding of nanosystems into practice. Nanotechnology is a relatively young discipline compared to classical engineering, and it is inherently interdisciplinary. It seems that in many fields we are actually just beginning to venture into these new dimensions. Challenges remain, however, in all aspects of nanotechnology. We need to improve imaging performance by enabling faster (video rate) coverage of larger surfaces, eventually down to the molecular scale. We also need to perfect nanopatterning methods to improve resolution, overlay and throughput capabilities. Future nanomanufacturing will most likely rely on combinations of top-down engineering and bottom-up self-assembly. Last but not least, we need to find ways for the mutual integration of multiple length-scale devices (nano/micro/macro) so that we can program a 'nano-functionality' into a microsystem exactly where it is needed. Such improvements will ultimately lead to improved sensors and contribute not only to improvements in our quality of life but also to building energy-saving systems that can be fabricated with low-waste manufacturing methods.
The Sentry Autonomous Underwater Vehicle: Field Trial Results and Future Capabilities
NASA Astrophysics Data System (ADS)
Yoerger, D. R.; Bradley, A. M.; Martin, S. C.; Whitcomb, L. L.
2006-12-01
The Sentry autonomous underwater vehicle combines an efficient long range survey capability with the ability to maneuver at low speeds. These attributes will permit Sentry to perform a variety of conventional and unconventional surveys including long range sonar surveys, hydrothermal plume surveys and near-bottom photo surveys. Sentry's streamlined body and fore and aft tilting planes, each possessing an independently controlled thruster, enable efficient operation in both near-bottom and cruising operations. Sentry is capable of being configured in two modes: hover mode, which commands Sentry's control surfaces to be aligned vertically, and forward flight mode, which allows Sentry's control surfaces to actuate between plus or minus 45 degrees. Sentry is equipped for full 6-Degrees of freedom position measurement. Vehicle heading, roll, and pitch are instrumented with a TCM2 PNI heading and attitude sensor. A Systron Donner yaw rate sensor instrumented heading rate. Depth is instrumented by a Paroscientific depth sensor. A 300kHz RD Instruments Doppler Sonar provides altitude and XYZ velocity measurements. In April 2006, we conducted our first deep water field trials of Sentry in Bermuda. These trials enabled us to examine a variety of issues, including the control software, vehicle safety systems, launch and recovery procedures, operation at depth, heading and depth controllers over a range of speeds, and power consumption. Sentry employ's a control system based upon the Jason 2 control system for low-level control, which has proven effective and reliable over several hundred deep-water dives. The Jason 2 control system, developed jointly at Johns Hopkins University and Woods Hole Oceanographic Institution, was augmented to manage Sentry-specific devices (sensors, actuators, and power storage) and to employ a high-level mission controller that supported autonomous mission scripting and error detection and response. This control suite will also support the Nereus Hybrid ROV, also in development at Woods Hole. Both systems performed well during these engineering trials. Sentry's heading and depth controller was tested in a series of trials at different speeds. The heading set point was maintained within approximately ½ degree and appeared to be limited by the precision of the heading sensor. The depth set point, during level flight, was maintained within about 2 centimeters. Based on these tests, we can project Sentry's range as a function of speed. Vehicle speed was measured by a 300 khz bottom-lock Doppler sonar while energy consumption was measured using a coulometer and voltage measurement. The vehicle flew complementary courses at the same levels of forward thrust, which allowed the effects of ambient currents to be eliminated. Assuming a sensor power level consistent with plume survey and bathymetric survey and a 10 kilowatt-hour battery, Sentry will be able to survey 100 km at 2.5 knots and over 150 km at 1.5 knots. Upgrades to Sentry that are presently funded and underway include the addition of an inertial navigation system, improved batteries, a camera system, and a multibeam sonar.
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Close-in detection system for the Mine Hunter/Killer program
NASA Astrophysics Data System (ADS)
Bishop, Steven S.; Campana, Stephen B.; Lang, David A.; Wiggins, Carl M.
2000-08-01
The Close-in Detection (CID) System is the vehicle-mounted multisensor landmine detection system for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter/Killer (MH/K) Program. The CID System is being developed by BAE Systems in San Diego, CA. TRW Systems and Information Technology Group in Arlington, VA and a team of specialists for ERIM, E-OIR, SNL, and APL/JHU support NVESD in the development, analysis and testing of the CID and associated signal and data processing. The CID System includes tow down-looking sensor arrays: a ground- penetrating radar (GPR) array, and a set of Electro-Magnetic Induction (EMI) coils for metal detection. These arrays span a 3-meter wide swath in front of a high mobility, multipurpose wheeled vehicle. The system also includes a forward looking IR imaging system mounted on the roof of the vehicle and covering a swath of the road ahead of the vehicle. Signals from each sensor are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank miens and clutter. Mine locations are passed to the neutralization subsystem of MH/K. This paper reviews the design of the sensors and signal processing of the CID system and gives examples and analysis of recent test results at the NVESD mine lanes. The strengths and weaknesses of each sensor are discussed, and the application of multisensor fusion is illustrated.
NASA Technical Reports Server (NTRS)
Groom, N. J.; Anderson, W. W.; Phillips, W. H. (Inventor)
1981-01-01
The invention includes an angular momentum control device (AMCD) having a rim and several magnetic bearing stations. The AMCD is in a strapped down position on a spacecraft. Each magnetic bearing station comprises means, including an axial position sensor, for controlling the position of the rim in the axial direction; and means, including a radial position sensor, for controlling the position of the rim in the radial direction. A first computer receives the signals from all the axial position sensors and computes the angular rates about first and second mutually perpendicular axes in the plane of the rim and computes the linear acceleration along a third axis perpendicular to the first and second axes. A second computer receives the signals from all the radial position sensors and computes the linear accelerations along the first and second axes.
Subsurface exploration using bucket auger borings and down-hole geologic inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scullin, C.M.
1994-03-01
The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and verymore » deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.« less
Testing the pyramid truth wavefront sensor for NFIRAOS in the lab
NASA Astrophysics Data System (ADS)
Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen
2016-07-01
For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications
Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming
2013-01-01
This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121
Electrical transmission line diametrical retainer
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-14
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.
On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks
Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun
2011-01-01
This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809
NASA Astrophysics Data System (ADS)
Bayuwati, Dwi; Waluyo, Tomi B.; Widiyatmoko, Bambang
2015-01-01
An optical fiber optic sensor for detecting land displacement is discussed in this paper. The sensor system consists of a laser at wavelength 1.3 um, optical fiber coupler, optical fiber as sensor and light transmitting media, PIN photodiodedetector system, data logger and personal computer. Sensor was made from a curved optical fiber with diameter 35 mm, which will be changed into a heart-shape fiber if it is pulled. The heart-shape fiber sensor is the modification of the earlier displacement fiber sensor model which was in an ellipse form. Light to and from the optical fiber sensor was transmitted into a length of a multi core, single mode optical fiber cable. The scheme of the optical displacement sensor system has been described here. Characterization in the laboratory has been done by applying a series of pulling mechanism, on the heart-shape fiber sensor; which represents the land displacement process. Characterization in the field was carried out by mounting the sensor system on a scaled-down model of a land slope and artificially reproducing the landslide process using a steady-flow of artificial rainfall as the trigger. The voltage sensor output was recorded during the artificial landslide process. The displacement occurence can be indicated from the declining of the sensor signal received by the detector while the reference signal is steady. Characterization in the laboratory resulted in the performance of the optical fiber land displacement, namely, sensitivity 0.027(mV/mV)/mm, resolution 0.37 mm and measurement range 30 mm; compared with earlier optical fiber sensor performance with similar sensitivity and resolution which works only in 8 mm displacement range. Based on the experiment of landslides simulation in the field, we can define a critical condition in the real situation before landslides occurence to take any measures to prevent more casualties and losses.
Guidance and Control Design Considerations for Low-Altitude and Terminal-Area Flight
1978-04-01
MEAN TIME BETWEEN DEFECTS MEAN TIME BETWEEN UNDETECTED FAILURES 1 BASIC SYSTEM 49. S hrs 8, 213 hrs 2 DUPLEX TFC/ APFD 51.0 hrs 14. 981 hrs 3 2...MOTION SENSORS Figure 6 TF System 2 AERIAL RADAR TX/RX R.P SERVOS STRAP DOWN INS «EL.VG hi I 1 -i «JNAV/WASS I J TF/ APFD COMPUTER
Applications of optical sensors for high-frequency water-quality monitoring and research
Pellerin, Brian
2015-01-01
The recent commercial availability of in-situ optical sensors, together with new techniques for data collection and analysis, provides the opportunity to monitor a wide range of water-quality constituents over time scales during which environmental conditions actually change. Traditional approaches for data collection (daily to monthly discrete samples) are often limited by high sample collection, processing, and analytical costs, difficult site access, and logistical challenges, particularly for long-term sampling at a large number of sites. Optical sensors that continuously measure constituents in the environment by absorbance or fluorescence properties (Figure 1) have had a long history of use in oceanography for measuring highly resolved concentrations and fluxes of organic matter, nutrients, and algal material. However, much of the work using commercially-available optical sensors in rivers and streams has taken place in only the last few years. Figure 1. [NOT SHOWN] Optical sensor technology is now sufficiently developed to warrant broader application for research and monitoring in coastal and freshwater systems, and the United States Geological Survey (a U.S. science agency) is now using these sensors in a variety of research and monitoring programs to better understand water quality in-situ and in real-time. Examples are numerous and range from the applications of nitrate sensors for calculating loads to estuaries susceptible to hypoxia (Pellerin et al., 2014) to the use of fluorometers to estimate methymercury fluxes (Bergamaschi et al., 2011) and disinfection byproduct formation (Carpenter et al., 2013). Transmitting these data in real-time provides information that can be used for early trend detection, help identify monitoring gaps critical for water management, and provide science-based decision support across a range of issues related to water quality, freshwater ecosystems, and human health. Despite the value of these sensors, collecting data that meet high-quality standards requires investment in and adherence to tested and established methods and protocols for sensor operation and data management (Pellerin et al., 2013). For example, optical sensor measurements can be strongly influenced by a variety of matrix effects, including water temperature, inner filtering from highly colored water, and scattering of light by suspended particles (Downing et al., 2012). Characterizing and correcting sensors for these effects – as well as the continued development of common methodologies and protocols for sensor use – will be critical to ensuring comparable measurements across sites and over time. In addition, collaborative efforts such as the Nutrient Sensor Challenge (www.nutrients-challenge.org) will continue to accelerate the development, production and use of affordable, reliable and accurate sensors for a range of environments. REFERENCES Bergamaschi .B.A., Fleck J.A., Downing B.D., Boss E., Pellerin B.A., Ganju N.K., Schoellhamer D.H., Byington A.A., Heim W.A., Stephenson M., Fujii R. (2011), Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 56(4): 1355-1371. Carpenter K.D., Kraus T.E.C., Goldman J.H., Saraceno J., Downing B.D., Bergamaschi B.A., McGhee G., Triplett T. (2013), Sources and Characteristics of Organic Matter in the Clackamas River, Oregon, Related to the Formation of Disinfection By-products in Treated Drinking Water: U.S. Geological Survey Scientific Investigations Report 2013–5001, 78 p. Downing .B.D., Pellerin B.A., Bergamaschi B.A., Saraceno J., Kraus T.E.K. (2012), Seeing the light: The effects of particles, temperature and inner filtering on in situ CDOM fluorescence in rivers and streams. Limnology and Oceanography: Methods, 10: 767-775. Pellerin B.A., Bergamaschi B.A., Downing B.D., Saraceno J., Garrett J.D., Olsen L.D. (2013), Optical Techniques for the Determination of Nitrate in En
2008-08-01
Figure 17: USGS Helmholtz coils with SQUID and fluxgate magnetometers installed. 22 Figure 18: Plot of SQUID and fluxgate data from a rotating... fluxgate magnetometer , each sensor measures flux in only one direction. Combinations of SQUID sensor elements are arranged in various configurations...than the absolute field value the way that a fluxgate magnetometer would do. If the SQUID is shut down or loses lock, it has no way to relate the new
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
Robotic vehicle uses acoustic sensors for voice detection and diagnostics
NASA Astrophysics Data System (ADS)
Young, Stuart H.; Scanlon, Michael V.
2000-07-01
An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.
Chiuchiolo, Antonella; Palmieri, Luca; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea
2015-10-01
This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the range 300-4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300-30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
Report on the search for atmospheric holes using airs image data
NASA Technical Reports Server (NTRS)
Reinleitner, Lee A.
1991-01-01
Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.
Integrated Flexible Electronic Devices Based on Passive Alignment for Physiological Measurement
Ryu, Jin Hwa; Byun, Sangwon; Baek, In-Bok; Lee, Bong Kuk; Jang, Won Ick; Jang, Eun-Hye; Kim, Ah-Yung; Yu, Han Yung
2017-01-01
This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals. PMID:28420219
Optical fiber pressure sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Song, Dongcao
In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon fiber ribbon-wound composite cylindrical shell is proposed. The mechanical characteristics are analyzed. Due to the smaller longitudinal Young's modulus of this novel material, the sensitivity is improved to 0.452nm/MPa and the measurement range can reach 8MPa. The experimental results indicated excellent repeatability of the material and a good linearity between Bragg wavelength shift and the applied pressure. The sensor has the potential to find many industrial low pressure applications.
Primordial black hole formation by vacuum bubbles
NASA Astrophysics Data System (ADS)
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
Iron charge states observed in the solar wind
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.
1983-01-01
Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.
2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR
NASA Astrophysics Data System (ADS)
Lampert, M.; Zoletnik, S.; Bak, J. G.; Nam, Y. U.; Kstar Team
2018-04-01
Intermittent events in the scrape-off layer (SOL) of magnetically confined plasmas, often called blobs and holes, contribute significantly to the particle and heat loss across the magnetic field lines. In this article, the results of the scrape-off layer and edge turbulence measurements are presented with the two-dimensional Deuterium Beam Emission Spectroscopy system (DBES) at KSTAR (Korea Superconducting Tokamak Advanced Research). The properties of blobs and holes are determined in an L-mode and an H-mode shot with statistical tools and conditional averaging. These results show the capabilities and limitations of the SOL turbulence measurement of a 2D BES system. The results from the BES study were compared with the analysis of probe measurements. It was found that while probes offer a better signal-to-noise ratio and can measure blobs down to 3 mm size, BES can monitor the two-dimensional dynamics of larger events continuously during full discharges, and the measurement is not limited to the SOL on KSTAR.
Explosion and Final State of an Unstable Reissner-Nordström Black Hole.
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J; Font, José A; Herdeiro, Carlos
2016-04-08
A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system-dubbed a charged BH bomb-into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.
Estimating the spatial resolution of fNIRS sensors for BCI purposes
NASA Astrophysics Data System (ADS)
Almajidy, Rand Kasim; Kirch, Robert D.; Christ, Olaf; Hofmann, Ulrich G.
2014-03-01
Differential near infrared sensors recently sparked a growing interest as a promising measuring modality for brain computer interfacing. In our study we present the design and characterization of novel, differential functional NIRS sensors, intended to record hemodynamic changes of the human motor cortex in the hand-area during motor imagery tasks. We report on the spatial characterization of a portable, multi-channel NIRS system with one module consisting of two central light emitting diodes (LED) (770 nm and 850 nm) and four symmetric pairs of radially aligned photodiodes (PD) resembling a plus symbol. The other sensor module features four similar, differential light paths crossing in the center of a star. Characterization was performed on a concentric, double beaker phantom, featuring a PBS/intralipid/blood mixture (97/1/2%). In extension of previous work, the inner, oxygenated beaker was covered by neoprene sleeves with holes of various sizes, thus giving an estimate on the spatial limits of the NIRS sensor's measurement volume. The star shaped sensor module formed a diffuse focus of approximately 3 cm in diameter at 1.4 cm depth, whereas the plus shaped arrangement suggested a concentric ring of four separate regions of interest, overall larger than 6 cm. The systems measurement sensitivity could be improved by removing ambient light from the sensing photodiodes by optical filtering. Altogether, we conclude that both our novel fNIRS design as well as its electronics perform well in the double-layered oxygenation phantom and are thus suitable for in-vivo testing.
The Black Hole Firewall and Top-Down Constructions of AdS/CFT
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed Eid Khamis Thani
In the first part of this dissertation we argue that the following statements cannot be all true: (i) Black hole formation and evaporation is a unitary process as viewed by external observers, (ii) Physics outside some microscopic distance away from the event horizon is described by local effective quantum field theory, (iii) A black hole is a quantum system with a finite number of states given by the exponential of the Bekenstein Hawking entropy, and (iv) An infalling observer's experience in the vicinity of the horizon is well described by local effective quantum field theory in the infalling reference frame. We argue that the most conservative resolution is that an infalling observer will see drastic violations of effective field theory far away from the singularity, and encounter high energy quanta, a firewall, just behind the black hole event horizon. We address counter proposals to the firewall which involve, in one way or another, radical modifications of quantum mechanics or locality, and argue that they are unsatisfactory in their current formulation. We conclude this part with an investigation into the existence of firewalls in the two dimensional Einstein-dilaton gravity model of CGHS. We find that black holes in such models do not develop firewalls, but rather evaporate down to form small mass remnants. We elaborate on why this is inevitable in two dimensions and argue against a similar conclusion in higher dimensions. In the second part of this dissertation we construct AdS2 and AdS3 magnetic brane solutions within the abelian truncations of AdS4 x orbifolded S7 and AdS5 x S5 supergravity. We find a class of supersymmetric solutions of the bulk theory to assure stability. We perform a preliminary analysis demonstrating the stability of some nonsupersymmetric embeddings. We identify the dual field theory and compare the thermal entropies across the duality. We end with an investigatation into the effects of backreaction on holography in AdS2. We study a classically solvable toy model that contains an IR AdS2 throat, and find that backreaction behaves as a strongly relevant perturbation deep in the AdS2 region.
Holgado, M; Casquel, R; Sánchez, B; Molpeceres, C; Morales, M; Ocaña, J L
2007-10-01
We have fabricated and characterized a lattice of submicron cone-shaped holes on a SiO(2)/Si wafer. Reflectivity profiles as a function of angle of incidence and polarization, phase shift and spectrometry are obtained for several fluids with different refractive indexes filling the holes. The optical setup allows measuring in the center of a single hole and collecting all data simultaneously, which can be applied for measuring extremely low volumes of fluid (in the order of 0.1 femtolitres) and label-free immunoassays, as it works as a refractive index sensor. A three layer film stack model is defined to perform theoretical calculations.
Excited-state relaxation in PbSe quantum dots
NASA Astrophysics Data System (ADS)
An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex
2008-04-01
In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to invoke any exotic relaxation mechanisms.
Acoustic leak-detection system for railroad transportation security
NASA Astrophysics Data System (ADS)
Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.
2007-04-01
Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2013-01-01
A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.
Optimal rotation sequences for active perception
NASA Astrophysics Data System (ADS)
Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin
2016-05-01
One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft
Big Black Holes Mean Bad News for Stars (diagram)
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes This diagram illustrates research from NASA's Galaxy Evolution Explorer showing that black holes -- once they reach a critical size -- can put the brakes on new star formation in elliptical galaxies. In this graph, galaxies and their supermassive black holes are indicated by the drawings (the black circle at the center of each galaxy represents the black hole). The relative masses of the galaxies and their black holes are reflected in the sizes of the drawings. Blue indicates that the galaxy has new stars, while red means the galaxy does not have any detectable new stars. The Galaxy Evolution Explorer observed the following trend: the biggest galaxies and black holes (shown in upper right corner) are more likely to have no observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth. The white line in the diagram illustrates that, for any galaxy no matter what the mass, its black hole must reach a critical size before it can shut down star formation.Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.
Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P
2012-03-26
We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.
Packaged FBG sensors for real-time stress monitoring on deep-water riser
NASA Astrophysics Data System (ADS)
Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang
2014-11-01
The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.
All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure
NASA Astrophysics Data System (ADS)
Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz
2017-10-01
Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.
Research on dual-parameter optical fiber sensor based on few-mode fiber with two down-tapers
NASA Astrophysics Data System (ADS)
Wang, Xue; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang
2017-10-01
A dual-parameter optical fiber sensor, which is fabricated by sandwiching a segment of few-mode fiber (FMF) with two down-tapers between two segments of standard single-mode fibers (SMFs), is investigated theoretically and experimentally. The two down-tapers on the FMF can enhance the evanescent field, making the sensor more sensitive to changes in the external environment. The refractive index (RI) and temperature are measured simultaneously using the different sensitivities of the two dips in this experimental interference spectrum. The measured temperature sensitivities are 0.097 and 0.114 nm/°C, and the RI sensitivities are -97.43 and -108.07 nm/RIU, respectively. Meanwhile, the simple SMF-FMF-SMF structure is also measured. By comparing the experimental results of the two structures, the sensitivities of the proposed structure based on the dual-taper FMF are significantly improved. In addition, the sensor is easy to fabricate and cost effective.
NASA Astrophysics Data System (ADS)
Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan
2016-05-01
The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.
LagLoc - a new surgical technique for locking plate systems.
Triana, Miguel; Gueorguiev, Boyko; Sommer, Christoph; Stoffel, Karl; Agarwal, Yash; Zderic, Ivan; Helfen, Tobias; Krieg, James C; Krause, Fabian; Knobe, Matthias; Richards, R Geoff; Lenz, Mark
2018-06-19
Treatment of oblique and spiral fractures remains challenging. The aim of this study was to introduce and investigate the new LagLoc technique for locked plating with generation of interfragmentary compression, combining the advantages of lag-screw and locking-head-screw techniques. Oblique fracture was simulated in artificial diaphyseal bones, assigned to three groups for plating with a 7-hole locking compression plate. Group I was plated with three locking screws in holes 1, 4 and 7. The central screw crossed the fracture line. In group II the central hole was occupied with a lag screw perpendicular to fracture line. Group III was instrumented applying the LagLoc technique as follows. Hole 4 was predrilled perpendicularly to the plate, followed by overdrilling of the near cortex and insertion of a locking screw whose head was covered by a holding sleeve to prevent temporarily the locking in the plate hole and generate interfragmentary compression. Subsequently, the screw head was released and locked in the plate hole. Holes 1 and 7 were occupied with locking screws. Interfragmentary compression in the fracture gap was measured using pressure sensors. All screws in the three groups were tightened with 4Nm torque. Interfragmentary compression in group I (167 ± 25N) was significantly lower in comparison to groups II (431 ± 21N) and III (379 ± 59N), p≤0.005. The difference in compression between groups II and III remained not significant (p = 0.999). The new LagLoc technique offers an alternative tool to generate interfragmentary compression with the application of locking plates by combining the biomechanical advantages of lag screw and locking screw fixations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.
2012-05-01
Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure vertical temperature profiles in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature profiles are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS observations make it possible to observe temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.
2017-09-02
A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942
Monitoring corrosion in reinforced concrete structures
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.
2014-06-01
Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.
NASA Astrophysics Data System (ADS)
Pappas, Nikolaos D.
2012-06-01
For more than 30 years the discovery that black holes radiate like black bodies of specific temperature has triggered a multitude of puzzling questions concerning their nature and the fate of information that goes down the black hole during its lifetime. The most tricky issue in what is known as information loss paradox is the apparent violation of unitarity during the formation/evaporation process of black holes. A new idea is proposed based on the combination of our knowledge on Hawking radiation as well as the Einstein-Podolsky-Rosen phenomenon, that could resolve the paradox and spare physicists from the unpalatable idea that unitarity can ultimately be irreversibly violated even under special conditions.
SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.
Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi
2011-08-01
In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
A three-dimensional computerized isometric strength measurement system.
Black, Nancy L; Das, Biman
2007-05-01
The three-dimensional Computerized Isometric Strength Measurement System (CISMS) reliably and accurately measures isometric pull and push strengths in work spaces of paraplegic populations while anticipating comparative studies with other populations. The main elements of the system were: an extendable arm, a vertical supporting track, a rotating platform, a force transducer, stability sensors and a computerized data collection interface. The CISMS with minor modification was successfully used to measure isometric push-up and pull-down strengths of paraplegics and isometric push, pull, push-up and pull-down strength in work spaces for seated and standing able-bodied populations. The instrument has satisfied criteria of versatility, safety and comfort, ease of operation, and durability. Results are accurate within 2N for aligned forces. Costing approximately $1,500 (US) including computer, the system is affordable and accurate for aligned isometric strength measurements.
Real-time qualitative reasoning for telerobotic systems
NASA Technical Reports Server (NTRS)
Pin, Eancois G.
1993-01-01
This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.
A micro dew point sensor with a thermal detection principle
NASA Astrophysics Data System (ADS)
Kunze, M.; Merz, J.; Hummel, W.-J.; Glosch, H.; Messner, S.; Zengerle, R.
2012-01-01
We present a dew point temperature sensor with the thermal detection of condensed water on a thin membrane, fabricated by silicon micromachining. The membrane (600 × 600 × ~1 µm3) is part of a silicon chip and contains a heating element as well as a thermopile for temperature measurement. By dynamically heating the membrane and simultaneously analyzing the transient increase of its temperature it is detected whether condensed water is on the membrane or not. To cool the membrane down, a peltier cooler is used and electronically controlled in a way that the temperature of the membrane is constantly held at a value where condensation of water begins. This temperature is measured and output as dew point temperature. The sensor system works in a wide range of dew point temperatures between 1 K and down to 44 K below air temperature. In experimental investigations it could be proven that the deviation of the measured dew point temperatures compared to reference values is below ±0.2 K in an air temperature range of 22 to 70 °C. At low dew point temperatures of -20 °C (air temperature = 22 °C) the deviation increases to nearly -1 K.
Electrospray-printed nanostructured graphene oxide gas sensors.
Taylor, Anthony P; Velásquez-García, Luis F
2015-12-18
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
NASA Astrophysics Data System (ADS)
O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen
2014-04-01
A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP) regression are used to predict changes in the bridge behavior as a function of environmental parameters. Based on these analyses, pertinent behavioral information relevant to bridge management is autonomously extracted.
NASA Astrophysics Data System (ADS)
Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran
2006-04-01
Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.
Multifunctional wearable devices for diagnosis and therapy of movement disorders.
Son, Donghee; Lee, Jongha; Qiao, Shutao; Ghaffari, Roozbeh; Kim, Jaemin; Lee, Ji Eun; Song, Changyeong; Kim, Seok Joo; Lee, Dong Jun; Jun, Samuel Woojoo; Yang, Shixuan; Park, Minjoon; Shin, Jiho; Do, Kyungsik; Lee, Mincheol; Kang, Kwanghun; Hwang, Cheol Seong; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-05-01
Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.
Radar coordination and resource management in a distributed sensor network using emergent control
NASA Astrophysics Data System (ADS)
Weir, B. S.; Sokol, T. M.
2009-05-01
As the list of anti-air warfare and ballistic missile defense missions grows, there is an increasing need to coordinate and optimize usage of radar resources across the netted force. Early attempts at this optimization involved top-down control mechanisms whereby sensors accept resource tasking orders from networked tracking elements. These approaches rely heavily on uncertain knowledge of sensor constraints and capabilities. Furthermore, advanced sensor systems may support self-defense missions of the host platform and are therefore unable to relinquish control to an external function. To surmount these issues, the use of bottom-up emergent control techniques is proposed. The information necessary to make quality, network-wide resource allocations is readily available to sensor nodes with access to a netted track picture. By assessing resource priorities relative to the network (versus local) track picture, sensors can understand the contribution of their resources to the netted force. This allows the sensors to apply resources where most needed and remove waste. Furthermore, simple local rules for resource usage, when properly constructed, allow sensors to obtain a globally optimal resource allocation without direct coordination (emergence). These results are robust to partial implementation (i.e., not all nodes upgraded at once) and failures on individual nodes (whether from casualty or reallocation to other sensor missions), and they leave resource control decisions in the hands of the sensor systems instead of an external function. This paper presents independent research and development work on emergent control of sensor resources and the impact to resource allocation and tracking performance.
Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring
NASA Astrophysics Data System (ADS)
Huang, Yu; Wieck, Lucas; Tao, Shiquan
2013-02-01
Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.
Searching for the QCD Axion with Black Holes and Gravitational Waves
NASA Astrophysics Data System (ADS)
Baryakhtar, Masha
2017-01-01
The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.
Analysis of sensor network observations during some simulated landslide experiments
NASA Astrophysics Data System (ADS)
Scaioni, M.; Lu, P.; Feng, T.; Chen, W.; Wu, H.; Qiao, G.; Liu, C.; Tong, X.; Li, R.
2012-12-01
A multi-sensor network was tested during some experiments on a landslide simulation platform established at Tongji University (Shanghai, P.R. China). Here landslides were triggered by means of artificial rainfall (see Figure 1). The sensor network currently incorporates contact sensors and two imaging systems. This represent a novel solution, because the spatial sensor network incorporate either contact sensors and remote sensors (video-cameras). In future, these sensors will be installed on two real ground slopes in Sichuan province (South-West China), where Wenchuan earthquake occurred in 2008. This earthquake caused the immediate activation of several landslide, while other area became unstable and still are a menace for people and properties. The platform incorporates the reconstructed scale slope, sensor network, communication system, database and visualization system. Some landslide simulation experiments allowed ascertaining which sensors could be more suitable to be deployed in Wenchuan area. The poster will focus on the analysis of results coming from down scale simulations. Here the different steps of the landslide evolution can be followed on the basis of sensor observations. This include underground sensors to detect the water table level and the pressure in the ground, a set of accelerometers and two inclinometers. In the first part of the analysis the full data series are investigated to look for correlations and common patterns, as well as to link them to the physical processes. In the second, 4 subsets of sensors located in neighbor positions are analyzed. The analysis of low- and high-speed image sequences allowed to track a dense field of displacement on the slope surface. These outcomes have been compared to the ones obtained from accelerometers for cross-validation. Images were also used for the photogrammetric reconstruction of the slope topography during the experiment. Consequently, volume computation and mass movements could be evaluated on the basis of processed images.; Figure 1 - The landslide simulation platform at Tongji University at the end of an experiment. The picture shows the body of simulated landslide.
Artificial intelligence techniques for ground test monitoring of rocket engines
NASA Technical Reports Server (NTRS)
Ali, Moonis; Gupta, U. K.
1990-01-01
An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.
Enhancement of the sensitivity of gas sensor based on microstructure optical fiber
NASA Astrophysics Data System (ADS)
Morshed, Monir; Hasan, Md. Imran; Razzak, S. M. Abdur
2015-12-01
This paper proposes the design and characterization of microstructure optical fiber for gas sensing applications. The aim is to detect toxic and colorless gases over a wide transmission band covering 0.80 µm to 2.00 µm wavelength. Numerical investigation is carried out by using the finite element method (FEM). The numerical study shows that sensitivity of the proposed sensor is moderately increased by introducing four non-circular holes around the defected core of photonic crystal fiber and the confinement loss is also reduced. Furthermore, we confirm that increasing the diameter of central air core and size of the non-circular holes can improve the relative sensitivity and the confinement loss is reduced by increasing the diameter of air holes in the cladding. The enhancement of the relative sensitivity is more than 27.58% (0.1323 to 0.1688) at the wavelength λ=1.33µm that is the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. The confinement loss of the fiber is 1.765×10-8 dB/m.
NASA Astrophysics Data System (ADS)
Wang, Wenbo; Fu, Dong; Hu, Xiaobin; Xu, Yun; Song, Guofeng; Wei, Xin
2016-10-01
Polarimetric imaging in infrared wavelengths have attracted more and more attention for broad applications in meteorological observations, medicine, remote sensing and many other fields. Metal metamaterial structures are used in nanophotonics in order to localize and enhance the incident electromagnetic field. Here we develop an elliptical gold Two-Dimensional Holes Array (2DHA) in which photons can be manipulated by surface plasmon resonance, and the ellipse introduce the asymmetry to realize a polarization selective function. Strong polarization dependence is observed in the simulated transmission spectra. To further understand the coupling mechanism between gold holes array and InP, the different parameters of the 2DHA are analyzed. It is shown that the polarization axis is perpendicular to the major axis of the ellipse, and the degree of polarization is determined by the aspect ratio of the ellipse. Furthermore, the resonance frequency of the 2DHA shows a linear dependence on the array period, the bandwidth of transmission spectra closely related to duty cycle of the ellipse in each period. This result will establish a basis for the development of innovative polarization selective infrared sensor.
NASA Technical Reports Server (NTRS)
1992-01-01
Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.
Closed loop control of the induction heating process using miniature magnetic sensors
Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.
2003-05-20
A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).
Monitoring of Carbon Dioxide and Methane Plumes from Combined Ground-Airborne Sensors
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Taylor; Honeycutt, Wes; Materer, Nicholas; Ley, Tyler; Clark, Peter
2016-11-01
A hybrid ground-airborne sensing network for real-time plume monitoring of CO2 and CH4 for carbon sequestration is investigated. Conventional soil gas monitoring has difficulty in distinguishing gas flux signals from leakage with those associated with meteorologically driven changes. A low-cost, lightweight sensor system has been developed and implemented onboard a small unmanned aircraft and is combined with a large-scale ground network that measures gas concentration. These are combined with other atmospheric diagnostics, including thermodynamic data and velocity from ultrasonic anemometers and multi-hole probes. To characterize the system behavior and verify its effectiveness, field tests have been conducted with simulated discharges of CO2 and CH4 from compressed gas tanks to mimic leaks and generate gaseous plumes, as well as field tests over the Farnsworth CO2-EOR site in the Anadarko Basin. Since the sensor response time is a function of vehicle airspeed, dynamic calibration models are required to determine accurate location of gas concentration in space and time. Comparisons are made between the two tests and results compared with historical models combining both flight and atmospheric dynamics. Supported by Department of Energy Award DE-FE0012173.
Random-hole optical fiber evanescent-wave gas sensing.
Pickrell, G; Peng, W; Wang, A
2004-07-01
Research on development of optical gas sensors based on evanescent-wave absorption in random-hole optical fibers is described. A process to produce random-hole optical fibers was recently developed that uses a novel in situ bubble formation technique. Gas molecules that exhibit characteristic vibrational absorption lines in the near-IR region that correspond to the transmission window for silica optical fiber have been detected through the evanescent field of the guided mode in the pore region. The presence of the gas molecules in the holes of the fiber appears as a loss at wavelengths that are characteristic of the particular gas species present in the holes. An experimental setup was constructed with these holey fibers for detection of acetylene gas. The results clearly demonstrate the characteristic absorptions in the optical spectra that correspond to the narrow-line absorptions of the acetylene gas, and this represents what is to our knowledge the first report of random-hole fiber gas sensing in the literature.
Design and characterization of a piezoelectric sensor for monitoring scour hole evolution
NASA Astrophysics Data System (ADS)
Azhari, Faezeh; Tom, Caroline; Benassini, Joseph; Loh, Kenneth J.; Bombardelli, Fabian A.
2014-03-01
Scour occurring near bridge piers and abutments jeopardizes the stability and safety of overwater bridges. In fact, bridge scour is responsible for a significant portion of overwater bridge failures in the United States and around the world. As a result, numerous methods have been developed for monitoring bridge scour by measuring scour depth at locations near bridge piers and foundations. Besides visual inspections conducted by trained divers, other technologies include sonar, float-out devices, magnetic sliding collars, tilt sensors, and fiber optics, to name a few. These systems each offer unique advantages, but most of them share fundamental limitations (e.g., high costs, low reliability, limited accuracy, low reliability, etc.) that have limited their implementation in practice. Thus, the goal of this study is to present a low-cost and simple scour depth sensor fabricated using piezoelectric poly(vinylidene fluoride) (PVDF) polymer strips. Unlike current piezoelectric scour sensors that are based on mounting multiple and equidistantly spaced transducers on a rod, the proposed sensor is formed by coating one continuous PVDF film onto a substrate, followed by waterproofing the sensor. The PVDF-based sensor can then be buried in the streambed and at a location where scour depth measurements are desired. When scour occurs and exposes a portion of the PVDF sensor, water flow excites the sensor to cause the generation of a time-varying voltage signal. Since the dynamics of the voltage time history response is related to the exposed length of the sensor, scour depth can be determined. This work presents the design and fabrication of the sensor. Then, the sensor's performance and accuracy is characterized through extensive laboratory testing.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Defect-Mediated Molecular Interaction and Charge Transfer in Graphene Mesh-Glucose Sensors.
Kwon, Sun Sang; Shin, Jae Hyeok; Choi, Jonghyun; Nam, SungWoo; Park, Won Il
2017-04-26
We report the role of defects in enzymatic graphene field-effect transistor sensors by introducing engineered defects in graphene channels. Compared with conventional graphene sensors (Gr sensors), graphene mesh sensors (GM sensors), with an array of circular holes, initially exhibited a higher irreversible response to glucose, involving strong chemisorption to edge defects. However, after immobilization of glucose oxidase, the irreversibility of the responses was substantially diminished, without any reduction in the sensitivity of the GM sensors (i.e., -0.53 mV/mM for the GM sensor vs -0.37 mV/mM for Gr sensor). Furthermore, multiple cycle operation led to rapid sensing and improved the reversibility of GM sensors. In addition, control tests with sensors containing a linker showed that sensitivity was increased in Gr sensors but decreased in GM sensors. Our findings indicate that edge defects can be used to replace linkers for immobilization of glucose oxidase and improve charge transfer across glucose oxidase-graphene interfaces.
Microspacecraft and Earth observation: Electrical field (ELF) measurement project
NASA Technical Reports Server (NTRS)
Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George
1990-01-01
The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.
NASA Technical Reports Server (NTRS)
Imhoff, Marc; Lawrence, William; Condit, Richard; Wright, Joseph; Johnson, Patrick; Holford, Warren; Hyer, Joseph; May, Lisa; Carson, Steven
2000-01-01
A synthetic aperture radar sensor operating in 5 bands between 80 and 120 MHz was flown over forested areas in the canal zone of the Republic of Panama in an experiment to measure biomass in heavy tropical forests. The sensor is a pulse coherent SAR flown on a small aircraft and oriented straight down. The doppler history is processed to collect data on the ground in rectangular cells of varying size over a range of incidence angles fore and aft of nadir (+45 to - 45 degrees). Sensor data consists of 5 frequency bands with 20 incidence angles per band. Sensor data for over 12+ sites were collected with forest stands having biomass densities ranging from 50 to 300 tons/ha dry above ground biomass. Results are shown exploring the biomass saturation thresholds using these frequencies, the system design is explained, and preliminary attempts at data visualization using this unique sensor design are described.
Automated Fall Detection With Quality Improvement “Rewind” to Reduce Falls in Hospital Rooms
Rantz, Marilyn J.; Banerjee, Tanvi S.; Cattoor, Erin; Scott, Susan D.; Skubic, Marjorie; Popescu, Mihail
2014-01-01
The purpose of this study was to test the implementation of a fall detection and “rewind” privacy-protecting technique using the Microsoft® Kinect™ to not only detect but prevent falls from occurring in hospitalized patients. Kinect sensors were placed in six hospital rooms in a step-down unit and data were continuously logged. Prior to implementation with patients, three researchers performed a total of 18 falls (walking and then falling down or falling from the bed) and 17 non-fall events (crouching down, stooping down to tie shoe laces, and lying on the floor). All falls and non-falls were correctly identified using automated algorithms to process Kinect sensor data. During the first 8 months of data collection, processing methods were perfected to manage data and provide a “rewind” method to view events that led to falls for post-fall quality improvement process analyses. Preliminary data from this feasibility study show that using the Microsoft Kinect sensors provides detection of falls, fall risks, and facilitates quality improvement after falls in real hospital environments unobtrusively, while taking into account patient privacy. PMID:24296567
Komar energy and Smarr formula for noncommutative inspired Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Gangopadhyay, Sunandan
2011-11-01
We calculate the Komar energy E for a noncommutative inspired Schwarzschild black hole. A deformation from the conventional identity E = 2 ST H is found in the next to leading order computation in the noncommutative parameter θ (i.e. {{O}(sqrt{θ}e^{-M^2/θ})}) which is also consistent with the fact that the area law now breaks down. This deformation yields a nonvanishing Komar energy at the extremal point T H = 0 of these black holes. We then work out the Smarr formula, clearly elaborating the differences from the standard result M = 2 ST H , where the mass ( M) of the black hole is identified with the asymptotic limit of the Komar energy. Similar conclusions are also shown to hold for a deSitter-Schwarzschild geometry.
Improved analysis of transient temperature data from permanent down-hole gauges (PDGs)
NASA Astrophysics Data System (ADS)
Zhang, Yiqun; Zheng, Shiyi; Wang, Qi
2017-08-01
With the installation of permanent down-hole gauges (PDGs) during oil field development, large volumes of high resolution and continuous down-hole information are obtainable. The interpretation of these real-time temperature and pressure data can optimize well performance, provide information about the reservoir and continuously calibrate the reservoir model. Although the dynamic temperature data have been interpreted in practice to predict flow profiling and provide characteristic information of the reservoir, almost all of the approaches rely on established non-isothermal models which depend on thermodynamic parameters. Another problem comes from the temperature transient analysis (TTA), which is underutilized compared with pressure transient analysis (PTA). In this study, several model-independent methods of TTA were performed. The entire set of PDG data consists of many flow events. By utilizing the wavelet transform, the exact points of flow-rate changes can be located. The flow regime changes, for example, from early time linear flow to later time pseudo-radial flow, among every transient period with constant flow-rate. For the early time region (ETR) that is caused by flow-rate change operations, the TTA, along with the PTA can greatly reduce the uncertainties in flow regime diagnosis. Then, the temperature variations during ETR were examined to infer the true reservoir temperature history, and the relationships between the wavelet detailed coefficients and the flow-rate changes were analysed. For the scenarios with constant reservoir-well parameters, the detailed flow-rate history can be generated by calculating the coefficient of relationship in advance. For later times, the flow regime changes to pseudo-radial flow. An analytical solution was introduced to describe the sand-face temperature. The formation parameters, such as permeability and skin factor, were estimated with the previously calculated flow-rate. It is necessary to analyse temperature variation to overcome data limitation problems when information from other down-hole tools (e.g. expensive but unstable flow meters) is insufficient. This study shows the success in wellbore storage regime diagnosis, flow-rate history reconstruction, and formation parameters estimation using transient temperature data.
78 FR 58975 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... a certain combination of a target/proximity sensor serial number is installed on a flap... target and proximity sensor if applicable, and replacing or re-identifying the flap interconnecting strut... flap down drive disconnection due to an already-failed interconnecting strut sensor, which could result...
Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.
2016-01-01
The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316
Sensitivity enhancement of fiber loop cavity ring-down pressure sensor.
Jiang, Yajun; Yang, Dexing; Tang, Daqing; Zhao, Jianlin
2009-11-10
We present a theoretical and experimental study on sensitivity enhancement of a fiber-loop cavity ring-down pressure sensor. The cladding of the sensing fiber is etched in hydrofluoric acid solution to enhance its sensitivity. The experimental results demonstrate that the pressure applied on the sensing fiber is linearly proportional to the difference between the reciprocals of the ring-down time with and without pressure, and the relative sensitivity exponentially increases with decreasing the cladding diameter. When the sensing fiber is etched to 41.15 microm, its sensitivity is about 36 times that of nonetched fiber in the range of 0 to 32.5 MPa. The measured relative standard deviation of the ring-down time is about 0.15% and, correspondingly, the least detectable loss is about 0.00069 dB.
Before Inflation and after Black Holes
NASA Astrophysics Data System (ADS)
Stoltenberg, Henry
This dissertation covers work from three research projects relating to the physics before the start of inflation and information after the decay of a black hole. For the first project, we analyze the cosmological role of terminal vacua in the string theory landscape, and point out that existing work on this topic makes very strong assumptions about the properties of the terminal vacua. We explore the implications of relaxing these assumptions (by including "arrival" as well as "departure" terminals) and demonstrate that the results in earlier work are highly sensitive to their assumption of no arrival terminals. We use our discussion to make some general points about tuning and initial conditions in cosmology. The second project is a discussion of the black hole information problem. Under certain conditions the black hole information puzzle and the (related) arguments that firewalls are a typical feature of black holes can break down. We first review the arguments of Almheiri, Marolf, Polchinski and Sully (AMPS) favoring firewalls, focusing on entanglements in a simple toy model for a black hole and the Hawking radiation. By introducing a large and inaccessible system entangled with the black hole (representing perhaps a de Sitter stretched horizon or inaccessible part of a landscape) we show complementarity can be restored and firewalls can be avoided throughout the black hole's evolution. Under these conditions black holes do not have an "information problem". We point out flaws in some of our earlier arguments that such entanglement might be generically present in some cosmological scenarios, and call out certain ways our picture may still be realized. The third project also examines the firewall argument. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which differs from the AMPS accounting of quantum entanglement and might eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.
Development of a versatile intra-articular pressure sensing array.
Welcher, J B; Popovich, J M; Hedman, T P
2011-10-01
A new sensor array intended to accurately and directly measure spatial and time-dependent pressures within a highly curved biological intra-articular joint was developed and tested. To evaluate performance of the new sensor array for application within intra-articular joints generally, and specifically to fit within the relatively restrictive space of the lumbar spine facet joint, geometric constraints of length, width, thickness and sensor spatial resolution were evaluated. Additionally, the effects of sensor array curvature, frequency response, linearity, drift, hysteresis, repeatability, and total system cost were assessed. The new sensor array was approximately 0.6mm in thickness, scalable to below the nominal 12 mm wide by 15 high lumbar spine facet joint size, offered no inherent limitations on the number or spacing of the sensors with less than 1.7% cross talk with sensor immediately adjacent to one another. No difference was observed in sensor performance down to a radius of curvature of 7 mm and a 0.66±0.97% change in sensor sensitivity was observed at a radius of 5.5mm. The sensor array had less than 0.07 dB signal loss up to 5.5 Hz, linearity was 0.58±0.13% full scale (FS), drift was less than 0.2% FS at 250 s and less than 0.6% FS at 700 s, hysteresis was 0.78±0.18%. Repeatability was excellent with a coefficient of variation less than 2% at pressures between 0 and 1.000 MPa. Total system cost was relatively small as standard commercially available data acquisition systems could be utilized, with no specialized software, and individual sensors within an array can be replaced as needed. The new sensor array had small and scalable geometry and very acceptable intrinsic performance including minimal to no alteration in performance at physiologically relevant ranges of joint curvature. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Electrospray-printed nanostructured graphene oxide gas sensors
NASA Astrophysics Data System (ADS)
Taylor, Anthony P.; Velásquez-García, Luis F.
2015-12-01
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
NASA Astrophysics Data System (ADS)
Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji
This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.
Music recommendation system for biofied building considering multiple residents
NASA Astrophysics Data System (ADS)
Ito, Takahiro; Mita, Akira
2012-04-01
This research presents a music recommendation system based on multiple users' communication excitement and productivity. Evaluation is conducted on following two points. 1, Does songA recommended by the system improve the situation of dropped down communication excitement? 2, Does songB recommended by the system improve the situation of dropped down and productivity of collaborative work? The objective of this system is to recommend songs which shall improve the situation of dropped down communication excitement and productivity. Songs are characterized according to three aspects; familiarity, relaxing and BPM(Beat Per Minutes). Communication excitement is calculated from speech data obtained by an audio sensor. Productivity of collaborative brainstorming is manually calculated by the number of time-series key words during mind mapping. First experiment was music impression experiment to 118 students. Based on 1, average points of familiarity, relaxing and BPM 2, cronbach alpha factor, songA(high familiarity, high relaxing and high BPM song) and songB(high familiarity, high relaxing and low BPM) are selected. Exploratory experiment defined dropped down communication excitement and dropped down and productivity of collaborative work. Final experiment was conducted to 32 first meeting students divided into 8 groups. First 4 groups had mind mapping 1 while listening to songA, then had mind mapping 2 while listening songB. Following 4 groups had mind mapping 1 while listening to songB, then had mind mapping 2 while listening songA. Fianl experiment shows two results. Firstly, ratio of communication excitement between music listening section and whole brain storming is 1.27. Secondly, this system increases 69% of average productivity.
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen
2008-12-01
Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.
2D temperature field measurement in a direct-injection engine using LIF technology
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua
2011-12-01
A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.
NASA Astrophysics Data System (ADS)
Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.
2017-12-01
We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
1981-09-01
the rock, the other end attached to a linear potentiometer sensor . All sensors would be connected by underground cable to a central control terminal...soil and rock mass comprising the subfoundation. We have also placed four tiltmeters on the top of the reservoir wall at Its Intersection with the axes...quarter points. These, too, must nut be disturbed. The holes prepared for instrumentation are being regularly "read" with a Digitilt Sensor blaxial
Coalescence of two spinning black holes: An effective one-body approach
NASA Astrophysics Data System (ADS)
Damour, Thibault
2001-12-01
We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. We show how to approximately map the conservative part of the third post-Newtonian (3PN) dynamics of two spinning black holes of masses m1, m2 and spins S1, S2 onto the dynamics of a non-spinning particle of mass μ≡m1m2/(m1+m2) in a certain effective metric geffμν(xλM,ν,a) which can be viewed either as a spin deformation [with the deformation parameter a≡Seff/M] of the recently constructed 3PN effective metric geffμν(xλM,ν), or as a ν deformation [with the comparable-mass deformation parameter ν≡m1m2/(m1+m2)2] of a Kerr metric of mass M≡m1+m2 and (effective) spin Seff≡[1+3m2/(4m1)]S1+[1+3m1/(4m2)]S2. The combination of the effective one-body approach, and of a Padé definition of the crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6 GM/c2. The complete (conservative) phase-space evolution equations of binary spinning black hole systems are written down and their exact and approximate first integrals are discussed. This leads to the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum of LSSO's are studied in some detail. It is argued that for most (but not all) of the parameter space of two spinning holes the approximate (leading-order) effective one-body approach introduced here gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO-VIRGO-GEO observations, favoring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.
Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture
Zheng, Guoan; Wang, Yingmin; Yang, Changhuei
2010-01-01
The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038
The Porosity of the neutral ISM in 20 THINGS Galaxies
NASA Astrophysics Data System (ADS)
Bagetakos, I.; Brinks, E.; Walter, F.; de Blok, W. J. G.; Usero, A.; Leroy, A. K.; Rich, J. W.; Kennicutt, R. C.
2011-11-01
We present an analysis of the properties of H i holes detected in 20 galaxies that are part of "The H i Nearby Galaxy Survey". We detected more than 1000 holes in total in the sampled galaxies. The holes are found throughout the disks of the galaxies, out to the edge of the H i disk. We find that shear limits the age of holes in spirals. Shear is less important in dwarf galaxies which explains why H i holes in dwarfs are rounder, on average than in spirals. Shear is particularly strong in the inner part of spiral galaxies, limiting the lifespan of holes there and explaining why we find that holes outside R25 are larger and older. We proceed to derive the surface and volume porosity and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of aν ~ -2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that H i holes result from star formation.
Inversion of soil electrical conductivity data to estimate layered soil properties
USDA-ARS?s Scientific Manuscript database
CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...
Jadán-Guerrero, Janio; Guerrero, Luis; López, Gustavo; Cáliz, Doris; Bravo, José
2015-06-24
Teaching children with intellectual disabilities is a big challenge for most parents and educators. Special education teachers use learning strategies to develop and enhance motivation for complex learning tasks. Literacy acquisition is an essential and life-long skill for a child with intellectual disabilities. In this context, technology can support specific strategies that will help children learn to read. This paper introduces a Tangible User Interface (TUI) system based on Radio Frequency Identification (RFID) technology to support literacy for children with Down syndrome. Our proposed system focuses on the integration of RFID tags in 3D printed objects and low cost toys. The paper describes the experience of using some materials covering the tags and the different problems related to the material and distance of radio wave propagation. The results of a preliminary evaluation in a special education institution showed that the system helps to improve the interaction between teachers and children. The use of a TUI seems to give a physical sensory experience to develop literacy skills in children with Down syndrome.
NASA Astrophysics Data System (ADS)
Zehetner, J.; Vanko, G.; Dzuba, J.; Ryger, I.; Lalinsky, T.; Benkler, Manuel; Lucki, Michal
2015-05-01
AlGaN/GaN based high electron mobility transistors (HEMTs), Schottky diodes and/or resistors have been presented as sensing devices for mechanical or chemical sensors operating in extreme conditions. In addition we investigate ferroelectric thin films for integration into micro-electro-mechanical-systems (MEMS). Creation of appropriate diaphragms and/or cantilevers out of SiC is necessary for further improvement of sensing properties of such MEMS sensors. For example sensitivity of the AlGaN/GaN based MEMS pressure sensor can be modified by membrane thickness. We demonstrated that a 4H-SiC 80μm thick diaphragms can be fabricated much faster with laser ablation than by electrochemical, photochemical or reactive ion etching (RIE). We were able to verify the feasibility of this process by fabrication of micromechanical membrane structures also in bulk 3C-SiC, borosilicate glass, sapphire and Al2O3 ceramic substrates by femtosecond laser (520nm) ablation. On a 350μm thick 4H-SiC substrate we produced an array of 275μm deep and 1000μm to 3000μm of diameter blind holes without damaging the 2μm AlN layer at the back side. In addition we investigated ferroelectric thin films as they can be deposited and micro-patterned by a direct UV-lithography method after the ablation process for a specific membrane design. The risk to harm or damage the function of thin films was eliminated by that means. Some defects in the ablated membranes are also affected by the polarisation of the laser light. Ripple structures oriented perpendicular to the laser polarisation promote creation of pin holes which would perforate a thin membrane. We developed an ablation technique strongly inhibiting formation of ripples and pin poles.
Design of the OMPS limb sensor correction algorithm
NASA Astrophysics Data System (ADS)
Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark
The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.
Li, Wei; Wang, Hongbo; Feng, Zhihua
2016-04-01
This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Rakov, V. A.; Mata, A. G.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.
Development of a pMOSFET sensor with a Gd converter for low energy neutron dosimetry.
Lee, N H; Kim, S H; Youk, G U; Park, I J; Kim, Y M
2004-01-01
A pMOSFET having a 10 microm thick Gadolinium (Gd) layer has been invented as a slow neutron sensor. When slow neutrons are incident to the Gd layer, conversion electrons, which generate electron-hole pairs in the SiO2 layer of the pMOSFET, are generated by a neutron capture process. The holes are easily trapped in the oxide and act as positive-charge centres in the oxide. Due to the induced charges, the threshold turn-on voltage of the pMOSFET is changed. The developed sensors were tested at a neutron beam port of the HANARO research reactor and a 60Co irradiation facility to investigate slow neutron response and gamma ray contamination, respectively. The resultant voltage change was proportional to the accumulated neutron dose and it was very sensitive to slow neutrons. Moreover, ionising radiation contamination was negligible. It can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2004-04-06
A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.
Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs
Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen
2014-01-01
In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668
NASA Astrophysics Data System (ADS)
Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei
2018-03-01
A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.
Low-power sensor module for long-term activity monitoring.
Leuenberger, Kaspar; Gassert, Roger
2011-01-01
Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.
MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment
Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan
2014-01-01
This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455
The PALM-3000 high-order adaptive optics system for Palomar Observatory
NASA Astrophysics Data System (ADS)
Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa
2008-07-01
Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.
STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Continuation of down-hole geophysical testing for rock sockets.
DOT National Transportation Integrated Search
2013-11-01
Site characterization for the design of deep foundations is crucial for ensuring a reliable and economic substructure design, as unanticipated site conditions can cause significant problems and disputes during construction. Traditional invasive explo...
Losing Stuff Down a Black Hole
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2018-03-01
Over the years, the so-called black hole information loss paradox has generated an amazingly diverse set of (often radical) proposals. However, 40 years after the introduction of Hawking's radiation, there continues to be a debate regarding whether the effect does, in fact, lead to an actual problem. In this paper we try to clarify some aspect of the discussion by describing two possible perspectives regarding the landscape of the information loss issue. Moreover, we advance a fairly conservative point of view regarding the relation between evaporating black holes and the rest of physics, which leads us to advocate a generalized breakdown of unitarity. We conclude by exploring some implications of our proposal in relation with conservation laws.
New Sensor Technologies for Ocean Exploration and Observation
NASA Astrophysics Data System (ADS)
Manley, J. E.
2005-12-01
NOAA's Office of Ocean Exploration (OE) is an active supporter of new ocean technologies. Sensors, in particular, have been a focus of recent investments as have platforms that can support both dedicated voyages of discovery and Integrated Ocean Observing Systems (IOOS). Recent programs sponsored by OE have developed technical solutions that will be of use in sensor networks and in stand-alone ocean research programs. Particular projects include: 1) the Joint Environmental Science Initiative (JESI) a deployment of a highly flexible marine sensing system, in collaboration with NASA, that demonstrated a new paradigm for marine ecosystem monitoring. 2) the development and testing of an in situ marine mass spectrometer, via grant to the Woods Hole Oceanographic Institution (WHOI). This instrument has been designed to function at depths up to 5000 meters. 3) the evolution of glider AUVs for aerial deployment, through a grant to Webb Research Corporation. This program's goal is air certification for gliders, which will allow them to be operationally deployed from NAVOCEANO aircraft. 4) the development of new behaviors for the Autonomous Benthic Explorer (ABE) allowing it to anchor in place and await instructions, through a grant to WHOI. This will support the operational use of AUVs in observing system networks. 5) development of new sensors for AUVs through a National Ocean Partnership Program (NOPP) award to Rutgers Universty. This project will develop a Fluorescence Induction Relaxation (FIRe) System to measure biomass and integrate the instrument into an AUV glider. 6) an SBIR award for the development of anti-fouling technologies for solar panels and in situ sensors. This effort at Nanohmics Inc. is developing natural product antifoulants (NPA) in optical quality hard polymers. The technology and results of each of these projects are one component of OE's overall approach to technology research and development. OE's technology program represents the leading edge of NOAA investment in ocean sensors and tools that eventually will find application in mission areas such as IOOS. This "big picture" provides context for focused information on detailed results of OE investments. As NOAA increases its investments in IOOS, and related technologies, these projects are timely and should be beneficial to the entire environmental sensor network community.
Leisser, Christoph; Hirnschall, Nino; Döller, Birgit; Varsits, Ralph; Ullrich, Marlies; Kefer, Katharina; Findl, Oliver
2018-03-01
Classical or temporal internal limiting membrane (ILM) flap transposition with air or gas tamponade are current trends with the potential to improve surgical results, especially in cases with large macular holes. A prospective case series included patients with idiopathic macular holes or persistent macular holes after 23-G pars plana vitrectomy (PPV) and ILM peeling with gas tamponade. In all patients, 23-G PPV and ILM peeling with ILM flap transposition with gas tamponade and postoperative face-down position was performed. In 7 of 9 eyes, temporal ILM flap transposition combined with pedicle ILM flap could be successfully performed and macular holes were closed in all eyes after surgery. The remaining 2 eyes were converted to pedicle ILM flap transposition with macular hole closure after surgery. Three eyes were scheduled as pedicle ILM flap transposition due to previous ILM peeling. In 2 of these eyes, the macular hole could be closed with pedicle ILM flap transposition. In 3 eyes, free ILM flap transposition was performed and in 2 of these eyes macular hole could be closed after surgery, whereas in 1 eye a second surgery, performed as pedicle ILM flap transposition, was performed and led to successful macular hole closure. Use of ILM flaps in surgical repair of macular hole surgery is a new option of treatment with excellent results independent of the diameter of macular holes. For patients with persistent macular holes, pedicle ILM flap transposition or free ILM flap transposition are surgical options.
Color View of a 'Rat' Hole Trail Inside 'Endurance'
NASA Technical Reports Server (NTRS)
2004-01-01
This view from the Mars Exploration Rover Opportunity's panoramic camera is an approximately true color rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).Improved close-in detection for the mine hunter/killer system
NASA Astrophysics Data System (ADS)
Bishop, Steven S.; Campana, Stephen B.; Duston, Brian M.; Lang, David A.; Wiggins, Carl M.
2001-10-01
The Close-In Detector (CID) is the vehicle-mounted multi-sensor anti-tank landmine detection technology for the Army CECOM Night Vision Electronic Sensors Directorate (NVESD) Mine Hunter-Killer (MH/K) Program. The CID includes two down-looking sensor arrays: a 20-antenna ground-penetrating radar (GPR) and a 16-coil metal detector (MD). These arrays span 3-meters in front of a high mobility, multipurpose wheeled vehicle (HMMWV). The CID also includes a roof-mounted, forward looking infrared (FLIR) camera that images a trapezoidal area of the road ahead of the vehicle. Signals from each of the three sensors are processed separately to detect and localize objects of interest. Features of candidate objects are integrated in a processor that uses them to discriminates between anti-tank (AT) mines and clutter and produces a list of suspected mine locations which are passed to the neutralization subsystem of MH/K. This paper reviews the current design and performance of the CID based on field test results on dirt and gravel mine test lanes. Improvements in CID performance for probability of detection, false alarm rate, target positional accuracy and system rate of advance over the past year and a half that meet most of the program goals are described. Sensor performances are compared, and the effectiveness of six different sensor fusion approaches are measured and compared.
Development of a MEMS acoustic emission sensor system
NASA Astrophysics Data System (ADS)
Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.
2007-04-01
An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.
Sorption cryogenic refrigeration - Status and future
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1988-01-01
The operation principles of sorption cryogenic refrigeration are discussed. Sorption refrigerators have virtually no wear-related moving parts, have negligible vibration, and offer extremely long life (at least ten years), making it possible to obtain efficient, long life and low vibration cooling to as low as 7 K for cryogenic sensors. The physisorption and chemisorption systems recommended for various cooling ranges down to 7 K are described in detail. For long-life cooling at 4-5 K temperatures, a hybrid chemisorption-mechanical refrigeration system is recommended.
Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle
NASA Astrophysics Data System (ADS)
Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.
2013-05-01
The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.
Quantum information versus black hole physics: deep firewalls from narrow assumptions
NASA Astrophysics Data System (ADS)
Braunstein, Samuel L.; Pirandola, Stefano
2018-07-01
The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes `all the way down' in contrast with earlier work describing only a structure at the horizon. This article is part of a discussion meeting issue `Foundations of quantum mechanics and their impact on contemporary society'.
Evaporation of large black holes in AdS: coupling to the evaporon
NASA Astrophysics Data System (ADS)
Rocha, Jorge V.
2008-08-01
Large black holes in an asymptotically AdS spacetime have a dual description in terms of approximately thermal states in the boundary CFT. The reflecting boundary conditions of AdS prevent such black holes from evaporating completely. On the other hand, the formulation of the information paradox becomes more stringent when a black hole is allowed to evaporate. In order to address the information loss problem from the AdS/CFT perspective we then need the boundary to become partially absorptive. We present a simple model that produces the necessary changes on the boundary by coupling a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimension. The interaction is localized at the boundary of AdS and leads to partial transmission into the additional space. The transmission coefficient is computed in the planar limit and perturbatively in the coupling constant. Evaporation of the large black hole corresponds to cooling down the CFT by transferring energy to an external sector.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Quantum information versus black hole physics: deep firewalls from narrow assumptions.
Braunstein, Samuel L; Pirandola, Stefano
2018-07-13
The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes 'all the way down' in contrast with earlier work describing only a structure at the horizon.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
An energy-efficient readout circuit for resonant sensors based on ring-down measurement
NASA Astrophysics Data System (ADS)
Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.
2013-02-01
This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.
2007-01-01
This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.
Probing the Galactic Binary Black Hole Spin with Photon Timing
NASA Technical Reports Server (NTRS)
Kazanas, Demos
2007-01-01
It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.
Probing the Galactic Binary Black Hole Spin with Photon Timing
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2007-01-01
It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.
Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana
2018-04-01
To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.
Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.
Das, Bhargab; Chandra, Vikash
2016-10-10
We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.
Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath
2015-02-14
Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.
Towards a Framework for Evaluating and Comparing Diagnosis Algorithms
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia,David; Kuhn, Lukas; deKleer, Johan; vanGemund, Arjan; Feldman, Alexander
2009-01-01
Diagnostic inference involves the detection of anomalous system behavior and the identification of its cause, possibly down to a failed unit or to a parameter of a failed unit. Traditional approaches to solving this problem include expert/rule-based, model-based, and data-driven methods. Each approach (and various techniques within each approach) use different representations of the knowledge required to perform the diagnosis. The sensor data is expected to be combined with these internal representations to produce the diagnosis result. In spite of the availability of various diagnosis technologies, there have been only minimal efforts to develop a standardized software framework to run, evaluate, and compare different diagnosis technologies on the same system. This paper presents a framework that defines a standardized representation of the system knowledge, the sensor data, and the form of the diagnosis results and provides a run-time architecture that can execute diagnosis algorithms, send sensor data to the algorithms at appropriate time steps from a variety of sources (including the actual physical system), and collect resulting diagnoses. We also define a set of metrics that can be used to evaluate and compare the performance of the algorithms, and provide software to calculate the metrics.
A microcomputer-based daily living activity recording system.
Matsuoka, Shingo; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton
2003-01-01
A new daily living activity recording system has been developed for monitoring health conditions and living patterns, such as respiration, posture, activity/rest ratios and general activity level. The system employs a piezoelectric sensor, a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a 128 MB compact flash memory. The piezoelectric sensor, whose electrical polarization voltage is produced by mechanical strain, detects body movements. Its high-frequency output components reflect body movements produced by walking and running activities, while the low frequency components are mainly respiratory. The dual axis accelerometer detects, from body X and Y tilt angles, whether the patient is standing, sitting or lying down (prone, supine, left side or right side). The detected respiratory, behavior and posture signals are stored by the compact flash memory. After recording, these data are downloaded to a desktop computer and analyzed.
Analysis of a novel device-level SINS/ACFSS deeply integrated navigation method
NASA Astrophysics Data System (ADS)
Zhang, Hao; Qin, Shiqiao; Wang, Xingshu; Jiang, Guangwen; Tan, Wenfeng; Wu, Wei
2017-02-01
The combination of the strap-down inertial navigation system(SINS) and the celestial navigation system(CNS) is one of the popular measures to constitute the integrated navigation system. A star sensor(SS) is used as a precise attitude determination device in CNS. To solve the problem that the star image obtained by SS is motion-blurred under dynamic conditions, the attitude-correlated frames(ACF) approach is presented and the star sensor which works based on ACF approach is named ACFSS. Depending on the ACF approach, a novel device-level SINS/ACFSS deeply integrated navigation method is proposed in this paper. Feedback to the ACF process from the error of the gyro is one of the typical characters of the SINS/CNS deeply integrated navigation method. Herein, simulation results have verified its validity and efficiency in improving the accuracy of gyro and it can be proved that this method is feasible.
Overlapping inflow events as catalysts for supermassive black hole growth
NASA Astrophysics Data System (ADS)
Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo
2014-02-01
One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.
A low upper mass limit for the central black hole in the late-type galaxy NGC 4414
NASA Astrophysics Data System (ADS)
Thater, S.; Krajnović, D.; Bourne, M. A.; Cappellari, M.; de Zeeuw, T.; Emsellem, E.; Magorrian, J.; McDermid, R. M.; Sarzi, M.; van de Ven, G.
2017-01-01
We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km s-1. We constructed dynamical models using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of MBH = 1.56 × 106M⊙ (at 3σ level) which is at least 1σ below the recent MBH-σe relations. Further tests with dark matter, mass-to-light ratio variation and different light models confirm that our results are not dominated by uncertainties. The derived upper limit mass is not only below the MBH-σe relation, but is also five times lower than the lower limit black hole mass anticipated from the resolution limit of the sphere of influence. This proves that via high quality integral field data we are now able to push black hole measurements down to at least five times less than the resolution limit. The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A18
Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel.
Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel
Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander
2012-01-01
Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588
30 CFR 250.423 - What are the requirements for pressure testing casing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the pressure...
Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS
NASA Astrophysics Data System (ADS)
Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong
2018-06-01
In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.
Quan, Mingran; Tian, Jiajun; Yao, Yong
2015-11-01
An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.
2014-10-01
or V2) on the side that is being tested. f. Plug the threaded hole in the face-form with a wetted finger. g. Gently pump the vacuum bulb enough to...a stop watch for a 45 second count down. 8. Close the bleed valve on the appropriate vacuum squeeze bulb (V1 or V2). Pump the bulb to draw a... vacuum into the mask until the gauge reaches or exceeds the green section of the dial (Figure 6). Generally 2 pumps will be sufficient. If the vacuum will
Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1976-01-01
The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.
1989-09-01
STEEL STL STEEL TFL TEFLON TIL TILE WD WOOD WRI WROUGHT IRON Z OTHER A-14 coam Bc~ai=L a TEST PIT ois rn iEI AR AIR - ROTARY 8 BORED OR AUGERED C CABLE-TOOL...CO CORING Cs CHILLED SHOT D DUG DH DOWN THE HOLE HAMMER HA HAND AUGERED HS HOLLOW STEM AUGER J JETTED MR DIRECT CIRCULATION ROTARY , MUD p AIR ...INSTITUTE WARI WATER AND AIR RESEARCH. INC. WIL WILSON AND CO. A-18 M 0E 7 PIT E V/n.. CK: N’Y ESCI ENGINEERING -SCIENCE NA NOT APPLICABLE RB MR
NASA Astrophysics Data System (ADS)
Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi
2010-10-01
We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.
Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields
NASA Astrophysics Data System (ADS)
Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry
Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.
Kotiadis, D; Hermens, H J; Veltink, P H
2010-05-01
An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are shown. Sensors were positioned on the outside of the upper shank. Tests were performed on data gathered from a subject, sufferer of stroke, implanted with a drop foot stimulator and triggered with the current trigger, the heel switch. Data tested includes a variety of activities representing everyday life. Flat surface walking, rough terrain and carpet walking show 100% detection and the ability of the algorithms to ignore non-gait events such as weight shifts. Timing analysis is performed against the current triggering method, the heel switch. After evaluating the heel switch timing against a reference system, namely the Vicon 370 marker and force plates system. Initial results show a close correlation between the current trigger detection and the inertial sensor based triggering algorithms. Algorithms were tested for stairs up and stairs down. Best results are observed for algorithms using gyroscope data. Algorithms were designed using threshold techniques for lowest possible computational load and with least possible sensor components to minimize power requirements and to allow for potential future implantation of sensor system.
A Measurement of Long-Term Tilt in Colorado and Wyoming.
1980-06-01
aligned with the axes of the tiltmeters . (It is exactly parallel to the sensitive axis of one sensor and hence is perpendicular to the sensitive axis of...Borehole tiltmeters aeconceptuallyatrciefrmnoigln-pid crustal deformation and the spatial variations of tidal tilt response due to crustal inhomogeneities...against a stainless steel casing section at the bottom of a hole cased with standard steel pipe. The capsule contains two tilt sensors on a leveling
An Investigation of the IMO Spread of Flame Test Method.
1992-03-01
Sensors: Medtherm Model 64-3-20 Radiation Pyrometer: Honeywell, Model 939A4 Minature Radiamatic Pyrometer. Data Acquisition: Hewlett Packard Model 7100B...radiant panel. Circular holes were cut along the dummy specimen center line at 50, 200, 350, 500 and 650 mm to accommodate the Medtherm flux sensor...char line 75 0-250 Complete black char; pieces are exploding and separating from backing; heavy smoke 120 Explosive delamination; no flame 130 300
NASA Technical Reports Server (NTRS)
Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.
2015-01-01
For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.
Visualization Component of Vehicle Health Decision Support System
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy
2008-01-01
The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a tool for NASA's flight controllers to monitor the International Space Station and a future Crew Exploration Vehicle.
NASA Astrophysics Data System (ADS)
Chakrabartty, Shantanu; Feng, Tao; Aono, Kenji
2013-04-01
A key challenge in structural health monitoring (SHM) sensors embedded inside civil structures is that elec- tronics need to operate continuously such that mechanical events of interest can be detected and appropriately analyzed. Continuous operation however requires a continuous source of energy which cannot be guaranteed using conventional energy scavenging techniques. The paper describes a hybrid energy scavenging SHM sensor which experiences zero down-time in monitoring mechanical events of interest. At the core of the proposed sensor is an analog floating-gate storage technology that can be precisely programmed at nano-watt and pico- watt power levels. This facilitates self-powered, non-volatile data logging of the mechanical events of interest by scavenging energy directly from the mechanical events itself. Remote retrieval of the stored data is achieved using a commercial off-the-shelf Gen-2 radio-frequency identification (RFID) reader which periodically reads an electronic product code (EPC) that encapsulates the sensor data. The Gen-2 interface also facilitates in simultaneous remote access to multiple sensors and also facilitates in determining the range and orientation of the sensor. The architecture of the sensor is based on a token-ring topology which enables sensor channels to be dynamically added or deleted through software control.
Thermal detection of single e-h pairs in a biased silicon crystal detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romani, R. K.; Brink, P. L.; Cabrera, B.
We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less
NASA Astrophysics Data System (ADS)
Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo
2015-05-01
Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.
Thermal detection of single e-h pairs in a biased silicon crystal detector
Romani, R. K.; Brink, P. L.; Cabrera, B.; ...
2018-01-23
We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less
Thermal detection of single e-h pairs in a biased silicon crystal detector
NASA Astrophysics Data System (ADS)
Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.
2018-01-01
We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.
Low-cost carbon thick-film strain sensors for implantable applications
NASA Astrophysics Data System (ADS)
Gutierrez, Christian A.; Meng, Ellis
2010-09-01
The suitability of low-cost carbon thick-film strain sensors embedded within a biomedical grade silicone rubber (Silastic® MDX4-4210) for implantable applications is investigated. These sensors address the need for robust cost-effective implantable strain sensing technology for the closed loop operation of function-restoring neural prosthetic systems. Design, fabrication and characterization of the sensors are discussed in the context of the application to strain/fullness measurements of the urinary bladder as part of the neuroprosthetic treatment of lower urinary tract dysfunction. The fabrication process, utilizing off-the-shelf screen-printing materials, is convenient and cost effective while achieving resolutions down to 75 µm. This method can also be extended to produce multilayer embedded devices by superposition of different screen-printable materials. Uniaxial loading performance, temperature dependence and long-term soak testing are used to validate suitability for implantation while proof-of-concept operation (up to 40% strain) is demonstrated on a bench-top latex balloon bladder model.
Dynamically important magnetic fields near accreting supermassive black holes.
Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A
2014-06-05
Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.
Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.
Aziz, Omar; Park, Edward J; Mori, Greg; Robinovitch, Stephen N
2014-01-01
Falls are the number one cause of injury in older adults. Lack of objective evidence on the cause and circumstances of falls is often a barrier to effective prevention strategies. Previous studies have established the ability of wearable miniature inertial sensors (accelerometers and gyroscopes) to automatically detect falls, for the purpose of delivering medical assistance. In the current study, we extend the applications of this technology, by developing and evaluating the accuracy of wearable sensor systems for determining the cause of falls. Twelve young adults participated in experimental trials involving falls due to seven causes: slips, trips, fainting, and incorrect shifting/transfer of body weight while sitting down, standing up from sitting, reaching and turning. Features (means and variances) of acceleration data acquired from four tri-axial accelerometers during the falling trials were input to a linear discriminant analysis technique. Data from an array of three sensors (left ankle+right ankle+sternum) provided at least 83% sensitivity and 89% specificity in classifying falls due to slips, trips, and incorrect shift of body weight during sitting, reaching and turning. Classification of falls due to fainting and incorrect shift during rising was less successful across all sensor combinations. Furthermore, similar classification accuracy was observed with data from wearable sensors and a video-based motion analysis system. These results establish a basis for the development of sensor-based fall monitoring systems that provide information on the cause and circumstances of falls, to direct fall prevention strategies at a patient or population level. Copyright © 2013 Elsevier B.V. All rights reserved.
Hole polaron-polaron interaction in transition metal oxides and its limit to p-type doping
NASA Astrophysics Data System (ADS)
Chen, Shiyou; Wang, Lin-Wang
2014-03-01
Traditionally the origin of the poor p-type conductivity in some transition metal oxides (TMOs) was attributed to the limited hole concentration: the charge-compensating donor defects, such as oxygen vacancies and cation interstitials, can form spontaneously as the Fermi energy shifts down to near the valence band maximum. Besides the thermodynamic limit to the hole concentration, the limit to the hole mobility can be another possible reason, e.g., the hole carrier can form self-trapped polarons with very low carrier mobility. Although isolated hole polarons had been found in some TMOs, the polaron-polaron interaction is not well-studied. Here we show that in TMOs such as TiO2 and V2O5, the hole polarons prefer to bind with each other to form bipolarons, which are more stable than free hole carriers or separated polarons. This pushes the hole states upward into the conduction band and traps the holes. The rise of the Fermi energy suppresses the spontaneous formation of the charge-compensating donor defects, so the conventional mechanism becomes ineffective. Since it can happen in the impurity-free TMO lattices, independent of any extrinsic dopant, it acts as an intrinsic and general limit to the p-type conductivity in these TMOs. This material is based upon work performed by the JCAP, a US DOE Energy Innovation Hub, the NSFC (No. 61106087 and 91233121) and special funds for major state basic research (No. 2012CB921401).
Ziegler, C; Göpel, W
1998-10-01
Current biosensor developments can be summarised by different trends. For traditional enzymatic biosensors such as glucose sensors, steady improvements of well known basic principles have been made in order to achieve better sensor stability. On the other hand, new affinity sensors such as nucleic acid sensors, transmembrane sensors, and sensors utilising whole cells or even cell networks have become of increasing interest. New ways to miniaturise biosensors and to control their interfaces down to the molecular level have been introduced (the bioelectronics approach). High-throughput screening based on various signal transduction principles has become of increasing importance.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-11-02
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some ofmore » the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.« less
NASA Astrophysics Data System (ADS)
Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.
2016-12-01
The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational procedure is also important to succeed in temperature logging. TRDT was deployed by wireline system to avoid damage from the strong vibration and shock. In order to get in-situ temperature data, the key factors are: 1) keeping the borehole for recovering the in-situ temperature after the coring; 2) TRDT sensor deployment without pumping seawater.
NASA Astrophysics Data System (ADS)
Yamada, Shooji; Yamaguchi, Hiroshi; Ishihara, Sunao
2009-06-01
Microelectromechanical systems (MEMS) are widely used small electromechanical systems made of micrometre-sized components. Presently, we are witnessing a transition from MEMS to nanoelectromechanical systems (NEMS), which comprise devices integrating electrical and mechanical functionality on the nanoscale and offer new exciting applications. Similarly to MEMS, NEMS typically include a central transistor-like nanoelectronic unit for data processing, as well as mechanical actuators, pumps, and motors; and they may combine with physical, biological and chemical sensors. In the transition from MEMS to NEMS, component sizes need to be reduced. Therefore, many fabrication methods previously developed for MEMS are unsuitable for the production of high-precision NEMS components. The key challenge in NEMS is therefore the development of new methods for routine and reproducible nanofabrication. Two complementary types of method for NEMS fabrication are available: 'top-down' and 'bottom-up'. The top-down approach uses traditional lithography technologies, whereas bottom-up techniques include molecular self-organization, self-assembly and nanodeposition. The NT2008 conference, held at Ishikawa High-Tech Conference Center, Ishikawa, Japan, between 23-25 October 2008, focused on novel NEMS fabricated from new materials and on process technologies. The topics included compound semiconductors, small mechanical structures, nanostructures for micro-fluid and bio-sensors, bio-hybrid micro-machines, as well as their design and simulation. This focus issue compiles seven articles selected from 13 submitted manuscripts. The articles by Prinz et al and Kehrbusch et al introduce the frontiers of the top-down production of various operational NEMS devices, and Kometani et al present an example of the bottom-up approach, namely ion-beam induced deposition of MEMS and NEMS. The remaining articles report novel technologies for biological sensors. Taira et al have used manganese nanoparticles to improve the chemical analysis of biological samples by laser desorption/ionization mass spectrometry. Matsumoto et al have prepared sugar microarrays via click chemistry and have applied this to the detection and characterization of proteins. Yoshimura et al have expanded the single-nucleotide polymorphism typing method to differentiate genes from various food crops, such as indica and japonica rice. Finally, Takashi et al have designed a nanoparticle-based strip sensor, which can be used for rapid evaluation of the psychological condition of animals and humans. We hope that this focus issue will help readers to understand, from a materials science viewpoint, different aspects of frontier research into NEMS.
Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification
NASA Astrophysics Data System (ADS)
Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.
2017-10-01
While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-01-01
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832
ESA's XMM-Newton sees matter speed-racing around a black hole
NASA Astrophysics Data System (ADS)
2005-01-01
hi-res Size hi-res: 715 Kb Credits: NASA/Dana Berry, SkyWorks Digital ESA’s XMM-Newton sees matter speed-racing around a black hole Click here for animation in MOV format Movie still in TIFF format (9761 Kb) Movie still in JPG format (715 Kb) This animation depicts three hot chunks of matter orbiting a black hole. If placed in our Solar System, this black hole would appear like a dark abyss spread out nearly as wide as Mercury's orbit. And the three chunks (each as large as the Sun) would be as far out as Jupiter. They orbit the black hole in a lightning-quick 30 000 kilometres per second, over a tenth of the speed of light. hi-res Size hi-res: 220 Kb Credits: NASA/Dana Berry, SkyWorks Digital ESA’s XMM-Newton sees matter speed-racing around a black hole Click here for animation in MPG format Movie still in TIFF format (2553 Kb) Movie still in JPG format (220 Kb) This is a simplified illustration of two hot chunks of matter orbiting a black hole, showing how scientists tracked the blobs by observing their Doppler shift. First, we see one blob. Note how the energy emitted from this orbiting material rises to about 6.5 kilo-electron volt (an energy unit) as it moves towards us, and then falls to about 5.8 kilo-electron volt as it moves away. This is the 'Doppler effect' and a similar phenomenon happens with the changing pitch of a police siren. If it is approaching, the frequency of the sound is higher, but if it is receding the frequency is lower. Matter goes round and round; energy goes up and down. About 14 seconds into the animation, a second blob is added, which also displays a rise and fall in energy during its orbit. The observation, made with ESA’s XMM-Newton observatory, marks the first time scientists could trace individual blobs of shredded matter on a complete journey around a black hole. This provides a crucial measurement that has long been missing from black hole studies: an orbital period. Knowing this, scientists can measure black hole mass and other characteristics that have long eluded them. Dr Jane Turner (NASA Goddard Space Flight Center, Greenbelt, USA and University of Maryland Baltimore County, USA) presents this result today at a press conference at the American Astronomical Society in San Diego together with Dr Lance Miller (University of Oxford, United Kingdom). "For years we have seen only the general commotion caused by massive black holes, that is, a terrific outpouring of light," said Turner. "We could not track the specifics. Now, with XMM-Newton, we can filter through all that light and find patterns that reveal information about black holes never seen before in such clarity." Miller noted that if this black hole were placed in our Solar System, it would appear like a dark abyss spread out nearly as wide as Mercury's orbit. And the three clumps of matter detected would be as far out as Jupiter. They orbit the black hole in a lightning-quick 27 hours (compared to the 12 years it takes Jupiter to orbit the Sun). Black holes are regions in space in which gravity prevents all matter and light from escaping. What scientists see is not the black hole itself but rather the light emitted close to it as matter falls towards the black hole and heats to extremely high temperatures. Turner's team observed a well-known galaxy named Markarian 766, located about 170 million light years away in the constellation Coma Berenices (Bernice's Hair). The black hole in Markarian 766 is relatively small although highly active. Its mass is a few million times that of the Sun; other central black hole systems are over 100 million solar masses. Matter funnels into this black hole like water swirling down a drain, forming what scientists call an accretion disc. Flares erupt on this disc most likely when magnetic field lines emanating from the central black hole interact with regions on the disc. To measure the speed of the flares and the black hole mass, scientists used a technique that involves measuring the Doppler shift and resembles that used by the police to catch speeding motorists. As an object moves towards us, the frequency or energy of its light rises. Conversely, the energy falls as the object moves away. This is the ‘Doppler effect’ and a similar phenomenon happens with the changing pitch of a police siren. If it is approaching, the frequency of the sound is higher, but if it is receding the frequency is lower. "We think we are viewing the accretion disc at a slightly tilted angle, so we see the light from each of these flares rise and fall in energy as they orbit the black hole," Miller said. By studying the pattern with which the light from the clumps rises and falls in energy, scientists could also determine the mass of the black hole and the viewing angle of the accretion disc. With a known mass and orbital period, Turner and her team could determine the speed of the clumps using relatively simple Newtonian physics. Two factors made the measurement possible. One is that XMM-Newton captured particularly persistent flares during a long observation, lasting nearly 27 hours. Equally crucial is the unprecedented light collecting power of XMM-Newton, which allowed scientists to look at how energy from the clumps changed over time. Turner said this observation confirms a preliminary XMM-Newton result, announced in September 2004 by a European team led by Dr Kazushi Iwasawa of the Institute of Astronomy in Cambridge, United Kingdom, that something as detailed as an orbital period could be detected with the current generation of X-ray observatories. The combination of results indicates that scientists, given long observation times, are now able to make careful black hole measurements and even test general relativity in the domain of extreme gravity.
High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs
NASA Astrophysics Data System (ADS)
Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao
2016-11-01
The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.
Complete low-cost implementation of a teleoperated control system for a humanoid robot.
Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena
2013-01-24
Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.
Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot
Cela, Andrés; Yebes, J. Javier; Arroyo, Roberto; Bergasa, Luis M.; Barea, Rafael; López, Elena
2013-01-01
Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system. PMID:23348029
Low power multi-camera system and algorithms for automated threat detection
NASA Astrophysics Data System (ADS)
Huber, David J.; Khosla, Deepak; Chen, Yang; Van Buer, Darrel J.; Martin, Kevin
2013-05-01
A key to any robust automated surveillance system is continuous, wide field-of-view sensor coverage and high accuracy target detection algorithms. Newer systems typically employ an array of multiple fixed cameras that provide individual data streams, each of which is managed by its own processor. This array can continuously capture the entire field of view, but collecting all the data and back-end detection algorithm consumes additional power and increases the size, weight, and power (SWaP) of the package. This is often unacceptable, as many potential surveillance applications have strict system SWaP requirements. This paper describes a wide field-of-view video system that employs multiple fixed cameras and exhibits low SWaP without compromising the target detection rate. We cycle through the sensors, fetch a fixed number of frames, and process them through a modified target detection algorithm. During this time, the other sensors remain powered-down, which reduces the required hardware and power consumption of the system. We show that the resulting gaps in coverage and irregular frame rate do not affect the detection accuracy of the underlying algorithms. This reduces the power of an N-camera system by up to approximately N-fold compared to the baseline normal operation. This work was applied to Phase 2 of DARPA Cognitive Technology Threat Warning System (CT2WS) program and used during field testing.
Cryogenic Multichannel Pressure Sensor With Electronic Scanning
NASA Technical Reports Server (NTRS)
Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.
1994-01-01
Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago
2000-01-01
An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.
A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
Performance analysis of device-level SINS/ACFSS deeply integrated navigation method
NASA Astrophysics Data System (ADS)
Zhang, Hao; Qin, Shiqiao; Wang, Xingshu; Jiang, Guangwen; Tan, Wenfeng
2016-10-01
The Strap-Down Inertial Navigation System (SINS) is a widely used navigation system. The combination of SINS and the Celestial Navigation System (CNS) is one of the popular measures to constitute the integrated navigation system. A Star Sensor (SS) is used as a precise attitude determination device in CNS. To solve the problem that the star image obtained by SS under dynamic conditions is motion-blurred, the Attitude Correlated Frames (ACF) is presented and the star sensor which works based on ACF approach is named ACFSS. Depending on the ACF approach, a novel device-level SINS/ACFSS deeply integrated navigation method is proposed in this paper. Feedback to the ACF process from the error of the gyro is one of the typical characters of the SINS/CNS deeply integrated navigation method. Herein, simulation results have verified its validity and efficiency in improving the accuracy of gyro and it can be proved that this method is feasible in theory.
NASA Astrophysics Data System (ADS)
Cao, Xinwu
2010-12-01
A power-law time-dependent light curve for active galactic nuclei (AGNs) is expected by the self-regulated black hole growth scenario, in which the feedback of AGNs expels gas and shut down accretion. This is also supported by the observed power-law Eddington ratio distribution of AGNs. At high redshifts, the AGN life timescale is comparable with (or even shorter than) the age of the universe, which sets a constraint on the minimal Eddington ratio for AGNs on the assumption of a power-law AGN light curve. The black hole mass function (BHMF) of AGN relics is calculated by integrating the continuity equation of massive black hole number density on the assumption of the growth of massive black holes being dominated by mass accretion with a power-law Eddington ratio distribution for AGNs. The derived BHMF of AGN relics at z = 0 can fit the measured local mass function of the massive black holes in galaxies quite well, provided the radiative efficiency ~0.1 and a suitable power-law index for the Eddington ratio distribution are adopted. In our calculations of the black hole evolution, the duty cycle of AGN should be less than unity, which requires the quasar life timescale τQ >~ 5 × 108 years.
Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.
2011-04-01
Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.
Advanced ion thruster and electrochemical launcher research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1983-01-01
The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.
The Iowa Flood Center's River Stage Sensors—Technical Details
NASA Astrophysics Data System (ADS)
Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.
2012-12-01
The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.
SRAO: optical design and the dual-knife-edge WFS
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Tokovinin, Andrei
2016-07-01
The Southern Robotic Adaptive Optics (SRAO) instrument will bring the proven high-efficiency capabilities of Robo-AO to the Southern-Hemisphere, providing the unique capability to image with high-angular-resolution thousands of targets per year across the entire sky. Deployed on the modern 4.1m SOAR telescope located on Cerro Tololo, the NGS AO system will use an innovative dual-knife-edge wavefront sensor, similar to a pyramid sensor, to enable guiding on targets down to V=16 with diffraction limited resolution in the NIR. The dual-knife-edge wavefront sensor can be up to two orders of magnitude less costly than custom glass pyramids, with similar wavefront error sensitivity and minimal chromatic aberrations. SRAO is capable of observing hundreds of targets a night through automation, allowing confirmation and characterization of the large number of exoplanets produced by current and future missions.
NASA Technical Reports Server (NTRS)
Warmke, J. M.
1979-01-01
Modifications to Battelle's Interactive Graphics Orbit Selection (IGOS) computer program to assist in the planning and evaluation of the Seasat-A Scatterometer System (SASS) flight program were studied. To meet the planning needs of the LaRC Seasat-A Scatterometer team, the following features/modifications were implemented in IGOS: (1) display and specification of time increments in orbital passes represented by the cross-hatching of ground swaths; (2) addition of pass number annotations on the horizontal axis of the STPLNG and STPTOD plots; (3) modification of the sensor model to include more than two swaths associated with a single sensor to approximate the SASS cell pattern; (4) inclusion of down range and cross-track swath geometry to display the characteristic skewed SASS pattern; (5) addition of a swath schedule to allow the display of the SASS mode changes and to calibrate gaps; and (6) development of a set of commands to generate the detailed swath data from sensor characteristics and orbit/earth motion.
A bi-directional fixed-latency clock distribution system
NASA Astrophysics Data System (ADS)
Yang, Y.; Ó Murchadha, A.; Meures, T.; Korntheuer, M.; Hanson, K.
2013-12-01
The Askar'yan Radio Array (ARA) Collaboration is constructing a giant array of radio-frequency antennas deployed in the ice near the geographic South Pole. This experiment aims at detecting the extremely weak signal of neutrinos with energies in excess of 100 PeV from ultrahigh-energy cosmic ray interactions with the cosmic microwave background radiation. The antennas are located in shallow holes drilled to depths of 200 m and need high fidelity RF signal transmission over extended lengths to the data acquisition logic at the surface. We report on a transmission scheme whereby signals are digitized in the ice and the waveforms are digitally sent via high-speed serial links. Reconstruction algorithms require distribution of a low-jitter clock from the surface down to the digitization boards in the holes with knowledge of the overall time delay between the two clock domains. Previously, we designed a clock synchronization system using electrical signaling over CAT5. This year we have updated our solution to optical fibers using high speed transceiver blocks in Spartan-6 FPGAs. This note describes our improvements on the latter solution: technical details as well as methods of maintaining a fixed phase between two clocks after power cycles and resets.
Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.
NASA Astrophysics Data System (ADS)
Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.
2003-12-01
The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.
Induced Ellipticity for Inspiraling Binary Systems
NASA Astrophysics Data System (ADS)
Randall, Lisa; Xianyu, Zhong-Zhi
2018-01-01
Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.
The weight and angle of depression detection and control system of a large portal crane
NASA Astrophysics Data System (ADS)
Shi, Lian-Wen; Xie, Hongxia; Wang, Meijing; Guan, Yankui; Leng, Gengxin
2008-12-01
In order to prevent overturning accidents, the lifted weight and the angle of depression should be detected when a large portal crane is working in a shipyard. However, the locations of the weight sensor and the angle of depression detection part are far away from the central control room. The long signal transmitting distance is so long that it results in a lot of interferences, even the breaking down of the system. In order to solve the above mentioned problems, a high precision analog signal amplifier and a voltage / current (V / I) transforming circuit is set at the place of the sensor to detect the weight. After the sensor signals have been amplified, they will be transformed into 4 to 20 mA current signals for transmission. Thus the interferences in the long transmitting process can be overcome. A WXJ-3 potentiometer is applied to detect the angle of depression. This device has the advantages of a high accuracy of repeated positions, a good stability and a strong anti-fatigue property. After processed by the current-strengthened circuit, the transmitted signals representing voltage value can have the characteristics of transmitting currents because of the large current value. Then the anti-jamming capability is stronger. Send the weight and the angle of depression detection signals to A/D converter, then the signals turn into digital representation and are sent to the control system composed of a PLC. The PLC calculates the current rated lifting weight depending on the different angles of depression, and when the weight is greater than the rated one, the PLC sends control signals to stop the lifting; hence the crane can only put down the weights. So the safety of the large portal crane is effectively guaranteed. At present ,the system has been applied to the 70-ton large portal cranes of the Tianjin Xingang Shipyard with a safe operation of 10 years.
Mezzapesa, Francesco P; Sibillano, Teresa; Di Niso, Francesca; Ancona, Antonio; Lugarà, Pietro M; Dabbicco, Maurizio; Scamarcio, Gaetano
2012-01-02
We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.
System-based approach for an advanced drug delivery platform
NASA Astrophysics Data System (ADS)
Kulinsky, Lawrence; Xu, Han; Tsai, Han-Kuan A.; Madou, Marc
2006-03-01
Present study is looking at the problem of integrating drug delivery microcapsule, a bio-sensor, and a control mechanism into a biomedical drug delivery system. A wide range of medical practices from cancer therapy to gastroenterological treatments can benefit from such novel bio-system. Drug release in our drug delivery system is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs. The valves are bi-layer structures, made in the shape of a flap hinged on one side to a valve seat, and consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). These thin PPy(DBS) bi-layer flaps cover access holes of underlying chambers micromachined in a silicon substrate. Chromium and polyimide layers are applied to implement "differential adhesion" to obtain a voltage induced deflection of the bilayer away from the drug reservoir. The Cr is an adhesion-promoting layer, which is used to strongly bind the gold layer down to the substrate, whereas the gold adheres weakly to polyimide. Drug actives (dry or wet) were pre-stored in the chambers and their release is achieved upon the application of a small bias (~ 1V). Negative voltage causes cation adsorption and volume change in PPy film. This translates into the bending of the PPy/Au bi-layer actuator and release of the drug from reservoirs. This design of the drug delivery module is miniaturized to the dimensions of 200μm valve diameter. Galvanostatic and potentiostatic PPy deposition methods were compared, and potentiostatic deposition method yields film of more uniform thickness. PPy deposition experiments with various pyrrole and NaDBS concentrations were also performed. Glucose biosensor based on glucose oxidase (GOx) embedded in the PPy matrix during elechtrochemical deposition was manufactured and successfully tested. Multiple-drug pulsatile release and continuous linear release patterns can be implemented by controlling the operation of an array of valves. Varying amounts of drugs, together with more complex controlling strategies would allow creation of more complex drug delivery patterns.
Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Stephen; Mahan, Cody; Kuhn, Michael J
2013-01-01
This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system wasmore » developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.« less
Coal test drilling for the DE-NA-Zin Bisti Area, San Juan County, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.W.; Jentgen, R.W.
1980-01-01
From October 1978 to June 1979, the US Geological Survey (USGS) drilled 51 test holes, and cored 9 holes, in the vicinity of the Bisti Trading Post in the southwestern part of the San Juan Basin, San Juan County, New Mexico. The drilling was done in response to expressions of interest received by the Bureau of Land Management concerning coal leasing and, in some places, badlands preservation. The object of the drilling was to determine the depth, thickness, extent, and quality of the coal in the Upper Cretaceous Fruitland Formation in northwest New Mexico. The holes were geophysically logged immediatelymore » after drilling. Resistivity spontaneous-potential, and natural gamma logs were run in all of the holes. A high-resolution density log was also run in all holes drilled before January 13, when a logging unit from the USGS in Albuquerque was available. After January 13, the holes were logged by a USGS unit from Casper, Wyoming that lacked density logging capabilities. At nine locations a second hole was drilled, about 20 ft from the first hole, down to selected coal-bearing intervals and the coal beds were cored. A detailed description of each of the cores is given on the page(s) following the logs for each hole. From these coal cores, 32 intervals were selected and submitted to the Department of Energy in Pittsburgh, Pennsylvania, for analysis.« less
A Fast Measuring Method for the Inner Diameter of Coaxial Holes
Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie
2017-01-01
A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod’s rotation angles, so all diameters of coaxial holes can be calculated by sensors’ values. While revolving, the changing angles of each sensor’s laser beams are approximately equal in the rod’s radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS’s mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use. PMID:28327499
1976-01-01
18 2.3.1 Cross-Sections 18 2.3.2 Surface Finishing 27 2.3.3 Hardness and Ductility 27 2.3.4 Defects and Imperfections 30 2.3.4.1 Cauliflower ...ATHODE CRIMPED DOWN EARS NICKEL HEATER Figure 4. The Cylindrical Cathode as Proposed by G. Haas. It is a l/S1 Nickel Cylinder wit^ a Blind Hole...Machined in One End and A Heater Inserted. The Cathode is Fixed to the Blind End by Crimping Down Ears . L± !V ,-.■...■ I-’"«:-, . mUtmr
Transient resonances in the inspirals of point particles into black holes.
Flanagan, Eanna E; Hinderer, Tanja
2012-08-17
We show that transient resonances occur in the two-body problem in general relativity for spinning black holes in close proximity to one another when one black hole is much more massive than the other. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. The resonances cause a perturbation to orbital phase of order a few tens of cycles for mass ratios ∼10(-6), make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine nonperturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. Resonances' effects will increase the computational challenge of accurately modeling these sources.
Self-Consistent Models of Accretion Disks
NASA Technical Reports Server (NTRS)
Narayan, Ramesh
1997-01-01
The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).
NASA Astrophysics Data System (ADS)
Sampson, David D.; Jones, Julian D. C.; Tatam, Ralph P.
2009-03-01
OFS-19 was held in April 2008 in Perth, Australia, with Professor David Sampson (University of Western Australia) as General Chair assisted by Technical Programme Co-Chairs Professor Stephen Collins (Victoria University, Australia), Professor Kyunghwan Oh (Yonsei University, Korea) and Dr Ryozo Yamauchi (Fujikura Ltd, Japan). 'OFS-19' has once again affirmed the OFS series as the leading international conference for the optical fibre sensor community. Since its inception, in London in 1983, and under the leadership of an international steering committee independent of any learned society or professional institution, it has been held approximately every eighteen months. The venue nominally rotates from Europe, to the Americas, and thence to Asia and the Pacific. OFS-19 demonstrated the continuing vigour of the community, with some 240 papers presented, plus 8 tutorials; submissions and attendance were from 29 countries, with a little over half coming from the Asia-Pacific Region. In recent years, it has become a tradition to publish a post-conference special issue in Measurement Science and Technology, and these special issues offer a representative sample of the current status of the field. In the 25 years since OFS began, many of the early ideas and laboratory-based proof-of-principle experiments have successfully evolved into highly developed instrumentation systems and commercial products. One of the greatest success stories has been the optical fibre Bragg grating. Its exquisite intrinsic sensitivity to temperature and strain has led to an expanding niche in structural monitoring, especially in civil engineering. It has formed the 'beach-head' for penetration of optical fibre sensors into the oil and gas industry, initially in the harsh environment of down-hole monitoring. Latterly, it has paved the way for new applications of one of the earliest fibre optic sensors, the fibre hydrophone, which is now making its mark in sub-sea seismic surveying. Additionally, distributed fibre sensors, based on Raman or Brillouin scattering, are beginning to be deployed for remote and sub-sea infrastructure monitoring. Western Australia enjoys a booming oil and gas sector, and so OFS-19's Special Session entitled Oil & Gas: Current Practice-Future Opportunity was timely and locally relevant. An innovation at OFS-19 was turning the traditional first day's Workshop into a Tutorial Workshop delivered under the title Optical Fibre Sensors: Enabling the Next Generation, Stretching the Present Generation. International experts delivered a set of eight tutorials, covering both fundamentals and cutting-edge advances, to a large proportion of the conference delegates (the tutorials are available for download at obel.ee.uwa.edu.au/OFS-19). This special issue amply demonstrates in microcosm the breadth of the field of optical fibre sensors, with papers concerning applications in the oil and gas industry, in water and air quality, in civil engineering, as well as new sensors, sensor systems and methods for sensing. In addition, there are papers concerning sensor fabrication and calibration, as well as components of sensing systems. Several papers and topics are worthy of mention. The engineering of nanostructured materials promises much in many fields, including sensing in general. Thus, it is not surprising to find that nanotechnology is in evidence in the field of fibre sensing (Jarzebinska, Viegas). Microengineered mechanical structures also promise much for sensing and the exquisite 'head-of-a-pin' engineering of a cantilever on a fibre end-face is an elegant and versatile platform demonstrated here for refractometry (Alberts). The field has always provided fertile ground for new ideas, and this issue proves no exception. For example, three papers deal with new ways of solving the well-known issue of decoupling temperature from strain in fibre Bragg gratings (Guo, Nguyen, Yam). The ultimate endpoint for research in such a practical field is a useful deployed sensing system, and the oil and gas industry is the focus for four papers in this issue (Aref, Jackson, Mignani, Possetti). We hope that this special issue helps to further developments in the field of optical fibre sensors and would like to thank all the contributing authors and reviewers for making it possible. We also thank the staff at IOP Publishing for their support and in ensuring timely publication. OFS-20 will be held in Edinburgh, Scotland, 5--9 October 2009 (www.ofs20.org), with a corresponding special issue planned.
GOOSE: semantic search on internet connected sensors
NASA Astrophysics Data System (ADS)
Schutte, Klamer; Bomhof, Freek; Burghouts, Gertjan; van Diggelen, Jurriaan; Hiemstra, Peter; van't Hof, Jaap; Kraaij, Wessel; Pasman, Huib; Smith, Arthur; Versloot, Corne; de Wit, Joost
2013-05-01
More and more sensors are getting Internet connected. Examples are cameras on cell phones, CCTV cameras for traffic control as well as dedicated security and defense sensor systems. Due to the steadily increasing data volume, human exploitation of all this sensor data is impossible for effective mission execution. Smart access to all sensor data acts as enabler for questions such as "Is there a person behind this building" or "Alert me when a vehicle approaches". The GOOSE concept has the ambition to provide the capability to search semantically for any relevant information within "all" (including imaging) sensor streams in the entire Internet of sensors. This is similar to the capability provided by presently available Internet search engines which enable the retrieval of information on "all" web pages on the Internet. In line with current Internet search engines any indexing services shall be utilized cross-domain. The two main challenge for GOOSE is the Semantic Gap and Scalability. The GOOSE architecture consists of five elements: (1) an online extraction of primitives on each sensor stream; (2) an indexing and search mechanism for these primitives; (3) a ontology based semantic matching module; (4) a top-down hypothesis verification mechanism and (5) a controlling man-machine interface. This paper reports on the initial GOOSE demonstrator, which consists of the MES multimedia analysis platform and the CORTEX action recognition module. It also provides an outlook into future GOOSE development.
False-Color View of a 'Rat' Hole Trail
NASA Technical Reports Server (NTRS)
2004-01-01
This view from the Mars Exploration Rover Opportunity's panoramic camera is a false-color composite rendering of the first seven holes that the rover's rock abrasion tool dug on the inner slope of 'Endurance Crater.' The rover was about 12 meters (about 39 feet) down into the crater when it acquired the images combined into this mosaic. The view is looking back toward the rim of the crater, with the rover's tracks visible. The tailings around the holes drilled by the rock abrasion tool, or 'Rat,' show evidence for fine-grained red hematite similar to what was observed months earlier in 'Eagle Crater' outcrop holes. Last week, viewers were asked to try seeing as many holes as they could from a black-and-white, navigation-camera image (PIA06716). Most viewers will find it far easier to see the seven holes in this exaggerated color image; the same is true for scientists who are studying the holes from millions of miles away. Starting from the uppermost pictured (closest to the crater rim) to the lowest, the rock abrasion tool hole targets are called 'Tennessee,' 'Cobblehill,' 'Virginia,' 'London,' 'Grindstone,' 'Kettlestone,' and 'Drammensfjorden.' Opportunity drilled these holes on sols 138 (June 13, 2004), 143 (June 18), 145 (June 20), 148 (June 23), 151 (June 26), 153 (June 28) and 161 (July 7), respectively. Each hole is 4.5 centimeters (1.8 inches) in diameter. This image was generated using the panoramic camera's 750-, 530-, and 430-nanometer filters. It was taken on sol 173 (July 19).Bone fracture repair - series (image)
... by the following methods: a) one or more screws inserted across the break to hold it. b) a steel plate held by screws drilled into the bone. c) a long fluted metal pin with holes in it, is driven down the shaft of the bone ...
Continuation of down-hole geophysical testing for rock sockets : [technical summary].
DOT National Transportation Integrated Search
2013-11-01
The rock socket is critical to a drilled shaft : foundation because it lies within a rock stratum : and accounts for much of the capacity of the : foundational unit. Consistency of the rocks : structure and composition must be identifed : because ...
2013-10-01
innovations such as adaptive antenna arrays, narrowband fre- quency filters, and “tight” integration with inertial sensors. Unlike commercial receivers...that will provide a return on investment. For example, lithium ion batteries greatly reduce the weight of the satel - lite, and improved solar cells...Affordability and Innovation Even with all of these improvements, affordability demands innova- tive ways to deliver the GPS to war fighters. More than
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2003-06-17
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.lambda..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2002-01-15
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.mu..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
Reduced signal crosstalk multi neurotransmitter image sensor by microhole array structure
NASA Astrophysics Data System (ADS)
Ogaeri, Yuta; Lee, You-Na; Mitsudome, Masato; Iwata, Tatsuya; Takahashi, Kazuhiro; Sawada, Kazuaki
2018-06-01
A microhole array structure combined with an enzyme immobilization method using magnetic beads can enhance the target discernment capability of a multi neurotransmitter image sensor. Here we report the fabrication and evaluation of the H+-diffusion-preventing capability of the sensor with the array structure. The structure with an SU-8 photoresist has holes with a size of 24.5 × 31.6 µm2. Sensors were prepared with the array structure of three different heights: 0, 15, and 60 µm. When the sensor has the structure of 60 µm height, 48% reduced output voltage is measured at a H+-sensitive null pixel that is located 75 µm from the acetylcholinesterase (AChE)-immobilized pixel, which is the starting point of H+ diffusion. The suppressed H+ immigration is shown in a two-dimensional (2D) image in real time. The sensor parameters, such as height of the array structure and measuring time, are optimized experimentally. The sensor is expected to effectively distinguish various neurotransmitters in biological samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dräbenstedt, A., E-mail: a.draebenstedt@polytec.de, E-mail: rembe@iei.tu-clausthal.de, E-mail: ulrich.polom@liag-hannover.de; Seyfried, V.; Cao, X.
2016-06-28
Laser-Doppler-Vibrometry (LDV) is an established technique to measure vibrations in technical systems with picometer vibration-amplitude resolution. Especially good sensitivity and resolution can be achieved at an infrared wavelength of 1550 nm. High-resolution vibration measurements are possible over more than 100 m distance. This advancement of the LDV technique enables new applications. The detection of seismic waves is an application which has not been investigated so far because seismic waves outside laboratory scales are usually analyzed at low frequencies between approximately 1 Hz and 250 Hz and require velocity resolutions in the range below 1 nm/s/√Hz. Thermal displacements and air turbulence have critical influences to LDVmore » measurements at this low-frequency range leading to noise levels of several 100 nm/√Hz. Commonly seismic waves are measured with highly sensitive inertial sensors (geophones or Micro Electro-Mechanical Sensors (MEMS)). Approaching a laser geophone based on LDV technique is the topic of this paper. We have assembled an actively vibration-isolated optical table in a minivan which provides a hole in its underbody. The laser-beam of an infrared LDV assembled on the optical table impinges the ground below the car through the hole. A reference geophone has detected remaining vibrations on the table. We present the results from the first successful experimental demonstration of contactless detection of seismic waves from a movable vehicle with a LDV as laser geophone.« less
1990-11-01
and psychrometers : the loca- cm-diameter wooden dowel approximately 122 cm in tion of these gauges is shown in Figure 16. The length, with 4.0-mm holes...thermocouple psychrometers were the third Dowel set of sensors used. A detailed description of these sensors can be found in a paper by Brown and...Figure 19. Freezing of test sections. in resistance with temperature in TS 2. Major changes psychrometers were not evaluated for this report. These in
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.
Water vapor measurement system in global atmospheric sampling program, appendix
NASA Technical Reports Server (NTRS)
Englund, D. R.; Dudzinski, T. J.
1982-01-01
The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.
Chemically modified IR-transparent fibers and their application as chemical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellner, R.A.
1993-12-31
With the advent of chalcogenide- (As-Se-Te), Silverhalide- (AgBrCl) and TeXAs-fibers, the optical window available for analytical chemistry was significantly extended into the MID- and FAR-IR range (2 to 20 {mu}m) recently. These fibers have been chemically modified in our laboratory at 10 cm-distances of their surfaces (A) by covering them with 10-100 {mu}m thick layers of a suitable polymer such as LDPE ({open_quotes}Thickfilm-Sensor{close_quotes}) and (B) by immobilizing specifically reacting enzyme-layers such as GOx ({open_quotes}Thinfilm-Sensor{close_quotes}). In the first case, where the penetration depth of the IR-beam is smaller than the thickness of the polymer layer, a sensor for the simultaneous inmore » situ-determination of chlorinated hydrocarbon traces in water down to 500 ppb could be developed and tested. In the second case, a system for the determination of glucose in complex aqueous solutions was developed, based on the catalytic oxidation of glucose to gluconic acid and hydrogen peroxide by the immobilized enzyme glucose oxidase (GOx) in the physiological range. The GOx-density at the fibers could be significantly enlarged by using S-Layers instead of silanes for immobilization. Secondly, a flow injection-approach was developed recently, which allowed for an even further increase of the enzyme density by separating the reaction- and detection-part of our sensor, using controlled pore glass as carrier for the GOx and tapered chalcogenide fibers for detection. With this system, which works perfectly linear in the physiological range also for urea (with urease) a practical (multi)enzyme-based IR-sensor system is presented for the first time.« less
NASA Astrophysics Data System (ADS)
Lee, Graham C. B.; Van Hoe, Bram; Yan, Zhijun; Maskery, Oliver; Sugden, Kate; Webb, David; Van Steenberge, Geert
2012-03-01
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 μm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components.
One parameter binary black hole inverse problem using a sparse training set
NASA Astrophysics Data System (ADS)
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
In this paper, we use Artificial Neural Networks (ANNs) to estimate the mass ratio q in a binary black hole collision out of the gravitational wave (GW) strain. We assume the strain is a time series (TS) that contains a part of the orbital phase and the ring-down of the final black hole. We apply the method to the strain itself in the time domain and also in the frequency domain. We present the accuracy in the prediction of the ANNs trained with various values of signal-to-noise ratio (SNR). The core of our results is that the estimate of the mass ratio is obtained with a small sample of training signals and resulting in predictions with errors of the order of 1% for our best ANN configurations.