DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong
2014-10-01
Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.-C.; Lii, C.-K.; Liu, K.-L.
The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less
BDE47 induces rat CYP3A1 by targeting the transcriptional regulation of miR-23b
NASA Astrophysics Data System (ADS)
Sun, Zhenzhen; Zhang, Zhan; Ji, Minghui; Yang, Hongbao; Cromie, Meghan; Gu, Jun; Wang, Chao; Yang, Lu; Yu, Yongquan; Gao, Weimin; Wang, Shou-Lin
2016-08-01
Cytochrome P450 3A (CYP3A) is the most abundant CYP450 enzyme in the liver and is involved in the metabolism of over 50% of xenobiotics. Our previous studies revealed that 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE47) could induce rat CYP3A1 expression, but the molecular basis remains unclear. Using in silico analysis, we identified a potential miR-23b recognition element (MRE23b) in the 3‧-UTR region of CYP3A1 mRNA, which was verified by the luciferase assay. The miR-23b mimic and inhibitor significantly down- and up-regulated the expression of CYP3A1, respectively. Additionally, BDE47 significantly down-regulated the expression of miR-23b in rats and in hepatic H4IIE cells. Induction or blockage of CYP3A1 by a miR-23b inhibitor or mimic could correspondingly alter BDE47-induced expression of CYP3A1 and cytotoxicity in H4IIE cells. Furthermore, LV-anti-miR-23b significantly decreased endogenous levels of miR-23b and increased the expression and activity of CYP3A1 in rat liver. LV-anti-miR-23b also significantly increased the hydroxylated metabolites of BDE47 (3-OH-BDE47, 4-OH-BDE42, and 4‧-OH-BDE49) in rat serum. In conclusion, we first found that BDE47 induced rat CYP3A1 expression by targeting the transcriptional regulation of miR-23b. This study helps provide a better understanding of CYP3A regulation and offers novel clues for the role of miRNAs in the metabolism and distribution of environmental pollutants.
Effect of chondroitin sulfate on turpentine-induced down-regulation of CYP1A2 and CYP3A6.
Iovu, Mirela-Onita; Héroux, Lucie; Vergés, Josep; Montell, Eulália; Paiement, Jacques; du Souich, Patrick
2012-07-01
This study aimed to assess whether chronic administration of chondroitin sulfate (CS) affects baseline expression of cytochrome P450 isoforms and impedes the decrease in expression and activity of CYP1A2 and CYP3A6 in rabbits with a turpentine-induced inflammatory reaction (TIIR). Seven groups of 5 rabbits, 3 control groups and 4 receiving 20 mg/kg/day of CS for 20 and 30 days, were used. The rabbits of 1 control group and 2 groups receiving CS had a TIIR; finally, the rabbits of one of the control groups remained in the animal facilities for 30 days to assess the effect of time and environment on cytochrome P450. In control rabbits, intake of CS for 20 and 30 days did not affect CYP3A6, CYP1A2 and NADPH cytochrome P450 reductase (CPR) mRNA, protein expression and activity. Compared with control rabbits, the TIIR not only reduced mRNA, protein expression and activity of CYP3A6 and CYP1A2 but also that of CPR. In rabbits with TIIR, CS prevented the decrease of CYP3A6 expression but not the reduction in activity. CS did not impede TIIR-induced down-regulation of CYP1A2. Hepatic NO() concentrations and NF-κB nuclear translocation were increased by the TIIR, effect reversed by CS. In vitro, in hepatocytes, CS did not alter the expression and activity of CYP3A6, CYP1A2, and CPR. In conclusion, oral CS elicits a systemic effect but does not affect CYP1A2, CYP3A6, and CPR in control rabbits, although in rabbits with TIIR, CS prevents CYP3A6 protein down-regulation but not that of CYP1A2. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo
2018-08-01
This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P<0.05; fold change>1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.
Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhichao; Yu, Xuemei; Wu, Weibin
2012-07-13
Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated thatmore » the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.« less
Li, Xue-Nan; Zuo, Yu-Zhu; Qin, Lei; Liu, Wei; Li, Yan-Hua; Li, Jin-Long
2018-05-09
Atrazine (ATR) is one of the most extensively used herbicide that eventually leaches into groundwater and surface water from agricultural areas. Exposure to ATR does harm to the health of human and animals, especially the heart. However, ATR exposure caused cardiotoxicity in bird remains unclear. To evaluate ATR-exerted potential cardiotoxicity in heart, quail were exposed with 0, 50, 250, and 500 mg/kg BW/day ATR by gavage treatment for 45 days. Cardiac histopathological alternation was observed in ATR-induced quail. ATR exposure increased the Cytochrome P450s and Cytochrome b5 contents, Cytochrome P450 (CYP) enzyme system (APND, ERND, AH, and NCR) activities and the expression of CYP isoforms (CYP1B1, CYP2C18, CYP2D6, CYP3A4, CYP3A7, and CYP4B1) in quail heart. The expression of nuclear xenobiotic receptors (NXRs) was also influenced in the heart by ATR exposure. ATR exposure significantly caused the up-regulation of pro-inflammatory cytokines (TNF-α, IL-6, NF-κB, and IL-8), down-regulation of anti-inflammatory cytokines (IL-10) expression levels and increased NO content and iNOS activity. The present research provides new insights into the mechanism that ATR-induced cardiotoxicity through up-regulating the expression levels of GRP78 and XBP-1s, triggering ER stress, activating the expression of IRE1α/TRAF2/NF-κB signaling pathway related factors (IRE1α, TRAF2, IKK, and NF-κB) and inducing an inflammatory response in quail hearts. In conclusion, ATR exposure could induce cardiac inflammatory injury via activating NXRs responses, disrupting CYP homeostasis and CYP isoforms transcription, altering NO metabolism and triggering ER stress and inflammatory response by activating IRE1α/TRAF2/NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel
2013-01-01
Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University
2013-03-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less
Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.
2013-01-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566
Neurokinin B Exerts Direct Effects on the Ovary to Stimulate Estradiol Production.
Qi, Xin; Salem, Mohamed; Zhou, Wenyi; Sato-Shimizu, Miwa; Ye, Gang; Smitz, Johan; Peng, Chun
2016-09-01
Neurokinin B (NKB) and its receptor, NK3R, play critical roles in reproduction by regulating the secretion of the hypothalamic GnRH. NKB and NK3R genes are also expressed in the ovary; however, their physiological roles within the ovary are unknown. The aim of this study was to determine whether NKB acts directly on the ovary to regulate reproduction. Injection of NKB into zebrafish accelerated follicle development, increased the mRNA levels of cyp11a1 and cyp19a1, and enhanced estradiol production. Similarly, NKB induced cyp11a1 and cyp19a1 expression in primary cultures of zebrafish follicular cells and stimulated estradiol production from cultured follicles. Furthermore, NKB activates cAMP response element-binding protein and ERK, and ERK inhibitors abolished the effect of NKB on cyp11a1, whereas protein kinase A and calmodulin-dependent protein kinase II inhibitors that blocked the activation of cAMP response element-binding protein, attenuated the effect of NKB on cyp19a1 expression. In a human granulosa cell line, COV434, a NKB agonist, senktide, also increased CYP11A1 and CYP19A1 mRNA levels and enhanced aromatase protein levels and activities. Small interfering RNA-mediated knockdown of NK3R reduced senktide-induced CYP11A1 and CYP19A1 mRNA levels. Finally, we found that NK3R mRNA was strongly down-regulated in granulosa cells obtained from polycystic ovary syndrome (PCOS) patients when compared with non-PCOS subjects. Taken together, our findings establish a direct action of NKB to induce ovarian estrogen production and raise the possibility that defective signaling of this pathway may contribute to the development of PCOS.
Watanabe, Masatada; Ohno, Shuji; Nakajin, Shizuo
2012-04-05
The effects of bisphenol A (BPA), an endocrine disruptor, on aromatase (CYP19) expression in human osteoblastic (SV-HFO) and ovarian granulosa-like (KGN) cell lines were examined. CYP19 enzyme activity was suppressed in the presence of BPA in a dose-dependent fashion in both cell lines. CYP19 gene transcript expression, as well as activities of promoter I.4 in SV-HFO and promoter II in KGN, was down-regulated by BPA, suggesting that BPA affects CYP19 at the gene-expression level. These data and the previous finding that BPA induced the down-regulation of promoter I.1 activity within the human placental cell line suggest that there may be a conserved signaling pathway that down-regulates CYP19 expression in response to BPA in both cell lines. Additionally, differences between promoter I.4 and II suggest that there may be cell- and promoter-specific down-regulating mechanisms downstream from the actions of BPA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cyp1b1 Regulates Ocular Fissure Closure Through a Retinoic Acid–Independent Pathway
Williams, Antionette L.; Eason, Jessica; Chawla, Bahaar; Bohnsack, Brenda L.
2017-01-01
Purpose Mutations in the CYP1B1 gene are the most commonly identified genetic causes of primary infantile-onset glaucoma. Despite this disease association, the role of CYP1B1 in eye development and its in vivo substrate remain unknown. In the present study, we used zebrafish to elucidate the mechanism by which cyp1b1 regulates eye development. Methods Zebrafish eye and neural crest development were analyzed using live imaging of transgenic zebrafish embryos, in situ hybridization, immunostaining, TUNEL assay, and methylacrylate sections. Cyp1b1 and retinoic acid (RA) levels were genetically (morpholino oligonucleotide antisense and mRNA) and pharmacologically manipulated to examine gene function. Results Using zebrafish, we observed that cyp1b1 was expressed in a specific spatiotemporal pattern in the ocular fissures of the developing zebrafish retina and regulated fissure patency. Decreased Cyp1b1 resulted in the premature breakdown of laminin in the ventral fissure and altered subsequent neural crest migration into the anterior segment. In contrast, cyp1b1 overexpression inhibited cell survival in the ventral ocular fissure and prevented fissure closure via an RA-independent pathway. Cyp1b1 overexpression also inhibited the ocular expression of vsx2, pax6a, and pax6b and increased the extraocular expression of shha. Importantly, embryos injected with human wild-type but not mutant CYP1B1 mRNA also showed colobomas, demonstrating the evolutionary and functional conservation of gene function between species. Conclusions Cyp1b1 regulation of ocular fissure closure indirectly affects neural crest migration and development through an RA-independent pathway. These studies provide insight into the role of Cyp1b1 in eye development and further elucidate the pathogenesis of primary infantile-onset glaucoma. PMID:28192799
Hazra, Rasmani; Jimenez, Mark; Desai, Reena; Handelsman, David J; Allan, Charles M
2013-09-01
We recently created a mouse model displaying precocious Sertoli cell (SC) and spermatogenic development induced by SC-specific transgenic androgen receptor expression (TgSCAR). Here we reveal that TgSCAR regulates the development, function, and absolute number of Leydig cells (LCs). Total fetal and adult type LC numbers were reduced in postnatal and adult TgSCAR vs control testes, despite normal circulating LH levels. Normal LC to SC ratios found in TgSCAR testes indicate that SC androgen receptor (SCAR)-mediated activity confers a quorum-dependent relationship between total SC and LC numbers. TgSCAR enhanced LC differentiation, shown by elevated ratios of advanced to immature LC types, and reduced LC proliferation in postnatal TgSCAR vs control testes. Postnatal TgSCAR testes displayed up-regulated expression of coupled ligand-receptor transcripts (Amh-Amhr2, Dhh-Ptch1, Pdgfa-Pdgfra) for potential SCAR-stimulated paracrine pathways, which may coordinate LC differentiation. Neonatal TgSCAR testes displayed normal T and dihydrotestosterone levels despite differential changes to steroidogenic gene expression, with down-regulated Star, Cyp11a1, and Cyp17a1 expression contrasting with up-regulated Hsd3b1, Hsd17b3, and Srd5a1 expression. TgSCAR males also displayed elevated postnatal and normal adult serum testosterone levels, despite reduced LC numbers. Enhanced adult-type LC steroidogenic output was revealed by increased pubertal testicular T, dihydrotestosterone, 3α-diol and 3β-diol levels per LC and up-regulated steroidogenic gene (Nr5a1, Lhr, Cyp11a1, Cyp17a1, Hsd3b6, Srd5a1) expression in pubertal or adult TgSCAR vs control males, suggesting regulatory mechanisms maintain androgen levels independently of absolute LC numbers. Our unique gain-of-function TgSCAR model has revealed that SCAR activity controls temporal LC differentiation, steroidogenic function, and population size.
Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon
2011-01-01
Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1. PMID:23717070
Ye, Ping; Kenyon, Christopher J; MacKenzie, Scott M; Nichol, Katherine; Seckl, Jonathan R; Fraser, Robert; Connell, John M C; Davies, Eleanor
2008-01-01
Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels. PMID:18252953
Yang, Genling; Zhang, Li; Ma, Li; Jiang, Rong; Kuang, Ge; Li, Ke; Tie, Hongtao; Wang, Bin; Chen, Xinyu; Xie, Tianjun; Gong, Xia; Wan, Jingyuan
2017-09-01
Acetaminophen (APAP) is a widely used antipyretic and analgesic drug, which is safe and effective at the therapeutic dose. Unfortunately, excessive dosage of APAP could cause severe liver injury due to lack of effective therapy. Successful therapeutic strategies are urgently requested in clinic. Glycyrrhetinic acid (GA), derived from a traditional medicine licorice, has been shown to exert anti-inflammatory and antioxidant actions. In this study, the effect and the underlying mechanism of GA on APAP-induced hepatotoxicity were explored. Our results showed that pretreatment with GA significantly reduced serum ALT and AST activities, alleviated hepatic pathological damages with hepatocellular apoptosis, down-regulated expression of CYP2E1 mRNA and protein, increased GSH levels, and reduced reactive oxygen species (ROS) productions in the liver of APAP-exposed mice. Furthermore, GA obviously inhibited APAP-induced HMGB1-TLR4 signal activation, as evaluated by reduced hepatic HMGB1 release, p-IRAK1, p-MAPK and p-IκB expression as well as the productions of TNF-α and IL-1β. In addition, GA attenuated hepatic neutrophils recruitment and macrophages infiltration caused by APAP. These findings reflected that GA could alleviate APAP-induced hepatotoxicity, the possible mechanism is associated with down-regulation of CYP2E1 expression and deactivation of HMGB1-TLR4 signal pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C
2017-01-01
Summary This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in macaque tissues were usually comparable to those of human tissues. In addition, menopause did not significantly alter the ectocervical mRNA levels of CYP1A1, CYP1B1, or NRs. PMID:29276805
Hu, Minlu; Zhou, Tian; Pearlman, Andrew P; Paton, Dorothy L; Rohan, Lisa C
2016-01-01
This manuscript summarizes our recent progress in examine the CYP1A1 and CYP1B1 as well as a number of nuclear receptors in the female genital and colorectal tissues of human and pigtailed macaque. Understanding the nuclear receptor mediated regulation of CYP1A1 and 1B1 expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. However, there is a lack of systematic and comparative analysis of the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and clinically relevant animal models. The current study aims to fill this gap. We found CYP1A1, CYP1B1 and a number of nuclear receptors were expressed in the female genital and colorectal tissues of human and macaque. However, the mRNA level and protein localization of these CYP enzymes and NRs depended on the type of tissue examined. Cytochrome P450 (CYP) 1A1 and CYP1B1 activate hormonal and environmental procarcinogens, and are associated with carcinogenesis in female genital and colorectal tissues. Understanding the nuclear receptor (NR) mediated regulation of CYP expression in these tissues is necessary for identifying cancer risk factors and developing CYP1A1/1B1-targeted anti-cancer therapeutics. The study aims to analyze the expression profile of CYP1A1, 1B1 and NRs in the female genital and colorectal tissues of human and pigtailed macaques. We found that compared to the liver, human CYP1A1 mRNA level in the genital and colorectal tissues was significantly lower, while the CYP1B1 level was significantly higher. CYP1A1 protein was mainly localized in the plasma membrane of the uterine and endocervical epithelial cells. The CYP1B1 protein was concentrated in the nucleus of genital and colorectal tissues. Fourteen NRs in the genital tract and 12 NRs in colorectal tissue were expressed at levels similar to or higher than the liver. The expression and localization of CYP1A1, CYP1B1, and NRs in macaque tissues were usually comparable to those of human tissues. In addition, menopause did not significantly alter the ectocervical mRNA levels of CYP1A1, CYP1B1, or NRs.
Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene
Novakovic, Boris; Sibson, Mandy; Ng, Hong Kiat; Manuelpillai, Ursula; Rakyan, Vardhman; Down, Thomas; Beck, Stephan; Fournier, Thierry; Evain-Brion, Danielle; Dimitriadis, Eva; Craig, Jeffrey M.; Morley, Ruth; Saffery, Richard
2009-01-01
Plasma concentrations of biologically active vitamin D (1,25-(OH)2D) are tightly controlled via feedback regulation of renal 1α-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)2D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitamin D deregulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface. PMID:19237542
Retinoic Acid Metabolic Genes, Meiosis, and Gonadal Sex Differentiation in Zebrafish
Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Catchen, Julian M.; Yan, Yi-Lin; Postlethwait, John H.
2013-01-01
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish. PMID:24040125
Suppression of CYP1 members of the AHR response by pathogen-associated molecular patterns.
Peres, Adam G; Zamboni, Robert; King, Irah L; Madrenas, Joaquín
2017-12-01
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that triggers a broad response, which includes the regulation of proinflammatory cytokine production by monocytes and macrophages. AHR is negatively regulated by a set of genes that it transcriptionally activates, including the AHR repressor ( Ahrr ) and the cytochrome P450 1 ( Cyp1 ) family, which are critical for preventing exacerbated AHR activity. An imbalance in these regulatory mechanisms has been shown to cause severe defects in lymphoid cells. Therefore, we wanted to assess how AHR activation is regulated in monocytes and macrophages in the context of innate immune responses induced by pathogen-associated molecular patterns (PAMPs). We found that concomitant stimulation of primary human monocytes with PAMPs and the AHR agonist 6-formylindolo(3,2-b)carbazole (FICZ) led to a selective dose-dependent inhibition of Cyp1 family members induction. Two other AHR-dependent genes [ Ahrr and NADPH quinone dehydrogenase 1 ( Nqo1 )] were not affected under these conditions, suggesting a split in the AHR regulation by PAMPs. This down-regulation of Cyp1 family members did not require de novo protein production nor signaling through p38, ERK, or PI3K-Akt-mammalian target of rapamycin (mTOR) pathways. Furthermore, such a split regulation of the AHR response was more apparent in GM-CSF-derived macrophages, a finding corroborated at the functional level by decreased CYP1 activity and decreased proinflammatory cytokine production in response to FICZ and LPS. Collectively, our findings identify a role for pattern recognition receptor (PRR) signaling in regulating the AHR response through selective down-regulation of Cyp1 expression in human monocytes and macrophages. © Society for Leukocyte Biology.
Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley
2017-01-01
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057
Zajda, Karolina; Ptak, Anna; Rak, Agnieszka; Fiedor, Elżbieta; Grochowalski, Adam; Milewicz, Tomasz; Gregoraszczuk, Ewa L
2017-08-15
Epidemiological studies have shown a link between problems with offspring of couples living in a contaminated environment in comparison to those who live in an uncontaminated environment. We measured the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in maternal and cord blood. To explore the mechanism of the effects of PAH mixtures on nonluteinized granulosa cells (HGrC1) and granulosa tumor cells (COV434), as well as cell proliferation and apoptosis, we investigated the effect of PAH mixtures on the expression of the aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor repressor (AHRR) genes, as well as the expression and activity of target genes cytochrome P450 1A1 (CYP1A1) and catechol-O-methyltransferase (COMT). The cells were exposed to mixture 1 (M1), composed of all 16 priority PAHs, and mixture 2 (M2), composed of five PAHs which are not classified as human carcinogens, and which are observed in the highest amounts both in maternal and cord blood. All 16 priority PAHs were bioavailable in maternal and cord plasma, suggesting that perinatal exposure should be considered. In HGrC1 cells, M1 increased AHR and ARNT, but decreased AHRR expression, in parallel with increased CYP1A1 and COMT expression and activity. M2 decreased AHR and AHRR, and increased ARNT, with no effect on CYP1A1 expression and activity; however, it did increase COMT expression and activity. In tumor cells, M1 lowered AHR and up-regulated AHRR and ARNT expression, consequently decreasing CYP1A1 expression and COMT activity. M2 up-regulated AHR and ARNT, down-regulated AHRR, and had no effect on CYP1A1 and COMT expression, but decreased COMT activity. We hypothesise that, dependent on composition, mixtures of PAHs activate the AHR differently through varying transcription responses: in HGrC1, a canonical AHR mechanism of M1, with activation of CYP1A1 important for detoxication, while in COV434, a noncanonical AHR mechanism, probably by activation the nuclear factor NFkB. Copyright © 2017. Published by Elsevier B.V.
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Shibata, Shinya; Hayakawa, Kazuhito; Egashira, Yukari; Sanada, Hiroo
2007-01-16
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.
Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk.
Al-Aqil, Faten A; Monte, Maria J; Peleteiro-Vigil, Ana; Briz, Oscar; Rosales, Ruben; González, Raquel; Aranda, Carlos J; Ocón, Borja; Uriarte, Iker; de Medina, Fermín Sánchez; Martinez-Augustín, Olga; Avila, Matías A; Marín, José J G; Romero, Marta R
2018-06-06
At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr -/- , Fgf15 -/- and int-Gr -/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xu; Yang, Chunhui; Ihsan, Awais; Luo, Xun; Guo, Pu; Cheng, Guyue; Dai, Menghong; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui
2016-02-03
Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects. Copyright © 2016. Published by Elsevier Ireland Ltd.
Effects of gene silencing of CypB on gastric cancer cells.
Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun
2015-04-01
To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (P<0.05). Down-regulation of CypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (P<0.05). These findings indicated that CypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Ma, You-Ning; Cao, Chu-Yan; Wang, Qiang-Wei; Gui, Wen-Jun; Zhu, Guo-Nian
2016-10-01
The widely used organotins have the potential to disrupt the endocrine system, but little is known of underlying mechanisms of azocyclotin toxicity in fish. The objective of the present study was to investigate the impact of azocyclotin on reproduction in zebrafish. Adult zebrafish were exposed to 0.09 and 0.45μg/L azocyclotin for 21days, and effects on steroid hormones and mRNA expression of the genes belonging to the hypothalamic-pituitary-gonad (HPG) axis were investigated. Mass spectrometry methodology was developed to profile steroids within the metabolome of the gonads. They were disrupted as a result of azocyclotin exposure. Alterations in the expression of key genes associated with reproductive endocrine pathways in the pituitary (lhβ), gonad (cyp19a1a, cyp17a1 and 17β-hsd3), and liver (vtg1, vtg2, cyp1a1, comt, ugt1a and gstp1) were correlated with significant reductions in estrogen in both sexes and increased testosterone in females. Azocyclotin-induced down-regulation of cyp19a1a in males suggested a reduction in the rate of estrogen biosynthesis, while up-regulation of hepatic cyp1a1 and comt in both sexes suggested an increase in estrogen biotransformation and clearance. Azocyclotin also induced change in the expression of 17β-hsd3, suggesting increased bioavailability of 11-ketotestosterone (11-KT) in the blood. Furthermore, the down-regulation of lhβ expression in the brains of azocyclotin-exposed fish was associated with inhibition of oocyte maturation in females and retarded spermatogenesis in males. As a histological finding, retarded development of the ovaries was found to be an important cause for decreased fecundity, with down-regulation of vtg suspected to be a likely underlying mechanism. Additionally, relatively high concentrations of azocyclotin in the gonads may have directly caused toxicity, thereby impairing gametogenesis and reproduction. Embryonic or larval abnormalities occurred in the F1 generation along with accumulated burdens of azocyclotin in F1 eggs, following parental exposure. Overall, our results indicate that exposure to azocyclotin can impair reproduction in fish, and induce toxicity related abnormalities in non-exposed offspring. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.
2017-01-01
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice. PMID:28350814
Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S
2017-01-01
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice.
van Steenbeek, Frank G; Spee, Bart; Penning, Louis C; Kummeling, Anne; van Gils, Ingrid H M; Grinwis, Guy C M; Van Leenen, Dik; Holstege, Frank C P; Vos-Loohuis, Manon; Rothuizen, Jan; Leegwater, Peter A J
2013-01-01
The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP) and aryl hydrocarbon receptor nuclear translocator (ARNT). The resulting intrahepatic portosystemic shunts (IHPSS) are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), hypoxia inducible factor 1alpha (HIF1A), heat shock protein 90AA1 (HSP90AA1), cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1), vascular endothelial growth factor A (VEGFA), nitric oxide synthesase 3 (NOS3), and endothelin (EDN1). The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.
An Autoregulatory Loop Controlling CYP1A1 Gene Expression: Role of H2O2 and NFI
Morel, Yannick; Mermod, Nicolas; Barouki, Robert
1999-01-01
Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H2O2 catabolism), thus implying that H2O2 is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H2O2, a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H2O2 production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell. PMID:10490621
Fang, Feng; Flegler, Ayanna J; Du, Pan; Lin, Simon; Clevenger, Charles V
2009-01-01
Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor alpha, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility.
Fang, Feng; Flegler, Ayanna J.; Du, Pan; Lin, Simon; Clevenger, Charles V.
2009-01-01
Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor α, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility. PMID:19056847
Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley
2017-10-20
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer
Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.
2010-01-01
Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525
GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer
Cirillo, Francesca; Pellegrino, Michele; Malivindi, Rocco; Rago, Vittoria; Avino, Silvia; Muto, Luigina; Dolce, Vincenza; Vivacqua, Adele; Rigiracciolo, Damiano Cosimo; De Marco, Paola; Sebastiani, Anna; Abonante, Sergio; Nakajima, Miki; Lappano, Rosamaria; Maggiolini, Marcello
2017-01-01
The cytochrome P450 1B1 (CYP1B1) is a heme-thiolate monooxygenase involved in both estrogen biosynthesis and metabolism. For instance, CYP1B1 catalyzes the hydroxylation of E2 leading to the production of 4-hydroxyestradiol that may act as a potent carcinogenic agent. In addition, CYP1B1 is overexpressed in different tumors including breast cancer. In this scenario, it is worth mentioning that CYP1B1 expression is triggered by estrogens through the estrogen receptor (ER)α in breast cancer cells. In the present study, we evaluated whether the G protein estrogen receptor namely GPER may provide an alternate route toward the expression and function of CYP1B1 in ER-negative breast cancer cells, in main players of the tumor microenvironment as cancer associated fibroblasts (CAFs) that were obtained from breast cancer patients, in CAFs derived from a cutaneous metastasis of an invasive mammary ductal carcinoma and in breast tumor xenografts. Our results show that GPER along with the EGFR/ERK/c-Fos transduction pathway can lead to CYP1B1 regulation through the involvement of a half-ERE sequence located within the CYP1B1 promoter region. As a biological counterpart, we found that both GPER and CYP1B1 mediate growth effects in vitro and in vivo. Altogether, our data suggest that estrogens in ER-negative cell contexts may engage the alternate GPER signaling toward CYP1B1 regulation. Estrogen-CYP1B1 landscape via GPER should be taken into account in setting novel pharmacological approaches targeting breast cancer development. PMID:29290975
GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer.
Cirillo, Francesca; Pellegrino, Michele; Malivindi, Rocco; Rago, Vittoria; Avino, Silvia; Muto, Luigina; Dolce, Vincenza; Vivacqua, Adele; Rigiracciolo, Damiano Cosimo; De Marco, Paola; Sebastiani, Anna; Abonante, Sergio; Nakajima, Miki; Lappano, Rosamaria; Maggiolini, Marcello
2017-12-05
The cytochrome P450 1B1 (CYP1B1) is a heme-thiolate monooxygenase involved in both estrogen biosynthesis and metabolism. For instance, CYP1B1 catalyzes the hydroxylation of E2 leading to the production of 4-hydroxyestradiol that may act as a potent carcinogenic agent. In addition, CYP1B1 is overexpressed in different tumors including breast cancer. In this scenario, it is worth mentioning that CYP1B1 expression is triggered by estrogens through the estrogen receptor (ER)α in breast cancer cells. In the present study, we evaluated whether the G protein estrogen receptor namely GPER may provide an alternate route toward the expression and function of CYP1B1 in ER-negative breast cancer cells, in main players of the tumor microenvironment as cancer associated fibroblasts (CAFs) that were obtained from breast cancer patients, in CAFs derived from a cutaneous metastasis of an invasive mammary ductal carcinoma and in breast tumor xenografts. Our results show that GPER along with the EGFR/ERK/c-Fos transduction pathway can lead to CYP1B1 regulation through the involvement of a half-ERE sequence located within the CYP1B1 promoter region. As a biological counterpart, we found that both GPER and CYP1B1 mediate growth effects in vitro and in vivo . Altogether, our data suggest that estrogens in ER-negative cell contexts may engage the alternate GPER signaling toward CYP1B1 regulation. Estrogen-CYP1B1 landscape via GPER should be taken into account in setting novel pharmacological approaches targeting breast cancer development.
Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio).
Cao, Fangjie; Zhu, Lizhen; Li, Hui; Yu, Song; Wang, Chengju; Qiu, Lihong
2016-12-01
In the past few decades, extensive application of azoxystrobin has led to great concern regarding its adverse effects on aquatic organisms. The objective of the present study was to evaluate the reproductive toxicity of azoxystrobin to zebrafish. After adult zebrafish of both sexes were exposed to 2, 20 and 200 μg/L azoxystrobin for 21 days, egg production, the fertilization rate, the gonadosomatic index (GSI) and hepatosomatic index (HSI), 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) concentrations, and histological alterations in the gonads and livers were measured. Meanwhile, expression alterations of genes encoding gonadotropins and gonadotropin receptors (fshb, lhb, fshr and lhr), steroid hormone receptors (era, er2b and ar), steroidogenic enzymes (cyp11a, cyp11b, cyp17, cyp19a, cyp19b, hsd3b and hsd17b) in the hypothalamic-pituitary-gonad (HPG) axis and vitellogenin (vtg1 and vtg2) in the livers were also investigated. The results showed that reduced egg production and fertilization rates were observed at 200 μg/L azoxystrobin. In female zebrafish, reduced E2 and Vtg concentrations, decreased GSI, increased T concentrations, and histological alterations in the ovaries and livers were observed at 200 μg/L azoxystrobin, along with significant down-regulation of lhb, cyp19b, lhr, cyp19a, vtg1 and vtg2, and up-regulation of cyp17, hsd3b and hsd17b. In male zebrafish, increased E2 and Vtg concentrations, reduced T concentration and GSI, and histological alterations in the testes and livers were observed after exposure to 20 and 200 μg/L azoxystrobin, along with significant up-regulations of cyp19b, cyp11a, cyp17, cyp19a, hsd3b and hsd17b, vtg1 and vtg2. Moreover, cyp11a, hsd3b, cyp19a, vtg1 and vtg2 in male zebrafish were significantly up-regulated after treatment with 2 μg/L azoxystrobin. The results of the present study indicate that azoxystrobin led to reproductive toxicity in zebrafish and male zebrafish were more sensitive to azoxystrobin than female zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.
Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert
2015-11-01
Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Zhang, Tianshun; Jiang, Songyan; He, Chao; Kimura, Yuki; Yamashita, Yoko; Ashida, Hitoshi
2013-04-15
Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25μg/mL was non-genotoxic. It is noteworthy that BE (at 4.85μg/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10μM significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and up-regulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis
Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han
2016-01-01
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate–limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/−) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency–induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/−) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency–induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. PMID:26471128
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan
2015-03-15
Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved in the hepatoprotective effect of AB23A.« less
FGF-23 Regulates CYP27B1 Transcription in the Kidney and in Extra-Renal Tissues
Chanakul, Ankanee; Zhang, Martin Y. H.; Louw, Andrew; Armbrecht, Harvey J.; Miller, Walter L.; Portale, Anthony A.; Perwad, Farzana
2013-01-01
The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also observed a 3- to 10-fold increase in CYP27B1 mRNA abundance in the lung, spleen, aorta and testis of FGF-23 null/1α-Luc mice. Thus, we have identified novel extra-renal target sites for FGF-23-mediated regulation of CYP27B1. PMID:24019880
Molecular identity and gene expression of aldosterone synthase cytochrome P450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Mitsuhiro; Nonaka, Yasuki; Takemori, Hiroshi
11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolatedmore » from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.« less
Addison, Megan; Xu, Qiling; Cayuso, Jordi; Wilkinson, David G
2018-06-04
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Xiongjie; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Du Yongbing
2008-07-01
Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure tomore » PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity.« less
Cyp26b1 within the growth plate regulates bone growth in juvenile mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871
Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less
Ding, Xinxin; Kaminsky, Laurence S
2003-01-01
Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.
Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T
2016-07-01
Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO. Copyright © 2016 Elsevier B.V. All rights reserved.
Jun, Y J; Park, S J; Hwang, J W; Kim, T H; Jung, K J; Jung, J Y; Hwang, G H; Lee, S H; Lee, S H
2014-02-01
Glucocorticoids are used to treat allergic rhinitis, but the mechanisms by which they induce disease remission are unclear. 11β-hydroxysteroid dehydrogenase (11β-HSD) is a tissue-specific regulator of glucocorticoid responses, inducing the interconversion of inactive and active glucocorticoids. We analysed the expression and distribution patterns of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes in normal and allergic nasal mucosa, and cytokine-driven regulation of their expression. The production levels of cortisol in normal, allergic nasal mucosa and in cultured epithelial cells stimulated with cytokines were also determined. The expression levels of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (CYP11B1, CYP11A1), and cortisol in normal, mild, and moderate/severe persistent allergic nasal mucosa were assessed by real-time PCR, Western blot, immunohistochemistry, and ELISA. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were also determined in cultured nasal epithelial cell treated with IL-4, IL-5, IL-13, IL-17A, and IFN-γ. Conversion ratio of cortisone to cortisol was evaluated using siRNA technique, 11β-HSD1 inhibitor, and the measurement of 11β-HSD1 activity. The expression levels of 11β-HSD1, CYP11B1, and cortisol were up-regulated in mild and moderate/severe persistent allergic nasal mucosa. By contrast, 11β-HSD2 expression was decreased in allergic nasal mucosa. In cultured epithelial cells treated with IL-4, IL-5, IL-13, and IL-17A, 11β-HSD1 expression and activity increased in parallel with the expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. CYP11A1 expression level was not changed in allergic nasal mucosa or in response to stimulation with cytokines. SiRNA technique or the measurement of 11β-HSD1 activity showed that nasal epithelium activates cortisone to cortisol in a 11β-HSD-dependent manner. These results indicate that the localized anti-inflammatory effects of glucocorticoids are regulated by inflammatory cytokines, which can modulate the expression of 11β-HSD1, 11β-HSD2, and CYP11B1, and by the intracellular concentrations of bioactive glucocorticoids. © 2013 John Wiley & Sons Ltd.
Ramallo, Martín R; Morandini, Leonel; Birba, Agustina; Somoza, Gustavo M; Pandolfi, Matías
2017-03-01
The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Højland, Dorte H.; Jensen, Karl-Martin Vagn; Kristensen, Michael
2014-01-01
Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains. PMID:24489682
Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw
2012-02-01
CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. Themore » Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1 expression. -- Highlights: ► Nonhydroxylated flavones stimulate basal cortisol synthesis and CYP11B1 expression. ► The Ad5 element is required for nonhydroxylated flavone-elicited CYP11B1 induction. ► COUP-TFI elevates CYP11B1 and CYP11B2 transactivation but not through Ad5. ► AhR, ERK, and PKA are not involved in nonhydroxylated flavone-mediated regulation. ► Resveratrol affects cortisol biosynthesis at a step earlier than CYP11B1.« less
de Waard, Pim W J; Peijnenburg, Ad A C M; Baykus, Hakan; Aarts, Jac M M J G; Hoogenboom, Ron L A P; van Schooten, Frederik J; de Kok, Theo M C M
2008-10-22
Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for example, fruits and vegetables, can bind and activate this receptor. To study their potential effects in humans, we first investigated the effect of the prototypical AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gene expression in ex vivo exposed freshly isolated human lymphocytes, and compared the resulting gene expression profile with those caused by the well-known NAhRA indolo[3,2-b]carbazole (ICZ), originating from cruciferous vegetables, and by a hexane extract of NAhRA-containing grapefruit juice (GJE). Only ICZ induced a gene expression profile similar to TCDD in the lymphocytes, and both significantly up-regulated CYP1B1 and TIPARP (TCDD-inducible poly (ADP-ribose) polymerase) mRNA. Next, we performed a human intervention study with NAhRA-containing cruciferous vegetables and grapefruit juice. The expression of the prototypical AhR-responsive genes CYP1A1, CYP1B1 and NQO1 in whole blood cells and in freshly isolated lymphocytes was not significantly affected. Also enzyme activities of CYP1A2, CYP2A6, N-acetyltransferase 2 (NAT2) and xanthine oxidase (XO), as judged by caffeine metabolites in urine, were unaffected, except for a small down-regulation of NAT2 activity by grapefruit juice. Examination of blood plasma with DR CALUX showed a 12% increased AhR agonist activity 3 and 24 h after consumption of cruciferous vegetables, but did not show a significant effect of grapefruit juice consumption. We conclude that intake of NAhRAs from food may result in minor AhR-related effects measurable in human blood and urine.
Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis.
Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han; Sun, Zhongjie
2016-06-01
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. Copyright © 2016 by the American Society of Nephrology.
Zhao, J; Liu, X N; Li, F; Zhuang, S Z; Huang, L N; Ma, J; Gao, X W
2016-04-01
In insect, the cytochrome P450 plays a pivotal role in detoxification to toxic allelochemicals. Helicoverpa armigera can tolerate and survive in 2-tridecanone treatment owing to the CYP6B6 responsive expression, which is controlled by some regulatory DNA sequences and transcription regulators. Therefore, the 2-tridecanone responsive region and transcription regulators of the CYP6B6 are responsible for detoxification of cotton bollworm. In this study, we used yeast one-hybrid to screen two potential transcription regulators of the CYP6B6 from H. armigera that respond to the plant secondary toxicant 2-tridecanone, which were named Prey1 and Prey2, respectively. According to the NCBI database blast, Prey1 is the homology with FK506 binding protein (FKBP) of Manduca sexta and Bombyx mori that belongs to the FKBP-C superfamily, while Prey2 may be a homology of an unknown protein of Papilio or the fcaL24 protein homology of B. mori. The electrophoretic mobility shift assays revealed that the FKBP of prokaryotic expression could specifically bind to the active region of the CYP6B6 promoter. After the 6th instar larvae of H. armigera reared on 2-tridecanone artificial diet, we found there were similar patterns of CYP6B6 and FKBP expression of the cotton bollworm treated with 10 mg g-1 2-tridecanone for 48 h, which correlation coefficient was the highest (0.923). Thus, the FKBP is identified as a strong candidate for regulation of the CYP6B6 expression, when the cotton bollworm is treated with 2-tridecanone. This may lead us to a better understanding of transcriptional mechanism of CYP6B6 and provide very useful information for the pest control.
All-trans retinoic acid regulates hepatic bile acid homeostasis
Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne
2014-01-01
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738
Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.
Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G
2018-01-05
The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Jianghai; Wang, Rui; Desai, Kaushik; Wu, Lingyun
2011-12-01
Methylglyoxal (MG) overproduction has been reported in metabolic syndrome with hyperglycaemia (diabetes) or without hyperglycaemia (hypertension), and the underlying mechanism was investigated. Contributions of different pathways or enzymes to MG formation were evaluated in aorta or cultured vascular smooth muscle cells (VSMCs). In all four animal models of metabolic syndrome, i.e. chronically fructose-fed hypertensive Sprague-Dawley rats, spontaneously hypertensive rats, obese non-diabetic Zucker rats, and diabetic Zucker rats, serum and aortic MG and fructose levels were increased, and the expression of GLUT5 (transporting fructose) and aldolase B (converting fructose to MG) in aorta were up-regulated. Aortic expressions of aldolase A, semicarbazide-sensitive amine oxidase (SSAO), and cytochrome P450 2E1 (CYP 2E1), accounting for MG formation during glycolysis, protein, and lipid metabolism, respectively, was unchanged/reduced. Fructose (25 mM) treatment of VSMCs up-regulated the expression of GLUT5 and aldolase B and accelerated MG formation. Insulin (100 nM) increased GLUT5 expression and augmented fructose-increased cellular fructose accumulation and MG formation. Glucose (25 mM) treatment activated the polyol pathway and enhanced fructose formation, leading to aldolase B upregulation and MG overproduction. Inhibition of the polyol pathway reduced the glucose-increased aldolase B expression and MG generation. The excess formation of MG in under these conditions was eliminated by knock-down of aldolase B, but not by knock-down of aldolase A or inhibition of SSAO or CYP 2E1. Upregulation of aldolase B by accumulated fructose is a common mechanism for MG overproduction in VSMCs and aorta in different models of metabolic syndrome.
Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan
2018-04-15
Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Differential expression of CART in ewes with differing ovulation rates.
Juengel, Jennifer L; French, Michelle C; Quirke, Laurel D; Kauff, Alexia; Smith, George W; Johnstone, Peter D
2017-04-01
We hypothesised that cocaine- and amphetamine-regulated transcript ( CARTPT ) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT , as well as LHCGR , FSHR , CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes ( n = 6), CARTPT was expressed in small follicles (1 to <3 mm diameter), where 18.8 ± 2.5% follicles expressed CARTPT CART peptide was also detected in follicular fluid of some follicles of ++ ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT , and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to <4.5 mm diameter) but decreased percentage of large follicles (≥4.5 mm diameter) expressing CYP19A1 in the I+B+ ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR , FSHR , CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate. © 2017 Society for Reproduction and Fertility.
STAT5A and STAT5B have opposite correlations with drug response gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamba, V., E-mail: vlamba@ufl.edu; Jia, B.; Liang, F.
Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In thismore » study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings. Conclusions: Using both RNA sequencing and real time PCR, we examined the association of STAT5A and STAT5B mRNA expression with CYP and TF gene expression. While STAT5A demonstrated significant negative correlations with expression levels of multiple hepatic TFs (including NR1I2 and HNF4α) and CYPs (eg. CYP3A4, CYP2C19), STAT5B expression was observed to demonstrate positive association with most of the CYPs/TFs analyzed suggesting that STAT5A and STAT5b have potentially different and distinct roles in regulating expression of hepatic drug response genes. Further studies are needed to elucidate the potential roles of STAT5A and 5b in regulation of CYPs/TFs and the potential implications of these findings.« less
Wang, Li-Qin; Yan, Xiao-Ting; Yan, Chun-Fang; Zhang, Xin-Wen; Hui, Ling-Yun; Xue, Mingzhan; Yu, Xue-Wen
2016-01-01
Effects of vitamin D deficiency in pregnancy have been associated with some adverse pregnancy outcomes. The 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1) is integral to the vitamin D metabolic pathway. The enzyme catalyzes localized conversion of pro-hormone 25-hydroxyvitamin D3 to active 1,25-dihydroxyvitamin D3. Our aim was to investigate the expression of CYP27B1 at the fetal-maternal interface in the first trimester pregnancy and to determine whether CYP27B1 was associated with recurrent miscarriage (RM). Expressions of CYP27B1 mRNA and protein in villi and decidua from 20 women undergoing primary miscarriage, 20 women with RM and 20 women with normal pregnancy were evaluated by western blot, and quantitative real-time PCR. The co-localization of CYP27B1 and certain cytokines including IL-10, IFN-γ, TNF-α, and IL-2 expression were examined using immunohistochemistry and confocal microscopy. Women with RM had a significantly lower expression of CYP27B1 mRNA and protein in villous and decidual tissues compared with the normal pregnant women (P = 0.000 in villus, P = 0.002 in decidua for mRNA; P = 0.036 in villus, P = 0.007 in decidua for protein.). Compared with the normal pregnancy, immunostaining for CYP27B1 was significantly decreased in villous trophoblasts and decidual glandular epithelial cells in RM women. No significant differences in the localization of CYP27B1, IL-10, IFN-γ, TNF-α, and IL-2 expression were identified between the normal pregnant and RM women. Women with RM have a lower level of CYP27B1 expression in chorionic villi and decidua compared with normal pregnant women, suggesting that reduced CYP27B1 expression may be associated with RM. The consistent localization of CYP27B1 and IL-10, IFN-γ, TNF-α, and IL-2 expression in villous and decidual tissues suggests the importance of the local production of 1,25(OH)2D3 at the fetal-maternal interface to regulate cytokine responses.
Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana
2012-05-01
The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong
2014-05-15
Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1more » expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.« less
Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas.
Fallo, F; Pezzi, V; Barzon, L; Mulatero, P; Veglio, F; Sonino, N; Mathis, J M
2002-12-01
The presence and pathophysiological role of CYP11B1 (11beta-hydroxylase) gene in the zona glomerulosa of human adrenal cortex is still controversial. In order to specifically quantify CYP11B1, CYP11B2 (aldosterone synthase) and CYP17(17alpha-hydroxylase) mRNA levels, we developed a real-time RT-PCR assay and examined the expression in a series of adrenal tIssues, including six normal adrenals from patients adrenalectomized for renal cancer and twelve aldosterone-producing adenomas (APA) from patients with primary aldosteronism. CYP11B1 mRNA levels were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also measured at a lower range (P<0.05) in APA. The levels of CYP11B2 mRNA were lower (P<0.005) in normal adrenals than in APA. CYP17 mRNAlevels were similar in normal adrenals and in APA. In patients with APA, CYP11B2 and CYP11B1 mRNA levels were not correlated either with basal aldosterone or with the change from basal aldosterone in response to posture or to dexamethasone. No correlation between CYP11B1 mRNA or CYP11B2 mRNA and the percentage of zona fasciculata-like cells was observed in APA. Real-time RT-PCR can be reliably used to quantify CYP11B1 and CYP11B2 mRNA levels in adrenal tIssues. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests an additional formation of corticosterone via 11beta-hydroxylase, providing further substrate for aldosterone biosynthesis. CYP11B1 and CYP11B2 mRNA levels in APA are not related to the in vivo secretory activity of glomerulosa cells, where post-transcriptional factors might ultimately regulate aldosterone production.
Andersen, Melvin E; Cruzan, George; Black, Michael B; Pendse, Salil N; Dodd, Darol; Bus, James S; Sarang, Satinder S; Banton, Marcy I; Waites, Robbie; McMullen, Patrick D
2017-11-15
Styrene increased lung tumors in mice at chronic inhalation exposures of 20ppm and greater. MIEs, KEs and MFs were examined using gene expression in three strains of male mice (the parental C57BL/6 strain, a CYP2F2(-/-) knock out and a CYP2F2(-/-) transgenic containing human CYP2F1, 2A13 and 2B6). Exposures were for 1-day and 1, 4 and 26weeks. After 1-day exposures at 1, 5, 10, 20, 40 and 120ppm significant increases in differentially expressed genes (DEGs) occurred only in parental strain lungs where there was already an increase in DEGs at 5ppm and then many thousands of DEGs by 120ppm. Enrichment for 1-day and 1-week exposures included cell cycle, mitotic M-M/G1 phases, DNA-synthesis and metabolism of lipids and lipoproteins pathways. The numbers of DEGs decreased steadily over time with no DEGs meeting both statistical significance and fold-change criteria at 26weeks. At 4 and 26weeks, some key transcription factors (TFs) - Nr1d1, Nr1d2, Dbp, Tef, Hlf, Per3, Per2 and Bhlhe40 - were upregulated (|FC|>1.5), while others - Npas, Arntl, Nfil3, Nr4a1, Nr4a2, and Nr4a3 - were down-regulated. At all times, consistent changes in gene expression only occurred in the parental strain. Our results support a MIE for styrene of direct mitogenicity from mouse-specific CYP2F2-mediated metabolites activating Nr4a signaling. Longer-term MFs include down-regulation of Nr4a genes and shifts in both circadian clock TFs and other TFs, linking circadian clock to cellular metabolism. We found no gene expression changes indicative of cytotoxicity or activation of p53-mediated DNA-damage pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frizzell, Caroline; Ndossi, Doreen; Sokoine University of Agriculture, Morogoro
2013-08-15
Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was usedmore » to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1–1000 ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000 ng/ml (3.87 μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000 ng/ml (3.87 μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway. - Highlights: • Alternariol was investigated for endocrine disrupting activity. • Reporter gene assays and the H295R steroidogenesis assay have been used. • An oestrogenic effect of alternariol was observed. • This can lead to an increase in expression of the progesterone receptor. • Alternariol is capable of modulating hormone production and gene expression.« less
Rahman, Md Saydur; Thomas, Peter
2018-04-01
Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels. © 2018 Wiley Periodicals, Inc.
Sinreih, Maša; Hevir, Neli; Rižner, Tea Lanišnik
2013-02-25
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. It is associated with prolonged exposure to estrogens that is unopposed by the protective effects of progesterone, which suggests that altered progesterone biosynthesis, metabolism and actions might be implicated in the development of EC. Our aim was to evaluate these processes through quantitative real-time PCR expression analysis in up to 47 pairs of EC tissue and adjacent control endometrium. First, we examined the expression of genes encoding proteins associated with progesterone biosynthesis: steroidogenic acute regulatory protein (STAR); a side chain cleavage enzyme (CYP11A1); and 3β-hydroxysteroid dehydrogenase/ketosteroid isomerase (HSD3B). There were 1.9- and 10.0-fold decreased expression of STAR and CYP11A1, respectively, in EC versus adjacent control endometrium, with no significant differences in the expression of HSD3B1 and HSD3B2. Next, we examined expression of genes encoding five progesterone metabolizing enzymes: the 3-keto and 20-ketosteroid reductases (AKR1C1-AKR1C3) and 5α-reductases (SRD5A1 and SRD5A2); and the opposing 20α-hydroxysteroid dehydrogenase (HSD17B2). These genes are expressed in EC and adjacent control endometrium. No statistically significant differences were seen in mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1. Expression of HSD17B2 was 3.0-fold increased, and expression of SRD5A2 was 3.7-fold decreased, in EC versus adjacent control endometrium. We also examined mRNA levels of progesterone receptors A and B (PGR), and separately the expression of progesterone receptor B (PR-B). Here we saw 1.8- and 2.0-fold lower mRNA levels of PGR and PR-B, respectively, in EC versus adjacent control endometrium. This down-regulation of STAR, CYP11A1 and PGR in endometrial cancer may lead to decreased progesterone biosynthesis and actions although the effects on progesterone levels should be further studied. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Liu, Y; Cheng, F; Luo, Y X; Hu, P; Ren, H; Peng, M L
2017-04-20
Objective: To clarify the role of cytochrome P450 in nonalcoholic fatty liver disease (NAFLD) by RNA-Seq and bioinformatics analysis. Methods: A total of 20 male C57BL/6 mice were used. Ten mice were fed with high-fat diet (D12492, 60% kcal fat) for 16 weeks to establish a mouse model of NAFLD, and the other 10 mice were fed with low-fat diet (D12450B, 10% kcal fat) as control group. At the end of the experiment, the body weight, liver weight, and hepatic triglyceride (TG) content were measured. Meanwhile, HE staining and RNA-Seq analysis were performed for the liver tissues. The differentially expressed genes were screened out and subjected to bioinformatics analysis, including KEGG and GO BP enrichment analyses and interaction network analysis. Comparison of means between the two groups was made using t-test. Results: Compared with the control group, the mice in the model group were obviously obese, with significantly increased body weight (41.41 ± 6.01 g vs 28.78 ± 1.79 g, t = 6.04, P < 0.01) and liver weight (1.38 ± 0.30 g vs 1.08 ± 0.10 g, t = 2.89, P < 0.01). The mice in the model group showed obvious steatosis, accompanied by a small amount of inflammatory cell infiltration, but with no obvious fibrosis, according to the results of HE staining. In addition, the hepatic TG content in the model group was significantly increased compared with that in the control group (0.64 ± 0.01 mg/mg vs 0.29 ± 0.06 mg/mg, t = 10.11, P = 0.04). Compared with the control group, a total of 367 differentially expressed genes, including 211 down-regulated and 156 up-regulated ones, were identified in the model group according to the RNA-seq results. Meanwhile, 19 CYP450 subtypes, accounting for 5% of the differentially expressed genes, were identified, and CYP2E1, CYP2C70, CYP3A11, CYP3A25, CYP2D26, CYP4A10, CYP17A1, CYP2B10, and CYP2C38 were involved in oxidative stress, steroid hormone metabolism, fatty acid metabolism, arachidonic acid metabolism, and the PPAR signaling pathway. An interaction network was constructed with 30 nodes, and CYP2E1 and CYP2C70 were identified as key nodes. RT-PCR validation results showed that the expression changes of CYP450 subtypes and lipid metabolism-related genes were consistent with the findings of sequencing. Conclusion: The CYP450 family plays a vital role in the pathogenesis of fatty liver by regulating lipid metabolism-related pathways, including oxidative stress, arachidonic acid metabolism, steroid hormone metabolism , and fatty acid metabolism.
Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue
2014-10-01
To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.
Butachlor causes disruption of HPG and HPT axes in adult female rare minnow (Gobiocypris rarus).
Zhu, Lifei; Li, Wei; Zha, Jinmiao; Wang, Miao; Yuan, Lilai; Wang, Zijian
2014-09-25
Butachlor is a chloroacetamide herbicide widely used in Asia, and may enter the aquatic environment through agricultural application. In this study, plasma VTG and hormone levels (E2, 11-KT, T3 and T4) were determined after the female rare minnow (Gobiocypris rarus) was exposed to butachlor at environmental relevant concentrations (0, 0.1, 1, and 10μg/L) for 40days. The mRNA levels of the HPG axis-related genes (gnrh, erα, vtg, star, lhr, 3β-hsd, cyp11a, cyp17, cyp19a and cyp19b), and the HPT axis-related genes (trα, dio1, dio2, and dio3) were quantified after 20 and 40days exposure to butachlor. For the HPG axis, the plasma 11-KT was increased at exposure concentration of 10μg/L, and VTG was significantly decreased at 1μg/L. Functional genes like gnrh and cyp19b in the brains, star, lhr, cyp11a, 3β-hsd, and cyp19a in the ovaries, and erα and vtg in livers were up-regulated. For the HPT axis, the results showed that plasma T4 levels were significantly increased, the gene expression of dio1 was up-regulated, dio2 showed no significant variation, and dio3 was down-regulated in the livers. These results indicated that butachlor may promote the accumulation of T4 in fish through inactive deiodinase type 3. The transcription of HPG axis-related genes could serve as an auto-regulation of hormone levels after exposure to butachlor. Furthermore, the activation of gnrh may play an important role as a feed-back mechanism in the regulation of hormone levels and crosstalk of endocrine axes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Blüthgen, Nancy; Zucchi, Sara; Fent, Karl
2012-09-01
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4-312 μg/L and 8.2-438 μg/L BP-3. Chemical analysis of water and fish demonstrates that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel
2010-11-01
Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. (c) 2010 Wiley-Liss, Inc.
Steroid synthesis by primary human keratinocytes; implications for skin disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk; Michael, Anthony E.; Jaulim, Adil
2011-01-07
Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary humanmore » keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra-adrenal cortisol synthesis, which could be a fundamental pathway in skin biology with implications in psoriasis and atopic dermatitis.« less
Ghai, Sandeep; Monga, Rachna; Mohanty, T K; Chauhan, M S; Singh, Dheer
2012-02-01
Retention of fetal membranes (RFM) is the major post-partum disorder in dairy cattle. Cyp19 gene encodes the aromatase enzyme responsible for catalyzing the rate limiting step in estrogen biosynthesis, an important hormone for placental maturation and expulsion. The present study was aimed for comparative analysis of Cyp19 gene expression and its epigenetic regulation in placental cotyledons of animals with and without RFM. Significantly lower expression of Cyp19 gene was found in placental samples of RFM affected animals in comparison to normal animals. Methylation analysis of 5 CpG dinucleotides of placenta specific Cyp19 gene promoter I.1 and proximal promoter, PII showed hypo-methylation of both PI.1 and PII in term placenta of normal and diseased animals. In conclusion, a mechanism other than promoter methylation is responsible for decreased aromatase expression in placental cotyledons of animals suffering from RFM. Copyright © 2010 Elsevier Ltd. All rights reserved.
Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong
2017-03-01
To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m 2 , and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m 2 ) induced developmental delays, and higher doses (6-18kJ/m 2 ) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m 2 ) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Qian; Li, Ping; Sun, Liang; Wang, Yanping; Ji, Kai; Sun, Yufei; Dai, Shengjie; Chen, Pei; Duan, Chaorui; Leng, Ping
2012-01-01
The aim of this study was to obtain new insights into the mechanisms that regulate endogenous abscisic acid (ABA) levels by β-glucosidase genes during the development of watermelons (Citrullus lanatus) and under drought stress conditions. In total, five cDNAs from watermelons were cloned by using reverse transcription-PCR (RT-PCR). They included three cDNAs (ClBG1, ClBG2 and ClBG3) homologous to those that encode β-glucosidase l that hydrolyzes the ABA glucose ester (ABA-GE) to release active ABA, ClNCED4, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, and ClCYP707A1, encoding ABA 8'-hydroxylase. A BLAST homology search revealed that the sequences of cDNAs and the deduced amino acids of these genes showed a high degree of homology to comparable molecules of other plant species. During fruit development and ripening, the expressions of ClBG1, ClNCED4 and ClCYP707A1 were relatively low at an early stage, increased rapidly along with fruit ripening, and reached the highest levels at 27 days after full bloom (DAFB) at the harvest stage. This trend was consistent with the accumulation of ABA. The ClBG2 gene on the other hand was highly expressed at 5 DAFB, and then decreased gradually with fruit development. Unlike ClBG1 and ClBG2, the expression of ClBG3 was low at an early stage; its expression peak occurred at 15 DAFB and then declined to the lowest point. When watermelon seedlings were subjected to drought stress, expressions of ClBG1 and ClCYP707A1 were significantly down-regulated, while expressions of ClBG2 and ClNCED4 were up-regulated in the roots, stems and leaves. The expression of ClBG3 was down-regulated in root tissue, but was up-regulated in stems and leaves. In conclusion, endogenous ABA content was modulated by a dynamic balance between biosynthesis and catabolism regulated by ClNCED4, ClCYP707A1 and ClBGs during development and under drought stress condition. It seems likely that β-glucosidase genes are important for this regulation process. Copyright © 2011 Elsevier GmbH. All rights reserved.
Hu, Yun; Sun, Qinwei; Zong, Yibo; Liu, Jie; Idriss, Abdulrahman A; Omer, Nagmeldin A; Zhao, Ruqian
2017-05-15
Sterol 27-hydroxylase (CYP27A1) plays an important role in cholesterol homeostasis by degrading cholesterol to bile acids. Betaine can alleviate high-fat diet-induced hepatic cholesterol accumulation and maternal betaine treatment programs the hepatic expression of CYP27A1 in offspring. Excessive corticosterone (CORT) exposure causes hepatic cholesterol deposition in chickens, yet it remains unknown whether prenatal betaine modulates CORT-induced cholesterol accumulation in chicken liver later in life and whether it involves epigenetic gene regulation of CYP27A1. In this study, fertilized eggs were injected with saline or betaine at 2.5mg/egg before incubation, and the hatchlings were raised under the same condition till 56days of age followed by 7days of subcutaneous CORT injection. Plasma concentrations of total cholesterol (Tch), HDL- and LDL-cholesterol were significantly increased (P<0.05), after CORT challenge, in both control and betaine groups. However, prenatal betaine exposure prevented CORT-induced increase (P<0.05) in hepatic Tch content. Hepatic expression of cholesterol biosynthesis genes and ACAT1 protein that esterifies cholesterol for storage, were activated in both control and betaine groups upon CORT challenge. However, betaine-treated chickens were protected from CORT-induced repression (P<0.05) in LXR and CYP27A1 expression in the liver. CORT-induced down-regulation of LXR and CYP27A1 coincided with significantly increased (P<0.05) CpG methylation on their promoters, which was significantly ameliorated in betaine-treated chickens. These results suggest that in ovo betaine injection alleviates CORT-induced hepatic cholesterol deposition most probably through epigenetic regulation of CYP27A1 and LXR genes in juvenile chickens. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Jie; Wang, Junrui; Cheng, Jingmin; Xiao, Wenjing; Fan, Kaihua; Gu, Jianwen; Yu, Botao; Yin, Guangfu; Wu, Juan; Ren, Jiandong; Hou, Jun; Jiang, Yan; Tan, Yonghong; Jin, Weihua
2017-01-01
The hepatic cytochrome P450 (CYP450) enzyme superfamily is one of the most important drug-metabolizing enzyme systems, which is responsible for the metabolism of a large number of clinically relevant medications used in traumatic brain injury (TBI) therapy. Modification of CYP450 expression may have important influences on drug metabolism and lead to untoward effects on those with narrow therapeutic windows. However, the impact of blast-induced TBI (bTBI) on the expression of CYP450 has received little attention. The subfamilies of CYP1A, 2B, 2D, and 3A account for about 85 % of all human drug metabolism of clinical significance. Therefore, in this study, we investigated the expressions of hepatic CYP1A2, CYP2B1, CYP2D1, and CYP3A2 in rats suffering bTBI. Meanwhile, we also measured some important cytokines in serum after injury, and calculated the correlation between these cytokines and the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. The results showed that bTBI could significantly reduce mRNA expressions of CYP1A2, CYP2D1, and CYP3A2 at the early stage and induce the expressions from 48 h to 1 week after injury. The protein expressions of these CYP450s had all been downregulated from 24 to 48 h post- injury, and then began to elevate at 48 h after bTBI. The cytokines, IL-1β, IL-2, IL-6, and TNF-α, increased significantly in the early phase, and began to reduce at the delayed phase of bTBI. The serum levels of IL-1β, IL-6, and TNF-α but not IL-2 were significantly negative correlated with the mRNA expressions of CYP2B1 and CYP2D1 and the proteins expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. In conclusion, our work has, for the first time, indicated that bTBI has significant impact on the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2, which may be related to the cytokines induced by the injury.
Muth-Köhne, Elke; Westphal-Settele, Kathi; Brückner, Jasmin; Konradi, Sabine; Schiller, Viktoria; Schäfers, Christoph; Teigeler, Matthias; Fenske, Martina
2016-07-01
The Fish Sexual Development Test (FSDT) is a non-reproductive test to assess adverse effects of endocrine disrupting chemicals. With the present study it was intended to evaluate whether gene expression endpoints would serve as predictive markers of endocrine disruption in a FSDT. For proof-of-concept, a FSDT according to the OECD TG 234 was conducted with the non-steroidal aromatase inhibitor fadrozole (test concentrations: 10μg/L, 32μg/L, 100μg/L) using zebrafish (Danio rerio). Gene expression analyses using quantitative RT-PCR were included at 48h, 96h, 28days and 63days post fertilization (hpf, dpf). The selection of genes aimed at finding molecular endpoints which could be directly linked to the adverse apical effects of aromatase inhibition. The most prominent effects of fadrozole exposure on the sexual development of zebrafish were a complete sex ratio shift towards males and an acceleration of gonad maturation already at low fadrozole concentrations (10μg/L). Due to the specific inhibition of the aromatase enzyme (Cyp19) by fadrozole and thus, the conversion of C19-androgens to C18-estrogens, the steroid hormone balance controlling the sex ratio of zebrafish was altered. The resulting key event is the regulation of directly estrogen-responsive genes. Subsequently, gene expression of vitellogenin 1 (vtg1) and of the aromatase cyp19a1b isoform (cyp19a1b), were down-regulated upon fadrozole treatment compared to controls. For example, mRNA levels of vtg1 were down-regulated compared to the controls as early as 48 hpf and 96 hpf. Further regulated genes cumulated in pathways suggested to be controlled by endocrine mechanisms, like the steroid and terpenoid synthesis pathway (e.g. mevalonate (diphospho) decarboxylase (mvd), lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase; lss), methylsterol monooxygenase 1 (sc4mol)) and in lipid transport/metabolic processes (steroidogenic acute regulatory protein (star), apolipoprotein Eb (apoEb)). Taken together, this study demonstrated that the existing Adverse Outcome Pathway (AOP) for aromatase inhibition in fish can be translated to the life-stage of sexual differentiation. We were further able to identify MoA-specific marker gene expression which can be instrumental in defining new measurable key events (KE) of existing or new AOPs related to endocrine disruption. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza
2017-10-01
Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D 3 -treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D 3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D 3 reduced in 60% renal 25-hydroxyvitamin D 3 -dependent Cyp24a1 upregulation (P<0.05). We found 5 folds higher basal Cyp27b1 than Cyp24a1 gene expression in kidneys, whereas this relation was inverted in tumors, showing 5 folds more CYP24A1 than CYP27B1. Tumor expression of the calcitriol target cathelicidin increased only in 25-hydroxyvitamin D 3 -treated non-ethanol drinking animals (P<0.05). Mean final body weight was higher in 25-hydroxyvitamin D 3 treated groups (P<0.001). Overall, these results suggest that moderate ethanol intake decreases renal and tumoral 25-hydroxyvitamin D 3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J
2008-04-01
In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not found to be down-regulated in neurons treated with 24S-hydroxycholesterol, while apolipoprotein E (apo E), a cholesterol trafficking protein, was found to be up-regulated. Taken together, this data leads to the hypothesis that, in times of cholesterol excess, 24S-hydroxycholesterols signals down-regulation of cholesterol synthesis enzymes through SREBP-2, but up-regulates apo E synthesis (through the liver X receptor) leading to cholesterol storage and restoration of cholesterol balance.
Shimizu, Kiminori; Paul, Sanjoy; Ohba, Ayumi; Gonoi, Tohru; Watanabe, Akira; Gomi, Katsuya
2017-01-01
Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B). PMID:28052140
Wang, Rong; Zhang, Hai; Wang, Yujie; Yu, Xiaoyan; Yuan, Yongfang
2016-03-02
Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C9 activities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucchi, Sara; Bluethgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel
Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. Inmore » eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.-A.; Lin, Tsu-Chun Emma
Giving human adrenocortical H295R cells 14 mM KCl for 24 h significantly induced not only aldosterone biosynthesis but also cortisol biosynthesis. Pre-treating the cells with polychlorinated biphenyl 126 (PCB126) further increased potassium-induced aldosterone and cortisol productions in a dose-dependent manner, but all examined concentrations of PCB126 had little effect on the yields of precursor steroids progesterone and 17-OH-progesterone. Subsequent examinations revealed that CYP11B1 and CYP11B2 genes, responsible for the respective final steps of the cortisol and aldosterone biosynthetic pathways, exhibited increased responsiveness to PCB126 under high potassium. While 10{sup -5} M PCB126 was needed to induce a significant increase inmore » the basal mRNA abundance of either gene, PCB126 could enhance potassium-induced mRNA expression of CYP11B1 at 10{sup -7} M and CYP11B2 at 10{sup -9} M. Actually, potassium and PCB126 synergistically upregulated mRNA expression of both genes. Potassium raised the transcriptional rates of CYP11B1 and CYP11B2 probably through a conserved Ad5 cis-element, whereas PCB126 appeared to regulate these two genes at the post-transcriptional level. Positive potassium-PCB126 synergism was also detected in CYP11B2 enzyme activity estimated by aldosterone/progesterone ratio. In contrast, potassium and PCB126 increased CYP11B1 enzyme activity or cortisol/17-OH-progesterone ratio additively. Moreover, potassium improved the time effect of PCB126 on gene expression and enzyme activity of CYP11B2, but not the PCB126 time response of CYP11B1. These data demonstrated that potassium differentially enhanced the potency of PCB126 to induce CYP11B1- and CYP11B2-mediated steroidogenesis.« less
Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping
2014-12-01
Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Nguyen, Chi Huu; Brenner, Stefan; Huttary, Nicole; Atanasov, Atanas Georgiev; Dirsch, Verena Maria; Chatuphonprasert, Waranya; Holzner, Sivio; Stadler, Serena; Riha, Juliane; Krieger, Sigurd; de Martin, Rainer; Bago-Horvath, Zsuzsanna; Krupitza, Georg; Jäger, Walter
2016-11-15
A causal link between overexpression of aryl hydrocarbon receptor (AHR) and its target cytochrome P450 1A1 (CYP1A1) and metastatic outgrowth of various cancer entities has been established. Nevertheless, the mechanism how AHR/CYP1A1 support metastasis formation is still little understood. In vitro we discovered a potential mechanism facilitating tumour dissemination based on the production of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE). Utilising a three-dimensional lymph endothelial cell (LEC) monolayer & MDA-MB231 breast cancer cell spheroid co-culture model in combination with knock-down approach allowed elucidation of the molecular/biochemical basis of AHR/CYP1A1-induced tumour breaching through the LEC barrier. Enzyme immunoassay evidenced the potential of recombinant CYP1A1 to synthesise 12(S)-HETE in vitro and qPCR and Western blotting measured gene and protein expression in specific experimental settings. In detail, AHR induced CYP1A1 expression and 12(S)-HETE secretion in tumour spheroids, which caused LEC junction retraction thereby forming large discontinuities allowing transmigration of the tumour. This was enforced by the activating AHR ligand 6-formylindolo (3,3-b)carbazole (FICZ), or inhibited by the AHR antagonist 3,3’-diindolylmethane (DIM) as well as by siRNA against AHR and CYP1A1. AHR and NF-κB were negatively cross talking and therefore, the inhibition of AHR (but not CYP1A1) induced RELA, RELB, NFKB1, NFKB2 and the NF-κB target MMP1, which itself promotes tumour intravasation by a mechanism that is different from 12(S)-HETE. Conversely, the inhibition of NFKB2 induced AHR, CYP1A1 and 12(S)-HETE synthesis. The approved clinical drugs guanfacine and vinpocetine, which inhibit CYP1A1 and NF-κB, respectively, significantly inhibited LEC barrier breaching in vitro indicating an option to reduce metastatic dissemination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blüthgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel; Zucchi, Sara
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4–312 μg/L and 8.2–438 μg/L BP-3. Chemical analysis of water and fish demonstratesmore » that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Highlights: ► Activity of UV filter benzophenone-3 (BP-3) is assessed in zebrafish. ► BP-3 is partly metabolized to benzophenone-1 by adult fish but not embryos. ► Alterations of gene expression are similar in adult males and embryos. ► Gene expression alterations point to multiple hormonal activity of BP-3.« less
Pascoe, L; Jeunemaitre, X; Lebrethon, M C; Curnow, K M; Gomez-Sanchez, C E; Gasc, J M; Saez, J M; Corvol, P
1995-01-01
Glucocorticoid-suppressible hyperaldosteronism is a dominantly inherited form of hypertension believed to be caused by the presence of a hybrid CYP11B1/CYP11B2 gene which has arisen from an unequal crossing over between the two CYP11B genes in a previous meiosis. We have studied a French pedigree with seven affected individuals in which two affected individuals also have adrenal tumors and two others have micronodular adrenal hyperplasia. One of the adrenal tumors and the surrounding adrenal tissue has been removed, giving a rare opportunity to study the regulation and action of the hybrid gene causing the disease. The hybrid CYP11B gene was demonstrated to be expressed at higher levels than either CYP11B1 or CYP11B2 in the cortex of the adrenal by RT-PCR and Northern blot analysis. In situ hybridization showed that both CYP11B1 and the hybrid gene were expressed in all three zones of the cortex. In cell culture experiments hybrid gene expression was stimulated by ACTH leading to increased production of aldosterone and the hybrid steroids characteristic of glucocorticoid-suppressible hyperaldosteronism. The genetic basis of the adrenal pathologies in this family is not known but may be related to the duplication causing the hyperaldosteronism. Images PMID:7593610
Son, SeungHyun; Chitnis, Vijaya R; Liu, Aihua; Gao, Feng; Nguyen, Tran-Nguyen; Ayele, Belay T
2016-08-01
The three homeologues of wheat NCED2 were identified; the wheat NCED2A and CYP707A1B affect seed ABA level and dormancy but not leaf ABA level and transpirational water loss in Arabidopsis. Biosynthesis and catabolism of abscisic acid (ABA) in plants are primarily regulated by 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ABA 8'-hydroxylase (ABA8'OH), respectively. The present study identified the complete coding sequences of a second NCED gene, designated as TaNCED2, and its homeologues (TaNCED2A, TaNCED2B and TaNCED2D) in hexaploid wheat, and characterized its functionality in seed dormancy and leaf dehydration tolerance using the TaNCED2A homeologue. The study also investigated the role of the B genome copy of the cytochrome P450 monooxygenase 707A1 (CYP707A1) gene of hexaploid wheat (TaCYP707A1B), which encodes ABA8'OH, in regulating the two traits as this has not been studied before. Ectopic expression of TaNCED2A and TaCYP707A1B in Arabidopsis resulted in altered seed ABA level and dormancy with no effect on leaf ABA content and transpirational water loss. To gain insights into the physiological roles of TaNCED2 and TaCYP707A1 in wheat, the study examined their spatiotemporal expression patterns and determined the genomic contributions of transcripts to their total expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gábelová, Alena, E-mail: alena.gabelova@savba.sk; Poláková, Veronika; Prochazka, Gabriela
To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts weremore » found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture underlies this antagonism. • A synergism between B[a]P and DBC was detected in human liver HepG2 cells. • The up-regulation of CYP1A1 expression was found in B[a]P:DBC-exposed HepG2 cells.« less
Li, Zhi-Hua; Zhong, Li-Qiao; Mu, Wei-Na; Wu, Yan-Hua
2016-01-01
1. The purpose of this study was to compare tributyltin (TBT)-induced cytochrome P450 1 (CYP450 1) regulation in liver, gills and muscle of juvenile common carp (Cyprinus carpio). 2. Fish were exposed to sublethal concentrations of TBT (75, 0.75 and 7.5 μg/L) for 60 days. CYP450 1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, as well as the mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) in fish tissues. 3. Based on the results, the liver displayed the highest absolute levels of EROD activity, both under nonexposed and exposed conditions. Additional, EROD activities and CYP1A gene levels showed a good correlation in all three organs. According to the mRNA expression of CYP450 1 family genes, it suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. 4. Overall, the study revealed both similarities and differences in the concentration-dependent CYP450 1 responses of the three target organs, which could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.
Brożyna, Anna A.; Jóźwicki, Wojciech; Janjetovic, Zorica; Slominski, Andrzej T.
2012-01-01
Summary 1α-Hydroxylase (CYP27B1), the enzyme responsible for the synthesis of the biologically active form of vitamin D (1,25(OH)2D3), is expressed in the skin. To assess the correlation between progression of melanocytic tumors and CYP27B1, we analyzed its expression in 29 benign nevi, 75 primary cutaneous melanomas, 40 metastases, and 4 re-excision and 6 normal skin biopsies. Immunoreactivity for CYP27B1 was significantly lower in the vertical growth phase (VGP) and metastatic melanomas (0.6 and 0.5 arbitrary units [AU], respectively) in comparison with nevi and radial growth phase (RGP) tumors (1.2 and 1.1 AU, respectively); and expression was reduced in more advanced lesions (Clark levels III–V, Breslow thickness ≥2.1 mm; 0.8 and 0.7 AU, respectively). There was an inverse correlation between CYP27B1 and Ki-67 expression. Furthermore, CYP27B1 expression was reduced in primary melanomas that created metastases in comparison with non-metastasizing melanomas. Reduced CYP27B1 expression in RGP was related to shorter overall survival (810 vs 982 vs 1151 days in melanomas with absent, low, and high CYP27B1 immunoreactivity), and low CYP27B1 expression in RGP and VGP was related to shorter disease-free survival (114 vs 339 vs 737 days and 129 vs 307 vs 737 days, respectively, in melanomas with absent, low, and high CYP27B1). Also, CYP27B1 expression was inversely related to melanin in melanoma cells in vivo and melanoma cells cultured in vitro. Thus, reduction of CYP27B1 correlates with melanoma phenotype and behavior, and its lack affects the survival of melanoma patients, indicating a role in the pathogenesis and progression of this cancer. PMID:22995334
Na, Shufang; Li, Jie; Zhang, Huibo; Li, Yueran; Yang, Zheqiong; Zhong, Yanjun; Dong, Guicheng; Yang, Jing; Yue, Jiang
2017-06-15
Ethanol, one of the most commonly abused substances throughout history, is a substrate and potent inducer of cytochrome P450 2E1 (CYP2E1). Our previous study showed that brain CYP2E1 was induced by chronic ethanol treatment and was associated with ethanol-induced neurotoxicity in rats. We therefore investigated the possible mechanism of brain CYP2E1 involvement in ethanol-induced neurodegeneration. Compared with the controls, chronic ethanol treatment (3.0g/kg, i.g., 160days) significantly increased CYP2E1 mRNA levels in the rat cortex, but the mRNA levels of peroxisome proliferator-activated receptor α (PPARα) and the pre- and post-synaptic proteins (synaptophysin, SYP, and drebrin1, DBN1) were decreased. Ethanol treatment dose-dependently induced CYP2E1 mRNA expression, and CYP2E1 overexpression exacerbated the ethanol-induced neurotoxicity. Pretreatment with p38 inhibitor (SB202190) and ERK1/2 inhibitor (U0126) attenuated the induction of CYP2E1 mRNA and protein levels by ethanol; however, no change was observed with JNK inhibitor pretreatment. Ethanol exposure or CYP2E1 overexpression significantly decreased PPARα, SYP, and DBN1 expression as indicated by the data from real-time RT-PCR, Western blotting and immunocytochemistry. The activation of PPARα by WY14643 increased the activity of the SYP and DBN1 promoters and attenuated the inhibition of these genes by ethanol. The specific siRNA for CYP2E1 significantly attenuated the ethanol-induced inhibition of PPARα, SYP and DBN1 mRNA levels. These results suggest that the induction of CYP2E1 by ethanol may be mediated via the p38 and ERK1/2 signaling pathways in neurons but not via the JNK pathway. The CYP2E1-PPARα axis may play a role in ethanol-induced neurotoxicity via the alteration of the genes related with synaptic function. Copyright © 2017. Published by Elsevier B.V.
The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.
Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao
2009-05-01
PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.
Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.
2014-01-01
The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518
Gupta, Shreyasi; Guha, Payel; Majumder, Suravi; Pal, Puja; Sen, Koushik; Chowdhury, Piyali; Chakraborty, Arindam; Panigrahi, Ashis Kumar; Mukherjee, Dilip
2018-07-01
Estrogen regulates numerous developmental and physiological processes and effects are mediated mainly by estrogenic receptors (ERs), which function as ligand-regulated transcription factor. ERs can be activated by many different types endocrine disrupting chemicals (EDCs) and interfere with behaviour and reproductive potential of living organism. Estrogenic regulation of membrane associated G protein-coupled estrogen receptor, GPER activity has also been reported. Bisphenol A (BPA), a ubiquitous endocrine disruptor is present in many household products, has been linked to many adverse effect on sexual development and reproductive potential of wild life species. The present work is aimed to elucidate how an environmentally pervasive chemical BPA affects in vivo expression of a known estrogen target gene, cyp19a1b in the brain, and a known estrogenic biomarker, vitellogenin (Vg) in the whole body homogenate of 30 days post fertilization (dpf) swim-up fry of Labeo rohita. We confirm that, like estrogen, the xenoestrogen BPA exposure for 5-15 days induces strong overexpression of cyp19a1b, but not cyp19a1a mRNA in the brain and increase concentration of vitellogenin in swim-up fry. BPA also induces strong overexpression of aromatase B protein and aromatase activity in brain. Experiments using selective modulators of classical ERs and GPER argue that this induction is largely through nuclear ERs, not through GPER. Thus, BPA has the potential to elevate the levels of aromatase and thereby, levels of endogenous estrogen in developing brain. These results indicate that L. rohita swim-up fry can be used to detect environmental endocrine disruptors either using cyp19a1b gene expression or vitellogenin induction. Copyright © 2018 Elsevier Inc. All rights reserved.
Kudo, Toshiyuki; Endo, Yumiko; Taguchi, Rina; Yatsu, Masami; Ito, Kiyomi
2015-05-01
1. Blood levels of S-warfarin have been reported to be increased by concomitant administration of metronidazole (MTZ), an antiprotozoal imidazole derivative. 2. To elucidate the mechanism of this interaction and to identify other possible drug-drug interactions, we conducted an in vitro study with the human hepatoma HepaRG cells and cryopreserved human hepatocytes on the ability of MTZ to reduce the expression of cytochrome P450 (CYP) as well as nuclear receptors that regulate the expression of these enzymes. 3. HepaRG cells and cryopreserved human hepatocytes were treated with MTZ (20 to 500 µM) and were then analyzed by real-time RT-PCR to determine mRNA levels of drug-metabolizing enzymes and nuclear receptors. 4. In both cells, the expressions of CYP2C8, CYP2C9, CYP3A4 and constitutive androstane receptor (CAR) were decreased by MTZ treatment. Particularly, in HepaRG cells, their mRNA levels were decreased by MTZ treatment in a concentration-dependent manner. 5. Our findings suggest that the interaction between MTZ and S-warfarin may be due to the MTZ-induced down-regulation of CYP2C9, the primary enzyme responsible for S-warfarin hydroxylation, and CAR, which regulates CYP2C9 expression. We also found that MTZ use may alter the disposition of drugs metabolized by the CYP isozymes investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro
Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR.more » Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.« less
Pezdirc, Marko; Žegura, Bojana; Filipič, Metka
2013-09-01
Heterocyclic aromatic amines (HAAs) are potential human carcinogens formed in well-done meats and fish. The most abundant are 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-Amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ). HAAs exert genotoxic activity after metabolic transformation by CYP1A enzymes, that is well characterized, however the genomic and intervening responses are not well explored. We have examined cellular and genomic responses of human hepatoma HepG2 cells after 24h exposure to HAAs. Comet assay revealed increase in formation of DNA strand breaks by PhIP, MeIQx and IQ but not 4,8-DiMeIQx, whereas increased formation of micronuclei was not observed. The four HAAs up-regulated expression of genes encoding metabolic enzymes CYP1A1, CYP1A2 and UGT1A1 and expression of TP53 and its downstream regulated genes CDKN1A, GADD45α and BAX. Consistent with the up-regulation of CDKN1A and GADD45α the cell-cycle analysis showed arrest in S-phase by PhIP and IQ, and in G1-phase by 4,8-DiMeIQx and MeIQx. The results indicate that upon exposure to HAAs the cells respond with the cell-cycle arrest, which enables cells to repair the damage or eliminate them by apoptosis. However, elevated expression of BCL2 and down-regulation of BAX may indicate that HAAs could suppress apoptosis meaning higher probability of damaged cells to survive and mutate. Copyright © 2013 Elsevier Ltd. All rights reserved.
PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.
Coumoul, Xavier; Diry, Monique; Barouki, Robert
2002-11-15
OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.
Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study.
Uchida, Toyoyoshi; Nishimoto, Koshiro; Fukumura, Yuki; Asahina, Miki; Goto, Hiromasa; Kawano, Yui; Shimizu, Fumitaka; Tsujimura, Akira; Seki, Tsugio; Mukai, Kuniaki; Kabe, Yasuaki; Suematsu, Makoto; Gomez-Sanchez, Celso E; Yao, Takashi; Horie, Shigeo; Watada, Hirotaka
2017-03-01
Most adrenocortical carcinomas (ACCs) produce excessive amounts of steroid hormones including aldosterone, cortisol, and steroid precursors. However, aldosterone- and cortisol-producing cells in ACCs have not yet been immunohistochemically described. We present a case of ACC causing mild primary aldosteronism and subclinical Cushing's syndrome. Removal of the tumor cured both conditions. In order to examine the expression patterns of the steroidogenic enzymes responsible for adrenocortical hormone production, 10 tumor portions were immunohistochemically analyzed for aldosterone synthase (CYP11B2), 11β-hydroxylase (CYP11B1, cortisol-synthesizing enzyme), 3β-hydroxysteroid dehydrogenase (3βHSD, upstream enzyme for both CYP11B2 and CYP11B1), and 17α-hydroxylase/C17-20 lyase (CYP17, upstream enzyme for CYP11B1, but not for CYP11B1). CYP11B2, CYP11B1, and 3βHSD were expressed sporadically, and their expression patterns varied significantly among the different tumor portions examined. The expression of these enzymes was random and not associated with each other. CYP17 was expressed throughout the tumor, even in CYP11B2-positive cells. Small tumor cell populations were aldosterone- or cortisol-producing cells, as judged by 3βHSD coinciding with either CYP11B2 or CYP11B1, respectively. These results suggest that the tumor produced limited amounts of aldosterone and cortisol due to the lack of the coordinated expression of steroidogenic enzymes, which led to mild clinical expression in this case. We delineated the expression patterns of steroidogenic enzymes in ACC. The coordinated expression of steroidogenic enzymes in normal and adenoma cells was disturbed in ACC cells, resulting in the inefficient production of steroid hormones in relation to the large tumor volume.
Expression of estrogenicity genes in a lineage cell culture model of human breast cancer progression
Fu, Jiaqi; Weise, Amy M.; Falany, Josie L.; Falany, Charles N.; Thibodeau, Bryan J.; Miller, Fred R.; Kocarek, Thomas A.
2013-01-01
TaqMan Gene Expression assays were used to profile the mRNA expression of estrogen receptor (ERα and ERβ) and estrogen metabolism enzymes including cytosolic sulfotransferases (SULT1E1, SULT1A1, SULT2A1, and SULT2B1), steroid sulfatase (STS), aromatase (CYP19), 17β-hydroxysteroid dehydrogenases (17βHSD1 and 2), CYP1B1, and catechol-O-methyltransferase (COMT) in an MCF10A-derived lineage cell culture model for basal-like human breast cancer progression and in ERα-positive luminal MCF7 breast cancer cells. Low levels of ERα and ERβ mRNA were present in MCF10A-derived cell lines. SULT1E1 mRNA was more abundant in confluent relative to subconfluent MCF10A cells, a non-tumorigenic proliferative breast disease cell line. SULT1E1 was also expressed in preneoplastic MCF10AT1 and MCF10AT1K.cl2 cells, but was markedly repressed in neoplastic MCF10A-derived cell lines as well as in MCF7 cells. Steroid-metabolizing enzymes SULT1A1 and SULT2B1 were only expressed in MCF7 cells. STS and COMT were widely detected across cell lines. Pro-estrogenic 17βHSD1 mRNA was most abundant in neoplastic MCF10CA1a and MCF10DCIS.com cells, while 17βHSD2 mRNA was more prominent in parental MCF10A cells. CYP1B1 mRNA was most abundant in MCF7 cells. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) induced SULT1E1 and CYP19 mRNA but suppressed CYP1B1, STS, COMT, 17βHSD1, and 17βHSD2 mRNA in MCF10A lineage cell lines. In MCF7 cells, TSA treatment suppressed ERα, CYP1B1, STS, COMT, SULT1A1, and SULT2B1 but induced ERβ, CYP19 and SULT2A1 mRNA expression. The results indicate that relative to the MCF7 breast cancer cell line, key determinants of breast estrogen metabolism are differentially regulated in the MCF10A-derived lineage model for breast cancer progression. PMID:19308726
Effects of octylphenol on the expression of StAR, CYP17 and CYP19 in testis of Rana chensinensis.
Bai, Yao; Li, Xin-Yi; Liu, Zhi-Jun; Zhang, Yu-Hui
2017-04-01
It has been proposed that a decline in sperm quality is associated with exposure to environmental chemicals with estrogenic activity. Seeking possible explanations for this effect, this study investigated the effects of octylphenol (OP) on the synthesis of steroid hormones in amphibian. Rana chensinensis were exposed to 10 -8 , 10 -7 and 10 -6 mol/L OP after 10, 20, 30 and 40 days. The cDNA fragments of StAR (274bp), CYP17 (303bp) and CYP19 (322bp) were cloned. In situ hybridization and immunohistochemistry revealed that positive signals of StAR, CYP17, CYP19 mRNA and proteins mainly in the Leydig cells of testes. Real-time PCR showed that up-regulation of StAR and CYP19, and down-regulation of CYP17 after exposure to 10 -8 , 10 -7 and 10 -6 mol/L OP. The results suggest that OP can alter transcriptions of StAR, CYP17 and CYP19, thus disturb the expressions of StAR, P450c17 and P450arom, thereby adversely affect steroid synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.
2018-01-01
Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802
Role of melatonin in the epigenetic regulation of breast cancer.
Korkmaz, Ahmet; Sanchez-Barcelo, Emilio J; Tan, Dun-Xian; Reiter, Russel J
2009-05-01
The oncostatic properties of melatonin as they directly or indirectly involve epigenetic mechanisms of cancer are reviewed with a special focus on breast cancer. Five lines of evidence suggest that melatonin works via epigenetic processes: (1) melatonin influences transcriptional activity of nuclear receptors (ERalpha, GR and RAR) involved in the regulation of breast cancer cell growth; (2) melatonin down-regulates the expression of genes responsible for the local synthesis or activation of estrogens including aromatase, an effect which may be mediated by methylation of the CYP19 gene or deacetylation of CYP19 histones; (3) melatonin inhibits telomerase activity and expression induced by either natural estrogens or xenoestrogens; (4) melatonin modulates the cell cycle through the inhibition of cyclin D1 expression; (5) melatonin influences circadian rhythm disturbances dependent on alterations of the light/dark cycle (i.e., light at night) with the subsequent deregulation of PER2 which acts as a tumor suppressor gene.
Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J
2011-05-01
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.
Early onset of puberty and early ovarian failure in CYP7B1 knockout mice.
Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake
2005-02-22
CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol (3betaAdiol). 3betaAdiol is estrogenic in ERalpha or ERbeta positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1(-/-) mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3betaAdiol, CYP7B1 performs two major tasks: (i) it allows 3betaAdiol to have growth inhibitory effects through ERbeta and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3betaAdiol. When CYP7B1 is inactivated, 3betaAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen.
The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5
2006-10-01
It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less
Chowdhary, Vivek; Teng, Kun-Yu; Thakral, Sharda; Zhang, Bo; Lin, Cho-Hao; Wani, Nissar; Bruschweiler-Li, Lei; Zhang, Xiaoli; James, Laura; Yang, Dakai; Junge, Norman; Brüschweiler, Rafael; Lee, William M; Ghoshal, Kalpana
2017-12-01
Acetaminophen toxicity is a leading cause of acute liver failure (ALF). We found that miRNA-122 (miR-122) is down-regulated in liver biopsy specimens of patients with ALF and in acetaminophen-treated mice. A marked decrease in the primary miR-122 expression occurs in mice on acetaminophen overdose because of suppression of its key transactivators, hepatocyte nuclear factor (HNF)-4α and HNF6. More importantly, the mortality rates of male and female liver-specific miR-122 knockout (LKO) mice were significantly higher than control mice when injected i.p. with an acetaminophen dose not lethal to the control. LKO livers exhibited higher basal expression of cytochrome P450 family 2 subfamily E member 1 (CYP2E1) and cytochrome P450 family 1 subfamily A member 2 (CYP1A2) that convert acetaminophen to highly reactive N-acetyl-p-benzoquinone imine. Upregulation of Cyp1a2 primary transcript and mRNA in LKO mice correlated with the elevation of aryl hydrocarbon receptor (AHR) and mediator 1 (MED1), two transactivators of Cyp1a2. Analysis of ChIP-seq data in the ENCODE (Encyclopedia of DNA Element) database identified association of CCCTC-binding factor (CTCF) with Ahr promoter in mouse livers. Both MED1 and CTCF are validated conserved miR-122 targets. Furthermore, depletion of Ahr, Med1, or Ctcf in Mir122 -/- hepatocytes reduced Cyp1a2 expression. Pulse-chase studies found that CYP2E1 protein level is upregulated in LKO hepatocytes. Notably, miR-122 depletion sensitized differentiated human HepaRG cells to acetaminophen toxicity that correlated with upregulation of AHR, MED1, and CYP1A2 expression. Collectively, these results reveal a critical role of miR-122 in acetaminophen detoxification and implicate its therapeutic potential in patients with ALF. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Zhang, Weimin; Lu, Huijie; Jiang, Haiyan; Li, Mu; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong
2012-02-01
Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts. Copyright © 2011 Elsevier Inc. All rights reserved.
Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen
2015-01-01
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144
Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Joo; Seoul National University Bundang Hospital, Seoul; Lee, Eun Kyung
Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was inducedmore » in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice. ► Hypothyroidism sensitizes CAR null mice to toxic effects of carbamazepine.« less
Tchoudakova, A; Kishida, M; Wood, E; Callard, G V
2001-11-01
Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>a) and ovary (a>b) and have a different developmental program (b>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>b) did not reflect expression in fish pituitary in vivo (b>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most prominently in retinal ganglion cells (RGC) and axon-like projections to the optic tectum. Expression of a cyp19a/GFP reporter was not detectable up to 72 hpf. Tandem analysis of cyp19a and cyp19b promoters in living zebrafish embryos can be a useful approach for identifying cis-elements and cellular factors involved in the correct tissue-specific, spatial, temporal and estrogen regulated expression of aromatase genes during CNS and gonadal development.
CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.
Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro
2013-01-29
Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.
Kaul, Artur; Stauffer, Sarah; Berger, Carola; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas, Margarita; Lopez, Margarita Zayas; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf
2009-08-01
Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.
Old dance with a new partner: EGF receptor as the phenobarbital receptor mediating Cyp2B expression.
Meyer, Sharon A; Jirtle, Randy L
2013-05-07
The decades-long quest for the phenobarbital (PhB) receptor that mediates activation of Cyp2B would appear fulfilled with the discovery by Mutoh et al., who found that PhB binds with pharmacological affinity to the epidermal growth factor receptor (EGFR). This finding provides a molecular basis for the suppression of hepatocyte EGFR signaling observed with PhB treatment, as previously noted in the context of tumor promotion. Although the PhB-mediated induction of Cyp2B expression through the association of a canonical nuclear receptor with the 5'-enhancer PBREM of Cyp2B is well known, direct binding of PhB to constitutive active androstane receptor (CAR, also known as NR1I3) typical of other xenobiotic-activated nuclear receptors has eluded detection. One EGF-activated pathway affected by the PhB-EGFR interaction is the loss of tyrosine phosphorylation of the scaffold protein RACK1. Dephosphorylated RACK1 provides the mechanistic link between the binding of PhB to EGFR and its effects on CAR by facilitating the interaction of serine/threonine phosphatase PP2A with inactive phosphorylated CAR. The dephosphorylation of CAR enables its translocation to the nucleus and activation of Cyp2B expression. Because EGFR and transducers RACK1, PP2A, and other partners are highly networked in numerous cellular pathways, this newly discovered partnership will surely reveal new fundamental roles for PhB beyond the regulation of drug metabolism.
Malik, Kafait U; Jennings, Brett L; Yaghini, Fariborz A; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M; Fang, Xiao R
2012-08-01
The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. Copyright © 2011 Elsevier Inc. All rights reserved.
Malik, Kafait U.; Jennings, Brett L.; Yaghini, Fariborz A.; Sahan-Firat, Seyhan; Song, Chi Young; Estes, Anne M.; Fang, Xiao R.
2012-01-01
The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone Nω-nitro-(DOCA)-salt-, and L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3′,5′-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src. PMID:22210049
Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J
2011-01-01
Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 p of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypBW128A-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypBW128A-GFP compared with CypBWT-GFP, consistent with redistribution of CypBW128A-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypBWT-GFP but not CypBW128A-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease. PMID:21270823
Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s.
Kashyap, Mahendra Pratap; Singh, Abhishek Kumar; Kumar, Vivek; Tripathi, Vinay Kumar; Srivastava, Ritesh Kumar; Agrawal, Megha; Khanna, Vinay Kumar; Yadav, Sanjay; Jain, Swatantra Kumar; Pant, Aditya Bhushan
2011-03-21
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10(-5) M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl(2), P(53), P(21), GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10(-5) M), whereas induction of CYPs was insignificant in cells exposed to 10(-6) M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells.
Rajamohan, Senthilkumar B.; Raghuraman, Gayatri; Prabhakar, Nanduri R.
2012-01-01
Abstract Background The Renin-Angiotensin-Aldosterone-System plays a pivotal role in hypertension. Angiotensin II (Ang II) is a major regulator of aldosterone synthesis and secretion, and it is known to facilitate reactive oxygen species (ROS) generation in many cell types. Aims: Here, we assessed the role of ROS signaling in Ang II-induced aldosterone synthesis by focusing on the regulation of aldosterone synthase (CYP11B2), a cytochrome P450 oxidase that catalyzes the final step in aldosterone biosynthetic pathway. Results: Ang II increased CYP11B2 activity, mRNA and protein with a concomitant elevation of 6-Carboxy- 2′,7′-dichlorodihydrofluorescein diacetate fluorescence, malondialdehyde and protein carbonyl levels (indices of ROS), NADPH oxidase (Nox) activity, and H2O2 levels in human and rat adrenal cortical cells. The expression of nuclear receptor related 1 protein, a transcription factor known to regulate CYP11B2 expression, was also augmented by Ang II. These Ang II-evoked effects were either abolished or attenuated by pretreatment of cells with either Ang II type I receptor (AT1R) antagonist, or antioxidants or Nox inhibitor or siRNA silencing of Nox1, 2 and 4, or inhibitors of phospholipase C and protein kinase C. Exogenous H2O2 mimicked the facilitatory effects of Ang II on CYP11B2 activity, mRNA, and protein expression, and these changes were significantly reduced by PEG-catalase. Innovation: ROS, particularly H2O2, is identified as a key regulator of aldosterone production. Conclusion: Our results suggest that Ang II facilitates CYP11B2 activity and the ensuing aldosterone production via activation of AT1R-Nox-H2O2 signaling pathway. Antioxid. Redox Signal. 17, 445–459. PMID:22214405
Wang, Jing; Gong, Yanzhang
2017-06-01
Many studies have suggested the important role of estrogen in ovarian differentiation and development of vertebrates including chicken. Cytochrome P450 aromatase, encoded by CYP19A1, is a key enzyme in estrogen synthesis, but the mechanism of CYP19A1 regulation in chicken remains unknown. Here, we found that CYP19A1 was only expressed in the theca cell layers of chicken ovary follicles. Steroidogenic factor 1 (SF-1, also named as nuclear receptor subfamily 5 group A member 1, NR5A1), a potential regulators, was expressed in both the theca cell layers and granulosa cell layers. Forkheadbox L2 (FOXL2), another potential regulator, was only expressed in the granulosa cell layers. Using luciferase assays in vitro, we found that SF-1 could activate the promoter of CYP19A1 by binding to the nuclear receptor half-site (5'-TCAAGGTCA-3') from -280 to -271 base pairs. FOXL2 did not activate the promoter of chicken CYP19A1 gene in either 293T or DF-1 cells. Overexpression of SF-1 in DF-1 cells upregulated aromatase expression, but FOXL2 could not. Taken together, our results indicated that SF-1 activates CYP19A1 mRNA expression via a conserved binding site in chicken ovary, but FOXL2 may not affect the expression of CYP19A1. Copyright © 2017 Elsevier Inc. All rights reserved.
Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain
Cano-Nicolau, Joel; Vaillant, Colette; Pellegrini, Elisabeth; Charlier, Thierry D.; Kah, Olivier; Coumailleau, Pascal
2016-01-01
Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model. PMID:27047331
Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi
2006-01-01
CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173
Li, Zhi-Hua; Zhong, Li-Qiao; Wu, Yan-Hua; Mu, Wei-Na
2016-02-01
Tributyltin (TBT), a toxic contaminant in aquatic environments, has bio-accumulated in aquatic food webs throughout the world and can be found at toxic levels in some biota. However, the molecular mechanisms and effects of TBT are not fully understood. The aim of the present study was to investigate the effect of long-term exposure of TBT on cytochrome P450 (CYP450) 1 regulation and heat-shock proteins (HSPs) profiling in brain of freshwater teleost. The effects of long-term exposure to TBT on mRNA expression of cytochrome P450 (CYP450) 1 family genes and ethoxyresorufin O-deethylase (EROD) activity in the brain of common carp were evaluated, as well as HSP 70 level. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on EROD activity, HSP 70 level and CYP450 1 family genes expression). The mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity and could be used as potential biomarkers for monitoring the TBT pollution in the field.
Ibrahim, Zein S; Ishizuka, Mayumi; Soliman, Mohamed; ElBohi, Khlood; Sobhy, Wageh; Muzandu, Kaampwe; Elkattawy, Azza M; Sakamoto, Kentaro Q; Fujita, Shoichi
2008-11-01
Nigella sativa (family Ranunculaceae) is an annual plant that has been traditionally used on the Indian subcontinent and in Middle Eastern countries. In this study, we investigated the effect of N. sativa oil on the drug-metabolizing cytochrome P450 (CYP) enzymes and whether it has a protective effect against the acute hepatotoxicity of CCl4. Intraperitoneal injection of rats with CCl4 drastically decreased CYP2E1, CYP2B, CYP3A2, CYP2C11, and CYP1A2 mRNA and protein expressions. Oral administration of 1 ml/kg N. sativa oil every day for one week prior to CCl4 injection alleviated CCl4-induced suppression of CYP2B, CYP3A2, CYP2C11, and CYP1A2. Moreover, CCl4 increased iNOS and TNFalpha mRNA, while N. sativa oil administration for one week prior to CCl4 injection downregulated the CCl4-induced iNOS mRNA and up-regulated IL-10 mRNA. These results indicate that N. sativa oil administration has a protective effect against the CCl4-mediated suppression of hepatic CYPs and that this protective effect is partly due to the downregulation of NO production and up-regulation of the anti-inflammatory IL-10.
Ueyama, Jun; Nadai, Masayuki; Zhao, Ying Lan; Kanazawa, Hiroaki; Takagi, Kenji; Kondo, Takaaki; Takagi, Kenzo; Wakusawa, Shinya; Abe, Fumie; Saito, Hiroko; Miyamoto, Ken-Ichi; Hasegawa, Takaaki
2008-08-01
Thalidomide has been reported to inhibit the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) that are involved in the down-regulation of hepatic cytochrome P450 (CYP) induced by endotoxin. In the present study, we investigated the effects of thalidomide on endotoxin-induced decreases in the activity and expression of hepatic CYP3A2 in rats. Thalidomide (50 mg/kg) was administered orally 22 h and 2 h before intraperitoneal injection of endotoxin (1 mg/kg). Twenty-four hours after the injection of endotoxin, antipyrine clearance experiments were conducted, in which the rats were sacrificed and protein levels of hepatic CYP3A2 were measured. There were no significant differences in the histopathological changes in the liver between the endotoxin-treated and endotoxin plus thalidomide-treated rats. Thalidomide had no effect on the systemic clearance of antipyrine, which is a proper indicator for hepatic CYP3A2 activity, whereas it enhanced endotoxin-induced decrease in the systemic clearance of antipyrine. Western blot analysis revealed that thalidomide had no effect on the protein levels of hepatic CYP3A2, whereas it enhanced the down-regulation of hepatic CYP3A2 by endotoxin. However, there were no significant differences in the concentrations of TNF-alpha and NO in plasma between the endotoxin-treated and endotoxin plus thalidomide-treated rats. The present findings suggest that thalidomide enhances endotoxin-induced decreases in the activity and expression of hepatic CYP3A2.
Wei, Ji-Hua; Luo, Qun-Qiang; Tang, Yu-Jin; Chen, Ji-Xia; Huang, Chun-Lan; Lu, Ding-Gui; Tang, Qian-Li
2018-06-20
Steroid-induced avascular necrosis of femoral head (SANFH) occurs frequently in patients receiving high-dose steroid treatment for these underlying diseases. The target of this study is to investigate the effect of microRNA-320 (miR-320) on SANFH by targeting CYP1A2. CYP1A2 expression was detected using immunohistochemistry. Specimens were collected from patients with SANFH and femoral neck fracture. Seventy rats were assigned into seven groups. The targeting relationship between miR-320 and CYP1A2 was verified by bioinformatics website and dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to detect miR-320 and CYP1A2 expressions. The enzymatic activity of CYP1A2 was detected by fluorescence spectrophotometry. Hemorheology and microcirculation were measured in rats. MiR-320 expression decreased and CYP1A2 expression and enzymatic activity increased in SANFH patients compared to those with femoral neck fracture. CYP1A2 was the target gene of miR-320. Hemorheology and microcirculation results showed that up-regulated expression of CYP1A2 promoted the development of SANFH while increased expression of miR-320 inhibited the development of SANFH. Compared with the SANFH group, the SANFH + miR-320 mimic group showed increased miRNA-320 expression, and decreased CYP1A2 expression and enzymatic activity. Opposite results were found in the SANFH + miR-320 inhibitor group. The SANFH + miR-320 inhibitor + pCR-CYP1A2_KO group showed decreased miRNA-320 expression and the SANFH + pCR-CYP1A2_KO group showed decreased CYP1A2 expression and enzymatic activity. Our findings provide evidences that miR-320 might inhibit the development of SANFH by targeting CYP1A2. Copyright © 2018 Elsevier B.V. All rights reserved.
Jin, Seong Eun; Ha, Hyekyung; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Jeong, Soo-Jin
2016-01-01
Objective: The purpose of this study was to investigate the potential influences of Socheongryong-tang (SCRT) on the messenger ribonucleic acid (mRNA) and protein expression of cytochrome P450 (CYP450) in vivo. Materials and Methods: SCRT was orally administered to either male or female Sprague-Dawley rats once daily at doses of 0, 1000, 2000, or 5000 mg/kg/day for 13 weeks. The mRNA expression of CYP450s (CYP1A1, 1A2, 2B1/2, 2C11, 2E1, 3A1, 3A2, and 4A1) in liver tissues was measured by reverse transcription polymerase chain reaction. And then, the protein expression of CYP1A1 and CYP2B1/2 in liver tissues was analyzed by the Western blot. Results: We found no significant influence in the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1 after repeated administration of SCRT for 13 weeks. By contrast, the mRNA and protein expression of hepatic CYP1A1 was increased by repeated SCRT treatment in male rats, but not in female rats. The mRNA and protein expression of hepatic CYP2B1/2 in both genders was increased by administration of SCRT. Conclusion: A caution is needed when SCRT is co-administered with substrates of CYP2B1/2 for clinical usage. In case of male, an attention is also required when SCRT and drugs metabolized by CYP1A1 are taken together. Our findings provide information regarding the safety and effectiveness of SCRT when combined with conventional drugs. SUMMARY Oral administration of Socheongryong-tang for 13 weeks did not affect the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1In male rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP1A1 and CYP2B1/2In female rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP2B1/2. Abbreviations used: SCRT: Socheongryong-tang, CYP450: Cytochrome P450, HPLC: High performance liquid chromatography, RT-PCR: Reverse transcription polymerase chain reaction. PMID:27601852
Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival
Chang, Wei-Chun; Huang, Shang-Fen; Lee, Yang-Ming; Lai, Hsueh-Chou; Cheng, Bi-Hua; Cheng, Wei-Chung; Ho, Jason Yen-Ping; Jeng, Long-Bin; Ma, Wen-Lung
2017-01-01
Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested. PMID:27893427
Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival.
Chang, Wei-Chun; Huang, Shang-Fen; Lee, Yang-Ming; Lai, Hsueh-Chou; Cheng, Bi-Hua; Cheng, Wei-Chung; Ho, Jason Yen-Ping; Jeng, Long-Bin; Ma, Wen-Lung
2017-01-03
Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested.
Didierjean, Luc; Gondet, Laurence; Perkins, Roberta; Lau, Sze-Mei Cindy; Schaller, Hubert; O'Keefe, Daniel P.; Werck-Reichhart, Danièle
2002-01-01
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites. PMID:12226498
Li, Yan; Wang, Haixu; Zhou, Dangxia; Shuang, Ting; Zhao, Haibo; Chen, Biliang
2018-04-20
BACKGROUND Increasing evidence indicates that long noncoding RNAs (LncRNAs) play a key role in multiple pathological processes. It has been shown that LncRNA steroid receptor RNA activator (SRA) is elevated in peripheral blood of patients with polycystic ovary syndrome (PCOS). The aim of this study was to assess the effect of elevated LncRNA SRA on ovarian granular cells of mice in vitro. MATERIAL AND METHODS We firstly isolated granular cells from mouse ovaries and over-expressed the LncRNA SRA by means of lentiviral transfection in this cell line. Then, we assessed the effects of LncRNA SRA on granular cells through real-time PCR, CCK-8 assay, flow cytometry, Hoechst staining, and Western blot assay. RESULTS We demonstrated that elevated LncRNA SRA stimulated cell growth, changed distribution of cell cycle phases with increase of Cyclin B, Cyclin E, and Cyclin D1, and inhibited cell apoptosis with up-regulation of bcl2 and down-regulation of bax, cleaved-caspase 3, and cleaved-PARP. Moreover, the contents of estradiol (E2) and progesterone (PG) and expressions of their key enzymes (CYP19A1 and CYP11A1) were up-regulated following over-expression of LncRNA SRA. CONCLUSIONS Taken together, our results indicate that abnormal LncRNA SRA may be a risk factor for evoking PCOS.
Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen
2017-04-01
Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Nava-Salazar, Sonia; Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Marhx-Bracho, Alfonso; Phillips-Farfán, Bryan V; Diaz-Avalos, Carlos; Vanoye-Carlo, America
2018-06-16
Cyclophosphamide (CPA) is a pro-drug commonly used in the chemotherapeutic schemes for glioma treatment but has high toxicity and the side effects include brain damage and even death. Since CPA is activated mainly by CY2B6, over-expression of the enzyme in the tumor cells has been proposed to enhance CPA activation. In this study, we explored the induction of the Cyp2b1 (homologous to CYP2B6 ) by nicotine in an animal rat model with glioma. Gene expression and protein levels were analyzed by RT-PCR and Western blot. Nicotine treatment increased CYP2B1 protein levels in the healthy animals’ brain tissue. In the brain tissue of animals with glioma, the CYP2B1 showed a high expression, even before nicotine treatment. Nicotine did not increase significantly the CYP2B1 protein expression in the tumor, but increased its expression in the tumor vicinity, especially around blood vessels in the cortex. We also explored CY2B6 expression in glioma samples derived from pediatric patients. Tumor tissue showed a variable expression of the enzyme, which could depend on the tumor malignancy grade. Induction of the CYP2B6 in pediatric gliomas with lower expression of the enzyme, could be an alternative to improve the antitumoral effect of CPA treatment.
Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen
2016-05-01
Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.
Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals.
Satsu, Hideo; Hiura, Yuto; Mochizuki, Keiichi; Hamada, Mika; Shimizu, Makoto
2008-07-09
The pregnane X receptor (PXR) is understood to be the key regulator for gene expression of such drug-metabolizing enzymes and transporters as multidrug-resistant protein 1 (MDR1) and the cytochrome P450 (CYP) family. We examined the effect of dietary phytochemicals on the PXR-dependent transcriptional activity in human intestinal LS180 cells by using a reporter assay. Among approximately 40 kinds of phytochemicals, tangeretin and ginkgolides A and B markedly induced the PXR-dependent transcriptional activity and also the activity of the human MDR1 promoter. The expression levels of MDR1 mRNA as well as of CYP3A4 mRNA, another gene regulated by PXR, were significantly increased by these phytochemicals. Furthermore, an increase was observed of the MDR1 protein and its functional activity by tangeretin and by ginkgolides A and B. These findings strongly suggest that tangeretin and ginkgolides A and B activated PXR, thereby regulating detoxification enzymes and transporters in the intestines.
Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.
Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe
2017-10-01
Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
CYP3C1, the first member of a new cytochrome P450 subfamily found in zebrafish (Danio rerio).
Corley-Smith, Graham E; Su, Hsiao-Ting; Wang-Buhler, Jun-Lan; Tseng, Hua-Pin; Hu, Chin-Hwa; Hoang, Thuy; Chung, Woon-Gye; Buhler, Donald R
2006-02-24
We report a new cytochrome P450 (CYP) subfamily CYP3C and the cloning through PCR from zebrafish (Danio rerio) of the first member, CYP3C1. The CYP3C1 gene is on Chromosome 3 with 13 ORF exons encoding a 505 amino acid protein which has 44-54% identities with mammalian and teleost CYP3A and CYP3B forms. As evidenced by spectral analysis, the CYP3C1 protein heterologously expressed in yeast is functional. In silico analysis identified, on the same region of the chromosome, three more genes encoding CYP3C1-like proteins that formed a clade with CYP3C1 in a phylogenetic tree. Using RT-PCR, the CYP3C1 mRNA was detected in 1-6dpf embryo/larvae and in adult fish liver and seven extrahepatic tissues. Whole-mount in situ hybridization using a riboprobe demonstrated expression in the brain during 12-120 hpf. At the 120 hpf larval stage, CYP3C1 mRNA was also detected in the pharynx and gastrointestinal tract. TCDD, dexamethasone, and rifampicin, which up-regulated CYP3A65 mRNA in zebrafish larvae, did not alter the CYP3C1 transcript levels suggesting regulatory differences between CYP3A and CYP3C enzymes in this species.
Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae.
Boglino, Anaïs; Ponce, Marian; Cousin, Xavier; Gisbert, Enric; Manchado, Manuel
2017-01-01
The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients. Copyright © 2016 Elsevier Inc. All rights reserved.
Gestational Protein Restriction Reduces Expression of Hsd17b2 in Rat Placental Labyrinth1
Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra
2012-01-01
ABSTRACT Accumulating evidence strongly supports the premise that testosterone may be a key player in fetal programming on hypertension. Studies have shown that gestational protein restriction doubles the plasma testosterone levels in pregnant rats. In this study, we hypothesized that elevated testosterone levels in response to gestational protein restriction were caused by enhanced expression of steroidogenic enzymes or impaired expression of Hsd17b2, a known testosterone inactivator that converts testosterone to androstenedione in placenta. Pregnant Sprague-Dawley rats were fed normal (20% protein, control; n = 10) or a low-protein diet (6% protein, PR; n = 10) from Day 1 of pregnancy until killed at Days 14, 18, or 21. Junctional (JZ) and labyrinth (LZ) zones of placenta were collected for expression assay on steroidogenic genes (Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b2, and Srd5a1) by real-time PCR. The main findings include the following: 1) expressions of Cyp11a1, Hsd3b1, and Cyp17a1 in JZ were not affected by diet but were affected by day of pregnancy; 2) expression of Hsd17b2 in both female and male JZs was remarkably increased by PR at Days 18 and 21 of pregnancy; 3) expressions of Hsd17b2 were reduced by PR in both female and male LZ at Day 18 of pregnancy and in female LZ at Day 21 of pregnancy; and 4) expression of Srd5a1in LZ was not affected by day of pregnancy, gender, or diet. These results indicate that in response to gestational protein restriction, Hsd17b2 may be a key regulator of testosterone levels and associated activities in placental zones, apparently in a paradoxical manner. PMID:22837477
Early onset of puberty and early ovarian failure in CYP7B1 knockout mice
Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke
2005-01-01
CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5α-androstane-3β, 17β-diol (3βAdiol). 3βAdiol is estrogenic in ERα or ERβ positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1–/– mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3βAdiol, CYP7B1 performs two major tasks: (i) it allows 3βAdiol to have growth inhibitory effects through ERβ and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3βAdiol. When CYP7B1 is inactivated, 3βAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen. PMID:15710898
Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann
2008-11-01
In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.
Imam, Mustapha Umar; Ismail, Maznah
2012-01-01
Xenobiotics constantly influence biological systems through several means of interaction. These interactions are disturbed in type 2 diabetes, with implications for disease outcome. We aimed to study the implications of such disturbances on type 2 diabetes and rice consumption, the results of which could affect management of the disease in developing countries. In a type 2 diabetic rat model induced through a combination of high fat diet and low dose streptozotocin injection, up-regulation of xenobiotic metabolism genes in the diabetic untreated group was observed. Xenobiotic metabolism genes were upregulated more in the white rice (WR) group than the diabetic untreated group while the brown rice (BR) group showed significantly lower expression values, though not as effective as metformin, which gave values closer to the normal non-diabetic group. The fold changes in expression in the WR group compared to the BR group for Cyp2D4, Cyp3A1, Cyp4A1, Cyp2B1, Cyp2E1, Cyp2C11, UGT2B1, ALDH1A1 and Cyp2C6 were 2.6, 2, 1.5, 4, 2.8, 1.5, 1.8, 3 and 5, respectively. Our results suggest that WR may upregulate these genes in type 2 diabetes more than BR, potentially causing faster drug metabolism, less drug efficacy and more toxicity. These results may have profound implications for rice eating populations, constituting half the world’s population. PMID:22942722
Genetic Predictors of Interindividual Variability in Hepatic CYP3A4 ExpressionS⃞
Lamba, Vishal; Panetta, John C.; Strom, Stephen
2010-01-01
Variability in hepatic CYP3A4 cannot be explained by common CYP3A4 coding variants. We previously identified polymorphisms in pregnane X receptor (PXR) and ATP-binding cassette subfamily B member 1 (ABCB1) associated with CYP3A4 mRNA levels in small cohorts of human livers. However, the relative contributions of these genetic variations or of polymorphisms in other CYP3A4 regulators to variable CYP3A4 expression were not known. We phenotyped livers from white donors (n = 128) by quantitative real-time polymerase chain reaction for expression of CYP3A4, CYP3A5, and CYP3A7 and nine transcriptional regulators, coactivators, and corepressors. We resequenced hepatic nuclear factor-3-β (HNF3β, FoxA2), HNF4α, HNF3γ (FoxA3), nuclear receptor corepressor 2 (NCoR2), and regions of the CYP3A4 promoter and genotyped informative single-nucleotide polymorphisms in PXR and ABCB1 in the same livers. CYP3A4 mRNA was positively correlated with PXR and FoxA2 and negatively correlated with NCoR2 mRNA. A common silent polymorphism and a polymorphic trinucleotide (CCT) repeat in FoxA2 were associated with CYP3A4 expression. The transcriptional activity of the FoxA2 polymorphic CCT repeat alleles (wild-type, n = 14 and variant, n = 13, 15, and 19) when assayed by luciferase reporter transactivation assays was greatest for the wild-type repeat, with deviations from this number having decreased transcriptional activity. This corresponded with higher expression of FoxA2 mRNA and its targets PXR and CYP3A4 in human livers with (CCT) n = 14 genotypes. Multiple linear regression analysis was used to quantify the contributions of selected genetic polymorphisms to variable CYP3A4 expression. This approach identified sex and polymorphisms in FoxA2, HNF4α, FoxA3, PXR, ABCB1, and the CYP3A4 promoter that together explained as much as 24.6% of the variation in hepatic CYP3A4 expression. PMID:19934400
Shu, Nan; Hu, Mengyue; Ling, Zhaoli; Liu, Peihua; Wang, Fan; Xu, Ping; Zhong, Zeyu; Sun, Binbin; Zhang, Mian; Li, Feng; Xie, Qiushi; Liu, Xiaodong; Liu, Li
2016-01-01
Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation. PMID:27624558
Schiffer, Lina; Anderko, Simone; Hobler, Anna; Hannemann, Frank; Kagawa, Norio; Bernhardt, Rita
2015-02-25
Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which clearly shows the potential of the developed system for application in the pharmaceutical industry.
Yang, Jie; Zhao, Hui; Chan, King Ming
2017-01-01
Polybrominated diphenyl ethers (PBDEs) were once widely used as flame retardants in furniture and electronic products, and contamination persists in developing countries due to the dismantling of electronic waste. Our previous study confirmed that 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) induced cytochrome P450 1A (Cyp1a) via aryl hydrocarbon receptor (Ahr)-mediated signaling in the zebrafish liver cell line (ZFL) in vitro . In this study, the toxicities of BDE-47 and BDE-99 at environmentally relevant concentrations (50 and 500 nM) were evaluated in newly hatched zebrafish ( Danio rerio ) larvae in vivo. A time-course study (8, 24, 48, and 96 h) was performed. BDE-99 was observed to cause yolk sac edema and pericardial edema after 72 h of exposure. Real-time polymerase chain reaction assay and whole-mount in situ hybridization assay confirmed cyp1a induction by BDE-99 in the liver and intestine. Continuous down-regulation of trβ by as much as 2.1-fold after 96 h and transient down-regulation of ttr by 7.1-fold after 24 h indicated the interference of BDE-99 in the thyroid hormone system. cyp1a induction was also observed in BDE-47-treated larvae, but cellular localization of cyp1a was not confirmed by whole-mount in situ hybridization. The induction of four cyp1 genes ( cyp1a, cyp1b1, cyp1c1 and cyp1c2 ) by both BDE congeners warrants further study to understand the in vivo metabolism of BDE-47 and BDE-99 and the dioxin-like toxicity potencies of the OH-/MeO-PBDEs. The data obtained in this study will aid the characterization of molecular disorders caused by PBDEs in fish and help to delineate better models for toxicity assessment of environmental pollutants in ecological systems and in other vertebrates such as humans.
Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Dosari, Mohammed; Zhang Guisheng; Knapp, Joseph E.
2006-01-13
Fifteen luciferase plasmid constructs driven by various promoters including cytomegalovirus (CMV), Rous sarcoma virus (RSV), human serum albumin (SA), {alpha}-1 antitrypsin (AAT), cytochrome P450 CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP3A4, mouse CYP2b10, human amyloid precursor protein (APP), chicken {beta} actin (ACT), nuclear factor {kappa} B (NF{kappa}B), and heat shock protein 70 (HS) promoters were hydrodynamically introduced into mouse hepatocytes, and the level and persistence of luciferase gene expression were examined. Eight hours post-gene transfer, the CMV and AAT promoters showed the highest activity, followed by the CYP2D6, HS, and RSV promoters which were slightly less active. The human serum albumin promotermore » exhibited the lowest activity among the promoters examined. The time course of gene expression showed a two-phase decline in luciferase activity with a rapid phase within First 5-7 days and a slower decline thereafter. Results from Southern and Northern blot analyses revealed a good correlation between the decline of luciferase activity and the decrease in mRNA level, suggesting promoter silencing as the possible mechanism for the observed transient luciferase gene expression. Inclusion of EBN1 and oriP sequences of Epstein-Barr virus into the plasmid extended the period of active transcription for about one week. These results provide important information concerning the role of promoters in regulating transgene expression and for the proper design of plasmids for gene expression and gene therapy.« less
Role of CYP1B1 in PAH-DNA Adduct Formation and Breast Cancer Risk
2006-03-01
32 cases and 11 controls) undergoing surgery and analyzed these specimens for CYP1B1 gene expression, CYP1B1 genotype and PAH-DNA adducts. CYP1B1...quantitated and its purity determined by its 260/280 nm absorption. Samples were aliqoted for later measurements of CYP1B1 genotype and DNA adducts...19.78) 0.06 – 73.7 d. Perform CYP1B1 genotype analysis The CYP1B1 genotype at two polymorphic sites located in the catalytic side of the enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peretz, Jackye, E-mail: peretz@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu
Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10more » μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible.« less
Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong
2013-06-05
DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.
Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong
2013-01-01
DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis. PMID:23577625
CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.
Busi, Florent; Cresteil, Thierry
2005-09-01
The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.
Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.
Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P
2007-08-01
Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.
Monocrotophos Induced Apoptosis in PC12 Cells: Role of Xenobiotic Metabolizing Cytochrome P450s
Kashyap, Mahendra Pratap; Singh, Abhishek Kumar; Kumar, Vivek; Tripathi, Vinay Kumar; Srivastava, Ritesh Kumar; Agrawal, Megha; Khanna, Vinay Kumar; Yadav, Sanjay; Jain, Swatantra Kumar; Pant, Aditya Bhushan
2011-01-01
Monocrotophos (MCP) is a widely used organophosphate (OP) pesticide. We studied apoptotic changes and their correlation with expression of selected cytochrome P450s (CYPs) in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS) and decrease in glutathione (GSH) levels were observed in cells exposed to MCP. Following the exposure of PC12 cells to MCP (10−5 M), the levels of protein and mRNA expressions of caspase-3/9, Bax, Bcl2, P53, P21, GSTP1-1 were significantly upregulated, whereas the levels of Bclw, Mcl1 were downregulated. A significant induction in the expression of CYP1A1/1A2, 2B1/2B2, 2E1 was also observed in PC12 cells exposed to MCP (10−5 M), whereas induction of CYPs was insignificant in cells exposed to 10−6 M concentration of MCP. We believe that this is the first report showing altered expressions of selected CYPs in MCP-induced apoptosis in PC12 cells. These apoptotic changes were mitochondria mediated and regulated by caspase cascade. Our data confirm the involvement of specific CYPs in MCP-induced apoptosis in PC12 cells and also identifies possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells. PMID:21445290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano-Nicolau, Joel
The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. Wemore » showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC{sub 50} ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24 progestins were tested on embryonic brain aromatase expression in zebrafish. • 19 nor-testosterone derivatives induced cyp19a1b expression. • cyp19a1b up-regulation involved functional zfERs. • 19 nor-testosterone derivatives are pro-estrogenic compounds. • Effect of progestins should be further investigated at the brain level.« less
Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae
2015-06-01
Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.
JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE
2015-01-01
Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions. PMID:26137159
Tavakoli, Maryam; Salek-Moghaddam, Alireza; Jeddi-Tehrani, Mahmood; Talebi, Saeed; Kazemi-Sefat, Golnaz-Ensieh; Vafaei, Sedigheh; Mohammadzadeh, Afsaneh; Sheikhhassani, Shahrzad; Zarnani, Amir-Hassan
2015-05-01
Vitamin D exerts important roles during pregnancy, and its deficiency may be associated with several pregnancy complications, including pregnancy loss, yet no data are available for molecules involved in vitamin D metabolism in patients with unexplained recurrent spontaneous abortion. In this study, we investigated possible difference in endometrial expression of vitamin D3 receptor (VDR), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) in women with recurrent spontaneous abortion (n = 8) and healthy controls (n = 8). Gene expression of VDR, CYP27B1, and CYP24A1 was determined by real-time PCR, while VDR and CYP27B1 proteins were localized by immunohistochemistry and their abundance was validated by Western blot. We found that both patient and control groups expressed comparable levels of endometrial VDR, CYP27B1, and CYP24A1 transcripts. In line with the gene-expression results, CYP27B1 and different isoforms of VDR protein were present at the same abundance in the endometria of both groups. No significant alteration in VDR and CYP27B1 immunoreactivity pattern was found in the endometrium of patients compared to fertile controls, however. The results of the present study, therefore, do not support the hypothesis of differential expression of key molecules involved in vitamin D3 metabolism in the endometrium of recurrent spontaneous abortion patients and fertile controls. © 2015 Wiley Periodicals, Inc.
Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason
2012-01-01
Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).
Coller, Janet K; Krebsfaenger, Niels; Klein, Kathrin; Endrizzi, Karin; Wolbold, Renzo; Lang, Thomas; Nüssler, Andreas; Neuhaus, Peter; Zanger, Ulrich M; Eichelbaum, Michel; Mürdter, Thomas E
2002-08-01
To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. The formation of Z-4-hydroxy-tamoxifen from 10 microm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (r(s)=0.256, P<0.05) and CYP2D6 expression (r(s)=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg(-1) protein min(-1), P=0.046, 5.1 vs 9.9 pmol mg(-1) protein min(-1), P=0.053, and 6.8 vs 9.4 pmol mg(-1) protein min(-1), P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction.
Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli
2014-01-01
Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256
Zhang, Ting; Liu, Yan; Chen, Hong; Gao, Jiancao; Zhang, Yingying; Yuan, Cong; Wang, Zaizhao
2017-08-01
Both cytochrome P450c17 (CYP17A1) and P-450 side chain cleavage (CYP11A1) play important roles in steroid biosynthesis. According to our previous studies, bisphenol A (BPA) could regulate the mRNA expression of cyp17a1 and cyp11a1 in rare minnow Gobiocypris rarus. However, the potential mechanism of the regulation is barely understood. In the present study, aiming to explore how BPA affects the mRNA expression of cyp17a1 and cyp11a1 in testes and ovaries of G. rarus, we firstly cloned 340-bp fragment of 5' flanking region of cyp11a1 and then detected the methylation level of CpG loci involved in 5' flanking of cyp11a1 and cyp17a1 and their mRNA expression levels. Results showed that exposure to BPA significantly increased serum estradiol (E2) and 11-ketotesterone (11-KT) concentrations. Ovarian mRNA expression of cyp17a1 and cyp11a1 were significantly decreased after BPA exposure 7- for and 14-days. However, transcriptions of testicular cyp17a1 and cyp11a1 were significantly increased and decreased respectively after BPA treatment for 14days. The DNA methylation levels of cyp17a1 were decreased in ovaries on day 7 and increased in ovaries and decreased in testes respectively on day 14. The methylation levels of cyp11a1 were increased in ovaries on day 7 and both ovaries and testes on day 14. There were a significant correlation between DNA methylation at specific CpG loci and cyp17a1 and cyp11a1 genes transcription levels. In conclusion, the CpG loci methylation in 5' flanking region appears to involve in the regulation of mRNA expression of cyp17a1 and cyp11a1 mediated by BPA. Copyright © 2017 Elsevier Inc. All rights reserved.
Interleukin 6 inhibits the differentiation of rat stem Leydig cells.
Wang, Yiyan; Chen, Lanlan; Xie, Lubin; Li, Linchao; Li, Xiaoheng; Li, Huitao; Liu, Jianpeng; Chen, Xianwu; Mao, Baiping; Song, Tiantian; Lian, Qingquan; Ge, Ren-Shan
2018-09-05
Inflammation causes male hypogonadism. Several inflammatory cytokines, including interleukin 6 (IL-6), are released into the blood and may suppress Leydig cell development. The objective of the present study was to investigate whether IL-6 affected the proliferation and differentiation of rat stem Leydig cells. Leydig cell-depleted rat testis (in vivo) and seminiferous tubules (in vitro) with ethane dimethane sulfonate (EDS) were used to explore the effects of IL-6 on stem Leydig cell development. Intratesticular injection of IL-6 (10 and 100 ng/testis) from post-EDS day 14 to 28 blocked the regeneration of Leydig cells, as shown by the lower serum testosterone levels (21.6% of the control at 100 ng/testis dose), the down-regulated Leydig cell gene (Lhcgr, Star, Cyp11a1, Cyp17a1, and Hsd17b3) expressions, and the reduced Leydig cell number. Stem Leydig cells on the surface of the seminiferous tubules were induced to enter the Leydig cell lineage in vitro in the medium containing luteinizing hormone and lithium. IL-6 (1, 10, and 100 ng/ml) concentration-dependently decreased testosterone production and Lhcgr, Cyp11a1, Cyp17a1, Hsd17b3 and Insl3 mRNA levels. The IL-6 mediated effects were antagonized by Janus kinase 1 (JAK) inhibitor (filgotinib) and Signal Transducers and Activators of Transcription 3 (STAT3) inhibitor (S3I-201), indicating that a JAK-STAT3 signaling pathway is involved. In conclusion, our results demonstrated that IL-6 was an inhibitory factor of stem Leydig cell development. Copyright © 2017. Published by Elsevier B.V.
Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis
Rao, P. S. S.; Kumar, Santosh
2015-01-01
High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767
Sarasquete, Carmen; Úbeda-Manzanaro, Maria; Ortiz-Delgado, Juan Bosco
2017-09-01
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth. Copyright © 2017. Published by Elsevier Inc.
Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2
Yang, Shenglan; Gong, Wei; Wang, Yan; Cianflone, Katherine; Tang, Jiarong; Wang, Dao Wen
2012-01-01
Background MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3′ untranslated region (3′UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. Methods and Results Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3′UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. Conclusions Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes. PMID:22761738
Li, Meng; Wu, Qiong; Wang, Qiangwei; Xiang, Dandan; Zhu, Guonian
2018-06-01
In aquatic environment, the presence of nanoparticles (NPs) has been reported to modify the bioavailability and toxicity of the organic toxicants. Nevertheless, the combined toxicity of NPs and the pesticides that were used world-widely still remains unclear. Cypermethrin (CYP), a synthetic pyrethroid insecticide, is commonly used for controlling agricultural and indoor pests. Therefore, the effects of titanium dioxide NPs (nTiO 2 ) on CYP bioconcentration and its effects on the neuronal development in zebrafish were investigated in our study. Zebrafish embryos (2- hour-post-fertilization, hpf) were exposed to CYP (0, 0.4, 2 and 10 μg/L) alone or co-exposed with nTiO 2 (1 mg/L) until 120-hpf. nTiO 2 is taken up by zebrafish larvae and also it can adsorb CYP. The zebrafish body burdens of CYP was observed and CYP uptake was increased by nTiO 2 , indicating that the nTiO 2 could accelerate the bioaccumulation of CYP in larvae. Co-exposure of nTiO 2 and CYP induced the generation of reactive oxygen species. Exposure to CYP alone significantly decreased the mRNA expression of genes, including glial fibrillary acidic protein (gfap), α1-tubulin, myelin basic protein (mbp) and growth associated protein (gap-43). Besides, reductions of serotonin, dopamine and GABA concentrations were observed in zebrafish and the larval locomotion was significantly decreased in response to the lower level of the neurotransmitters. Moreover, co-exposure of nTiO 2 and CYP caused further significantly decreased in the locomotion activity, and enhanced the down-regulation of the mRNA expression of specific genes and the neurotransmitters levels. The results demonstrated that nTiO 2 increased CYP accumulation and enhanced CYP-induced developmental neurotoxicity in zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.
MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.
Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A
2010-05-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.
MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma
Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.
2010-01-01
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954
Ohkawa, Hideo; Inui, Hideyuki
2015-06-01
A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.
Itakura, Takao; El-Kady, Mohamed; Mitsuo, Ryoichi; Kaminishi, Yoshio
2005-01-01
Cytochrome P450 (CYP) enzymes constitute a multigene family of many endogenous and xenobiotic substances. The CYP1 family is of particular interest in environmental toxicology because its members are dominant in the metabolism of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and aryl amines. A new complementary DNA of the CYP1C subfamily encoding CYP1C1 was isolated from carp liver after intraperitoneal injection of beta-napthoflavone (BNF). The full-length cDNA obtained contained a 5' noncoding region of 244 bp, an open reading frame of 1572 bp coding for 524 amino acids, a stop codon, and a 3' noncoding region of 965 bp. The predicted molecular weight of the protein was approximately 59.3 kDa. The deduced amino acid sequence of this cDNA was 82.1% and 80.2% similar to Japanese eel and scup CYP1C1 sequences, respectively, while it exhibited a similarity of 74.9% with the scup CYP1C2 sequence. The deduced amino acid sequence of carp CYP1C1 showed similarities with those of the reported CYP1B1s of teleosts and mammals of 48.4, 48.8, 48.2, 48.6, 45.3, and 45.5% for carp CYP1B1, carp CYP1B2, plaice CYP1B1, and human, rat, and mouse CYP1B1, respectively. The phylogenetic tree constructed using fish and mammalian CYP1 sequences suggested a closer relationship of the CYP1C subfamily to CYP1B than to CYP1A. The tree showed the possibility of the existence of CYP1C subfamily genes in mammalian species. Northern blot analysis for the liver, intestine, gills, and kidney showed no detectable induced expression but constitutive expression in the gill organs.
Tripathi, Vinay K.; Kumar, Vivek; Singh, Abhishek K.; Kashyap, Mahendra P.; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K.; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B.
2014-01-01
The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics. PMID:24663500
Huby, Anne-Cécile; Antonova, Galina; Groenendyk, Jake; Gomez-Sanchez, Celso E; Bollag, Wendy B; Filosa, Jessica A; Belin de Chantemèle, Eric J
2015-12-01
In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart. © 2015 American Heart Association, Inc.
Li, Linxi; Chen, Xiaomin; Hu, Guoxin; Wang, Sicong; Xu, Renai; Zhu, Qiqi; Li, Xiaoheng; Wang, Mingcang; Lian, Qing-Quan; Ge, Ren-Shan
2016-01-01
Dibutyl phthalate (DBP) is a widely used synthetic phthalic diester and monobutyl phthalate (MBP) is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05–50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes. PMID:27148549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Berg, Cecilia
2011-01-15
The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versusmore » the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.« less
The hepatotoxicity of multi-walled carbon nanotubes in mice
NASA Astrophysics Data System (ADS)
Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang
2009-11-01
The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.
Chiba, Tsuyoshi; Noji, Keiko; Shinozaki, Shohei; Suzuki, Sachina; Umegaki, Keizo; Shimokado, Kentaro
2016-12-01
Non-alcoholic fatty liver disease (NAFLD) is associated with impaired liver function, and resveratrol could suppress NAFLD progression. This study examined the effects of NAFLD on the expression of major cytochrome P450 (CYP) subtypes in the liver and whether the expression could be attenuated by resveratrol. C57BL/6 mice (male, 10 weeks of age) were fed a high-fat and high-sucrose (HFHS) diet to induce NAFLD. Major Cyp subtype mRNA expression in the liver was measured by real-time RT-PCR. Body and liver weights at 4 and 12 weeks were significantly higher in mice fed the HFHS diet compared with control. The HFHS diet significantly increased the accumulation of cholesterol and triglycerides at 12 weeks. Under this condition, the HFHS diet increased the expression of Cyp1a2 and decreased that of Cyp3a11 at 1 week and thereafter. On the other hand, Cyp1a1, 2b10 and 2c29 mRNA expression levels in the liver were significantly increased at 12 weeks only. Resveratrol (0.05% (w/w) in diet) slightly suppressed lipid accumulation in the liver, but failed to recover impaired Cyp gene expression levels in NAFLD. Drug metabolism may be impaired in NAFLD, and each Cyp subtype is regulated in a different manner. © 2016 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Hannon, Patrick, E-mail: phannon2@illinois.edu
2012-10-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent ovarian toxicant. Previously, we demonstrated that in vitro TCDD (1 nM) exposure decreases production/secretion of the sex steroid hormones progesterone (P4), androstenedione (A4), testosterone (T), and 17β-estradiol (E2) in mouse antral follicles. The purpose of this study was to determine the mechanism by which TCDD inhibits steroidogenesis. Specifically, we examined the effects of TCDD on the steroidogenic enzymes, atresia, and the aryl hydrocarbon receptor (AHR) protein. TCDD exposure for 48 h increased levels of A4, without changing HSD3B1 protein, HSD17B1 protein, estrone (E1), T or E2 levels. Further, TCDD did not alter atresia ratings comparedmore » to vehicle at 48 h. TCDD, however, did down regulate the AHR protein at 48 h. TCDD exposure for 96 h decreased transcript levels for Cyp11a1, Cyp17a1, Hsd17b1, and Cyp19a1, but increased Hsd3b1 transcript. TCDD exposure particularly lowered both Hsd17b1 transcript and HSD17B1 protein. However, TCDD exposure did not affect levels of E1 in the media nor atresia ratings at 96 h. TCDD, however, decreased levels of the proapoptotic factor Bax. Collectively, these data suggest that TCDD exposure causes a major block in the steroidogenic enzyme conversion of A4 to T and E1 to E2 and that it regulates apoptotic pathways, favoring survival over death in antral follicles. Finally, the down‐regulation of the AHR protein in TCDD exposed follicles persisted at 96 h, indicating that the activation and proteasomal degradation of this receptor likely plays a central role in the impaired steroidogenic capacity and altered apoptotic pathway of exposed antral follicles. -- Highlights: ► TCDD disrupts steroidogenic enzymes in mouse antral follicles. ► TCDD particularly affects the HSD17B1 enzyme in mouse antral follicles. ► TCDD does not affect atresia ratings in mouse antral follicles. ► TCDD decreases levels of the proapoptitic factor Bax in mouse antral follicles. ► TCDD down regulates the AHR protein in mouse antral follicles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracia, Tannia; Hilscherova, Klara; Jones, Paul D.
2007-12-01
The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantlymore » increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.« less
Peretz, Jackye; Flaws, Jodi A
2013-09-01
Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18h and 72h, respectively, compared to controls. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased progesterone levels beginning at 24h and decreased androstenedione, testosterone, and estradiol levels at 72h and 96h compared to controls. Further, after removing BPA from the culture media at 20h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48h and 72h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddens, Lisbeth K.; Superfund Research Center, Oregon State University, Corvallis, OR 97331; Bunde, Kristi L.
FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1,more » Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.« less
2011-01-01
Background Previously, in boars with extreme androstenone levels, differential expression of the CYP11A1 gene in the testes has been characterised. CYP11A1 is located in a region where a QTL influencing boar fat androstenone levels has been detected in a Large White pig population. Clarifying the role of CYP11A1 in boar taint is important because it catalyses the initial step of androstenone synthesis and also of steroid synthesis. Results A genome-wide association study located CYP11A1 at approximately 1300 kb upstream from SNP H3GA0021967, defining the centre of the region containing the QTL for androstenone variation. In this study, we partially sequenced the CYP11A1 gene and identified several new single nucleotide polymorphisms (SNP) within it. Characterisation of one animal, heterozygous for CYP11A1 testicular expression but homozygous for a haplotype of a large region containing CYP11A1, revealed that variation of CYP11A1 expression is probably regulated by a mutation located downstream from the SNP H3GA0021967. We analysed CYP11A1 expression in LW families according to haplotypes of the QTL region's centre. Effects of haplotypes on CYP11A1 expression and on androstenone accumulation were not concordant. Conclusion This study shows that testicular expression of CYP11A1 is not solely responsible for the QTL influencing boar fat androstenone levels. As a conclusion, we propose to refute the hypothesis that a single mutation located near the centre of the QTL region could control androstenone accumulation in fat by regulating the CYP11A1 expression. PMID:21504607
Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways
Slominski, Andrzej T.; Zmijewski, Michal A.; Semak, Igor; Zbytek, Blazej; Pisarchik, Alexander; Li, Wei; Zjawiony, Jordan; Tuckey, Robert C.
2013-01-01
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7-steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu. PMID:23869782
Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest
2008-01-01
Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.
Kasimanickam, Vanmathy R; Kasimanickam, Ramanathan K; Dernell, William S
2014-01-01
Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution serves as a useful resource for further elucidation of the regulatory role of individual miRNA in RA synchronized canine spermatogenesis.
Girard, Beatrice M.; Malley, Susan; May, Victor; Vizzard, Margaret A.
2016-01-01
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF and receptors (TrkA, TrkB, p75NTR) transcripts expression in tissues from NGF-OE and wildtype (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 d). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 d) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 d) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB and P75NTR mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 d) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF and receptors (TrkA, TrkB, p75NTR) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways. PMID:27259880
Huang, Xian-Ju; Ihsan, Awais; Wang, Xu; Dai, Meng-Hong; Wang, Yu-Lian; Su, Shi-Jia; Xue, Xi-Juan; Yuan, Zong-Hui
2009-12-15
Mequindox (MEQ) is a synthetic quinoxaline 1,4-dioxides (QdNOs) derivative which can effectively improve growth and feed efficiency in animals. This study was to investigate the dose-dependent long-term toxicity in the adrenal of male rats exposed to 180 days of MEQ feed. Our data demonstrated that high doses of MEQ in the diet for 180 days led to adrenal damage and steroid hormone decrease, combined with sodium decrease and potassium increase in rat plasma. Significant changes of GSH and SOD in plasma were observed in the high doses (110, 275 mg/kg) groups. At the same doses, MEQ treatment down-regulated the mRNA levels of CYP11A1, CYP11B1 and CYP11B2 which located in mitochondria, but up-regulated mRNA levels of CYP21 and 3beta-HSD which located in endoplasmic reticulum. In conclusion, we reported the dose-dependent long-term toxicity of MEQ on adrenal gland in male rats, which raise awareness of its toxic effects to animals and consumers, and its mechanism may involve in oxidative stress and steroid hormone biosynthesis pathway.
Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi
2012-05-01
Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.
Maayah, Zaid H; Althurwi, Hassan N; El-Sherbeni, Ahmed A; Abdelhamid, Ghada; Siraki, Arno G; El-Kadi, Ayman O S
2017-05-01
Numerous experimental studies have demonstrated the role of cytochrome P450 1B1 (CYP1B1) and its associated mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) metabolite in the pathogenesis of cardiac hypertrophy. However, the ability of isoproterenol (ISO) to induce cardiac hypertrophy through mid-chain HETEs has not been investigated yet. Therefore, we hypothesized that ISO induces cardiac hypertrophy through the induction of CYP1B1 and its associated mid-chain HETE metabolites. To test our hypothesis, Sprague-Dawley rats were treated with ISO (5 mg/kg i.p.) for 12 and 72 h whereas, human ventricular cardiomyocytes RL-14 cells were exposed to 100 μM ISO in the presence and absence of 0.5 μM tetramethoxystilbene (TMS) a selective CYP1B1 inhibitor, or 25 nM CYP1B1-siRNA. Moreover, RL-14 cells were transiently transfected with the CRISPR-CYP1B1 plasmid. Thereafter, real-time PCR, western blot analysis, and liquid chromatography-electrospray ionization mass spectroscopy were used to determine the level of gene expression, protein expression, and mid-chain HETEs, respectively. Our results showed that ISO induced CYP1B1 protein expression and the level of cardiac mid-chain HETEs in vivo at pre-hypertrophic and hypertrophic stage. In vitro, inhibition of CYP1B1 using TMS or CYP1B1-siRNA significantly attenuates ISO-induced hypertrophy. Furthermore, overexpression of CYP1B1 significantly induced cellular hypertrophy and mid-chain HETEs metabolite. Mechanistically, the protective effect of TMS against cardiac hypertrophy was mediated through the modulation of superoxide anion, mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB). In conclusion, our study provides the first evidence that CYP1B1 and its associated mid-chain HETE metabolites are directly involved in the ISO-induced cardiac hypertrophy.
Shi, Yinghua; Guo, Rui; Wang, Xianke; Yuan, Dedi; Zhang, Senhao; Wang, Jie; Yan, Xuebing; Wang, Chengzhang
2014-01-01
To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE) and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD) rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC) and total bile acids (TBA) levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1) The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group) (P<0.05). (2) Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05). TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05). (3) mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05), as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05). The activities of these enzymes also paralleled the observed changes in mRNA levels. (4) There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1) the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2) the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia. PMID:24505463
In vivo investigation on the chronic hepatotoxicity induced by sertraline.
Almansour, Mansour I; Jarrar, Yazun B; Jarrar, Bashir M
2018-05-30
Although sertraline is widely prescribed as relatively safe antidepressant drug, hepatic toxicity was reported in some patients with sertraline treatment. The present study was conducted to investigate the morphometric, hepatotoxicity, and change in gene expression of drug metabolizing enzymes. Male healthy adult rabbits (Oryctolagus cuniculus) ranging from 1050 to 1100 g were exposed to oral daily doses of sertraline (0, 1, 2, 4, 8 mg/kg) for 9 weeks. The animals were subjected to morphometric, hepatohistological, histochemical and quantitative real-time polymerase chain reaction analyses. Sertraline chronic exposure induced morphometric changes and provoked histological and histochemical alterations including: hepatocytes hydropic degeneration, necrosis, nuclear alteration, sinusoidal dilation, bile duct hyperplasia, inflammatory cells infiltration, portal vessel congestion, Kupffer cells hyperplasia, portal fibrosis and glycogen depletion. In addition, the gene expression of drug and arachidonic acid metabolizing enzymes were reduced significantly (p value <0.05). The most affected genes were cyp4a12, ephx2, cyp2d9 and cyp1a2, demonstrating 5 folds or more down-regulation. These findings suggest that chronic sertraline treatment induced toxic histological alterations in the hepatic tissues and reduced the gene expression of drug metabolizing enzymes. Patients on chronic sertraline treatment may be on risk of hepatotoxicity with reduced capacity to metabolize drugs and fatty acids. Copyright © 2018 Elsevier B.V. All rights reserved.
Leptin influences estrogen metabolism and accelerates prostate cell proliferation.
Habib, Christine N; Al-Abd, Ahmed M; Tolba, Mai F; Khalifa, Amani E; Khedr, Alaa; Mosli, Hisham A; Abdel-Naim, Ashraf B
2015-01-15
The present study was designed to investigate the effect of leptin on estrogen metabolism in prostatic cells. Malignant (PC-3) and benign (BPH-1) human prostate cells were treated with 17-β-hydroxyestradiol (1 μM) alone or in combination with leptin (0.4, 4, 40 ng/ml) for 72 h. Cell proliferation assay, immunocytochemical staining of estrogen receptor (ER), liquid chromatography-tandem mass spectrometry method (LC-MS) and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) were used. Cell proliferation assay demonstrated that leptin caused significant growth potentiation in both cells. Immunocytochemical staining showed that leptin significantly increased the expression of ER-α and decreased that of ER-β in PC-3 cells. LC-MS method revealed that leptin increased the concentration 4-hydroxyestrone and/or decreased that of 2-methoxyestradiol, 4-methoxyestradiol and 2-methoxyestrone. Interestingly, RT-PCR showed that leptin significantly up-regulated the expression of aromatase and cytochrome P450 1B1 (CYP1B1) enzymes; however down-regulated the expression of catechol-o-methyltransferase (COMT) enzyme. These data indicate that leptin-induced proliferative effect in prostate cells might be partly attributed to estrogen metabolism. Thus, leptin might be a novel target for therapeutic intervention in prostatic disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Yu-Feng; Tan, Xiao-Ying; Pan, Ya-Xiong; Zhang, Li-Han; Chen, Qi-Liang
2018-05-14
Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco . Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes ( CPT1 , Acsl , Acadl , Acadm , Hadhb , Echsl , Hsd17b4 , Acca , PPARα , CYP8B1 , ACOX1 , ACBP , MAPK , RINGO , Cdc2 , MEK1 , IGF-1R , APC/C, Cdk2 , GnRHR, STAG3 , SMC1 , FSHβ and C-Myc ) and ten down-regulated gene ( PPARγ , FATCD36 , UBC , PDK1 , Acads , Raf , Fizzy , C3H-4 , Raf and PKC ), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is one of the main factors that links fatty acid β-oxidation with oocyte maturation; β-oxidation is essential for leptin-mediated oocyte maturation in fish.
Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu
2013-02-15
The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomicmore » approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more diverse spectrum of CYP isozymes than male. ► First data showing expression of 2F1, 2S1, 2W1, 4A22, 4X1, 26A1 on a protein level.« less
Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies.
Haznedaroglu, I C; Malkan, U Y
2016-10-01
The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Most of the RAS molecules including ACE, ACE2, AGT, AGTR1, AGTR2, AKR1C4, AKR1D1, ANPEP, ATP6AP2, CMA1, CPA3, CTSA, CTSD, CTSG, CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP21A2, DPP3, EGFR, ENPEP, GPER, HSD11B1, HSD11B2, IGF2R, KLK1, LNPEP, MAS1, MME, NR3C1, NR3C2, PREP, REN, RNPEP, and THOP1 are locally present in the BM microenvironment. Local BM RAS peptides control the hematopoietic niche, myelopoiesis, erythropoiesis, thrombopoiesis and the development of other cellular lineages. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. Angiotensin II regulates the proliferation, differentiation, and engraftment of hematopoietic stem cells. Activation of Mas receptor or ACE2 promotes proliferation of CD34+ cells. BM contains a progenitor that expresses renin throughout development. Angiotensin II attenuates the migration and proliferation of CD34+ Cells and promotes the adhesion of both MNCs and CD34+ cells. Renin cells in hematopoietic organs are precursor B cells. The renin cell requires RBP-J to differentiate. Mutant renin-expressing hematopoietic precursors can cause leukemia. Deletion of RBP-J in the renin-expressing progenitors enriches the precursor B-cell gene programme. Mutant cells undergo a neoplastic transformation, and mice develop a highly penetrant B-cell leukemia with multi-organ infiltration and early death. Many biological conditions during the development and function of blood cells are mediated by RAS, such as apoptosis, cellular proliferation, intracellular signaling, mobilization, angiogenesis, and fibrosis. The aim of this paper is to review recent developments regarding the actions of local BM RAS in the genesis of leukemia and other malignancies molecules.
Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E
2001-12-01
Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the regulatory role of estrogen in neurodevelopment.
Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian
2014-10-01
In teleosts, the levels of steroids are critical for sexual development and hence, expression of steroidogenic enzyme genes and specific substrate availability are indispensable for gonadal steroidogenesis. Early stages of steroidogenesis specifically cholesterol to pregnenolone conversion by Cyp11a1 is crucial for estradiol and testosterone biosynthesis. Based on this, in this study, full length cDNA of cyp11a1 (2581bp) was cloned from catfish testis to investigate the importance of Cyp11a1 by analyzing the expression of cyp11a1 during gonadal development, seasonal reproductive cycle, after human chorionic gonadotropin (hCG) induction and sex steroid analog treatment. Phylogenetic analysis revealed that the Cyp11a1 is more conserved across teleosts. Tissue distribution analysis showed that the cyp11a1 expression was higher in the testis followed by the brain, head kidney, muscle and ovary compared to other tissues analyzed. High expression of cyp11a1 in the head kidney and muscle revealed that Cyp11a1 could potentially regulate the extra-gonadal and/or circulating steroid levels in teleosts. Developing and mature testes showed higher expression of cyp11a1 than the ovary of corresponding age group. Further, cyp11a1 expression was found to be higher during pre-spawning and spawning phases of testicular cycle and was upregulated by hCG, in vivo and in vitro, which indicates the possible regulation by gonadotropin. Exposure of methyltestosterone (1μg/L) and ethinylestradiol (1μg/L) for 21days during catfish testicular development showed lower cyp11a1 expression levels in the testis and brain indicating a certain feedback intervention. These results suggest possible role for Cyp11a1 in the testis development and recrudescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi
2014-01-01
Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.
Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi
2014-01-01
Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203
Schmitt, Emily E.; Barhoumi, Rola; Metz, Richard P.
2017-01-01
The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor–induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens. PMID:28007926
Schmitt, Emily E; Barhoumi, Rola; Metz, Richard P; Porter, Weston W
2017-03-01
The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor-induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Cyclophilin B enhances HIV-1 infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBoer, Jason; Madson, Christian J.; Belshan, Michael, E-mail: michaelbelshan@creighton.edu
Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence,more » putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.« less
Xiao, Wei-Yang; Li, Ying-Wen; Chen, Qi-Liang; Liu, Zhi-Hao
2018-07-01
Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present study demonstrated that TBT may impair the reproductive success of zebrafish females probably through disrupting oogenesis, disturbing reproductive behaviors and altering serotonin synthesis. The present study greatly extends our understanding on the reproductive toxicity of TBT on fish. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of CYP1B1 in PAH-DNA adduct formation and breast cancer risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goth-Goldstein, Regine; Russell, Marion L.; Muller, A.P.
2010-04-01
This study investigated the hypothesis that increased exposure to polycyclic aromatic hydrocarbons (PAHs) increases breast cancer risk. PAHs are products of incomplete burning of organic matter and are present in cigarette smoke, ambient air, drinking water, and diet. PAHs require metabolic transformation to bind to DNA, causing DNA adducts, which can lead to mutations and are thought to be an important pre-cancer marker. In breast tissue, PAHs appear to be metabolized to their cancer-causing form primarily by the cytochrome P450 enzyme CYP1B1. Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high CYP1B1 enzyme levels resultmore » in increased formation of PAH-DNA adducts in breast tissue, leading to increased development of breast cancer. We have investigated molecular mechanisms of the relationship between PAH exposure, CYP1B1 expression and breast cancer risk in a clinic-based case-control study. We collected histologically normal breast tissue from 56 women (43 cases and 13 controls) undergoing breast surgery and analyzed these specimens for CYP1B1 genotype, PAH-DNA adducts and CYP1B1 gene expression. We did not detect any difference in aromatic DNA adduct levels of cases and controls, only between smokers and non-smokers. CYP1B1 transcript levels were slightly lower in controls than cases, but the difference was not statistically significant. We found no correlation between the levels of CYP1B1 expression and DNA adducts. If CYP1B1 has any role in breast cancer etiology it might be through its metabolism of estrogen rather than its metabolism of PAHs. However, due to the lack of statistical power these results should be interpreted with caution.« less
Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K
2016-11-01
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS. Copyright © 2016 Elsevier Inc. All rights reserved.
Guo, Liping; Yang, Runqiang; Gu, Zhenxin
2016-10-01
Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
An in vitro approach to potential methadone metabolic-inhibition interactions.
Bomsien, Stephanie; Skopp, Gisela
2007-09-01
The aim of this study was to assess the drug interaction potential of psychotropic medication on methadone N-demethylation using cDNA-expressed cytochrome P450 CYP enzymes. Methadone was incubated with various drugs (n = 10) and cDNA-expressed CYP3A4, CYP2D6, CYP2B6, CYP2C19 and CYP1A2 enzymes to screen for their inhibition potency. The nature of enzyme selective activity for inhibition was further investigated for potent inhibitors. To test for a mechanism-based component in inhibition, all substances were tested with preincubation and without. 2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) concentration was determined by liquid chromatography/tandem mass spectrometry following liquid/liquid extraction. Formation of EDDP was catalysed by CYP3A4, CYP2D6 and CYP2C19. The N-demethylation of methadone was preferentially inhibited by amitriptyline, buprenorphine, methylenedioxymethamphetamine (MDMA) and zolpidem. Both amitriptyline and buprenorphine were strong, reversible inhibitors of CYP3A4. Similarly, amitriptyline and MDMA were identified as inhibitors of CYP2D6. Zolpidem revealed a mechanism-based inhibition of CYP3A4. Amitriptyline, MDMA and zolpidem are likely to slow down conversion of methadone and to increase its area under the curve (AUC). A consideration of the in vitro evidence of drug-methadone interactions should help to improve patient care during methadone maintenance treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M.
Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences inmore » the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of knockdown resemble some features of a microdeletion of CYP20A1 in human. • Expression of CYP20A1 was downregulated by the neurotoxicant methylmercury. • CYP20A1 may be involved in neurobehavioral processes and effects of some chemicals.« less
Login, Hande; Håglin, Sofia; Berghard, Anna; Bohm, Staffan
2015-10-07
Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system. Copyright © 2015 the authors 0270-6474/15/3513807-12$15.00/0.
Chourasia, Tapan K; Pang, Yefei; Thomas, Peter
2015-03-01
Estradiol-17beta (E2) maintains high cAMP levels and meiotic arrest in zebrafish oocytes through activation of G protein-coupled estrogen receptor (GPER). The catecholestrogen 2-hydroxyestradiol-17beta (2-OHE2) has an opposite effect to that of E2 on oocyte maturation (OM) and cAMP levels in Indian catfish oocytes. We tested the hypothesis that 2-OHE2 is produced in zebrafish ovaries and promotes the resumption of oocyte meiosis through its action as a GPER antagonist. Ovarian 2-OHE2 production by estrogen-2-hydroxylase (EH) was up-regulated by gonadotropin treatment at the onset of OM, consistent with a physiological role for 2-OHE2 in regulating OM. The increases in EH activity and OM were blocked by treatment with CYP1A1 and CYP1B1 inhibitors. Expression of cyp1a, cyp1b1, and cyp1c mRNAs was increased by gonadotropin treatment, further implicating these Cyp1s in 2-OHE2 synthesis prior to OM. Conversely, aromatase activity and cyp19a1 mRNA expression declined during gonadotropin induction of OM. 2-OHE2 treatment significantly increased spontaneous OM in defolliculated zebrafish oocytes and reversed the inhibition of OM by E2 and the GPER agonist G-1. 2-OHE2 was an effective competitor of [(3)H]-E2 binding to recombinant zebrafish GPER expressed in HEK-293 cells. 2-OHE2 also antagonized estrogen actions through GPER on cAMP production in zebrafish oocytes, resulting in a reduction in cAMP levels. Stimulation of OM by 2-OHE2 was blocked by pretreatment of defolliculated oocytes with the GPER antibody. Collectively, the results suggest that 2-OHE2 functions as a GPER antagonist and promotes OM in zebrafish through blocking GPER-dependent E2 inhibition of the resumption of OM. © 2015 by the Society for the Study of Reproduction, Inc.
Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M; Ducsay, Charles A
2018-02-01
We previously demonstrated decreased expression of key genes regulating cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P45011A1/cytochrome P450c17 (CYP11A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP11A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ∼40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10 -8 M) with or without UO126 (10 µM) for 18 hours. Media samples were collected for cortisol analysis and messenger RNA (mRNA) for CYP11A1, CYP17, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control ( P < .05). StAR mRNA was decreased in LTH versus control ( P < .05). U0126 alone had no effect on mRNA in either group. UO126 prevented the increase in CYP11A1 and CYP17 in control FACs. Basal CYP11A1 and CYP17 were not different in LTH versus control. ACTH increased CYP11A1 and CYP17 only in control FACs ( P < .05). U1026 attenuated the ACTH response indicative of a role for ERK in CYP11A1 and CYP17 expression. ACTH may require additional factors in FACs to fully regulate StAR expression.
Tydén, Eva; Tjälve, Hans; Larsson, Pia
2014-10-08
Among the cytochrome P450 enzymes (CYP), families 1-3 constitute almost half of total CYPs in mammals and play a central role in metabolism of a wide range of pharmaceuticals. This study investigated gene and protein expression and cellular localisation of CYP1A, CYP2A, CYP2C, CYP2D and CYP2E in equine intestine and liver. Real-time polymerase chain reaction (RT-PCR) was used to analyse gene expression, western blot to examine protein expression and immunohistochemical analyses to investigate cellular localisation. CYP1A and CYP2C were the CYPs with the highest gene expression in the intestine and also showed considerable gene expression in the liver. CYP2E and CYP2A showed the highest gene expression in the liver. CYP2E showed moderate intestinal gene expression, whereas that of CYP2A was very low or undetectable. For CYP2D, rather low gene expression levels were found in both intestine and the liver. In the intestine, CYP gene expression levels, except for CYP2E, exhibited patterns resembling those of the proteins, indicating that intestinal protein expression of these CYPs is regulated at the transcriptional level. For CYP2E, the results showed that the intestinal gene expression did not correlate to any visible protein expression, indicating that intestinal protein expression of this CYP is regulated at the post-transcriptional level. Immunostaining of intestine tissue samples showed preferential CYP staining in enterocytes at the tips of intestinal villi in the small intestine. In the liver, all CYPs showed preferential localisation in the centrilobular hepatocytes. Overall, different gene expression profiles were displayed by the CYPs examined in equine intestine and liver. The CYPs present in the intestine may act in concert with those in the liver to affect the oral bioavailability and therapeutic efficiency of substrate drugs. In addition, they may play a role in first-pass metabolism of feed constituents and of herbal supplements used in equine practice.
Barth, M Benjamin; Buchwalder, Katja; Kawahara, Akito Y; Zhou, Xin; Liu, Shanlin; Krezdorn, Nicolas; Rotter, Björn; Horres, Ralf; Hundsdoerfer, Anna K
2018-01-01
The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate metabolism towards cryoprotectant production. The Glycolysis enzymes, G1Pase, A1e, Gpi and an Akr isoform are up-regulated. Glycerol, an osmolyte which lowers the body liquid supercooling point, appears to be the predominant polyol cryoprotectant in H. euphorbiae diapause pupae. Several protein candidates involved in glucose, glycerol, myo-inositol and potentially sorbitol and trehalose synthesis were identified. A majority of differently expressed transcripts unique for either detoxification or cold hardiness indicates highly specialized functional adaptation which may have evolved from general cell metabolism and stress response.The transcriptome and extracted candidate biomarkers provide a basis for further gene expression studies of physiological processes and adaptive traits in H. euphorbiae .
Sun, Yunlv; Yang, Shijie; Li, Minghui; Zeng, Sheng; Huang, Baofeng; Wang, Deshou
2013-01-01
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina HiseqTM technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts. PMID:23658843
Srivastava, Sudhakar; Sangwan, Rajender Singh; Tripathi, Sandhya; Mishra, Bhawana; Narnoliya, L K; Misra, L N; Sangwan, Neelam S
2015-11-01
Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.
Suzuki, Dai; Saito-Hakoda, Akiko; Ito, Ryo; Shimizu, Kyoko; Parvin, Rehana; Shimada, Hiroki; Noro, Erika; Suzuki, Susumu; Fujiwara, Ikuma; Kagechika, Hiroyuki; Rainey, William E; Kure, Shigeo; Ito, Sadayoshi; Yokoyama, Atsushi; Sugawara, Akira
2017-01-01
The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2) expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR) pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II)-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length) to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5). Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.
Surichan, Somchaiya; Arroo, Randolph R; Tsatsakis, Aristidis M; Androutsopoulos, Vasilis P
2018-04-04
Tangeretin is a polymethoxylated flavone with multifaceted anticancer activity. In the present study, the metabolism of tangeretin was evaluated in the CYP1 expressing human breast cancer cell lines MCF7 and MDA-MB-468 and in the normal breast cell line MCF10A. Tangeretin was converted to 4' OH tangeretin by recombinant CYP1 enzymes and by CYP1 enzymes expressed in MCF7 and MDA-MB-468 cells. This metabolite was absent in MCF10A cells that did not express CYP1 enzymes. Tangeretin exhibited submicromolar IC50 (0.25 ± 0.15 μM) in MDA-MB-468 cells, whereas it was less active in MCF7 cells (39.3 ± 1.5 μM) and completely inactive in MCF10A cells (>100 μM). In MDA-MB-468 cells that were coincubated with the CYP1 inhibitor acacetin, an approximately 70-fold increase was noted in the IC50 (18 ± 1.6 μM) of tangeretin. In the presence of the CYP1 inhibitor acacetin, the conversion of tangeretin to 4' OH tangeretin was significantly reduced in MDA-MB-468 cells (2.55 ± 0.19 μM vs. 6.33 ± 0.12 μM). The mechanism of antiproliferative action involved cell cycle arrest at the G1 phase for MCF7 and MDA-MB-468 cells. Tangeretin was further shown to induce CYP1 enzyme activity and CYP1A1/CYP1B1 protein expression in MCF7 and MDA-MB-468 cells. These results suggest that tangeretin inhibits the proliferation of breast cancer cells via CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jun, Young Joon; Park, Se Jin; Kim, Tae Hoon; Lee, Seung Hoon; Lee, Ki Jeong; Hwang, Soo Min; Lee, Sang Hag
2014-10-01
It has been suggested that glucocorticoids might act in target tissues to increase their own intracellular availability in response to inflammatory stimuli. These mechanisms depend on the local metabolism of glucocorticoids catalyzed by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). This study is to investigate the effect of chronic rhinosinusitis (CRS) on expression of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1] and cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]), and endogenous cortisol levels in human sinus mucosa. Expression levels were compared with those of healthy control subjects. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were measured in healthy control subjects, patients with CRS with nasal polyps, and patients with CRS without nasal polyps by using real-time PCR, Western blotting, immunohistochemistry, and ELISA. Expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were determined in cultured epithelial cells treated with CRS-relevant cytokines. The conversion ratio of cortisone to cortisol was evaluated by using the small interfering RNA technique, 11β-HSD1 inhibitor, and measurement of 11β-HSD1 activity. 11β-HSD1, CYP11B1, and cortisol levels increased in patients with CRS with nasal polyps and those with CRS without nasal polyps, but 11β-HSD2 expression decreased. In cultured epithelial cells treated with IL-4, IL-5, IL-13, IL-1β, TNF-α, and TGF-β1, 11β-HSD1 expression and activity increased in parallel with expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. The small interfering RNA technique or the measurement of 11β-HSD1 activity showed that the sinus epithelium activates cortisone to cortisol in an 11β-HSD-dependent manner. These results indicate that CRS-relevant cytokines can modulate the expression of 11β-HSD1, 11β-HSD2, and CYP11B1 in the sinus mucosa, resulting in increasing intracellular concentrations of bioactive glucocorticoids. Copyright © 2014. Published by Elsevier Inc.
Pingili, Ajeeth K.; Thirunavukkarasu, Shyamala; Kara, Mehmet; Brand, David; Katsurada, Akemi; Majid, Dewan S. A.; Navar, L. Gabriel; Gonzalez, Frank J.; Malik, Kafait U.
2016-01-01
6β-hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension and end organ damage, this study was conducted to determine the contribution of 6β-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1+/+ and Cyp1b1−/− mice. Castration of Cyp1b1+/+ mice or Cyp1b1−/− gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6β-hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1+/+ mice, but restored these effects of angiotensin II in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin converting enzyme. 6β-hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin converting enzyme in Cyp1b1+/+ mice; however, in Cyp1b1−/− or castrated mice Cyp1b1+/+ mice, it restored these effects of angiotensin II. These data indicate that 6β-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in males. PMID:26928804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalova, Natalia, E-mail: kovalova@msu.edu
Previous studies have demonstrated that most of the intraspecies variation in sensitivity to the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including suppression of antibody responses, in murine models is due to single nucleotide polymorphisms (SNPs) within the aryl hydrocarbon receptor (AhR) gene. The underlying reason for variation in sensitivity to TCDD-induced suppression of IgM responses among humans is not well understood, but is thought, in part, to be a result of different polymorphic forms of the AhR expressed by different individuals. In this study, the functional properties of six (P517S, R554K, V570I, V570I + P517S, R554K + V570I and P517S +more » R554K + V570I) human AhR variants were examined in the human B cell line, SKW 6.4. TCDD-induced Cyp1B1 and Cyp1A2 mRNA expression levels and Cyp1B1-regulated reporter gene activity, used for comparative purposes, were markedly lower in SKW cells containing the R554K SNP than in SKW-AHR{sup +} (control AhR) cells. Furthermore, all AhR variants were able to mediate TCDD-induced suppression of the IgM response; however, a combined P517S + R554K + V570I variant partially reduced sensitivity to TCDD-mediated suppression of IgM secretion. Collectively, our findings show that the R554K human AhR SNP alone altered sensitivity of human B cells to TCDD-mediated induction of Cyp1B1 and Cyp1A2. By contrast, attenuation of TCDD-induced IgM suppression required a combination of all three SNPs P517S, R554K, and V570I. - Highlights: • Mouse, rat and SKW-AHR{sup +} B cells have a similar window of sensitivity to TCDD. • R554K AhR SNP alters B cell sensitivity to TCDD-mediated Cyp1B1 and Cyp1A2 induction. • Combination of P517S, R554K, and V570I SNPs attenuates TCDD-induced IgM suppression.« less
Kim, Kiyoon; Kim, Hunsung; Jeong, Kwon; Jung, Min Hyung; Hahn, Bum-Soo; Yoon, Kyung-Sik; Jin, Byung Kwan; Jahng, Geon-Ho; Kang, Insug; Ha, Joohun; Choe, Wonchae
2012-08-01
Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.
Messina, Andrea; Puccinelli, Emanuela; Gervasi, Pier Giovanni; Longo, Vincenzo
2013-02-01
In this study, the constitutive and inducible expression of the CYP genes (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46), related transcriptional factors (AhR, CAR, PXR, and Nrf2) and the antioxidant enzymes SOD, catalase, GSSH-reductase and GSH-peroxidase were investigated in the liver, heart regions and coronary arteries of control pigs and pigs treated with β-naphthoflavone (βNF) or with rifampicin (RIF). Real-time PCR experiments and enzymatic or immunoblot assays showed that CYP1A1 was predominantly enhanced by βNF in a similar manner in all the heart regions, whereas antioxidant enzyme activity was not affected. The rifampicin treatment resulted in an induction of CYP2B22 and CYP3As, at the transcriptional, activity and protein level in liver but not in heart nor in the coronary arteries, despite the expression of CAR and PXR in the cardiac tissues. These results obtained in vivo suggest that pig cardiac tissues may represent a useful model for humans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I
2001-06-01
1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.
Semiz, Asli; Sen, Alaattin
2015-03-01
Cytochrome P450 monooxygenases mediate a broad range of oxidative reactions involved in the biosynthesis of both primary and secondary metabolites in plants. Until now, only two P450 genes, CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, have been functionally characterised and described in the literature. The purpose of this study was to describe the cloning and expression of CYP720B from Pinus brutia due to its suggested role in the synthesis of bioactive compounds used for chemical defence against insects. A PCR product of the P. brutia CYP720B gene was cloned into the pCR8/GW/TOPO cloning vector. After optimising the sequence for codon usage in yeast, it was transferred into the inducible expression vector pYES-DEST52 and transfected into the S. cerevisiae INVSc1 strain. Sequence analysis showed that the P. brutia CYP720B gene contains an open reading frame of 1,464 nucleotides, which encodes a 53,570 Da putative protein of 487 amino acid residues. The putative protein contains the classic heme-binding sequence motif that is conserved in all P450 enzymes. It shares 99 and 61% identity with the deduced amino acid sequences of CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, respectively. Recombinant CYP720B protein expression was confirmed using western blot analysis. Furthermore, recombinant CYP720B was functionally active, showing a Soret peak at approximately 448 nm in the reduced CO difference spectra. These data suggest that the cloned gene is an orthologue of CYP720B in P. brutia and might be involved in DRA biosynthesis.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Ying, Lianghong; Wang, Fei; Zhang, Jing; Yang, Lu; Gong, Xiaoxuan; Fan, Yuansheng; Xu, Ke; Li, Juan; Lu, Yi; Mei, Lianlian; Zhou, Zihao; Li, Chunjian
2018-04-19
Hepatitis B virus (HBV) infection has been reported to down-regulate the expression of CYP2C19 gene, which may decrease the bioactivation of clopidogrel into active metabolites. We aimed to evaluate the impact of HBV infection on platelet response to clopidogrel in patients undergoing coronary stent implantation. A total of 1805 patients who had received coronary stent implantation and taken aspirin 100 mg in combination with clopidogrel 75 mg daily ≥5 days were consecutively recruited. The serologic identifications for HBV, platelet aggregations in response to arachidonic acid (PL AA ) and adenosine diphosphate (PL ADP ), as well as ABCB1, CYP2C19, CYP3A5, PON1 and P2RY12 genotypes were determined. Clopidogrel low response (CLR) was defined as PL ADP > 40%. Among the recruited subjects, 102 patients showed hepatitis B surface antigen (HBsAg) positive and 1703 patients negative. PL ADP was significantly higher in HBsAg positive group than that in HBsAg negative group [38 (24-48) % vs. 29 (20-39) %, p < 0.001] while the difference of PL AA was not statistically significant (p = 0.329). The incidence of CLR was significantly higher in HBsAg positive group compared with that in HBsAg negative group (43.1% vs. 23.4%, p < 0.001). After adjusted for CYP2C19 genotype and known risk factors, HBsAg positive patients exhibited a significantly higher risk of CLR (adjusted odds ratio: 2.81, 95% confidence interval: 1.73 to 4.58, p < 0.001). HBV infection is an independent risk factor of CLR, in addition to CYP2C19 gene mutations. (Pharmacogenetic and Pharmacokinetic Study of Clopidogrel; NCT01968499). Copyright © 2018. Published by Elsevier Ltd.
Girard, Beatrice M; Malley, Susan; May, Victor; Vizzard, Margaret A
2016-08-01
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75(NTR)) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75(NTR) mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75(NTR)) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.
Toxicogenomic effects common to triazole antifungals and conserved between rats and humans.
Goetz, Amber K; Dix, David J
2009-07-01
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles. Toxicogenomic data on triazoles from 33 different treatment groups and 135 samples (microarrays) identified thousands of probe sets and dozens of pathways differentially expressed across time, dose, and species--many of these were common to all three triazoles, or conserved between rodents and humans. Common and conserved pathways included androgen and estrogen metabolism, xenobiotic metabolism signaling through CAR and PXR, and CYP mediated metabolism. Differentially expressed genes included the Phase I xenobiotic, fatty acid, sterol and steroid metabolism genes Cyp2b2 and CYP2B6, Cyp3a1 and CYP3A4, and Cyp4a22 and CYP4A11; Phase II conjugation enzyme genes Ugt1a1 and UGT1A1; and Phase III ABC transporter genes Abcb1 and ABCB1. Gene expression changes caused by all three triazoles in liver and hepatocytes were concentrated in biological pathways regulating lipid, sterol and steroid homeostasis, identifying a potential common mode of action conserved between rodents and humans. Modulation of hepatic sterol and steroid metabolism is a plausible mode of action for changes in serum testosterone and adverse reproductive outcomes observed in rat studies, and may be relevant to human risk assessment.
MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma.
Liu, Shujing; Kumar, Suresh M; Lu, Hezhe; Liu, Aihua; Yang, Ruifeng; Pushparajan, Anitha; Guo, Wei; Xu, Xiaowei
2012-01-01
MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression. Hsa-miR-9 has been shown to have opposite functions in different tumour types; however, the underlying mechanism is unclear. Here we show that hsa-miR-9 is down-regulated in metastatic melanomas compared to primary melanomas. Overexpression of miR-9 in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity with decreased F-actin polymerization and down-regulation of multiple GTPases involved in cytoskeleton remodelling. miR-9 overexpression induced significant down-regulation of Snail1 with a concomitant increase in E-cadherin expression. In contrast, knockdown of miR-9 increased Snail1 expression as well as melanoma cell proliferation and migration capacity. Mechanistically, miR-9 expression down-regulated NF-κB1 in melanoma and the effect was abolished by mutations in the putative miR-9 binding sites within the 3'-untranslated region (UTR) of NF-κB1. Anti-miR-9 miRNA inhibitor also increased the expression of NF-κB1. The effects of miR-9 on Snail1 expression and melanoma cell proliferation and migration were rescued by overexpression of NF-κB1 in these cells. Furthermore, miR-9 overexpression resulted in significantly decreased melanoma growth and metastasis in vivo. In summary, miR-9 inhibits melanoma proliferation and metastasis through down-regulation of the NF-κB1-Snail1 pathway. This study finds a new mechanism that miR-9 utilizes to decrease E-cadherin expression and inhibit melanoma progression. The results suggest that function of microRNAs is context and tumour type-specific. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Hinfray, Nathalie; Sohm, Frédéric; Caulier, Morgane; Chadili, Edith; Piccini, Benjamin; Torchy, Camille; Porcher, Jean-Marc; Guiguen, Yann; Brion, François
2018-05-15
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs. Copyright © 2017 Elsevier Inc. All rights reserved.
Dettwiler, Ramona; Schmitz, Andrea L; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike
2014-01-01
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.
Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike
2014-01-01
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR. PMID:25415624
Jia, Zhong-Qiang; Liu, Di; Sheng, Cheng-Wang; Casida, John E; Wang, Chen; Song, Ping-Ping; Chen, Yu-Ming; Han, Zhao-Jun; Zhao, Chun-Qing
2018-01-01
Fluralaner is a novel isoxazoline insecticide which shows high insecticidal activity against parasitic, sanitary and agricultural pests, but there is little information about the effect of fluralaner on non-target organisms. This study reports the acute toxicity, bioconcentration, elimination and antioxidant response of fluralaner in zebrafish. All LC 50 values of fluralaner to zebrafish were higher than 10 mg L -1 at 24, 48, 72 and 96 h. To study the bioconcentration and elimination, the zebrafish were exposed to sub-lethal concentrations of fluralaner (2.00 and 0.20 mg L -1 ) for 15 d and then held 6 d in clean water. The results showed medium BCF of fluralaner with values of 12.06 (48 h) and 21.34 (144 h) after exposure to 2.00 and 0.20 mg L -1 fluralaner, respectively. In the elimination process, a concentration of only 0.113 mg kg -1 was found in zebrafish on the 6th day after removal to clean water. After exposure in 2.00 mg L -1 fluralaner, the enzyme activities of SOD, CAT, and GST, GSH-PX, CarE and content of MDA were measured. Only CAT and CarE activities were significantly regulated and the others stayed at a stable level compared to the control group. Meanwhile, transcriptional expression of CYP1C2, CYP1D1, CYP11A were significantly down-regulated at 12 h exposed to 2.00 mg L -1 of fluralaner. Except CYP1D1, others CYPs were up-regulated at different time during exposure periods. Fluralaner and its formulated product (BRAVECTO ® ) are of low toxicity to zebrafish and are rapidly concentrated in zebrafish and eliminated after exposure in clean water. Antioxidant defense and metabolic systems were involved in the fluralaner-induced toxicity. Among them, the activities of CAT and CarE, and most mRNA expression level of CYPs showed fast response to the sub-lethal concentration of fluralaner, which could be used as a biomarker relevant to the toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ahearn, Thomas U; McCullough, Marjorie L; Flanders, W Dana; Long, Qi; Sidelnikov, Eduard; Fedirko, Veronika; Daniel, Carrie R; Rutherford, Robin E; Shaukat, Aasma; Bostick, Roberd M
2011-01-15
In cancer cell lines and rodent models, calcium and vitamin D favorably modulate cell proliferation, differentiation, and apoptosis in colonic epithelia. These effects may be modulated by local expression of the calcium receptor (CaR), the vitamin D receptor (VDR), and the P450 cytochromes, CYP27B1 and CYP24A1; however, they have yet to be investigated in humans. To address this gap, we conducted a randomized, double-blinded, placebo-controlled 2×2 factorial clinical trial. Patients with at least one pathology-confirmed colorectal adenoma were treated with 2 g/d elemental calcium and/or 800 IU/d vitamin D3 versus placebo over 6 months (n=92; 23 per group). CaR, VDR, CYP27B1, and CYP24A1 expression and distribution in biopsies of normal appearing rectal mucosa were detected by standardized, automated immunohistochemistry and quantified by image analysis. In the calcium-supplemented group, CaR expression increased 27% (P=0.03) and CYP24A1 expression decreased 21% (P=0.79). In the vitamin D3-supplemented group, CaR expression increased 39% (P=0.01) and CYP27B1 expression increased 159% (P=0.06). In patients supplemented with both calcium and vitamin D3, VDR expression increased 19% (P=0.13) and CaR expression increased 24% (P=0.05). These results provide mechanistic support for further investigation of calcium and vitamin D3 as chemopreventive agents against colorectal neoplasms, and CaR, VDR, CYP27B1, and CYP24A1 as modifiable, preneoplastic risk biomarkers for colorectal neoplasms. © 2010 AACR.
Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.
Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen
2016-09-01
The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.
Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim
2017-12-22
Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).
Weger, M; Diotel, N; Weger, B D; Beil, T; Zaucker, A; Eachus, H L; Oakes, J A; do Rego, J L; Storbeck, K-H; Gut, P; Strähle, U; Rastegar, S; Müller, F; Krone, N
2018-04-01
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function. © 2018 British Society for Neuroendocrinology.
Maden, Malcolm; Blentic, Aida; Reijntjes, Susan; Seguin, Sophie; Gale, Emily; Graham, Anthony
2007-01-01
We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja
In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 andmore » p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.« less
Calcium Regulates FGF-23 Expression in Bone
David, Valentin; Dai, Bing; Martin, Aline; Huang, Jinsong; Han, Xiaobin
2013-01-01
Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2−/− and Cyp27b1−/− mutant mice. Gcm2−/− mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1−/− mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2−/− mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1−/− mice in the absence of 1,25(OH)2D and in Gcm2−/− mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia. PMID:24140714
Calcium regulates FGF-23 expression in bone.
David, Valentin; Dai, Bing; Martin, Aline; Huang, Jinsong; Han, Xiaobin; Quarles, L Darryl
2013-12-01
Calcium has recently been shown to regulate fibroblast growth factor 23 (FGF-23), a bone-derived phosphate and vitamin D-regulating hormone. To better understand the regulation of FGF-23 by calcium, phosphorus, 1,25 dihydroxyvitamin D3 [1,25(OH)2D], and PTH, we examined FGF-23 expression under basal conditions and in response to PTH, doxercalciferol, or high-calcium diet treatment in Gcm2(-/-) and Cyp27b1(-/-) mutant mice. Gcm2(-/-) mice exhibited low serum PTH and 1,25(OH)2D concentrations, hypocalcemia, and hyperphosphatemia, whereas Cyp27b1(-/-) mice had high PTH, undetectable 1,25(OH)2D, hypocalcemia, and hypophosphatemia. Serum FGF-23 levels were decreased in both mutant models. Doxercalciferol administration increased serum FGF-23 levels in both mutant models. PTH administration to Gcm2(-/-) mice also increased serum FGF-23 levels, in association with an increase in both 1,25(OH)2D and calcium concentrations. Multiple regression analysis of pooled data indicated that changes in FGF-23 were positively correlated with serum calcium and 1,25(OH)2D but not related to changes in serum phosphate concentrations. A high-calcium diet also increased serum FGF-23 concentrations in Cyp27b1(-/-) mice in the absence of 1,25(OH)2D and in Gcm2(-/-) mice with low PTH. The addition of calcium to the culture media also stimulated FGF-23 message expression in MC3T3-E1 osteoblasts. In addition, FGF-23 promoter activity in cultured osteoblasts was inhibited by the L-calcium-channel inhibitor nifedipine and stimulated by calcium ionophores. The effects of chronic low calcium to prevent 1,25(OH)2D and PTH stimulation of FGF-23 in these mutant mouse models suggest that suppression of FGF-23 plays an important physiological adaptive response to hypocalcemia.
Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin
2014-04-01
Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.
Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko
2014-01-01
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.
2013-01-01
Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686
Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival
Kong, Jinyu; Xu, Fangxiu; Qu, Jinli; Wang, Yu; Gao, Ming; Yu, Herbert; Qian, Biyun
2015-01-01
Studies have suggested that vitamin D may have protective effects against cancer development or tumor progression. To search for additional evidence, we investigated the role of genetic polymorphisms involved in the vitamin D pathway in non-small cell lung cancer (NSCLC). We evaluated common genetic polymorphisms associated with the vitamin D pathway in relation to NSCLC in a case-control study of 603 newly diagnosed NSCLC patients and 661 matched healthy controls. Seven single nucleotide polymorphisms (SNPs) were genotyped, the expression of CYP27B1 and CYP24A1 were measured in 153 tumor samples and their associations with genotypes and patient survival were also analyzed. In the case-control comparison, we found SNP rs3782130 (CYP27B1), rs7041 (GC), rs6068816 and rs4809957 (CYP24A1) associated with NSCLC risk. The risk of NSCLC was increased with the number of risk alleles. CYP27B1 and CYP24A1 expression were significantly different between tumor and normal tissues in NSCLC. High CYP27B1 expression was associated with better overall survival, and the expression was different by the rs3782130 genotype. The study suggests that some genetic polymorphisms involved in the vitamin D pathway may associate with NSCLC risk, and one of the polymorphisms (rs3782130) may affect gene expression and patient survival. PMID:25544771
Cyclophilin B facilitates the replication of Orf virus.
Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng
2017-06-15
Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.
Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication.
Vidotto, Alessandra; Morais, Ana T S; Ribeiro, Milene R; Pacca, Carolina C; Terzian, Ana C B; Gil, Laura H V G; Mohana-Borges, Ronaldo; Gallay, Philippe; Nogueira, Mauricio L
2017-04-07
Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.
Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Rakwal, Randeep; Shioda, Seiji
2015-01-01
The use of lavender oil (LO) – a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate – in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation. PMID:26161641
Induction of immune-related gene expression by seminal exosomes in the porcine endometrium.
Bai, Rulan; Latifi, Zeinab; Kusama, Kazuya; Nakamura, Keigo; Shimada, Masayuki; Imakawa, Kazuhiko
2018-01-01
Seminal plasma (SP) is considered as a vehicle to carry sperm into female reproductive tract, of which functions have not been completely understood. This study aimed to identify the function of seminal exosomes on porcine endometrium. Exosomes were isolated from the sperm-rich fraction of boar semen and were confirmed by the expression of exosome marker HSP70 and size distribution using nano-sight tracking analysis. Porcine endometrial epithelial cells (EECs) were then treated with seminal exosomes, and RNA extracted were subjected to global expression analysis. Transcripts related to "immune response", "inflammatory response" and their associated signaling pathways were up-regulated in EECs treated with seminal exosome, whereas those associated with "steroid biosynthesis", "metabolic pathways" and "T cell differentiation" were down-regulated. The decrease in PMVK, SC5D, INSIG1, HSD17B7, NSDHL, HMGCR, SQLE and FDFT1, and increase in CCL20, TNFSF15, AMCFII, CXCL2 and CXCL8 were also found in the endometrium from the naturally mated pigs. Moreover, changes in exosome-induced CYP24A1, EBP, CCL20, AMCFII and IL1A expression were not regulated by the exosome removed SP. These observations indicated that exosomes present in SP are involved in the immune-related gene regulation in the uterus, which could pave the passage for sperm and possibly fertilized eggs. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The present study examines the expression of growth-regulating genes (gh, prl, smtl and igf1b), the estrogen receptors (esr1 and esr2a) and aromatase (cyp19a1a) in developing yellow perch. To gain an initial understanding into the endocrine control of growth preceding and involved with sexual size d...
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-07-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-01-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1–4) encoding 8′-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. PMID:25956880
Kim, Ji Eun; Park, So Hae; Kwak, Moon Hwa; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Sung, Ji Eun; Lee, Hee Seob; Hong, Jin Tae; Hwang, Dae Youn
2015-01-01
To characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects of aqueous extracts of Liriope platyphylla (AEtLP), including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, the total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays. The AEtLP treated rats showed an increase in the number of stools, mucosa thickness, flat luminal surface thickness, mucin secretion, and crypt number. Overall, compared to the controls, 581 genes were up-regulated and 216 genes were down-regulated by the constipation induced by loperamide in the constipated rats. After the AEtLP treatment, 67 genes were up-regulated and 421 genes were down-regulated. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 22 were recovered to the normal levels by the AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15, and Alpi, whereas the major genes in the recovered categories were Cyp2b2, Ace, G6pc, and Setbp1. On the other hand, after the AEtLP treatment, ten of these genes down-regulated by constipation were up-regulated significantly and five were recovered to the normal levels. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a8, whereas the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. These results indicate that several gene functional groups and individual genes as constipation biomarkers respond to an AEtLP treatment in constipated model rats. PMID:26151867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Zhijie; Jiang, Hequn; Liu, Ying
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis inmore » vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. - Highlights: • Sirt1 is a direct target of miR-133b in HCC. • miR-133b over-expression suppresses HCC progression in vitro and in vivo. • Sirt1 restoration reverses the effect of miR-133b over-expression on HCC cells. • GPC3 down-regulation reverses the effect of Sirt1 up-regulation on HCC cells. • Sirt1 activates Wnt β-catenin signaling by GPC3 in vitro.« less
Isoform-specific regulation of cytochrome P450 expression and activity by estradiol in female rats
Choi, Su-Young; Fischer, Liam; Yang, Kyunghee; Chung, Hyejin; Jeong, Hyunyoung
2011-01-01
Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats. To this end, female rats were treated with estradiol benzoate (EB) or known CYP inducers. Liver tissues were obtained after 5 days of treatment, and mRNA and protein expression levels as well as activities of major hepatic CYPs were determined by qRT-PCR, immunoblot, and microsomal assay. E2 increased CYP1A2 expression and activity to a smaller extent than β-naphthoflavone did. E2 also enhanced CYP2C expression (CYP2C6, CYP2C7, and CYP2C12) to levels comparable to those observed by phenobarbital. E2 upregulated CYP3A9 expression, while expression of CYP3A1 was downregulated. Expression of hepatic nuclear receptors (PXR and CAR) and the obligate redox partner of CYPs (POR) was downregulated in EB-treated rats, suggesting their potential involvement in regulation of CYP expression and activity by E2. In summary, in female rats E2 regulates expression of hepatic CYPs in a CYP isoform-specific manner although the directional changes are different from those clinically observed during human pregnancy. Further study is warranted to determine whether the changes in drug metabolism during human pregnancy are attributable to involvement of hormones other than E2. PMID:21219883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Young; Medical Research Science Center, Dong-A University, Busan 602-714; Lee, Seung Gee
2012-04-15
7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/ormore » CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.« less
NASA Astrophysics Data System (ADS)
Wyatt, Sarah
Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus is involved in gravitropic signal transduction. (Partially support by NSF: 0618506 to SEW)
Etebari, K; Afrad, M H; Tang, B; Silva, R; Furlong, M J; Asgari, S
2018-03-24
The diamondback moth, Plutella xylostella, has developed extremely high levels of resistance to chlorantraniliprole and other classes of insecticides in the field. As microRNAs (miRNAs) play important roles in various biological processes through gene regulation, we examined the miRNA profile of P. xylostella in response to chlorantraniliprole exposure. RNA sequencing analysis showed that insecticide treatment caused significant changes in the abundance of some miRNAs. Increasing exposure time and insecticide concentration induced more dysregulated miRNAs in P. xylostella larvae. We also screened potential target genes for some of the differentially expressed miRNAs (such as miR-2b-3p, miR-14b-5p and let-7-5p), which may play important roles in insecticide resistance development. Exposure of P. xylostella larvae to chlorantraniliprole caused considerable overexpression in the transcript levels of potential target genes cytochrome P450 9f2 (CYP9F2) and 307a1 (CYP307a1). Application of miR-2b-3p and miR-14b-5p mimics significantly suppressed the relative transcript levels of CYP9F2 and CYP307a1, respectively, in a P. xylostella cell line. Furthermore, enrichment of P. xylostella diet with miR-2b-3p mimics significantly increased mortality in deltamethrin-resistant larvae when exposed to deltamethrin. The results suggest that miR-2b-3p may suppress CYP9F2 transcript levels in P. xylostella and consequently inhibit larval detoxification pathways. The findings provide an insight into possible role of miRNAs in regulation of metabolic resistance of insects to insecticides. © 2018 The Royal Entomological Society.
PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues
Felizola, Saulo J. A.; Nakamura, Yasuhiro; Ono, Yoshikiyo; Kitamura, Kanako; Kikuchi, Kumi; Onodera, Yoshiaki; Ise, Kazue; Takase, Kei; Sugawara, Akira; Hattangady, Namita; Rainey, William E.; Satoh, Fumitoshi; Sasano, Hironobu
2014-01-01
Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells. PMID:24403568
Reyes-Tomassini, José J; Wong, Ten-Tsao; Zohar, Yonathan
2017-06-01
Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.
Complementary DNA cloning and organ expression of cytochrome P450 1C2 in carp (Cyprinus carpio).
Kaminishi, Yoshio; El-Kady, Mohamed A H; Mitsuo, Ryoichi; Itakura, Takao
2007-01-01
Cytochrome P450 (CYP) genes, which make up a large gene superfamily, are known to play an important role in drug metabolism. The CYP1 family, one of the gene families of the CYP superfamily, has three subfamilies of genes whose sequences have been deposited in the GenBank/EMBL thus far: CYP1A, CYP1B, and CYP1C. Mammals as well as fish confront numerous foreign chemicals in the environment that may accumulate to toxic levels unless they are metabolized and eliminated by processes largely mediated by CYP enzymes. A new complementary DNA of the CYP1C subfamily encoding CYP1C2 was isolated from the carp liver after a single intraperitoneal injection of beta-napthoflavone (BNF). The full-length cDNA obtained contained a 5' noncoding region of 198 bp, an open reading frame of 1575 bp coding for 524 amino acids and a stop codon, and a 3' noncoding region of 531 bp. The predicted molecular weight of the protein was approximately 59.3 kDa. The amino acid sequence deduced from the carp CYP1C2 sequence showed a similarity of 76.6% with that deduced from our previously reported carp CYP1C1. It exhibited similarities of 77.3, 73.7, and 76.4% with those deduced from scup CYP1C2, scup CYP1C1, and Japanese eel CYP1C1 sequences, respectively. Carp CYP1C2 cDNA showed similarities with reported CYP1Bs of teleosts and mammals, namely, 47.6, 45.3, 45.7, 44.0, and 44.6% for carp, plaice, human, rat, and mouse CYP1B1s, respectively, while it exhibited a similarity of 49.0% with carp CYP1B2. The carp CYP1C2 sequence was aligned with the CYP1 sequences and has been deposited in the GenBank/EMBL data bank with the accession number AY437777. The phylogenetic tree constructed using fish and mammalian CYP1 sequences suggested a closer relationship of CYP1C with CYP1B than with CYP1A. The tree showed possibile existence of CYP1C subfamily genes in mammalian species. Northern blot analysis of the liver, intestines, kidneys, and gills revealed a distinct induced expression only in the kidneys, with no detectable constitutive expression in the other organs studied.
Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula; Ghose, Romi
2016-01-01
The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Cobbina, Enoch; Akhlaghi, Fatemeh
2017-05-01
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5% of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a "three-hit" process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 has been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may result in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 is more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 is up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major DMEs and transporters. We also discuss the potential mechanisms underlying these alterations.
Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong
2017-09-01
Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Shatalova, Ekaterina G.; Klein-Szanto, Andres J.P.; Devarajan, Karthik; Cukierman, Edna; Clapper, Margie L.
2010-01-01
Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the U.S. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to: characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP)1B1, examine the effect of estrogen on gene expression and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER)β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3 to 3.6 fold relative to vehicle-treated controls (P=0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, while supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%) and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P=0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification new targets for chemopreventive intervention. PMID:21205741
SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening
Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping
2014-01-01
Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074
Wu, Susan J; Spink, David C; Spink, Barbara C; Kaminsky, Laurence S
2003-01-15
The quantitation of mRNA, essential for assessing mechanisms of enzyme regulation, is normally carried out using reverse transcriptase-polymerase chain reaction (RT-PCR). An alternative method uses a signal-amplification nucleic acid probe assay, which measures RNA directly by the QuantiGene Expression Kit and incorporates branched DNA technology from Bayer and luminometer-based readings of a chemilumigenic alkaline phosphatase substrate. To broaden the utility of this assay, we investigated substitution of a fluorescent substrate, 2'-(2-benzothiazol)-6'-hydroxybenzothiazole phosphate and a fluorometer, and applied the method to quantitation of CYP1A1 and 1B1 mRNA in human T-47D and HepG2 cells following induction by benzo[a]pyrene (B[a]P) and dibenzo[a,h]anthracene (DB[a,h]A). The fluorescence response increased linearly for 200 min without photobleaching and increased linearly (r2=0.997) up to at least 0.2 microg total RNA. The data revealed that at 0.5 and 1.0 microM inducing agent, the induction of CYP1A1 mRNA in HepG2 cells by DB[a,h]A exceeded that by B[a]P by 18- and 6-fold, respectively. In T-47D cells B[a]P induced CYP1A1 mRNA by 23-fold and CYP1B1 mRNA by 3.9-fold. A B[a]P cocontaminant in the environment, arsenite, did not affect B[a]P-induced levels of CYP1A1 or 1B1 mRNA in these cells. The modified analytical system provides a rapid-throughput, reproducible, and less labor-intensive method than RT-PCR for quantifying cellular mRNA levels.
Hrycay, E G; Bandiera, S M
2009-12-01
The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.
Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons.
He, Yan; Zeng, Sheng-Ya; Zhou, Shi-Wen; Qian, Gui-Sheng; Peng, Kang; Mo, Zhi-Xian; Zhou, Ji-Yin
2014-10-01
N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline. Copyright © 2014 Elsevier B.V. All rights reserved.
Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy.
de Oca, Félix Genoveva García-Montes; López-González, Ma de Lourdes; Escobar-Wilches, Derly Constanza; Chavira-Ramírez, Roberto; Sierra-Santoyo, Adolfo
2015-06-01
Vinclozolin (V) is classified as a potent endocrine disruptor. The aim of the present study was to determine the effects of V on rat liver CYP regulation and on serum levels of testosterone and estradiol during pregnancy. Pregnancy decreased the liver total CYP content by 65%, enzyme activities of MROD, PROD, and PNPH, and testosterone hydroxylation activities, as well as the protein content of CYP2A and 3A. V exposure remarkably induced the protein content and enzyme activities of CYP1A, 2A, 2B and 3A subfamilies. Testosterone and estradiol were affected in an opposite manner, provoking a 3.5-fold increase in the estradiol/testosterone ratio. These results suggest that V could regulate the hepatic CYP expression through interaction with receptors and coactivators involved in its expression and may play an important role in hormonal balance during pregnancy. In addition, the results may also contribute to understanding the toxicity of V by in utero exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian
2013-01-01
In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.
Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V
2010-01-01
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance. PMID:20237142
Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V
2010-06-01
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.
Goetz, Amber K; Dix, David J
2009-08-01
The mode of action for the reproductive toxicity of some triazole antifungals has been characterized as an increase in serum testosterone and hepatic response, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these potential modes of action, gene expression profiling was conducted on liver and testis from male Wistar Han IGS rats exposed to myclobutanil (500, 2000 ppm), propiconazole (500, 2500 ppm), or triadimefon (500, 1800 ppm) from gestation day six to postnatal day 92. Gene expression profiles indicated that all three triazoles significantly perturbed the fatty acid, steroid, and xenobiotic metabolism pathways in the male rat liver. In addition, triadimefon modulated expression of genes in the liver from the sterol biosynthesis pathway. Although expression of individual genes were affected, there were no common pathways modulated by all three triazoles in the testis. The pathways identified in the liver included numerous genes involved in phase I-III metabolism (Aldh1a1, Cyp1a1, Cyp2b2, Cyp3a1, Cyp3a2, Slco1a4, Udpgtr2), fatty acid metabolism (Cyp4a10, Pcx, Ppap2b), and steroid metabolism (Ugt1a1, Ugt2a1) for which expression was altered by the triazoles. These differentially expressed genes form part of a network involving lipid, sterol, and steroid homeostatic pathways regulated by the constitutive androstane (CAR), pregnane X (PXR), peroxisome proliferator-activated alpha, and other nuclear receptors in liver. These relatively high dose and long-term exposures to triazole antifungals appeared to perturb fatty acid and steroid metabolism in the male rat liver predominantly through the CAR and PXR signaling pathways. These toxicogenomic effects describe a plausible series of key events contributing to the disruption in steroid homeostasis and reproductive toxicity of select triazole antifungals.
Ghanem, Mohamed M.; Battelli, Lori A.; Mercer, Robert R.; Scabilloni, James F.; Kashon, Michael L.; Ma, Jane Y.C.; Nath, Joginder; Hubbs, Ann F.
2006-01-01
Background Miners inhaling respirable coal dust (CD) frequently develop coal workers’ pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. Methods We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal β-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe)-CH2-OPH]. Results In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. Conclusions Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model. PMID:16966090
Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck
2009-01-01
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development. PMID:19525321
Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A
2016-11-16
NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.
2017-01-01
NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805
Motor neuron-like NSC-34 cells as a new model for the study of vitamin D metabolism in the brain.
Almokhtar, Mokhtar; Wikvall, Kjell; Ubhayasekera, S J Kumari A; Bergquist, Jonas; Norlin, Maria
2016-04-01
Vitamin D3 is a pro-hormone, which is sequentially activated by 25- and 1α-hydroxylation to form 25-hydroxyvitamin D3 [25(OH)D3] and 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], respectively. Subsequent inactivation is performed by 24-hydroxylation. These reactions are carried out by a series of CYP450 enzymes. The 25-hydroxylation involves mainly CYP2R1 and CYP27A1, whereas 1α-hydroxylation and 24-hydroxylation are catalyzed by CYP27B1 and CYP24A1, respectively, and are tightly regulated to maintain adequate levels of the active vitamin D hormone, 1α,25(OH)2D3. Altered circulating vitamin D levels, in particular 25(OH)D3, have been linked to several disorders of the nervous system, e.g., schizophrenia and Parkinson disease. However, little is known about the mechanisms of vitamin D actions in the neurons. In this study, we examined vitamin D metabolism and its regulation in a murine motor neuron-like hybrid cell line, NSC-34. We found that these cells express mRNAs for the four major CYP450 enzymes involved in vitamin D activation and inactivation, and vitamin D receptor (VDR) that mediates vitamin D actions. We also found high levels of CYP24A1-dependent 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] production, that was inhibited by the well-known CYP enzyme inhibitor ketoconazole and by several inhibitors that are more specific for CYP24A1. Furthermore, CYP24A1 mRNA levels in NSC-34 cells were up-regulated by 1α,25(OH)2D3 and its synthetic analogs, EB1089 and tacalcitol. Our results suggest that NSC-34 cells could be a novel model for the studies of neuronal vitamin D metabolism and its mechanism of actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion.
Masuyama, Hisashi; Suwaki, Naoko; Tateishi, Yoko; Nakatsukasa, Hideki; Segawa, Tomonori; Hiramatsu, Yuji
2005-05-01
Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of phase I and phase II drug-metabolizing enzymes, as well as members of the drug transporter family, including multiple drug resistance (MDR) 1, which has a major role in multidrug resistance. Previously, we have demonstrated that steroid/xenobiotics metabolism by tumor tissue through the PXR-cytochrome P-450 3A (CYP3A) pathway might play an important role in endometrial cancer. In this study, we examined which endocrine-disrupting chemicals (EDCs) and anticancer agents might be ligands for PXR and whether these chemicals enhanced PXR-mediated transcription through two different PXR-responsive elements (PXREs), CYP3A4 and MDR1, in endometrial cancer cell lines. Some steroids/EDCs strongly activated PXR-mediated transcription through the CYP3A4-responsive element compared with the MDR1-responsive element, whereas these steroids/EDCs also enhanced the CYP3A4 expression compared with the MDR1 expression. In contrast, the anticancer agents, cisplatin and paclitaxel, strongly activated PXR-mediated transcription through the MDR1-responsive element compared with the CYP3A4-responsive element, whereas these drugs also enhanced the MDR1 expression compared with the CYP3A4 expression. We also analyzed how these ligands regulated PXR-mediated transcription through two different PXREs. In the presence of PXR ligands, there was no difference in the DNA binding affinity of the PXR/retinoid X receptor heterodimer to each PXRE, but there were different interactions of the coactivator to each PXR/PXRE complex. These data suggested that PXR ligands enhanced PXR-mediated transcription in a ligand- and promoter-dependent fashion, which in turn differentially regulated the expression of individual PXR targets, especially CYP3A4 and MDR1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinfray, N., E-mail: nathalie.hinfray@ineris.fr
Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase genemore » under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures. - Highlights: • Combined effects of EE2 and LNG were assessed on ER-dependent cyp19a1b expression. • EE2 and LNG alone induced brain aromatase in zebrafish specific bioassays. • Experimental ray design allowed complete concentration-response surfaces modeling. • EE2 and LNG exerted additive effects on brain aromatase in radial glial cells.« less
Bartonkova, Iveta; Kallay, Enikoe
2018-01-01
The role of vitamin D receptor (VDR) in immune responses has been broadly studied and it has been shown that activated VDR alters the levels of some interleukins (ILs). In this study, we studied the opposite, i.e. whether 13 selected pro-inflammatory and anti-inflammatory ILs influence the transcriptional activity of human VDR. The experimental models of choice were two human stably transfected gene reporter cell lines IZ-VDRE and IZ-CYP24, which were designed to evaluate the transcriptional activity of VDR. The gene reporter assays revealed inhibition of calcitriol-induced luciferase activity by IL-4 and IL-13, when 1 ng/mL of these two compounds decreased the effect of calcitriol down to 60% of the control value. Consistently, calcitriol-induced expression of CYP24A1 mRNA was also significantly decreased by IL-4 and IL-13. The expression of VDR and CYP27B1 mRNAs was not influenced by any of the 13 tested ILs. These data suggest possible cross-talk between the VDR signalling pathway and IL-4- and IL-13-mediated cell signalling. PMID:29489902
Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince
2003-01-01
Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential toxic effects in the lung. PMID:12842776
Kim, H; Putt, D; Reddy, S; Hollenberg, P F; Novak, R F
1993-11-01
Expression of the cytochrome P450 (CYP) 2B subfamily in rat and rabbit hepatic tissues after pyridine (PY) treatment has been examined, and the molecular basis for enhanced 2B1/2B2 expression has been determined. P450 expression was monitored using metabolic activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses, and the identity of the proteins was confirmed through N-terminus microsequence analysis. PY caused a dose-dependent elevation of hepatic CYP2B1/B2B levels in rats, which ranged from 4- to 22-fold over the dosing regimen of 100 to 400 mg PY/kg/day, for 3 days, respectively. PY at low dose failed to induce CYP2B in rabbit hepatic tissue, suggesting a species-dependent response in 2B expression. Anti-2B1 IgG addition to PY-induced microsomes inhibited benzphetamine N-demethylase activity by only approximately 15%, in sharp contrast to the approximately 73% inhibition observed for phenobarbital-induced microsomes, suggesting the induction of other form(s) of P450 having benzphetamine N-demethylase activity. Northern blot analysis revealed that PY treatment increased 2B1 and 2B2 poly(A)+ RNA levels approximately 69- and approximately 34-fold, respectively, whereas the 2E1 poly(A)+ RNA levels failed to increase. The results of this study show that PY induces CYP2B1/2B2 and that induction is species-dependent and kinetically distinguishable from 2E1 induction. Moreover, 2B1/2B2 induction occurs as a result of elevated mRNA levels associated with either transcriptional activation or mRNA stabilization, and it differs from the mechanism of hepatic 2E1 induction by PY.
Wimmerová, Soňa; van den Berg, Martin; Chovancová, Jana; Patayová, Henrieta; Jusko, Todd A; van Duursen, Majorie B M; Palkovičová Murínová, Ľubica; Canton, Rocio F; van Ede, Karin I; Trnovec, Tomáš
2016-11-01
In the risk assessment of PCDDs, PCDFs, and dioxin-like (DL) PCBs, regulatory authorities support the use of the toxic equivalency factor (TEF)-scheme derived from a heterogeneous data set of the relative effect potency (REPs) estimates. We sought to determine REPs for dioxin-like compounds (DLCs) using expression of cytochrome P450 (CYP) 1A1 and 1B1 mRNA in human peripheral blood mononuclear cells representing two different pathways. We used a sex and age adjusted regression-based approach comparing the strength of association between each DLC and the cytochrome P450 (CYP) 1A1 and 1B1 mRNA expression in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. We calculated REPs based on CYP1A1 expression for 4 PCDDs, 8 PCDFs, and 1 PCB congener, and based on CYP1B1 expression for 5 PCDFs and 11 PCB congeners. REPs from CYP1A1 correlated with REPs previously derived from thyroid volume (ρ=0.85; p<0.001) and serum FT4 (ρ=0.77; p=0.009). The 13 log REPs from CYP1A1 correlated with log WHO-TEFs (r=0.63; p=0.015) and 11 log PCB REPs with PCB consensus toxicity factors (CTFs) for compounds with WHO-TEFs (r=0.80; p=0.003). The complete set of derived 56 log REPs correlated with the log CTFs (r=0.77; p=0.001) and log WHO-TEFs (r=0.81; p<0.001). REPs calculated from thyroid and cytochrome P450 endpoints realistically reflect human exposure scenarios because they are based on human chronic and low-dose exposures. While the CYP 1A1 seems more suitable for toxicity evaluation of PCDD/Fs, the CYP 1B1 is more apt for PCDFs and PCBs and reflects different pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cyclophilin B expression in renal proximal tubules of hypertensive rats.
Kainer, D B; Doris, P A
2000-04-01
Rat cyclophilin-like protein (Cy-LP) is a candidate hypertension gene initially identified by differential hybridization and implicated in renal mechanisms of salt retention and high blood pressure. We report the molecular characterization of rat cyclophilin B (CypB) and demonstrate, through sequence analysis and an allele-specific polymerase chain reaction primer assay, that CypB but not Cy-LP is expressed in rat kidney. CypB is an endoplasmic reticulum-localized prolyl-isomerase that interacts with elongation initiation factor 2-beta, an important regulator of protein translation and a central component of the endoplasmic reticulum stress response to hypoxia or ATP depletion. Active renal transport of sodium is increased in the spontaneously hypertensive rat (SHR), and there is evidence that this coincides with hypoxia and ATP depletion in the renal cortex. In the present studies we have examined expression of CypB in rat proximal tubules, which contributes to the increased renal sodium reabsorption in this model of hypertension. We report that CypB transcript abundance is significantly elevated in proximal convoluted tubules from SHR compared with the control Wistar-Kyoto strain. This upregulation occurs in weanling animals and precedes the development of hypertension, indicating that it is not a simple response to hypertension in SHR. Further, CypB expression is also higher in a proximal tubule cell line derived from SHR compared with a similar line derived from Wistar-Kyoto rats, indicating that this difference is genetically determined. No sequence differences were observed in the CypB cDNA from these 2 strains. These observations suggest that a genetically determined alteration in proximal tubules from SHR occurs that leads to increased expression of CypB. In view of evidence linking CypB to the regulation of elongation initiation factor-2, the upregulation of CypB may result from metabolic stress.
Wolenski, Francis S; Xia, Cindy Q; Ma, Bingli; Han, Tae H; Shyu, Wen C; Balani, Suresh K
2018-06-01
Monomethyl auristatin E (MMAE), the toxin linked to CD30-specific monoclonal antibody of Adcetris ® (brentuximab vedotin), is a potent anti-microtubule agent. Brentuximab vedotin has been approved for the treatment of relapsed or refractory Hodgkin lymphoma and anaplastic large cell lymphoma. Cytochrome P450 (CYP) induction assessment of MMAE was conducted in human hepatocytes to assess DDI potentials and its translation to clinic. MMAE was incubated at 1-1000 nM with cultured primary human hepatocytes for 72 h, and CYP1A2, CYP2B6, and CYP3A4 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction and CYP-specific probe substrate by liquid chromatography coupled with mass spectrometry, along with microtubule disruption by immunofluorescence staining using anti-β-tubulin antibody and imaging. MMAE up to 10 nM had no significant effect on CYP1A2, CYP2B6, and CYP3A4 mRNA expression and activity, whereas at higher concentrations of 100- and 1000-nM MMAE, the CYP mRNA expression and activity were diminished substantially. Further investigation showed that the degree of CYP suppression was paralleled by that of microtubule disruption by MMAE, as measured by increase in the number of β-tubulin-positive aggregates. At the clinical dose, the concentration of MMAE was 7 nM which did not show any significant CYP suppression or microtubule disruption in hepatocytes. MMAE was not a CYP inducer in human hepatocytes. However, it caused a concentration-dependent CYP mRNA suppression and activity. The CYP suppression was associated with microtubule disruption, supporting the reports that intact microtubule architecture is required for CYP regulations. The absence of CYP suppression and microtubule disruption in vitro at the clinical plasma concentrations of MMAE (< 10 nM) explains the lack of pharmacokinetic drug interaction between brentuximab vedotin and midazolam, a sensitive CYP3A substrate, reported in patients.
Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu
2012-12-01
Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.
Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu
2012-01-01
Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10-6-10-5 M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10-9-10-5 M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10-6-10-5 M), while having no effects at low concentrations (10-9-10-7 M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β. PMID:25949102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chunsheng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Zhang Xiaowei, E-mail: howard50003250@yahoo.co
2010-09-15
Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of allmore » hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.« less
Effect of cyclophilin A on gene expression in human pancreatic cancer cells.
Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi
2005-11-01
We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.
Osanai, Makoto; Lee, Gang-Hong
2014-10-07
Retinoic acid (RA) is a critical regulator of cell differentiation, proliferation, and apoptosis in various cell types. Recently, the RA-metabolizing enzyme CYP26A1 (cytochrome P450, family 26, subfamily A, polypeptide 1) has been shown to have an oncogenic function in breast carcinogenesis. However, the relevance of elevated CYP26A1 expression in human cancers remains to be clarified. We immunohistochemically examined the expression of CYP26A1 in cervical squamous cell carcinoma (SCC) and its precursors, including low- and high-grade squamous intraepithelial lesions (LSIL and HSIL, respectively), as well as head and neck cancer (HNC). The association between CYP26A1 expression and a number of clinicopathological parameters was also evaluated. CYP26A1 was not expressed in normal cervical epithelium. CYP26A1 expression was present in LSIL but limited to basal and parabasal cells. HSIL cases exhibited strong nuclear expression of CYP26A1 and mixed cytoplasmic expression patterns with widely distributed expression toward the epithelial surface. Importantly, strong cytoplasmic staining of CYP26A1 was observed in 19 of 50 (38%) patients with cervical SCC. Elevated expression of CYP26A1 was significantly associated with younger age (<50 years) and lymph node involvement (pN). Similarly, CYP26A1 was not expressed in non-neoplastic tissues of the head and neck, but strong cytoplasmic staining of CYP26A1 was observed in 52 of 128 (41%) HNC cases. Such strong CYP26A1 expression was significantly associated with the primary tumor stage of carcinomas (pT) and the pathological tumor-node-metastasis (pTNM) stage in HNC. Our results indicated an elevated CYP26A1 expression in malignant and precancerous dysplastic lesions of the human cervix, which also increased with the progression of cervical squamous neoplasia. In addition, this report is the first to demonstrate the increased expression of CYP26A1 in HNC and its significant correlation with primary tumor growth. These data suggested that CYP26A1 overexpression might contribute to the development and progression of cervical malignancies and squamous neoplasia of the head and neck.
Houttuynia cordata alleviates high-fat diet-induced non-alcoholic fatty liver in experimental rats.
Kang, Hyun; Koppula, Sushruta
2015-03-01
Houttuynia cordata Thunb. (Saururaceae) is used traditionally in Asian countries to treat various disease symptoms. To study the effect of H. cordata ethyl acetate (HC-EA) extract on high-fat diet (HFD)-induced hepatic steatosis. HFD fed rats were orally dosed with HC-EA (100, 200, or 300 mg/kg) once daily for 8 weeks and the lipid profiles and protein expressions in hepatocytes were evaluated. HFD rats showed an increase (p < 0.05) in the plasma lipid levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), free fatty acids (FFAs), and reduced the high-density lipoprotein (HDL) levels. Treatment with HC-EA extract (300 mg/kg) restored the changes in plasma lipid levels of TC, TG, LDL, FFA, and HDL in HFD-fed rats by 34.8, 31.1, 51.4, 32.4, and 56.3%, respectively, compared with control rats (p < 0.01). HC-EA treatment also decreased the hepatic lipid accumulation (p < 0.001 at 300 mg/kg) and improved hepatic histological lesions. HC-EA extract enhanced AMPK phosphorylation and its primary downstream targeting enzyme, acetyl-CoA carboxylase (ACC), up-regulated the gene expression of carnitine palmitoyl transferase-1 (CPT-1), and down-regulated sterol regulatory element binding protein 1, fatty acid synthase, and glutamate pyruvate transaminase protein levels in the livers of HFD-fed rats. Further, the increased expression of hepatic cytochrome P450 (CYP) composition such as CYP2E1 and CYP4A was also suppressed. Data suggest that HC-EA extract might act by regulating the AMPK-dependent pathway and related mediators and might be used in treating obesity-related liver diseases.
Abdelhadya, Doaa H; El-Magd, Mohammed Abu; Elbialy, Zizy I; Saleh, Ayman A
2017-09-01
Despite widespread use of bromuconazole as a pesticide for food crops and fruits, limited studies have been done to evaluate its toxic effects. Here, we evaluated the hepatotoxic effect of bromuconazole using classical toxicological (biochemical analysis and histopathological examination) and gene-based molecular methods. Male rats were treated either orally or topically with bromuconazole at doses equal to no observed adverse effect level (NOAEL) and 1/10 LD50 for 90 d. Bromuconazole increased activities of liver enzymes (ALT, AST, ALP, and ACP), and levels of bilirubin. It also induced hepatic oxidative stress as evidenced by significant decrease in the activities of superoxide dismutase (SOD), and significant increase in levels of malondialdehyde (MDA) in liver. In addition, bromuconazole caused an increase in liver weights and necrobiotic changes (vacuolation and hepatocellular hypertrophy). It also strongly induced the expression of PXR and its downstream target CYP3A1 gene as well as the activity of CYP3A1. However, it inhibited the expression of CAR and its downstream target CYP2B1 gene without significant changing in CYP2B1 activity. Overall, the oral route showed higher hepatotoxic effect and molecular changes than the dermal route and all changes were dose dependent. This is the first investigation to report that bromuconazole-induced liver oxidative damage is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1.
MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J
2015-03-01
Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, Katie M.; Center for Oral Health Research, School of Dental Medicine University of Pennsylvania, Philadelphia, PA 19104; Milne, Richard S.B.
2008-03-30
During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated.more » Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.« less
Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei
2015-05-01
Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.
Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna
2010-01-01
Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA. PMID:21085665
Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna
2010-11-10
Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.
Hinfray, N; Tebby, C; Garoche, C; Piccini, B; Bourgine, G; Aït-Aïssa, S; Kah, O; Pakdel, F; Brion, F
2016-09-15
Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures. Copyright © 2016 Elsevier Inc. All rights reserved.
Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S
2012-07-26
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1a-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.
Brozek, Wolfgang; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S.
2012-01-01
Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression. PMID:24213465
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xuejiao; Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000; Zhang, Zhan
Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose-more » and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8-MOP.« less
Idriss, Abdulrahman A; Hu, Yun; Hou, Zhen; Hu, Yan; Sun, Qinwei; Omer, Nagmeldin A; Abobaker, Halima; Ni, Yingdong; Zhao, Ruqian
2018-03-01
Betaine is widely used in animal nutrition to promote growth, development and methyl donor during methionine metabolism through nutritional reprogramming via regulation of gene expression. Prenatal betaine exposure is reported to modulate hypothalamic cholesterol metabolism in chickens, yet it remains unknown whether feeding hens with betaine-supplemented diet may affect hypothalamic cholesterol metabolism in F1 offspring. In this study, hens were fed with basal or betaine-supplemented (0.5%) for 30days, and the eggs were collected for incubation. The hatchlings were raised under the same condition up to 56days of age. Betaine-treated group showed significantly (P<0.05) higher plasma concentration of total cholesterol and HDL-cholesterol, together with increased hypothalamic content of total cholesterol and cholesterol ester. Concordantly, hypothalamic gene expression of SREBP2, HMGCR, and LDLR was significantly up regulated (P<0.05). Also, mRNA abundances of SREBP1, ACAT1 and APO-A1 were up-regulated, while that of CYP46A1 was significantly down-regulated (P<0.05). These changes coincided with a significant down-regulation of BDNF and CRH, and a significant up-regulation of NPY mRNA expression. Moreover, genes involved in methyl transfer cycle were also modulated. DNMT1 and BHMT were up-regulated (P<0.05) at both mRNA and protein levels, which was associated with significant modifications of CpG methylation on the promoter of SREBP-1, SREBP-2 and APO-A1 genes as detected by bisulfate sequencing. These results indicate that feeding betaine to hens modulates hypothalamic expression of genes involved in cholesterol metabolism and brain functions in F1 cockerels with modification of promoter DNA methylation. Copyright © 2017 Elsevier Inc. All rights reserved.
Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary
Ortega, Israel; Sokalska, Anna; Villanueva, Jesus A.; Cress, Amanda B.; Wong, Donna H.; Stener-Victorin, Elisabet; Stanley, Scott D.; Duleba, Antoni J.
2012-01-01
Objective To evaluate the effects of letrozole on ovarian size and steroidogenesis in vivo, as well as on proliferation and steroidogenesis of theca-interstitial cells alone and in coculture with granulosa cells using an in vitro model. Design In vivo and in vitro studies. Setting Research laboratory. Animal(s) Immature Sprague-Dawley female rats. Intervention(s) In vivo effects of letrozole were studied in intact rats receiving either letrozole (90-day continuous-release SC pellets, 400 µg/d) or placebo pellets (control group). In in vitro experiments, theca cells were cultured alone or in coculture with granulosa cells in the absence or presence of letrozole. Main Outcome Measure(s) Deoxyribonucleic acid synthesis was determined by thymidine incorporation assay; steroidogenesis by mass spectrometry; and steroidogenic enzyme messenger RNA (mRNA) expression by polymerase chain reaction. Result(s) In vivo, letrozole induced an increase in ovarian size compared with the control group and also induced a profound increase of androgen, LH levels, and Cyp17a1 mRNA expression. Conversely, a decrease in Star, Cyp11a1, and Hsd3b1 transcripts was observed in letrozole-exposed rats. In vitro, letrozole did not alter either theca cell proliferation or Cyp17a1 mRNA expression. Similarly, letrozole did not affect Cyp17a1 transcripts in granulosa-theca cocultures. Conclusion(s) These findings suggest that letrozole exerts potent, but indirect, effect on growth of rat ovary and dramatically increases androgen levels and Cyp17a1 mRNA expression, the key enzyme regulating the androgen biosynthesis pathway. The present findings reveal novel mechanisms of action of letrozole in the rat ovary. PMID:23200686
Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F
2006-01-01
CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (P<0.05) of CYP2B6 protein levels was observed in all regions tested (caudate, putamen, hippocampus, cerebellum, brain stem and frontal cortex) ranging from 2-fold to 150-fold. CYP2B6 expression was induced in specific cells, such as frontal cortical pyramidal cells and thalamic neurons. In conclusion, chronic phenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792
Kitagawa, Satoshi; Shimada, Sanae; Murai, Koji
2012-01-01
The photoperiod sensitivity gene Ppd-1 influences the timing of flowering in temperate cereals such as wheat and barley. The effect of Ppd-1 on the expression of flowering-time genes was assessed by examining the expression levels of the vernalization genes VRN1 and VRN3/WFT and of two CONSTANS-like genes, WCO1 and TaHd1, during vegetative and reproductive growth stages. Two near-isogenic lines (NILs) were used: the first carried a photoperiod-insensitive allele of Ppd-1 (Ppd-1a-NIL), the other, a photoperiod-sensitive allele (Ppd-1b-NIL). We found that the expression pattern of VRN1 was similar in Ppd-1a-NIL and Ppd-1b-NIL plants, suggesting that VRN1 is not regulated by Ppd-1. Under long day conditions, VRN3/WFT showed similar expression patterns in Ppd-1a-NIL and Ppd-1b-NIL plants. However, expression differed greatly under short day conditions: VRN3/WFT expression was detected in Ppd-1a-NIL plants at the 5-leaf stage when they transited from vegetative to reproductive growth; very low expression was present in Ppd-1b-NIL throughout all growth stages. Thus, the Ppd-1b allele acts to down-regulate VRN3/WFT under short day conditions. WCO1 showed high levels of expression at the vegetative stage, which decreased during the phase transition and reproductive growth stages in both Ppd-1a-NIL and Ppd-1b-NIL plants under short day conditions. By contrast to WCO1, TaHd1 was up-regulated during the reproductive stage. The level of TaHd1 expression was much higher in Ppd-1a-NIL than the Ppd-1b-NIL plants, suggesting that the Ppd-1b allele down-regulates TaHd1 under short day conditions. The present study indicates that down-regulation of VRN3/WFT together with TaHd1 is the cause of late flowering in the Ppd-1b-NIL plants under short day conditions.
Giantin, Mery; Gallina, Guglielmo; Pegolo, Sara; Lopparelli, Rosa Maria; Sandron, Clara; Zancanella, Vanessa; Nebbia, Carlo; Favretto, Donata; Capolongo, Francesca; Montesissa, Clara; Dacasto, Mauro
2012-10-01
Cattle hepatocytes have already been used in veterinary in vitro toxicology, but their usefulness as a multi-parametric screening bioassay has never been investigated so far. In this study, cattle hepatocytes were incubated with illicit steroids/prohormones (boldenone, BOLD; its precursor boldione, ADD; dehydroepiandrosterone, DHEA; an association of ADD:BOLD), to characterize their transcriptional effects on drug metabolizing enzymes (DMEs) and related nuclear receptors (NRs), on cytochrome P450 3A (CYP3A) apoprotein and catalytic activity as well as to determine ADD and BOLD metabolite profiling. DHEA-exposed cells showed an up-regulation (higher than 2.5-fold changes) of three out of six NRs, CYP2B22 and CYP2C87; likewise, ADD:BOLD increased CYP4A11 mRNA levels. In contrast, a reduction of CYP1A1 and CYP2E1 mRNAs (lower than 2.5(-1)-fold changes) was noticed in ADD- and DHEA-incubated cells. No effect was noticed on CYP3A gene and protein expression, though an inhibition of 6β-, 2β- and 16β-hydroxylation of testosterone (higher than 60% of control cells) was observed in ADD- and BOLD-exposed cells. Finally, 17α-BOLD was the main metabolite extracted from hepatocyte media incubated with ADD and BOLD, but several mono-hydroxylated BOLD and ADD derivatives were detected, too. Collectively, cattle hepatocytes can represent a complementary screening bioassay, useful to characterize growth promoters metabolite profiling and their effects upon DMEs expression, regulation and function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi
2012-01-01
Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988
Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1.
Xu, Yue; Zhao, Shuhua; Cui, Manhua; Wang, Qiang
2015-01-01
More and more evidence has confirmed that dysregulation of microRNAs (miRNAs) can conduce to the progression of human cancers. Previous studied have shown that dysregulation of miR-135b is in varieties of tumors. However, the roles of miR-135b in cervical cancer remain unknown. Therefore, our aim of this study was to explore the biological function and molecular mechanism of miR-135b in cervical cancer cell lines, discussing whether it could be a therapeutic biomarker of cervical cancer in the future. The MTT assay and ELISA-Brdu assay were used to assess cell proliferation. Cell cycle was detected by flow cytometry. Real-time quantitative polymerase chain reaction (PCR) and Western blot analyses were used to detect expressions of cyclin D1, p21, p27 and FOXO1. In our study, we found that miR-135b is up-regulated in cervical cancer cell lines. Down-regulation of miR-135b evidently inhibited proliferation and arrested cell cycle in cervical cancer cells. Bioinformatics analysis predicted that the FOXO1 was a potential target gene of miR-135b. Besides, miR-135b inhibition significantly increased expressions of the cyclin-dependent kinase inhibitors, p21(/CIP1) and p27(/KIP1), and decreased expression of cyclin D1. However, the high level of miR-135b was associated with increased expression of FOXO1 in cervical cancer cells. Further study by luciferase reporter assay demonstrated that miR-135b could directly target FOXO1. Down-regulation of FOXO1 in cervical cancer cells transfected with miR-135b inhibitor partially reversed its inhibitory effects. In conclusion, down-regulation of miR-135b inhibited cell growth in cervical cancer cells by up-regulation of FOXO1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johri, Ashu; Yadav, Sanjay; Dhawan, Alok
2008-08-15
ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD{sub 50}; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increasemore » in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics.« less
Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions
Prakash, Chandra; Zuniga, Baltazar; Song, Chung Seog; Jiang, Shoulei; Cropper, Jodie; Park, Sulgi; Chatterjee, Bandana
2016-01-01
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow. PMID:27478824
Böhne, Astrid; Heule, Corina; Boileau, Nicolas; Salzburger, Walter
2013-01-01
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation. PMID:23883521
Role of miR-383 and miR-146b in different propensities to obesity in male mice.
Xia, Shu-Fang; Duan, Xiao-Mei; Cheng, Xiang-Rong; Chen, Li-Mei; Kang, Yan-Jun; Wang, Peng; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei
2017-08-01
The study was designed to investigate the possible mechanisms of hepatic microRNAs (miRs) in regulating local thyroid hormone (TH) action and ultimately different propensities to high-fat diet (HFD)-induced obesity. When obesity-prone (OP) and obesity-resistant (OR) mice were fed HFD for 7 weeks, OP mice showed apparent hepatic steatosis, with significantly higher body weight and lower hepatic TH receptor b (TRb) expression and type 1 deiodinase (DIO1) activity than OR mice. Next-generation sequencing technology revealed that 13 miRs in liver were dysregulated between the two phenotypes, of which 8 miRs were predicted to target on Dio1 or TRb When mice were fed for 17 weeks, OR mice had mild hepatic steatosis and increased Dio1 and TRb expression than OP mice, with downregulation of T3 target genes (including Srebp1c , Acc1 , Scd1 and Fasn ) and upregulation of Cpt1α , Atp5c1 , Cox7c and Cyp7a1 A stem-loop qRT-PCR analysis confirmed that the levels of miR-383, miR-34a and miR-146b were inversely correlated with those of DIO1 or TRb. Down-regulated expression of miR-383 or miR-146b by miR-383 inhibitor (anti-miR-383) or miR-146b inhibitor (anti-miR-146b) in free fatty acid-treated primary mouse hepatocytes led to increased DIO1 and TRb expressions, respectively, and subsequently decreased cellular lipid accumulation, while miR-34a inhibitor (anti-miR-34a) transfection had on effects on TRb expression. Luciferase reporter assay illustrated that miR-146b could directly target TRb 3'untranslated region (3'UTR). These findings suggested that miR-383 and miR-146b might play critical roles in different propensities to diet-induced obesity via targeting on Dio1 and TRb , respectively. © 2017 Society for Endocrinology.
Weihua, Zhang; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake
2002-10-15
Epithelial proliferation of the ventral prostate in rodents peaks between 2 and 4 weeks of age, and by week 8, proliferating cells are rare. We have used ERbeta(-/-) and CYP7B1(-/-) mice to investigate the role of ERbeta and one of its ligands, 5alpha-androstane-3beta,17beta-diol (3betaAdiol), in growth of the ventral prostate. Before puberty, ERbeta was found in quiescent but not in proliferating cells, and proliferating cells occurred more frequently in ventral prostates of ERbeta(-/-) mice than in wild-type littermates. Treatment with 3betaAdiol decreased proliferation in wild-type but not in ERbeta(-/-) mice. In rats, treatment with 3betaAdiol from postnatal day 2 to 28 resulted in reduction in growth of ventral prostates. The prostates of CYP7B1(-/-) mice were hypoproliferative before puberty and smaller than those of their wild-type littermates after puberty. Because CYP7B1 represents the major pathway for inactivating 3betaAdiol in the prostate, we suggest that ERbeta, 3betaAdiol, and CYP7B1 are the components of a pathway that regulates growth of the rodent ventral prostate. In this pathway, ERbeta is an antiproliferative receptor, 3betaAdiol is an ERbeta ligand, and CYP7B1 is the enzyme that regulates ERbeta function by regulating the level of 3betaAdiol.
Wang, Feng; Liu, Jin-Cheng; Zhou, Rui-Jun; Zhao, Xi; Liu, Mei; Ye, Hua; Xie, Mei-Lin
2017-09-25
Alcohol is a major cause of liver injury, and there are currently no ideal pharmacological reagents that can prevent or reverse this disease. Apigenin is one of the most common flavonoids present in numerous plants and has many beneficial effects. But whether or not apigenin may protect against alcohol-induced liver injury remains unknown. Our aim was to examine the effect and potential mechanisms. The experimental mice were given 56% erguotou wine or simultaneously given apigenin 150-300 mg/kg by gavage for 30 days. The results showed that in the apigenin-treated mice, the expression of hepatic cytochrome P450 2E1 (CYP2E1) and nuclear factor kappa B proteins as well as contents of hepatic malondialdehyde and tumor necrosis factor-alpha were reduced, while the levels of hepatic reduced glutathione, glutathione reductase, glutathione peroxidase, and glutathione S-transferase were increased, especially in the 300 mg/kg group. A significant change in hepatic steatosis was also observed in the apigenin 300 mg/kg group. Apigenin pretreatment could increase the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase-1 proteins, and decrease the expression of hepatic sterol regulatory element binding protein-1c, fatty acid synthase, and diacylglycerol acyltransferase proteins. These findings demonstrated that apigenin might exert a protective effect on alcohol-induced liver injury, and its mechanisms might be related to the regulations of hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Cobbina, Enoch; Akhlaghi, Fatemeh
2017-01-01
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5 % of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a ‘three-hit’ process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 have been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may results in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 are more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 are up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major drug metabolizing enzymes and transporters. We also discuss the potential mechanisms underlying these alterations. PMID:28303724
NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer
2011-08-01
biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells expressing NF-kappaB2/p52. Luciferase assays...RESULTS: Expression levels of androgen biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells
Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun
2013-11-01
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64). Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
John, Kaarthik; Ragavan, Narasimhan; Pratt, M. Margaret; Singh, Paras B.; Al-Buheissi, Salah; Matanhelia, Shyam S.; Phillips, David H.; Poirier, Miriam C.; Martin, Francis L.
2008-01-01
BACKGROUND Studies of migrant populations suggest that dietary and/or environmental factors play a crucial role in the aetiology of prostatic adenocarcinoma (CaP). The human prostate consists of the peripheral zone (PZ), transition zone (TZ) and central zone (CZ); CaP occurs most often in the PZ. METHODS To investigate the notion that an underlying differential expression of phase I/II genes, and/or the presence of polycyclic aromatic hydrocarbon (PAH)-DNA adducts might explain the elevated PZ susceptibility, we examined prostate tissues (matched tissue sets consisting of PZ and TZ) from men undergoing radical retropubic prostatectomy for CaP (n=26) or cystoprostatectomy (n=1). Quantitative gene expression analysis was employed for cytochrome P450 (CYP) isoforms CYP1A1, CYP1B1 and CYP1A2, as well as N-acetyltransferase 1 and 2 (NAT1 and NAT2) and catechol-O-methyl transferase (COMT). RESULTS CYP1B1, NAT1 and COMT were expressed in all tissue sets; levels of CYP1B1 and NAT1 were consistently higher in the PZ compared to TZ. Immunohistochemistry confirmed the presence of CYP1B1 (nuclear-associated and primarily in basal epithelial cells) and NAT1. Tissue sections from 23 of these aforementioned 27 matched tissue sets were analyzed for PAH-DNA adduct levels using antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE). PAH-DNA adduct levels were highest in glandular epithelial cells, but a comparison of PZ and TZ showed no significant differences. CONCLUSION Although expression of activating and/or detoxifying enzymes may be higher in the PZ, PAH-DNA adduct levels appear to be similar in both zones. Therefore, factors other than PAH-DNA adducts may be responsible for promotion of tumour formation in the human prostate. PMID:19143007
Rioja Zuazu, J; Bandrés Elizalde, E; Rosell Costa, D; Rincón Mayans, A; Zudaire Bergera, J; Gil Sanz, M J; Rioja Sanz, L A; García Foncillas, J; Berián Polo, J M
2007-01-01
Steroid and Xenobiotic Receptor (SXR) has demonstrated its activation by numerous drugs, including cytochrome P450 potent inducers like rifampicina or cotrimazol. The role of SXR is well known, and lies regulating in a positive manner cytochrome P450 3A4 (CYP3A4) transcription and the multidrug resistance gene (MDR1), it's considered a key in the xenobiotic detoxification mechanism, being involved in all phases of the detoxification process. Enzymes involved in Policyclic Aromatic hidrocarbures (PAH) metabolism and degradation are polymorphic in humans, including glutation S-transferases (GSTs), N-acetiltransferases (NATs), sulfotransferases (SULTs)1A1 and cytochrome p450 (CYP)1B1. The objectives we've planned are: 1. Analyze the expression of the transcription factor SXR and MDR1 in bladder by means of RT-PCR real time, both in normal bladder and in tumoral bladder. 2. Analyze the relation between clinical and pathological factors with the expression of SXR and MDR1. 3. Analyze the expression of the polymorphims CYP1B1, GSTM1 GSTT1 and SULT1A1 and their correlation with different clinic-pathological and molecular factors. In a prospective way the size of the sample was estimated. In 67 patients from two institutions (Hospital Universitario Miguel Servet (49 HUMS) and Clinica Universitaria de Navarra (18 CUN)), diagnosed of invasive bladder cancer and treated by means of radical cystectomy, were determined the expression of both SXR and MDR1 by means of real time PCR, as well as the polymorphisms CYP1B1, GSTM1 GSTT1 y SULT1A1 by means of RFLP (Restriction fragment length polymorphism). Correlations with other prognostic factors by contingency tables were performed. Average follow up was 23.7 months with a median of 28.26 months. Of the 67 patients studied, 31 patients (46.3) presented disease progression, in form of local recurrence or in distant metastasis or both. With a average time to progression of 12.4 months and a median of 10 months, with a range of 1.1 month to 31.9 month. 36 patients (53.7%) did not have any evidence of disease progression during follow up. The Steroid and Xenobiotic Receptor as well as the Multidrug Resistance Gene (MDR1) are expressed in both normal bladder (0.94DeltaCt y 0.94DeltaCt) and tumoral bladder in the cystectomy specimen (1.09 DeltaCt y 0.45 DeltaCt). We've analyzed their expression in a quantitative manner and in a qualitative manner. The expression of SXR correlates with the presence of ca. in situ (p=0.024), vasculo-lymphatic invasion (p=0.05) mean while MDR1 correlates with presence of vasculo-lymphatic invasion (p=0.05) Both factors are correlate between each others (p=0.011). Polymorphisms: CYP1B1, GSTM1, GSTT1 and SULT1A1, are expressed in these patients but their expression doesn't correlates with any prognostic factor Both SXR and MDR1 are expressed in normal bladder as well as in tumoral bladder. And their expression correlates with different prognostic factors with influence in the survival described in the literature.
Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells
Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan
2015-01-01
Background Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Methodology Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3–30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. Results and Conclusions In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells. PMID:26555702
Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells.
Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan
2015-01-01
Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3-30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of Cyp11a1, Hsd17b3 and Srd5a1. In conclusion, etomidate directly inhibits the activities of CYP11A1 and HSD3B1, and the expression levels of Cyp11a1 and Hsd17b3, leading to the lower production of androgen by Leydig cells.
Bystrom, Jonas; Thomson, Scott J.; Johansson, Jörgen; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Smith, Andrew M.; Bishop-Bailey, David
2013-01-01
The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn’s disease. Unlike macrophages from control donors, macrophages from Crohn’s disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn’s disease. PMID:24058654
Bystrom, Jonas; Thomson, Scott J; Johansson, Jörgen; Edin, Matthew L; Zeldin, Darryl C; Gilroy, Derek W; Smith, Andrew M; Bishop-Bailey, David
2013-01-01
The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients. CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFα release. THP-1 monocytes were transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis, epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with 11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn's disease. Unlike macrophages from control donors, macrophages from Crohn's disease patients showed no induction of CYP2J2 in response to E. coli. These results demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway may regulate bacterial clearance in Crohn's disease.
Residential Segregation, Housing Status, and Prostate Cancer in African American and White Men
2008-04-01
and Leu432Val, microsomal epoxide hydrolase (mEH) Tyr113His and His139Arg, CYP3A4 A(−392)G] and conjugation [glutathione S-transferase (GST) M1 null...CYP1B1, or CYP3A4 (16) can then transform the dihydrodiol to a highly reactive diol-epoxide [benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, BPDE] that can...Although mEH (18) and CYP1B1 (19) are expressed in the prostate, CYP1A1 may only be induced under androgen dependency (20) and CYP3A4 may require
Shi, Q; Haenen, G R; Maas, L; Arlt, V M; Spina, D; Vasquez, Y Riffo; Moonen, E; Veith, C; Van Schooten, F J; Godschalk, R W L
2016-09-01
Neutrophils infiltrate tissues during inflammation, and when activated, they release β-glucuronidase. Since inflammation is associated with carcinogenesis, we investigated how extracellular β-glucuronidase changed the in vitro cellular response to the chemical carcinogen benzo(a)pyrene (B[a]P). For this we exposed human liver (HepG2) and lung (A549) cells to B[a]P in the presence or absence of β-glucuronidase. β-Glucuronidase reduced B[a]P-induced expression of CYP1A1 and CYP1B1 at 6 h after exposure, which did not depend on β-glucuronidase activity, because the inhibitor D-saccharic acid 1,4-lactone monohydrate did not antagonize the effect of β-glucuronidase. On the other hand, the inhibitory effect of β-glucuronidase on CYP expression was dependent on signalling via the insulin-like growth factor receptor (IGF2R, a known receptor for β-glucuronidase), because co-incubation with the IGF2R inhibitor mannose-6-phosphate completely abolished the effect of β-glucuronidase. Extracellular β-glucuronidase also reduced the formation of several B[a]P metabolites and B[a]P-DNA adducts. Interestingly, at 24 h of exposure, β-glucuronidase significantly enhanced CYP expression, probably because β-glucuronidase de-glucuronidated B[a]P metabolites, which continued to trigger the aryl hydrocarbon receptor (Ah receptor) and induced expression of CYP1A1 (in both cell lines) and CYP1B1 (in A549 only). Consequently, significantly higher concentrations of B[a]P metabolites and DNA adducts were found in β-glucuronidase-treated cells at 24 h. DNA adduct levels peaked at 48 h in cells that were exposed to B[a]P and treated with β-glucuronidase. Overall, these data show that β-glucuronidase alters the cellular response to B[a]P and ultimately enhances B[a]P-induced DNA adduct levels.
Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W; Schuster, Daniela
2017-01-01
Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8 - 10 ), one selective CYP11B1 inhibitor (Compound 11 , IC 50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12 , IC 50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.
NASA Astrophysics Data System (ADS)
Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W.; Schuster, Daniela
2017-12-01
Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing’s syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8-10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 µM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 µM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models.
Liu, Guanghua; Wang, Fen; Jiang, Jun; Yan, Zhaoli; Zhang, Dianxi; Zhang, Yinsheng
2016-01-01
Context: To date, all the familial hyperaldosteronism type III (FH-III) patients reported presenting with typical primary aldosteronism (PA), without showing other adrenal hormone abnormalities. Objective: This study characterized a novel phenotype of FH-III and explored the possible pathogenesis. Patients and Methods: A male patient presented with severe hypertension and hypokalemia at the age of 2 years and developed Cushing's syndrome at 20 years. He was diagnosed with PA and Cushing's syndrome on the basis of typical biochemical findings. He had massive bilateral adrenal hyperplasia and underwent left adrenalectomy. KCNJ5 was sequenced, and secretion of aldosterone and cortisol were observed both in vivo and in vitro. Results: A heterozygous germline p.Glu145Gln mutation of KCNJ5 was identified. ARMC5, PRKAR1A, PDE8B, PDE11A, and PRKACA genes and β-catenin, P53 immunoactivity were normal in the adrenal. CYP11B2 was highly expressed, whereas mRNA expression of CYP11B1, CYP17A1, and STAR was relatively low in the hyperplastic adrenal, compared with normal adrenal cortex and other adrenal diseases. In the primary cell culture of the resected hyperplastic adrenal, verapamil and nifedipine, two calcium channel blockers, markedly inhibited the secretion of both aldosterone and cortisol and the mRNA expression of CYP11B1, CYP11B2, CYP17A1, and STAR. Conclusions: We presented the first FH-III patient who had both severe PA and Cushing's syndrome. Hypersecretion of cortisol might be ascribed to overly large size of the hyperplastic adrenal because CYP11B1 expression was relatively low in his adrenal. Like aldosterone, synthesis and secretion of cortisol in the mutant adrenal may be mediated by voltage-gated Ca2+ channels. PMID:27403928
miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.
Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong
2017-08-08
Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.
de Vries, E M; Lammers, L A; Achterbergh, R; Klümpen, H-J; Mathot, R A A; Boelen, A; Romijn, J A
2016-01-01
Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.
Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo
2013-04-15
Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Min; Yamada, Takanori; Yamano, Shotaro
2013-11-15
Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes inmore » the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.« less
Thermodynamics of interactions between mammalian cytochromes P450 and b5.
Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis
2017-04-01
Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yinjun; Zhang, Yi; Chen, An; Zhang, Wei; Chen, Hao; Zhang, Quan
2016-06-01
Enantioselectivity of chiral pesticides in environmental safety has attracted more and more attention. In this study, we evaluated the enantioselective toxicity of rac-metalaxyl and R-metalaxyl to zebrafish (Danio rerio) embryos through various malformations including pericardial edema, yolk sac edema, crooked body, and short tails. The results showed that there were significant differences in toxicity to zebrafish embryos caused by rac-metalaxyl and R-metalaxyl, and the LC50 s at 96 h are 416.41 (353.91, 499.29) mg · L(-1) and 320.650 (279.80, 363.46) mg · L(-1) , respectively. In order to explore the possible mechanism of the development defects, the genes involved in the hypothalamic-pituitary-gonadal axis (vtg1, vtg2, cyp17, cyp19a, cyp19b) and hypothalamic-pituitary-thyroid axis (dio1, dio2, nis, tg, tpo) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that there were no significant differences in the expression of vtg1, vtg2, cyp17, cyp19a, and cyp19b after exposure to rac-metalaxyl. However, the expression of vtg1, cyp19a, and cyp19b decreased significantly after exposure to R-metalaxyl. And likewise, rac-metalaxyl only caused the upregulation of dio2, while R-metalaxyl suppressed the expression of dio1 and tpo and induced the expression of dio2 and nis. The change of gene expression may cause the enantioselectivity in developmental toxicity in zebrafish embryo. The data provided here will be helpful for us to comprehensively understand the potential ecological risks of the currently used chiral fungicides. Chirality 28:489-494, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kilarkaje, Narayana
2014-12-01
To investigate the effects of therapeutically relevant dose levels of bleomycin, etoposide and cisplatin (BEP) on testicular steroidogenic enzymes, and possible protective effects of an antioxidant cocktail (AC). Adult Sprague-Dawley rats received BEP with or without the AC (α-tocopherol, L-ascorbic acid, selenium and zinc) for either (a) 4 days (short term; 1.5, 15 and 3 mg/kg), or (b) three cycles of 21 days each (0.75, 7.5 and 1.5 mg/kg), or (c) the three cycles with a 63-day recovery period. The expression of steroidogenic enzymes were measured in the testes by Western blotting and immunofluorescent labeling. The short-term BEP exposure resulted in a decrease in scavenger receptor class-B1 and an increase in luteinizing hormone receptor (LHR). The AC with or without BEP has increased the levels of LHR, 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD, but without significant changes in testosterone levels. The three cycles of BEP up-regulated the expression of steroidogenic acute regulatory protein (StAR) and down-regulated that of cholesterol side chain cleavage enzyme (P450scc), cytochrome p450 17A1 (Cyp17A1, recovered by the AC) and 17β-HSD, associated with significant reduction in testosterone levels. The three cycles with the recovery time led to decreases in LHR, StAR, P450scc and Cyp17A1 and increases in 3β-HSD and 17β-HSD. The AC did not enhance the recovery of the enzyme levels. The three cycles of BEP treatment inhibit the testosterone synthesis pathway even after the recovery time. The AC recovers the effects of BEP chemotherapy on a few steroidogenic enzymes.
Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling.
Ahn, Mi Young; Kim, Ban Ji; Yoon, Hyung Joo; Hwang, Jae Sam; Park, Kun-Koo
2018-04-01
Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee ( Bombus ignitus ) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.
Yan, Tongmeng; Gao, Song; Peng, Xiaojuan; Shi, Jian; Xie, Cong; Li, Qiang; Lu, Linlin; Wang, Ying; Zhou, Fuyuan; Liu, Zhongqiu; Hu, Ming
2015-03-01
To determine the liver expression of cytochrome P450 (CYPs) and uridine 5'-diphosphate-glucuronosyltransferases (UGTs), the major phase I and II metabolism enzymes responsible for clearance and detoxification of drugs, xenobiotic and endogenous substances. A validated isotope label-free method was established for absolute and simultaneous quantification of 9 CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D, 2E1 and 3A4) and 5 UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes using LC-MS/MS. The LC-MS/MS method displayed excellent dynamic range (at least 250-fold) and high sensitivity for each of the signature peptides with acceptable recovery, accuracy and precision. The protein expression profile of CYP and UGT isoforms were then determined in match microsomes samples prepared from patients with HBV-positive human hepatocellular carcinoma (HCC). In the tumor microsomes, the average absolute amounts of 8 major CYP isoforms (except CYP2C19) and 3 UGT isoforms (UGT1A1, UGT1A4 and UGT2B7) were decreased significantly (p < 0.05), whereas UGT1A6 and UGT1A9 levels were unchanged (p > 0.05). In addition, among isoforms with altered expression, 6 of 8 CYP isoforms and all three UGT isoforms were much more variable in tumor microsomes. Lastly, the importance of CYP3A4 was greatly diminished whereas the importance of UGT1A6 was enhanced in tumor microsomes. The use of an isotope label-free absolute quantification method for the simultaneous determination of 9 CYPs and 5 UGTs in human liver microsomes reveals that expression levels of CYPs and UGTs in human liver are severely impact by HCC, which could impact drug metabolism, disposition and pharmacotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Rohit; Badger, Thomas M.; Arkansas Children's Nutrition Center, Little Rock, AR-72202
2009-01-01
We examined the influence of estradiol (E2) status and soy protein isolate (SPI) intake on the hepatic responses altered by 7,12-dimethylbenz(a)anthracene (DMBA, a polycyclic aromatic hydrocarbon [PAH]). Sprague-Dawley rats were ovariectomized (OVX) at PND50 and infused with E2 or vehicle for 14 d and gavaged with 50 mg/kg DMBA or vehicle 24 h before sacrifice at PND64. Rats were fed an AIN-93G diet made with SPI or casein as sole protein source throughout the study. Basal AhR protein levels were reduced (P < 0.05) by SPI feeding irrespective of the E2 status. However, DMBA increased (P < 0.05) AhR-induced CYP1A1more » gene expression in OVX, SPI-fed rats, but reduced (P < 0.05) CYP1A1 in OVX + E2, SPI-fed rats. Chromatin-immunoprecipitation demonstrated lower (P < 0.05) DMBA-mediated recruitment of estrogen receptor alpha to the CYP1A1 promoter by SPI feeding in the presence of E2, suggesting an estrogen-like action of SPI on DMBA-mediated signaling in the absence of E2. Further, microarray analysis (Rat 230-2.0 Affymetrix-GeneChip{sup TM}) revealed 231 genes common to SPI + DMBA and SPI + E2 + DMBA (normalized to E2) treatments. AhR-activated genes (CYP1A1, CYP1A2, and NQO1) were down-regulated by SPI + E2 + DMBA compared to SPI + DMBA. Unique interactions among SPI, DMBA and E2 altered the expression profile of 316 genes, not observed by either treatment alone. Our data suggest that although E2 status does not effect soy-mediated AhR degradation, it modulates the effects of soy on many genes, including CYP1A1.« less
Weihua, Zhang; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke
2002-01-01
Epithelial proliferation of the ventral prostate in rodents peaks between 2 and 4 weeks of age, and by week 8, proliferating cells are rare. We have used ERβ−/− and CYP7B1−/− mice to investigate the role of ERβ and one of its ligands, 5α-androstane-3β,17β-diol (3βAdiol), in growth of the ventral prostate. Before puberty, ERβ was found in quiescent but not in proliferating cells, and proliferating cells occurred more frequently in ventral prostates of ERβ−/− mice than in wild-type littermates. Treatment with 3βAdiol decreased proliferation in wild-type but not in ERβ−/− mice. In rats, treatment with 3βAdiol from postnatal day 2 to 28 resulted in reduction in growth of ventral prostates. The prostates of CYP7B1−/− mice were hypoproliferative before puberty and smaller than those of their wild-type littermates after puberty. Because CYP7B1 represents the major pathway for inactivating 3βAdiol in the prostate, we suggest that ERβ, 3βAdiol, and CYP7B1 are the components of a pathway that regulates growth of the rodent ventral prostate. In this pathway, ERβ is an antiproliferative receptor, 3βAdiol is an ERβ ligand, and CYP7B1 is the enzyme that regulates ERβ function by regulating the level of 3βAdiol. PMID:12370428
Wan, Qian; Lu, Hua; Liu, Xia; Yie, Shangmian; Xiang, Junbei; Yao, Zouying
2015-01-01
The women during the menopause period have an increased tendency for the obesity, which represents the more fat production than during the premenopausal period. Although this is not beneficial overall, it could provide a compensatory source for the estrogen production for the menopausal women. So it would be meaningful to find an agent that could inhibit the fat production while does not disturb the total estrogen production by fat tissues. In the present study, the effect of oleanolic acid (OA) on the fat production and the total estrogen production of the differentiating mouse preadipocyte 3T3-L1 as well as the mechanisms behind those effects were preliminarily investigated. The cell line 3T3-L1 was chosen as the model cell because it is usually used for the research about the obesity. During the induced differentiation of 3T3-L1 cells, cells were intervened continuously with OA. The fat production was determined with the oil red staining assay and the total estrogen production was measured with the ELISA assay. Finally, the expression patterns for important genes of the fat production and the estrogen production were studied, respectively with the real-time fluorescence quantitative PCR (qPCR). The results showed that for the differentiating 3T3-L1 cells, OA could significantly inhibit the fat production and did not disturb the total estrogen production significantly. In the mechanism studies, OA was found to significantly down-regulate ACC, the key gene for fat synthesis, which could explain the inhibitory effect of OA on the fat production; OA was also found to significantly up-regulate CYP11A1, CYP17, CYP19, the key genes for the estrogen synthesis and significantly down-regulate CYP1A1, the key gene for the estrogen decomposition, which preliminarily explained the lack of the effect of OA on the total estrogen production. In conclusion, OA was found able to inhibit the fat production while maintaining the total estrogen level and the mechanisms for the above findings were preliminarily clarified, which suggests that OA may be useful to treat the menopausal obesity.
Retinoid regulation of the zebrafish cyp26a1 promoter.
Hu, Ping; Tian, Miao; Bao, Jie; Xing, Guangdong; Gu, Xingxing; Gao, Xiang; Linney, Elwood; Zhao, Qingshun
2008-12-01
Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA. (c) 2008 Wiley-Liss, Inc.
Macé, K; Aguilar, F; Wang, J S; Vautravers, P; Gómez-Lechón, M; Gonzalez, F J; Groopman, J; Harris, C C; Pfeifer, A M
1997-07-01
Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first and second position of the codon 250. No significant AFB1-induced p53 mutations could be detected in the T5-2A6 cells. Therefore, the differential expression of specific CYP450 genes in human hepatocytes can modulate the cytotoxicity, DNA adduct levels and frequency of p53 mutations produced by AFB1.
Chen, Pei-Jen; Padgett, William T; Moore, Tanya; Winnik, Witold; Lambert, Guy R; Thai, Sheau-Fung; Hester, Susan D; Nesnow, Stephen
2009-01-15
Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels on cell proliferation in the mouse tumorigenesis process are discussed.
Login, Hande; Butowt, Rafal; Bohm, Staffan
2015-07-01
It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.
Han, Yong-Hyun; Kim, Don-Kyu; Na, Tae-Young; Ka, Na-Lee; Choi, Hueng-Sik; Lee, Mi-Ock
2016-01-01
Increased cytochrome P450 2E1 (CYP2E1) expression is the main cause of oxidative stress, which exacerbates alcoholic liver diseases (ALDs). Estrogen-related receptor gamma (ERRγ) induces CYP2E1 expression and contributes to enhancing alcohol-induced liver injury. Retinoic acid-related orphan receptor alpha (RORα) has antioxidative functions; however, potential cross-talk between ERRγ and RORα in the regulation of CYP2E1 has not been studied. We report that RORα suppressed ERRγ-mediated CYP2E1 expression. A physical interaction of RORα with ERRγ at the ERRγ−response element in the CYP2E1 promoter was critical in this suppression. At this site, coregulator recruitment of ERRγ was switched from coactivator p300 to the nuclear receptor corepressor 1 in the presence of RORα. Cross-talk between ERRγ and RORα was demonstrated in vivo, in that administration of JC1–40, a RORα activator, significantly decreased both CYP2E1 expression and the signs of liver injury in ethanol-fed mice, and this was accompanied by coregulator switching. Thus, this non-classical RORα pathway switched the transcriptional mode of ERRγ, leading to repression of alcohol-induced CYP2E1 expression, and this finding may provide a new therapeutic strategy against ALDs. PMID:26464440
Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B
2012-10-01
The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.
Akram, Muhammad; Waratchareeyakul, Watcharee; Haupenthal, Joerg; Hartmann, Rolf W.; Schuster, Daniela
2017-01-01
Cortisol synthase (CYP11B1) is the main enzyme for the endogenous synthesis of cortisol and its inhibition is a potential way for the treatment of diseases associated with increased cortisol levels, such as Cushing's syndrome, metabolic diseases, and delayed wound healing. Aldosterone synthase (CYP11B2) is the key enzyme for aldosterone biosynthesis and its inhibition is a promising approach for the treatment of congestive heart failure, cardiac fibrosis, and certain forms of hypertension. Both CYP11B1 and CYP11B2 are structurally very similar and expressed in the adrenal cortex. To facilitate the identification of novel inhibitors of these enzymes, ligand-based pharmacophore models of CYP11B1 and CYP11B2 inhibition were developed. A virtual screening of the SPECS database was performed with our pharmacophore queries. Biological evaluation of the selected hits lead to the discovery of three potent novel inhibitors of both CYP11B1 and CYP11B2 in the submicromolar range (compounds 8–10), one selective CYP11B1 inhibitor (Compound 11, IC50 = 2.5 μM), and one selective CYP11B2 inhibitor (compound 12, IC50 = 1.1 μM), respectively. The overall success rate of this prospective virtual screening experiment is 20.8% indicating good predictive power of the pharmacophore models. PMID:29312923
Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L
2010-08-01
Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.
Induction of cytochrome P450 enzymes in rat liver by two conazoles, myclobutanil and triadimefon.
Sun, G; Grindstaff, R D; Thai, S F; Lambert, G R; Tully, D B; Dix, D J; Nesnow, S
2007-02-01
This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon, on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague Dawley rats. Rats were dosed with the conazoles at three dose levels by gavage for 14 days: myclobutanil (150, 75, and 10mgkg(-1) body weight day(-1); triadimefon (115, 50, and 10 mg kg(-1) body weight day-'), which included their maximum tolerated dose levels (MTD). Both myclobutanil and triadimefon significantly induced pentoxyresorufin O-depentylase activities at their MTD levels: myclobutanil, 8.1-fold at 150mgkg(-1) body weight day- ; and triadimefon, 18.5-fold at 115mgkg(-1) body weight day-'. Benzyloxyresorufin O-debenzylase activities were similarly increased: myclobutanil, 13.3-fold; triadimefon, 27.7-fold. Quantitative real-time reverse-transcription polymerase chain reaction assays were used to characterize the mRNA expression of specific CYP genes induced by these two conazoles. Myclobutanil and triadimefon treatment at their MTD levels significantly increased rat hepatic mRNA expression of CYP2B1 (14.3- and 54.6-fold), CYP3A23/3A1 (2.2- and 7.3-fold), and CYP3A2 (1.5- and 1.7-fold). Western immunoblots of rat hepatic microsomal proteins identified significantly increased levels of CYP isoforms after myclobutanil or triadimefon treatment at their MTD levels: CYP2BI/2 (4.8- and 5.3-fold), and CYP3A1 (2.2- and 2.9-fold). Triadimefon also increased CYP3A2 immunoreactive protein levels 1.8-fold. These results indicate that triadimefon and myclobutanil, like other triazole-containing conazoles, induced CYP2B and CYP3A families of cytochromes in rat liver.
Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki
2013-11-15
Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. © 2013.
Kook, Jin Ho; Kim, Hyun Jin; Kim, Kyung Won; Park, Se Jin; Kim, Tae Hoon; Lim, Sae Hee; Kang, Sung Hoon; Lee, Sang Hag
2015-01-01
The actions of glucocorticoids in target tissues depend on the local metabolism of glucocorticoids catalyzed by 11β hydroxysteroid dehydrogenase (HSD) 1 and 2. Glucocorticoids are the most effective anti-inflammatory drugs in the treatment of nasal polyps. However, the mechanisms that underlie the anti-inflammatory effects are unclear. The present study analyzed the expression of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1]; cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]) in nasal polyp tissues, and endogenous cortisol levels in nasal polyp-derived epithelial cells. The expression levels and distribution pattern of 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1 were determined in nasal polyp tissues or nasal polyp-derived epithelial cells by using real-time polymerase chain reaction, Western blot, and immunohistochemistry testing. The expression levels of cortisol by using enzyme-linked immunosorbent assay were determined in cultured polyp-derived epithelial cells treated with adrenocorticotrophic hormone (ACTH), 11β-HSD1 inhibitor, or small interfering ribonucleic acid technique. The effect of glucocorticoids on the expression levels of these enzymes was investigated in cultured cells. Expressed in nasal polyp tissues and nasal polyp-derived epithelial cells were 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1. Cortisol production in cultured epithelial cells was decreased in cells treated with 11β-HSD1 small interfering ribonucleic acid or inhibitor, compared with nontreated cells. Cultured cells treated with adrenocorticotropic hormone induced increased cortisol production. 11β-HSD1 expression levels were upregulated in cells treated with glucocorticoid. Analysis of these results indicated that 11β-HSD1 expressed in polyp-derived epithelial cells may be involved in the anti-inflammatory function of glucocorticoid in the treatment of nasal polyps, which contributes to increased levels of endogenous cortisol.
Fatty acid ω-hydroxylases from Solanum tuberosum.
Bjelica, Anica; Haggitt, Meghan L; Woolfson, Kathlyn N; Lee, Daniel P N; Makhzoum, Abdullah B; Bernards, Mark A
2016-12-01
Potato StCYP86A33 complements the Arabidopsis AtCYP86A1 mutant, horst - 1. Suberin is a cell-wall polymer that comprises both phenolic and aliphatic components found in specialized plant cells. Aliphatic suberin is characterized by bi-functional fatty acids, typically ω-hydroxy fatty acids and α,ω-dioic acids, which are linked via glycerol to form a three-dimensional polymer network. In potato (Solanum tuberosum L.), over 65 % of aliphatics are either ω-hydroxy fatty acids or α,ω-dioic acids. Since the biosynthesis of α,ω-dioic acids proceeds sequentially through ω-hydroxy fatty acids, the formation of ω-hydroxy fatty acids represents a significant metabolic commitment during suberin deposition. Four different plant cytochrome P450 subfamilies catalyze ω-hydroxylation, namely, 86A, 86B, 94A, and 704B; though to date, only a few members have been functionally characterized. In potato, CYP86A33 has been identified and implicated in suberin biosynthesis through reverse genetics (RNAi); however, attempts to express the CYP86A33 protein and characterize its catalytic function have been unsuccessful. Herein, we describe eight fatty acid ω-hydroxylase genes (three CYP86As, one CYP86B, three CYP94As, and a CYP704B) from potato and demonstrate their tissue expression. We also complement the Arabidopsis cyp86A1 mutant horst-1 using StCYP86A33 under the control of the Arabidopsis AtCYP86A1 promoter. Furthermore, we provide preliminary analysis of the StCYP86A33 promoter using a hairy root transformation system to monitor pStCYP86A33::GUS expression constructs. These data confirm the functional role of StCYP86A33 as a fatty acid ω-hydroxylase, and demonstrate the utility of hairy roots in the study of root-specific genes.
Liu, Wen-Hsin; Chang, Long-Sen
2012-09-01
To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Wei; Chai, Hongyan; Li, Ying
2012-10-01
Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have been studied in vitro and in vivo. ► CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ► CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ► CYP4Z1 may be an attractive target for anti-cancer therapy.« less
Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.
2016-01-01
Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992
Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.
Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil
2016-02-24
Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.
Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions
Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil
2016-01-01
Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki
The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less
Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong
2016-03-23
The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhi-Ying; White, C.C.; He, Cheng-Yi
1995-12-31
Both increased cell proliferation and {open_quotes}altered{close_quotes}CYP gene expression are prominent phenomena associated with liver tumor promotion by nongenotoxic carcinogen treatment. BRDU-labeled parenchymal nuclei were observed primarily in the periportal area of groups of rats, independent of nongenotoxic carcinogen treatment. Treatment with each of the 5 nongenotoxic carcinogens resulted in profound alterations in CPY gene expression at both the transcriptional and translational levels. Expression of CYP1A1, 1A1/2, 3A1, 2B1/2, and 4A immunoproteins demonstrated nongenotoxic carcinogen-specific patterns in both magnitude and zonal distribution. In agreement with the CYP immunoprotein data, treatment with each of the five nongenotoxic carcinogens resulted in a uniquemore » composition of mRNAs of CYP2B1, 2B2, 2C6, 2C11, 3A1, 3A2, and 4A1, which were variably increased or decreased relative to the untreated control livers, depending on the treatment. Similarly, the rate and pattern of CYP enzyme-mediated hydroxylation toward testosterone, 17{beta}-estradiol, corticosterone, and lauric acid were greatly altered by nongenotoxic carcinogen treatment. Because many endogenous substrates are modulators of DNA and RNA synthesis, intracellular kinetics of endogenous substrates of CYP enzymes in the corresponding hepatocytes could contribute, at least in part, to the differences in gene expression, differentiation, and cell proliferation among the hepatocytes in the cell plate. 64 refs., 11 figs., 2 tabs.« less
Christen, Verena; Schirrmann, Melanie; Frey, Juerg E; Fent, Karl
2018-06-14
Neonicotinoids are implicated in the decline of honey bees, but the molecular basis underlying adverse effects is poorly known. Here we describe global transcriptomic profiles in the brain of honey bee workers exposed for 48 h at one environmentally realistic and one sublethal concentration of 0.3 and 3.0 ng/bee clothianidin and imidacloprid, respectively, and 0.1 and 1.0 ng/bee thiamethoxam (1-30 ng/mL sucrose solution) by high-throughput RNA-sequencing (RNA-seq). All neonicotinoids led to significant alteration (mainly down-regulation) of gene expression, generally with a concentration-dependent effect. Among many others, genes related to metabolism and detoxification were differently expressed. Gene ontology (GO) enrichment analysis of biological processes revealed catabolic carbohydrate metabolism (regulation of enzyme activities such as amylase), lipid metabolism, and transport mechanisms as shared terms between all neonicotinoids at high concentrations. KEGG pathway analysis indicated that at least two neonicotinoids induced changes in expression of various metabolic pathways: pentose phosphate pathways, starch and sucrose metabolism, and sulfur metabolism, in which glucose 1-dehydrogenase and alpha-amylase were down-regulated and 3'(2'), 5'-bisphosphate nucleotidase was up-regulated. RT-qPCR analysis confirmed the down-regulation of major royal jelly proteins, hbg3, and cyp9e2 found by RNA-seq. Our study highlights the comparative molecular effects of neonicotinoid exposure to bees. Further studies should link these effects with physiological outcomes for a better understanding of effects of neonicotinoids.
2017-01-01
Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast cancer patients should avoid red clover and isoflavone based BDSs when making choices for menopausal symptom relief. PMID:28985473
Zhu, Liye; Gao, Jing; Huang, Kunlun; Luo, Yunbo; Zhang, Boyang; Xu, Wentao
2015-01-01
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis. PMID:26567713
Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression.
Luense, Lacey J; Veiga-Lopez, Almudena; Padmanabhan, Vasantha; Christenson, Lane K
2011-12-01
Prenatal testosterone (T) treatment leads to polycystic ovarian morphology, enhanced follicular recruitment/depletion, and increased estradiol secretion. This study addresses whether expression of key ovarian genes and microRNA are altered by prenatal T excess and whether changes are mediated by androgenic or estrogenic actions of T. Pregnant Suffolk ewes were treated with T or T plus the androgen receptor antagonist, flutamide (T+F) from d 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, and key ovarian regulators were measured by RT-PCR using RNA obtained from fetal ovaries collected on d 65 [n = 4, 5, and 5 for T, T+F, and control groups, respectively] and d 90 (n = 5, 7, 4) of gestation. Additionally, fetal d 90 RNA were hybridized to multispecies microRNA microarrays. Prenatal T decreased (P < 0.05) Cyp11a1 expression (3.7-fold) in d 90 ovaries and increased Cyp19 (3.9-fold) and 5α-reductase (1.8-fold) expression in d 65 ovaries. Flutamide prevented the T-induced decrease in Cyp11a1 mRNA at d 90 but not the Cyp19 and 5α-reductase increase in d 65 ovaries. Cotreatment with T+F increased Cyp11a1 (3.0-fold) expression in d 65 ovaries, relative to control and T-treated ovaries. Prenatal T altered fetal ovarian microRNA expression, including miR-497 and miR-15b, members of the same family that have been implicated in insulin signaling. These studies demonstrate that maternal T treatment alters fetal ovarian steroidogenic gene and microRNA expression and implicate direct actions of estrogens in addition to androgens in the reprogramming of ovarian developmental trajectory leading up to adult reproductive pathologies.
Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen
2018-06-01
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Kot, Marta; Daniel, Władysława A
2009-01-01
The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.
Pinzone, M R; Di Rosa, M; Celesia, B M; Condorelli, F; Malaguarnera, M; Madeddu, G; Martellotta, F; Castronuovo, D; Gussio, M; Coco, C; Palermo, F; Cosentino, S; Cacopardo, B; Nunnari, G
2013-07-01
Vitamin D deficiency is very common among HIV-infected subjects. We cross-sectionally evaluated the prevalence and risk factors for hypovitaminosis D in 91 HIV-infected Italian patients. We studied in a cohort of 91 HIV-infected Italian patients the metabolism of Vitamin D by evaluating the in vitro expression of CYP27B1, CYP24A1 and vitamin D receptor (VDR) by monocytes and macrophages stimulated with the viral envelope protein gp120 or lipopolysaccharide (LPS). The prevalence of vitamin D deficiency (25OHD < 10 ng/ml) and vitamin D insufficiency (25OHD 10-30 ng/ml) was 31% and 57%, respectively. In univariate analysis, female sex (p = 0.01), increasing age (p = 0.05), higher highly sensitive-C reactive protein (p = 0.025), higher parathyroid hormone (PTH) (p = 0.043) and lower BMI (p = 0.04) were associated with vitamin D deficiency. In multivariate analysis, the association was still significant only for PTH (p = 0.03) and female sex (p = 0.03). Monocyte stimulation with LPS (100 ng/ml) or gp120 (1 µg/ml) significantly upregulated CYP27B1 mRNA expression. Moreover, gp120 significantly increased VDR mRNA levels. On the contrary, neither LPS nor gp120 modified CYP24A1 levels. Macrophage stimulation with LPS (100 ng/ml) significantly upregulated CYP27B1 and CYP24A1 mRNA expression. When monocytes were cultured in the presence of 25OHD (40 ng/ml) and stimulated with LPS we detected significantly lower levels of 25OHD in the supernatant. Vitamin D deficiency was very common in our cohort of HIV-infected patients. Chronic inflammation, including residual viral replication, may contribute to hypovitaminosis D, by modulating vitamin D metabolism and catabolism. Systematic screening may help identifying subjects requiring supplementation.
Lim, Wilfred; Ma, Wei; Gee, Katrina; Aucoin, Susan; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok
2002-02-15
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.
Su, Guanyong; Letcher, Robert J; Farmahin, Reza; Crump, Doug
2018-03-01
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) are flame retardant chemicals that can undergo photolytic degradation. The present study compared the time-dependent photolyic degradation of TeDB-DiPhOBz and BDE-209, and dioxin-like product formation as a result of (UV) irradiation (I; irradiation time periods of 0, 1, 4, 15 and 40 days). Photo-degraded product fractions of UV-I-TeDB-DiPhOBz (nominal concentration: 1.9 μM) were administered to chicken embryonic hepatocytes (CEH), and significant induction of CYP1A4/5 mRNA expression was observed for fractions collected at the day 15 and 40 time points (fold change of 7.3/3.6 and 9.1/4.7, respectively). For the UV-I-BDE-209 fractions (nominal concentration: 10 μM), significant CYP1A4/5 up-regulation occurred at all time points, and the fraction collected on day 1 induced the greatest fold change of 510/86, followed by 410/68 (day 4) and 110/26 (day 15), respectively. For the UV-I-BDE-209 fraction collected at day 40, significant CEH cytotoxicity was observed. As a result, CYP1A4/5 expression was determined at a nominal concentration of 1 μM instead of 10 μM and CYP1A4/5 fold changes of 11/8.2 (day 40) were observed. Fractions eliciting the greatest CYP1A4/5 mRNA upregulation were further screened for transcriptomic effects using a PCR array comprising 27 dioxin-responsive genes. A total of 6 and 16 of the 27 target genes were up or down-regulated following UV-I-TeDB-DiPhOBz and UV-I-BDE-209 exposure, respectively. Overall, and regardless of the formation rate, these results raise concerns regarding the potential formation of dioxin-like compounds from flame retardants in products and materials such as plastics, and in natural sunlight irradiation situations in the environment (e.g. in landfill sites or electronic waste facilities). Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Weixia; Li, Kailong; Wan, Pinjun; Lai, Fengxiang; Fu, Qiang; Zhu, Tingheng
2017-01-01
Twenty-nine cDNAs encoding Ras-like family small GTPases (RSGs) were cloned and sequenced from Nilaparvata lugens. Twenty-eight proteins are described here: 3 from Rho, 2 from Ras, 9 from Arf and 14 from Rabs. These RSGs from N.lugens have five conserved G-loop motifs and displayed a higher degree of sequence conservation with orthologues from insects. RT-qPCR analysis revealed NlRSGs expressed at all life stages and the highest expression was observed in hemolymph, gut or wing for most of NlRSGs. RNAi demonstrated that eighteen NlRSGs play a crucial role in nymphal development. Nymphs with silenced NlRSGs failed to molt, eclosion or development arrest. The qRT-PCR analysis verified the correlation between mortality and the down-regulation of the target genes. The expression level of nuclear receptors, Kr-h1, Hr3, FTZ-F1 and E93 involved in 20E and JH signal pathway was impacted in nymphs with silenced twelve NlRSGs individually. The expression of two halloween genes, Cyp314a1 and Cyp315a1 involved in ecdysone synthesis, decreased in nymphs with silenced NlSar1 or NlArf1. Cyp307a1 increased in nymphs with silenced NlArf6. In N.lugens with silenced NlSRβ, NlSar1 and NlRab2 at 9th day individually, 0.0% eclosion rate and almost 100.0% mortality was demonstrated. Further analysis showed NlSRβ could be served as a candidate target for dsRNA-based pesticides for N.lugens control. PMID:28241066
Chen, Yi-Tzai; Trzoss, Lynnie; Yang, Dongfang; Yan, Bingfang
2015-01-01
Human carboxylesterase-2 (CES2) and cytochrome P450 3A4 (CYP3A4) are two major drug metabolizing enzymes that play critical roles in hydrolytic and oxidative biotransformation, respectively. They share substrates but may have opposite effect on therapeutic potential such as the metabolism of the anticancer prodrug irinotecan. Both CES2 and CYP3A4 are expressed in the liver and the gastrointestinal tract. This study was conducted to determine whether CES2 and CYP3A4 are expressed under developmental regulation and whether the regulation occurs differentially between the liver and duodenum. A large number of tissues (112) were collected with majority of them from donors at 1-198 days of age. In addition, multi-sampling (liver, duodenum and jejunum) was performed in some donors. The expression was determined at mRNA and protein levels. In the liver, CES2 and CYP3A4 mRNA exhibited a postnatal surge (1 versus 2 months of age) by 2.7 and 29 fold, respectively. CYP3A4 but not CES2 mRNA in certain pediatric groups reached or even exceeded the adult level. The duodenal samples, on the other hand, showed a gene-specific expression pattern at mRNA level. CES2 mRNA increased with age but the opposite was true with CYP3A4 mRNA. The levels of CES2 and CYP3A4 protein, on the other hand, increased with age in both liver and duodenum. The multi-sampling study demonstrated significant correlation of CES2 expression between the duodenum and jejunum. However, neither duodenal nor jejunal expression correlated with hepatic expression of CES2. These findings establish that developmental regulation occurs in a gene and organ-dependent manner. PMID:25724353
Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen
2016-12-01
Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bachleda, Petr; Vrzal, Radim; Pivnicka, Jakub; Cvek, Boris; Dvorak, Zdenek
2009-12-01
A hypnotic drug Zolpidem is used in clinical practice for more than 25 years. Surprisingly, the effects of Zolpidem on the expression of drug-metabolizing cytochromes P450 (CYPs) were not examined yet. Recently, the unexpected capacity of several "old drugs", such as valproic acid or azoles, to induce CYPs was reported. Therefore, we tested whether Zolpidem induces the expression of important CYPs in primary cultures of human hepatocytes. Cells were treated for 24h with Zolpidem in therapeutic (0.1mg/L) and toxic (1mg/L) concentrations. The levels of CYP1A1, CYP1A2, CY2C9 and CYP3A4 mRNAs were not altered by Zolpidem, whereas model inducers dioxin and rifampicin significantly induced CYP1A and CYP2/3 gene expression, respectively. Consistently, Zolpidem did not activate aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), the key regulators of cytochromes P450s, as revealed by transient transfection gene reporter assays using HepG2 cells. We conclude Zolpidem be considered a safe drug with respect to the possible interactions through AhR- and PXR-dependent induction of drug-metabolizing CYPs.
Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.
2004-01-01
CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430
Breton, Timothy S; DiMaggio, Matthew A; Sower, Stacia A; Berlinsky, David L
2015-03-01
Teleost fish exhibit diverse reproductive strategies, and some species are capable of changing sex. The influence of many endocrine factors, such as gonadal steroids and neuropeptides, has been studied in relation to sex change, but comparatively less research has focused on gene expression changes within the brain in temperate grouper species with non-haremic social structures. The purpose of the present study was to investigate gonadotropin releasing hormone (GnRH) and brain aromatase (cyp19a1b) gene expression patterns during reproductive development and sex change in protogynous (female to male) black sea bass (Centropristis striata). Partial cDNA fragments for cyp19a1b and eef1a (a reference gene) were identified, and included with known gnrh2 and gnrh3 sequences in real time quantitative PCR. Elevated cyp19a1b expression was evident in the olfactory bulbs, telencephalon, optic tectum, and hypothalamus/midbrain region during vitellogenic growth, which may indicate changes in the brain related to neurogenesis or sexual behavior. In contrast, gnrh2 and gnrh3 expression levels were largely similar among gonadal states, and all three genes exhibited stable expression during sex change. Although sex change in black sea bass is not associated with dramatic changes in GnRH or cyp19a1b gene expression among brain regions, these genes may mediate processes at other levels, such as within individual hypothalamic nuclei, or through changes in neuron size, that warrant further research. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaojie; Patel, Ananddeep; Chu, Chun
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesismore » that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells. • AhR-deficient lung cells have decreased RelB activation.« less
Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.
Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K
2018-04-17
Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.
Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita
2018-04-01
Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A
2003-03-01
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.
Loureiro, Bárbara; Ereno, Ronaldo L; Favoreto, Mauricio G; Barros, Ciro M
2016-07-15
Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals. Androgens are positively related with the number of antral follicles; moreover, they increase growth factor expression in granulose cells and oocytes. Experimentation was designed to compare testosterone concentration in plasma, and follicular fluid and androgen enzymes mRNA expression (CYP11A1, CYP17A1, 3BHSD, and 17BHSD) in follicles from Angus and Nellore heifers. Heifers were assigned into two groups according to the number of follicles: low and high follicle count groups. Increased testosterone concentration was measured in both plasma and follicular fluid of Angus heifers. However, there was no difference within groups. Expression of CYP11A1 gene was higher in follicles from Angus heifers; however, there was no difference within groups. Expression of CYP17A1, 3BHSD, and 17BHSD genes was higher in follicles from Nellore heifers, and expression of CYP17A1 and 3BHSD genes was also higher in HFC groups from both breeds. It was found that Nellore heifers have more antral follicles than Angus heifers. Testosterone concentration was higher in Angus heifers; this increase could be associated with the increased mRNA expression of CYP11A1. Increased expression of androgen-producing enzyme genes (CYP17A1, 3BHSD, and 17BHSD) was detected in Nellore heifers. It can be suggested that testosterone is acting through different mechanisms to increase follicle development in Nellore and improve fertility in Angus heifers. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Sangkyu; Choi, Min Ji; Lee, Jong Yeol; Kim, Jae Kwang; Ha, Sun-Hwa; Lim, Sun-Hyung
2016-09-13
Anthocyanins and proanthocyanidins, the major flavonoids in black and red rice grains, respectively, are mainly derived from 3',4'-dihydroxylated leucocyanidin. 3'-Hydroxylation of flavonoids in rice is catalyzed by flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21). We isolated cDNA clones of the two rice F3'H genes (CYP75B3 and CYP75B4) from Korean varieties of white, black, and red rice. Sequence analysis revealed allelic variants of each gene containing one or two amino acid substitutions. Heterologous expression in yeast demonstrated that CYP75B3 preferred kaempferol to other substrates, and had a low preference for dihydrokaempferol. CYP75B4 exhibited a higher preference for apigenin than for other substrates. CYP75B3 from black rice showed an approximately two-fold increase in catalytic efficiencies for naringenin and dihydrokaempferol compared to CYP75B3s from white and red rice. The F3'H activity of CYP75B3 was much higher than that of CYP75B4. Gene expression analysis showed that CYP75B3, CYP75B4, and most other flavonoid pathway genes were predominantly expressed in the developing seeds of black rice, but not in those of white and red rice, which is consistent with the pigmentation patterns of the seeds. The expression levels of CYP75B4 were relatively higher than those of CYP75B3 in the developing seeds, leaves, and roots of white rice.
Wills, Lauren P; Matson, Cole W; Landon, Chelsea D; Di Giulio, Richard T
2010-08-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[alpha]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3',4,4',5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. Copyright 2010 Elsevier B.V. All rights reserved.
Wills, Lauren P.; Matson, Cole W.; Landon, Chelsea D.; Di Giulio, Richard T.
2010-01-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[α]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. PMID:20471113
Li, Xue; Yan, Zhongfang; Wu, Qi; Sun, Xin; Li, Fan; Zhang, Subei; Li, Kuan; Li, Li; Wu, Junping; Xu, Long; Feng, Jing; Ning, Wen; Liu, Zhixue; Chen, Huaiyong
2016-12-01
Cigarette smoking has been shown to cause pathological alterations in the liver. However, how hepatic metabolism is altered during cigarette smoking‑induced inflammation remains to be fully elucidated. In the present study, a rat model of smoking was established to examine the effects of cigarette smoking on inflammation, autophagy activity, and the expression of nuclear receptor and CYP in the liver. Elevated expression of interleukin 1β and activation of autophagy in the liver were observed upon smoking exposure in rats. Cigarette smoking induced a significant reduction in the mRNA expression levels of cytochromes, including cytochrome P450 (Cyp)1A2, Cyp2D4 and Cyp3A2. Accordingly, a decrease was also observed in glucocorticoid receptor (GR), a regulator of the expression of Cyp. Activation of the GR signal in human hepatic LO2 cells did not affect autophagic genes, however, it led to the upregulation of hCYP1A2, hCYP2C19 and hCYP3A4, and the downregulation of hCYP2C9. The GR antagonist, RU486, eliminated this effect, suggesting the importance of GR in liver metabolism upon cigarette smoking.
Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu
2014-03-25
Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
miR-193b Regulates Mcl-1 in Melanoma
Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C.; Yang, Xiaolong; Feilotter, Harriet E.; Tron, Victor A.
2011-01-01
MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-XL, and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737–resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3′ untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. PMID:21893020
p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes.
Yu, Xiaoling; Jin, Dan; Yu, An; Sun, Jun; Chen, Xiaodong; Yang, Zaiqing
2016-09-01
DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65. Copyright © 2016 Elsevier B.V. All rights reserved.
Standop, Jens; Ulrich, Alexis B; Schneider, Matthias B; Büchler, Markus W; Pour, Parviz M
2002-01-01
Chronic pancreatitis and pancreatic cancer have been linked to the exposure of environmental chemicals (xenobiotics), which generally require metabolic activation to highly reactive toxic or carcinogenic intermediates. The primary enzyme system involved is made up of numerous cytochrome P450 mono-oxygenases (CYP). Glutathione S-transferases (GST) belong to the enzyme systems that catalyze the conjugation of the reactive intermediates produced by CYPs to less toxic or readily excretable metabolites. Because the majority of chronic pancreatitis and pancreatic cancers develop in the organ's head, we compared the expression of selected CYP and GST enzymes between the tissues deriving from the ventral anlage (head) and dorsal anlage (corpus, tail). A total of 20 normal pancreatic tissue specimen from organ donors and early autopsy cases were processed immunohistochemically by using antibodies to CYP 1A1, 1A2, 2B6, 2C8/9/19, 2D6, 2E1, 3A1, 3A2 and 3A4, GST-alpha, GST-mu and GST-pi, and the NADPH cytochrome P450 oxido-reductase (NA-OR), the specificity of which has been verified in our previous study by Western blot and RT-PCR analyses. In all pancreatic regions, most of the enzymes were expressed in islet cells. However, more islets in the head region expressed CYP 2B6, 2C8/9/19, 2E1 and the NA-OR, than those in the body and tail. Moreover, the expression of CYP 2B6 and 2E1 was restricted to the pancreatic polypeptide (PP) cells, and the concentration of CYP 3A1 and 3A4 was stronger in PP cells than in other islet cells. On the other hand, GST-mu and GST-pi were expressed primarily in islet cells of the body and tail. The greater content of xenobiotic-metabolizing and carcinogen-activating CYP enzymes and a lower expression of detoxifying GST enzymes in the head of the pancreas could be one reason for the greater susceptibility of this region for inflammatory and malignant diseases. Copyright 2002 S. Karger AG, Basel and IAP
Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.
Heck, Julie A; Meng, Xiao; Frick, David N
2009-04-01
Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.
Kimoto, Tetsuya; Ishii, Hirotaka; Higo, Shimpei; Hojo, Yasushi; Kawato, Suguru
2010-12-01
Although sex steroids play a crucial role in the postnatal brain development, the age-related changes in the hippocampal steroidogenesis remain largely unknown. We performed comprehensive investigations for the mRNA expressions of 26 sex steroidogenic enzymes/proteins and three sex steroid receptors in the male rat hippocampus, at the ages of postnatal day (PD) 1, PD4, PD7, PD10, PD14, 4 wk, and 12 wk (adult), by RT-PCR/Southern blotting analysis. The relative expression levels of these enzymes/receptors at PD1 were Srd5a1 > Star > Ar ∼ Hsd17b4 ∼ Hsd17b1 ∼ Hsd17b7 ∼ Esr1 ∼ Srd5a2 > Hsd17b3 > Esr2 > Cyp11a1 > Cyp17a1 > Cyp19a1 ∼ Hsd17b2 > 3β-hydroxysteroid dehydrogenase I. The mRNA levels of essential enzymes for progesterone/testosterone/estradiol metabolisms (Cyp17a1, Hsd17b7, and Cyp19a1) were approximately constant between PD1 and PD14 and then declined toward the adult levels. Cyp11a1 increased during PD4-PD14 and then considerably decreased toward the adult level (∼8% of PD1). Hsd17b1, Hsd17b2, and 3β-hydroxysteroid dehydrogenase I mRNA decreased approximately monotonously. Hsd17b3 increased to approximately 200% of PD1 during PD4-PD14 and was maintained at this high level. The 5α-reductase mRNA was maintained constant (Srd5a1) or decreased monotonically (Srd5a2) toward the adult level. The Esr1 level peaked at PD4 and decreased toward the adult level, whereas Ar greatly increased during PD1-PD14 and was maintained at this high level. The Star and Hsd17b4 levels were maintained constant from neonate to adult. These results suggest that the hippocampal sex steroidogenic properties are substantially altered during the postnatal development processes, which might contribute to brain sexual maturation.
A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis
Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan
2017-01-01
Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and Sertoli cells (Fshr, Dhh, and Sox9) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down-regulating steroidogenesis-related proteins and inhibiting the proliferation of Leydig cells. PMID:29075189
A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis.
Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan
2017-01-01
Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig ( Lhcgr , Cyp11a1, Hsd3b1, Cyp17a1 , and Hsd17b3 ) and Sertoli cells ( Fshr , Dhh , and Sox9 ) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down-regulating steroidogenesis-related proteins and inhibiting the proliferation of Leydig cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao
Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth andmore » promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.« less
Kim, Yeonghwan; Jang, Miran; Lim, Sangbin; Won, Hyeran; Yoon, Kyung-Sik; Park, Jae-Hoon; Kim, Hyo Jong; Kim, Byung-Ho; Park, Won-Sang; Ha, Joohun; Kim, Sung-Soo
2011-11-01
Cyclophilin B (CypB) performs diverse roles in living cells, but its role in hepatocellular carcinoma (HCC) is largely unclear. To reveal its role in HCC, we investigated the induction of CypB under hypoxia and its functions in tumor cells in vitro and in vivo. Here, we demonstrated that hypoxia-inducible factor 1α (HIF-1α) induces CypB under hypoxia. Interestingly, CypB protected tumor cells, even p53-defective HCC cells, against hypoxia- and cisplatin-induced apoptosis. Furthermore, it regulated the effects of HIF-1α, including those in angiogenesis and glucose metabolism, via a positive feedback loop with HIF-1α. The tumorigenic and chemoresistant effects of CypB were confirmed in vivo using a xenograft model. Finally, we showed that CypB is overexpressed in 78% and 91% of the human HCC and colon cancer tissues, respectively, and its overexpression in these cancers reduced patient survival. These results indicate that CypB induced by hypoxia stimulates the survival of HCC via a positive feedback loop with HIF-1α, indicating that CypB is a novel candidate target for developing chemotherapeutic agents against HCC and colon cancer. Copyright © 2011 American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Furong; Yu, Xuming; He, Chunyan
The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in bothmore » the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex different.« less
Torremadé, Noelia; Bozic, Milica; Goltzman, David; Fernandez, Elvira; Valdivielso, José M
2017-01-01
The final step in vitamin D activation is catalyzed by 1-alpha-hydroxylase (CYP27B1). Chronic kidney disease (CKD) is characterized by low levels of both 25(OH)D3 and 1,25(OH)2D3 provoking secondary hyperparathyroidism (2HPT). Therefore, treatments with active or native vitamin D compounds are common in CKD to restore 25(OH)D3 levels and also to decrease PTH. This study evaluates the dose of 25(OH)D3 that restores parathyroid hormone (PTH) and calcium levels in a model of CKD in CYP27B1-/- mice. Furthermore, we compare the safety and efficacy of the same dose in CYP27B1+/+ animals. The dose needed to decrease PTH levels in CYP27B1-/- mice with CKD was 50 ng/g. That dose restored blood calcium levels without modifying phosphate levels, and increased the expression of genes responsible for calcium absorption (TRPV5 and calbindinD- 28K in the kidney, TRPV6 and calbindinD-9k in the intestine). The same dose of 25(OH)D3 did not modify PTH in CYP27B1+/+ animals with CKD. Blood calcium remained normal, while phosphate increased significantly. Blood levels of 25(OH)D3 in CYP27B1-/- mice were extremely high compared to those in CYP27B1+/+ animals. CYP27B1+/+ animals with CKD showed increases in TRPV5, TRPV6, calbindinD-28K and calbindinD-9K, which were not further elevated with the treatment. Furthermore, CYP27B1+/+ animals displayed an increase in vascular calcification. We conclude that the dose of 25(OH)D3 effective in decreasing PTH levels in CYP27B1-/- mice with CKD, has a potentially toxic effect in CYP27B1+/+ animals with CKD.
Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A
2001-11-01
N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.
Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts
Barrera, David; Avila, Euclides; Hernández, Guillermo; Méndez, Isabel; González, Leticia; Halhali, Ali; Larrea, Fernando; Morales, Angélica; Díaz, Lorenza
2008-01-01
Background In pregnancy, maternal serum concentrations of calcitriol significantly rise as a result of increased renal and placental contribution in order to assure calcium supply for the developing fetus. Considering that placenta is a site for vitamin D activation, and the versatility and potency of calcitriol, it is feasible that this hormone participates in fetal/placental development and physiology. In the present work we studied calcitriol actions upon human chorionic gonadotropin (hCG) secretion and expression in cultured trophoblasts, as well as vitamin D receptor (VDR) and CYP27B1 immunolocalization in placental villi. Methods Quantification of hCG in culture media was performed by immunoassay. Expression studies were carried out by real time PCR. Analysis of CYP27B1 and VDR localization in placental slides were performed by immunohistochemistry. Statistical significance was established by one way ANOVA using Tukey test for comparisons. Results Calcitriol regulated hCG in a time-dependent manner: at 6 h the secosteroid stimulated hCG, whereas longer incubations (24 h) showed opposite effects. Interestingly, calcitriol stimulatory effects on hCG were accompanied by an increase in intracellular cAMP content and were abolished by pre-incubation of the cells with a selective protein kinase A inhibitor. Immunohistochemical techniques showed differential VDR localization in the syncytiotrophoblast layer or in the vascular smooth muscle cells depending on the epitope to which the antibodies were raised (specific for the carboxy- or amino-terminal regions, respectively). CYP27B1 was immunolocalized in the syncytiotrophoblast layer of placental villi. Conclusion The presence and location of the vitamin D activating enzyme CYP27B1 as well as the specific receptor for vitamin D were shown in placental sections. The latter, together with findings demonstrating specific effects of calcitriol acting through the VDR and the cAMP/PKA signaling pathway upon hCG expression and secretion, indicate that there is a functional vitamin D endocrine system in the placenta, and recognize calcitriol as an autocrine regulator of hCG. PMID:18211694
Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y
1999-02-15
A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp; Hagiwara, Akihiro; Imai, Norio
To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulationmore » of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.« less
Liang, Jing; Wang, Changyuan; Peng, Jinyong; Li, Wenshuang; Jin, Yue; Liu, Qi; Meng, Qiang; Liu, Kexin; Sun, Huijun
2016-02-01
The main purpose of this study was to examine if naringin contributed to the regulation of cholesterol homeostasis and inflammatory cytokine expressions in cholesterol and 25-OH-cholesterol-treated HepG2 cells and TNF-α-treated HUVECs. The gene and protein expressions related to cholesterol homeostasis and inflammation were determined by quantitative real-time reverse transcription-polymerase chain reaction and Western blotting. We obtained the following results: (1) A concentration-dependent increase of LDLR and CYP7A1 expressions was observed, through activating expressions of SREBP2 and PPARy in HepG2 cells after exposure to naringin; (2) EL gene and protein expressions in HUVECs were inhibited by naringin; (3) the expressions of inflammatory factors such as CRP, TNF-α, ICAM-1 and VCAM-1 in HepG2 cells, ICAM-1 and VCAM-1 in HUVECs restrained by naringin were confirmed; (4) NF-κB and ERK1/2 activities were quenched by naringin. In summary, naringin might not only effectively reduce cholesterol levels by stimulating cholesterol metabolism but also inhibit inflammatory response through reducing inflammatory cytokine expressions. The effects of naringin were achieved via modulating NF-κB and ERK signaling pathways.
Wang, Kang; Zhang, Meng; Huang, Yanna; Yang, Zhuolin; Su, Sha; Chen, Maohua
2018-06-01
Rhopalosiphum padi is a destructive insect pest of wheat worldwide. Studies have shown that R. padi has developed resistance to different insecticides, including imidacloprid. We studied the mechanisms conferring resistance to imidacloprid at the biochemical and molecular levels. An R. padi imidacloprid-resistant (IM-R) strain and a susceptible (SS) strain were established. Fitness analysis using life-tables showed that the IM-R strain had obvious disadvantages in several parameters, indicating reduced fitness. Profiles of cross-resistance of IM-R and SS to seven insecticides were detected. Both synergistic and enzyme activity data suggested that P450 plays a role in resistance. Furthermore, the mRNA expression levels of cytochrome P450 (CYP) genes CYP6CY3-1 and CYP6CY3-2 were significantly increased in the IM-R strain. No target-site mutation within the nicotinic acetylcholine receptor (nAChR) subunits was detected in the IM-R strain. Interestingly, the expression levels of the nAChR α1, α2, α3, α7-2, and β1 subunit genes were significantly decreased, suggesting that down-regulation of these subunits may be involved in resistance. Multiple mechanisms confer imidacloprid resistance in R. padi. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Koga, Nobuyuki; Ohta, Chiho; Kato, Yoshihisa; Haraguchi, Koichi; Endo, Tetsuya; Ogawa, Kazunori; Ohta, Hideaki; Yano, Masamichi
2011-11-01
Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4'-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4'-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4'-OH-NBL. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.
Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna
2016-12-15
The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro.
Hou, De-Fu; Wang, Shui-Liang; He, Zhi-Min; Yang, Fang; Chen, Zhu-Chu
2007-04-01
It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 microg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 +/- 0.034 nmol/10(6) cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N'-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 microg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.
Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas.
Lee, Gui Se Ra; Joe, Yoon Seong; Kim, Sa Jin; Shin, Jong Chul
2010-10-01
To investigate cytokine- and oxidation-related genes for preeclampsia using DNA microarray analysis. Placentas were collected from 13 normal pregnancies and 13 patients with preeclampsia. Gene expression was studied using DNA microarray. Among significantly expressed genes, we focused on genes associated with cytokines and oxidation, and the results were confirmed using quantitative real time-polymerase chain reaction (QRT-PCR). 415 genes out of 30,940 genes were altered by > or =2-fold in the microarray analysis. 121 up-regulated genes and 294 down-regulated genes were found to be in preeclamptic placenta. Six cytokine-related genes and 5 oxidation-related genes were found from among the 121 up-regulated genes. The cytokine-related genes studied included oncostatin M (OSM), fms-related tyrosine kinase (FLT1) and vascular endothelial growth factor A (VEGFA), and the oxidation-related genes studied included spermine oxidase (SMOX), l cytochrome P450, family 26, subfamily A, polypeptide 1 (CYP26A1), acetate dehydrogenase A (LDHA). These six genes were also significantly higher in placentas from patients with preeclampsia than in those from women with normal pregnancies. The placental tissue of patients with preeclampsia showed significantly higher mRNA expression of these six genes than the normal group, using QRT-PCR. DNA microarray analysis is one of the great methods for simultaneously detecting the functionally associated genes of preeclampsia. The cytokine-related genes such as OSM, FLT1 and VEGFA, and the oxidation-related genes such as LDHA, CYP26A1 and SMOX might prove to be the starting point in the elucidation of the pathogenesis of preeclampsia.
Selection of High-Quality Spermatozoa May Be Promoted by Activated Vitamin D in the Woman.
Bøllehuus Hansen, Lasse; Rehfeld, Anders; de Neergaard, Rosanna; Nielsen, John Erik; Iversen, Lea Hedegaard; Boisen, Ida Marie; Mortensen, Li Juel; Lanske, Beate; Almstrup, Kristian; Carlsen, Elisabeth; Berg, Anders Hayden; Jørgensen, Niels; Andersen, Anders Nyboe; Juul, Anders; Blomberg Jensen, Martin
2017-03-01
The vitamin D receptor (VDR) and enzymes involved in activation (CYP2R1, CYP27B1) and inactivation (CYP24A1) of vitamin D are expressed in ovary, testes, and spermatozoa. Determine responsiveness to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in spermatozoa from normal and infertile men, and identify the site of exposure and how 1,25(OH)2D3 influences sperm function. Spermatozoa expressing VDR, CYP2R1, CYP27B1, and CYP24A1 were analyzed in normal and infertile men. 25-Hydroxyvitamin D (25-OHD), 24,25-dihydroxyvitamin D [24,25(OH)2D3], and 1,25(OH)2D3 were measured in serum, seminal fluid, cervical secretions, and ovarian follicular fluid. 1,25(OH)2D3 was tested on human spermatozoa. Tertiary center for fertility. Protein expression in spermatozoa and semen quality were assessed in 230 infertile and 114 healthy men. Vitamin D metabolites were measured in fluids from 245 men and 13 women, while 74 oocytes and 17 semen donors were used for sperm-function tests. VDR and CYP24A1 expressions in spermatozoa, fluid concentrations of 25-OHD, 24,25(OH)2D3, and 1,25(OH)2D3, and 1,25(OH)2D3-induced effects on intracellular calcium concentration ([Ca2+]i) and sperm-oocyte binding in vitro. VDR and CYP24A1 were expressed in a >2-fold higher fraction of spermatozoa from normal than infertile men (P < 0.01). Concentrations of 25-OHD, 24,25(OH)2D, and 1,25(OH)2D3 were undetectable in seminal fluid but high in ovarian follicular fluid. Follicular concentrations of 1,25(OH)2D3 induced a modest increase in [Ca2+]i and sperm-oocyte binding in vitro (P < 0.05). Presence of VDR and CYP24A1 mainly in spermatozoa of higher quality supports that 1,25(OH)2D3 available in the female reproductive tract may promote selection of the best gametes for fertilization. Copyright © 2017 by the Endocrine Society
Gq/11-Dependent Changes in the Murine Ovarian Transcriptome at the End of Gestation1
Waite, Courtney; Mejia, Rachel; Ascoli, Mario
2016-01-01
Parturition in rodents is highly dependent on the engagement of the luteal prostaglandin F2 alpha receptor, which, through activation of the Gq/11 family of G proteins, increases the expression of Akr1c18, leading to an increase in progesterone catabolism. To further understand the involvement of Gq/11 on luteolysis and parturition, we used microarray analysis to compare the ovarian transcriptome of mice with a granulosa/luteal cell-specific deletion of Galphaq/11 with their control littermates on Day 18 of pregnancy, when mice from both genotypes are pregnant, and on Day 22, when mice with a granulosa/luteal cell-specific deletion of Galphaq/11 are still pregnant but their control littermates are 1–2 days postpartum. Ovarian genes up-regulated at the end of gestation in a Galphaq/11 -dependent fashion include genes involved in focal adhesion and extracellular matrix interactions. Genes down-regulated at the end of gestation in a Galphaq/11-dependent manner include Serpina6 (which encodes corticosteroid-binding globulin); Enpp2 (which encodes autotaxin, the enzyme responsible for the synthesis of lysophosphatidic acid); genes involved in protein processing and export; reproductive genes, such as Lhcgr; the three genes needed to convert progesterone to estradiol (Cyp17a1, Hsd17b7, and Cyp19a1); and Inha. Activation of ovarian Gq/11 by engagement of the prostaglandin F2 alpha receptor on Day 18 of pregnancy recapitulated the regulation of many but not all of these genes. Thus, although the ovarian transcriptome at the end of gestation is highly dependent on the activation of Gq/11, not all of these changes are dependent on the actions of prostaglandin F2 alpha. PMID:26843449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang
Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a rolemore » in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.« less
Li, Jitong; Chang, Jing; Li, Wei; Guo, Baoyuan; Li, Jianzhong; Wang, Huili
2017-03-01
Triadimefon (TF) is a widely used chiral fungicide with one chiral centre and two enantiomers (TF 1 and TF 2 ). However, little is reported about the ecological toxicity of reptiles on an enantioselective level. TF is a potential endocrine disruptor that may interfere with sex steroid hormones, such as testosterone (T) and 17beta-estradiol (E 2 ). In our study, the lizards Mongolia Racerunner (Eremias argus) were orally exposed to TF and its enantiomers for 21 days. Plasma sex steroid hormones and steroidogenic-related genes, including 17-beta-hydroxysteroid (hsd17β), cytochrome P450 enzymes (cyp19 and cyp17), and steroid hormone receptors (erα and Ar) were evaluated. After exposure, the plasma testosterone level in the 100 mg/kg bw group was elevated, while the oestradiol level was reduced. This phenomenon may be caused by the transformation of cyp19, which may inhibit the conversion of testosterone to oestradiol and affect sexual behaviour. In addition, the two enantiomers have different effects on hormone levels, which testified to the previously reported biotoxic dissimilarity between TF 1 and TF 2 in organisms. Furthermore, the cyp19 mRNA level in liver and gonad of the TF 2 and TF group (100 mg/kg bw ) were significantly down-regulated, while the cyp17 and hsd17β mRNA levels were up-regulated. The expression of erα and Ar mRNA levels were up-regulated in males but not in females, which may indicate that TF has sex differences on these two genes. As seen from the above results, TF and its enantiomers may have endocrine-disrupting effects on lizards (E. argus) by acting sensitively on sex steroid hormones and steroidogenic-related genes. Copyright © 2016 Elsevier Ltd. All rights reserved.
KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA
2013-01-01
A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845
Vieweg, Ireen; Bilbao, Eider; Meador, James P; Cancio, Ibon; Bender, Morgan Lizabeth; Cajaraville, Miren P; Nahrgang, Jasmine
2018-04-01
Polar cod is an abundant Arctic key species, inhabiting an ecosystem that is subjected to rapid climate change and increased petroleum related activities. Few studies have investigated biological effects of crude oil on lipid metabolism in this species, despite lipids being a crucial compound for Arctic species to adapt to the high seasonality in food abundance in their habitat. This study examines the effects of dietary crude oil exposure on transcription levels of genes related to lipid metabolism (peroxisome proliferator-activated receptors [ppar-α, ppar-γ], retinoic X receptor [rxr-β], palmitoyl-CoA oxidase [aox1], cytochrome P4507A1 [cyp7α1]), reproduction (vitellogenin [vtg-β], gonad aromatase [cyp19a1]) and biotransformation (cytochrome P4501A1 [cyp1a1], aryl hydrocarbon receptor [ahr2]). Exposure effects were also examined through plasma chemistry parameters. Additional fish were exposed to a PPAR-α agonist (WY-14,643) to investigate the role of PPAR-α in their lipid metabolism. The dose-dependent up-regulation of cyp1a1 reflected the activation of genes related to PAH biotransformation upon crude oil exposure. The crude oil exposure did not significantly alter the mRNA expression of genes involved in lipid homeostasis except for cyp7α1 transcription levels. Plasma levels of cholesterol and alanine transaminase showed significant alterations in fish exposed to crude oil at the end of the experiment. WY exposure induced a down-regulation of ppar-α, an effect contrary to studies performed on other fish species. In conclusion, this study showed clear effects of dietary crude oil exposure at environmentally relevant concentrations on xenobiotic biotransformation but revealed only weak alterations in the lipid metabolism of polar cod. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shanqin; Zhi, Hui; Hou, Xiuyun
2011-07-08
Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-{kappa}B crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.« less
Parajes, Silvia; Loidi, Lourdes; Reisch, Nicole; Dhir, Vivek; Rose, Ian T.; Hampel, Rainer; Quinkler, Marcus; Conway, Gerard S.; Castro-Feijóo, Lidia; Araujo-Vilar, David; Pombo, Manuel; Dominguez, Fernando; Williams, Emma L.; Cole, Trevor R.; Kirk, Jeremy M.; Kaminsky, Elke; Rumsby, Gill; Arlt, Wiebke; Krone, Nils
2010-01-01
Context: Steroid 11β-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. Objective: The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. Methods: We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. Results: All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11β-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. Conclusion: Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD. PMID:20089618
Englert, Neal A.; Turesky, Robert J.; Han, Weiguo; Bessette, Erin E.; Spivack, Simon D.; Caggana, Michele; Spink, David C.; Spink, Barbara C.
2014-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)n repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)n was n = 4>5≫6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis. PMID:22728919
Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco
2013-08-01
The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (P<0.01) compared with wild-type homozygotes. We did not find significant differences between the CYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.
Gagliardi, Rosa; Llambí, Silvia
2015-01-01
The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294
Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria
2015-01-01
The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.
Xu, Huan-Hua; Wang, Mei-Xi; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Li, Hua; Gao, Yue; Ma, Zeng-Chun
2017-02-01
To investigate the effect of clinical dose of Realgar-Indigo Naturais formula (RIF) and large-dose of Realgar on main drug-metabolizing enzymes CYP450s of rat liver, as well as its regulatory effect on mRNA expression. Wistar rats were administrated orally with tested drugs for 14 days. A Cocktail method combined with HPLC-MS/MS was used in the determination of 4 cytochrome P450 isozymes (CYP1A2, CYP2B, CYP3A and CYP2C) in liver of the rats, and the mRNA expression levels of the above subtypes were detected by real-time fluorescent quantitative PCR. The results showed that RIF can significantly induce CYP1A2 and CYP2B enzyme activity, and inhibit CYP3A enzyme activity. This result was consistent with the mRNA expression. However, its single compound showed weaker or even contrary phenomenon. Different doses of Realgar also showed significant inconsistencies on CYP450 enzymes activity and mRNA expression. These phenomena may be relevant with RIF compatibility synergies or toxicity reduction. The results can also prompt drug interactions when RIF is combined with other medicines in application. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spink, David C.; Wu, Susan J.; Spink, Barbara C.
2008-02-01
The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays tomore » induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.« less
Cui, Hongmei; Gu, Xinsheng; Chen, Jingshu; Xie, Ying; Ke, Sui; Wu, Jing; Golovko, Andrei; Morpurgo, Benjamin; Yan, Chunhong; Phillips, Timothy D; Xie, Wen; Luo, Jianyuan; Zhou, Zhijun; Tian, Yanan
2017-06-05
Pregnane X receptor (PXR) plays an important role in protecting cells from mutagenic DNA damages induced by endogenous and exogenous toxicants. This protective function is often attributed to the PXR-regulated metabolic detoxification. Here we report a novel potential mechanism that PXR reduces benzo-[α]-pyrene(BaP)-induced DNA damage through inhibiting the transcriptional activity of aryl hydrocarbon receptor (AhR) which plays a pivotal role in the bioactivation of BaP. We have utilized three well-characterized cell lines, i.e. Hepa1c1c7, AhR +/+; Bpr lacks AhR obligatory partner ARNT; Tao, lacks AhR, to analyze pivotal role of AhR/ARNT complex in mediating the BaP-induced DNA damages using comet assay (single-cell gel electrophoresis). We found that PXR activation could significantly inhibit BaP-induced DNA damage in the HepG2 cells as well as mouse hepatocytes. Using PXR-null and wild type mouse hepatocytes we showed that PXR activation by pregnenolone 16α-carbonitrile (PCN) significantly inhibited BaP-induced DNA damage and this protective effect was abolished in PXR-null hepatocytes. Mechanistically, PXR activation inhibited expression of AhR-target genes for CYP1A1, CYP1B1 and CYP1A2 that are required for BaP biotransformation in cultured liver cells, or in the livers of C57BL/6J mice. Using an AhR-responsive reporter assay as well as chromatin immunoprecipitation assay we found that PXR activation transcriptionally represses AhR-regulated gene expression. Furthermore, we found that PXR directly bound AhR at its DNA-binding domain, and this association may play a role in preventing of the AhR from binding to its target genes as shown in the ChIP assay. Taken together, our study has revealed a novel mechanism by which PXR protects liver cells from BaP-induced DNA damage through inhibiting the BaP biotransformation. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Ling; Lei, Jun; Fang, Zi-Ling; Xiong, Jian-Ping
2016-03-01
Gastric cancer (GC) is the fourth most prevalent type of cancer worldwide, which is usually caused by the interaction between environmental and genetic factors, or epigenetic aspects. Referring to the non-coding RNAs, miR-128b has been reported to be associated with many tumour cases, and exerts distinct functions in different types of cancers. However, the function of miR-128b in GC onset and progression largely remains unknown. In the present study, we found that miR-128b expression was down-regulated in tissues from 18 GC patients and 3 carcinoma cell lines. In turn, over-expression of miR-128b suppressed GC cell proliferation, invasion and promoted apoptosis. Moreover, miR-128b was predicted to bind the 3'UTR of PDK1 gene using bioinformatic target-screening tools. Accordingly, ectopic expression of miR-128b inhibited the PDK1 expression at both transcriptional and post-transcriptional levels, and furthermore, the expression of gene tailed by the 3'UTR of PDK1 gene was significantly decreased in a dualluciferase reporter assay, suggesting that PDK1 was a direct target of miR-128b in GC cells. In the conditon of miR- 128b over-expression, we also observed spontaneous inactivation of the Akt/NF-κB signalling, implying PDK1 was a potential regulator of this pathway. In conclusion, our study shed some novel light on miR-128b-PDK1/Akt/NF-κB axis on GC progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basavarajappa, Mallikarjuna S., E-mail: mbasava2@illinois.edu; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hernandez-Ochoa, Isabel, E-mail: mihernandez@cinvestav.mx
2011-06-15
The organochlorine pesticide methoxychlor (MXC) is a known endocrine disruptor that affects adult rodent females by causing reduced fertility, persistent estrus, and ovarian atrophy. Since MXC is also known to target antral follicles, the major producer of sex steroids in the ovary, the present study was designed to test the hypothesis that MXC decreases estradiol (E{sub 2}) levels by altering steroidogenic and metabolic enzymes in the antral follicles. To test this hypothesis, antral follicles were isolated from CD-1 mouse ovaries and cultured with either dimethylsulfoxide (DMSO) or MXC. Follicle growth was measured every 24 h for 96 h. In addition,more » sex steroid hormone levels were measured using enzyme-linked immunosorbent assays (ELISA) and mRNA expression levels of steroidogenic enzymes as well as the E{sub 2} metabolic enzyme Cyp1b1 were measured using qPCR. The results indicate that MXC decreased E{sub 2}, testosterone, androstenedione, and progesterone (P{sub 4}) levels compared to DMSO. In addition, MXC decreased expression of aromatase (Cyp19a1), 17{beta}-hydroxysteroid dehydrogenase 1 (Hsd17b1), 17{alpha}-hydroxylase/17,20-lyase (Cyp17a1), 3{beta} hydroxysteroid dehydrogenase 1 (Hsd3b1), cholesterol side-chain cleavage (Cyp11a1), steroid acute regulatory protein (Star), and increased expression of Cyp1b1 enzyme levels. Thus, these data suggest that MXC decreases steroidogenic enzyme levels, increases metabolic enzyme expression and this in turn leads to decreased sex steroid hormone levels. - Highlights: > MXC inhibits steroidogenesis > MXC inhibits steroidogenic enzymes > MXC induces metabolic enzymes« less
miR-193b Regulates Mcl-1 in Melanoma.
Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C; Yang, Xiaolong; Feilotter, Harriet E; Tron, Victor A
2011-11-01
MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo
2012-05-01
Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust. Copyright © 2011 Elsevier Ltd. All rights reserved.
De novo steroid biosynthesis in human prostate cell lines and biopsies.
Sakai, Monica; Martinez-Arguelles, Daniel B; Aprikian, Armen G; Magliocco, Anthony M; Papadopoulos, Vassilios
2016-05-01
Intratumoral androgen formation may be a factor in the development of prostate cancer (PCa), particularly castration-resistant prostate cancer (CRPC). To evaluate the ability of the human prostate to synthesize de novo steroids, we examined the expression of key enzymes and proteins involved in steroid biosynthesis and metabolism. Using TissueScan™ Cancer qPCR Arrays and quantitative RT-PCR, we performed comparative gene expression analyses between various prostate cell lines and biopsies, including normal, hyperplastic, cancerous, and androgen-deprived prostate cells lines, as well as normal, benign prostate hyperplasia (BPH), PCa, and CRPC human specimens. These studies were complemented with steroid biosynthesis studies in normal and BPH cells. Normal human prostate WPMY-1 and WPE1-NA22, benign prostate hyperplasia BPH-1, and cancer PC-3, LNCaP, and VCaP cell lines, as well as normal, BPH, PCa, and CRPC specimens, were used. Although all cell lines express mRNA encoding for hydroxymethylglutaryl-CoA reductase (HMGCR), the mitochondrial translocator protein TSPO and cholesterol side chain cleavage enzyme CYP11A1 were only observed in WPMY-1, BPH-1, and LNCaP cells. HSD3B1, HSD3B2, and CYP17A1 are involved in androgen formation and were not found in most cell lines. WPE1-NA22 and BPH-1 cells were unable to synthesize de novo steroids from mevalonate. Moreover, androgen-deprived cells did not have alterations in the expression of enzymes that could lead to de novo steroid formation. All prostate specimens expressed TSPO and CYP11A1. HSD3B1/2, CYP17A1, HSD17B5, and CYP19A1 mRNA expression was distinct to the profile observed in cells lines. The majority of BPH (90.9%) and PCa (83.1%) specimens contained CYP17A1, compared to control (normal) specimens (46.7%). BPH (82%), PCa (59%), normal (40%), and CRPC (34%) specimens expressed the four key enzymes that metabolize cholesterol to androgens. These studies question the use of prostate cell lines to study steroid biosynthesis and demonstrate that human prostate samples contain transcripts encoding for key steroidogenic enzymes and proteins indicating that they have the potential to synthesize de novo steroids. We propose CYP17A1 as a candidate enzyme that can be used for patient stratification and treatment in BPH and PCa. © 2016 Wiley Periodicals, Inc.
Denslow, N.D.; Kocerha, J.; Sepulveda, M.S.; Gross, Timothy; Holm, S.E.
2004-01-01
Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations. ?? 2004 Elsevier B.V. All rights reserved.
Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong
2017-09-01
Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.
Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek
2015-01-01
Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) >> rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance. PMID:26366873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chao; College of Life Science, Anhui Normal University, Wuhu 241000, Anhui; Li, Changyuan
2015-02-15
Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show thatmore » CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.« less
Muguruma, Masako; Nishimura, Jihei; Jin, Meilan; Kashida, Yoko; Moto, Mitsuyoshi; Takahashi, Miwa; Yokouchi, Yusuke; Mitsumori, Kunitoshi
2006-12-07
Piperonyl butoxide (PBO), alpha-[2-(2-butoxyethoxy)ethoxy]-4,5-methylene-dioxy-2-propyltoluene, is widely used as a synergist for pyrethrins. In order to clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by PBO, molecular pathological analyses consisting of low-density microarray analysis and real-time reverse transcriptase (RT)-PCR were performed in male ICR mice fed a basal powdered diet containing 6000 or 0 ppm PBO for 1, 4, or 8 weeks. The animals were sacrificed at weeks 1, 4, and 8, and the livers were histopathologically examined and analyzed for gene expression using the microarray at weeks 1 and 4 followed by real-time RT-PCR at each time point. Reactive oxygen species (ROS) products were also measured using liver microsomes. At each time point, the hepatocytes of PBO-treated mice showed centrilobular hypertrophy and increased lipofuscin deposition in Schmorl staining. The ROS products were significantly increased in the liver microsomes of PBO-treated mice. In the microarray analysis, the expression of oxidative and metabolic stress-related genes--cytochrome P450 (Cyp) 1A1, Cyp2A5 (week 1 only), Cyp2B9, Cyp2B10, and NADPH-cytochrome P450 oxidoreductase (Por) was over-expressed in mice given PBO at weeks 1 and 4. Fluctuations of these genes were confirmed by real-time RT-PCR in PBO-treated mice at each time point. In additional real-time RT-PCR, the expression of Cyclin D1 gene, key regulator of cell-cycle progression, and Xrcc5 gene, DNA damage repair-related gene, was significantly increased at each time point and at week 8, respectively. These results suggest the possibility that PBO has the potential to generate ROS via the metabolic pathway and to induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in mice.
Lyons, Danielle D; Morrison, Christie; Philibert, Danielle A; Gamal El-Din, Mohamed; Tierney, Keith B
2018-05-07
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rasmussen, Martin Krøyer; Klausen, Christina Lindgaard; Ekstrand, Bo
2014-03-01
Chicory (Cichorium intybus) has been shown to induce enzymes of pharmacokinetic relevance (cytochrome P450; CYP). The aim of this study was to investigate the effects of selected secondary plant metabolites with a global extract of chicory root, on the expression of hepatic CYP mRNA (1A2, 2A19, 2C33, 2D25, 2E1 and 3A29), using primary porcine hepatocytes. Of the tested secondary plant metabolites, artemisinin, scoparone, lactucin and esculetin all induced increased expression of specific CYPs, while esculin showed no effect. In contrast, a global extract of chicory root decreased the expression of CYP1A2, 2C33, 2D25 and 3A29 at high concentrations. The results suggest that purified secondary metabolites from chicory affect CYP expression and thereby might affect detoxification in general, and that global extracts of plants can have effects different from individual components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immunity drives TET1 regulation in cancer through NF-κB
Canale, Annalisa; Bizet, Martin; Dedeurwaerder, Sarah; Garaud, Soizic; Naveaux, Céline; Barham, Whitney; Wilson, Andrew; Bouchat, Sophie; Van Lint, Carine; Yull, Fiona; Sotiriou, Christos; Noel, Agnès; Fuks, François
2018-01-01
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping
2010-11-15
Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.
YCZ-18 Is a New Brassinosteroid Biosynthesis Inhibitor
Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Ogawa, Atushi; Yamada, Kazuhiro; Suzuki, Ryuichiro; Sawada, Takayuki; Fujioka, Shozo; Yoshizawa, Yuko; Nakano, Takeshi
2015-01-01
Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation. PMID:25793645
Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A
2015-03-01
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
24-Hydroxylase in Cancer: Impact on Vitamin D-based Anticancer Therapeutics
Luo, Wei; Hershberger, Pamela A.; Trump, Donald L.; Johnson, Candace S.
2013-01-01
The active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in regulating calcium homeostasis and bone mineralization. 1,25(OH)2D3 also modulates cellular proliferation and differentiation in a variety of cell types. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme which converts 1,25(OH)2D3 to less active calcitroic acid. Nearly all cell types express 24-hydroxylase, the highest activity being observed in the kidney. There is increasing evidence linking the incidence and prognosis of certain cancers to low serum 25 (OH)D3 levels and high expression of vitamin D 24-hydroxylase supporting the idea that elevated CYP24A1 expression may stimulate degradation of vitamin D metabolites including 25-(OH)D3 and 1,25(OH)2D3. The over expression of CYP24A1 in cancer cells may be a factor affecting 1,25(OH)2D3 bioavailability and anti-proliferative activity pre-clinically and clinically. The combination of 1,25(OH)2D3 with CYP24A1 inhibitors enhances 1,25(OH)2D3 mediated signaling and anti-proliferative effects and may be useful in overcoming effects of aberrant CYP24 expression. PMID:23059474
Lee, Seong Min; Pike, J Wesley
2016-11-01
The vitamin D receptor (VDR) is a critical mediator of the biological actions of 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). As a nuclear receptor, ligand activation of the VDR leads to the protein's binding to specific sites on the genome that results in the modulation of target gene expression. The VDR is also known to play a role in the hair cycle, an action that appears to be 1,25(OH) 2 D 3 -independent. Indeed, in the absence of the VDR as in hereditary 1,25-dihydroxyvitamin D resistant rickets (HVDRR) both skin defects and alopecia emerge. Recently, we generated a mouse model of HVDRR without alopecia wherein a mutant human VDR lacking 1,25(OH) 2 D 3 -binding activity was expressed in the absence of endogenous mouse VDR. While 1,25(OH) 2 D 3 failed to induce gene expression in these mice, resulting in an extensive skeletal phenotype, the receptor was capable of restoring normal hair cycling. We also noted a level of secondary hyperparathyroidism that was much higher than that seen in the VDR null mouse and was associated with an exaggerated bone phenotype as well. This suggested that the VDR might play a role in parathyroid hormone (PTH) regulation independent of 1,25(OH) 2 D 3 . To evaluate this hypothesis further, we contrasted PTH levels in the HVDRR mouse model with those seen in Cyp27b1 null mice where the VDR was present but the hormone was absent. The data revealed that PTH was indeed higher in Cyp27b1 null mice compared to VDR null mice. To evaluate the mechanism of action underlying such a hypothesis, we measured the expression levels of a number of VDR target genes in the duodena of wildtype mice and in transgenic mice expressing either normal or hormone-binding deficient mutant VDRs. We also compared expression levels of these genes between VDR null mice and Cyp27b1 null mice. In a subset of cases, the expression of VDR target genes was lower in mice containing the VDR as opposed to mice that did not. We suggest that the VDR may function as a selective suppressor/de-repressor of gene expression in the absence of 1,25(OH) 2 D 3 . Copyright © 2015 Elsevier Ltd. All rights reserved.
N-nitrosamines induced infertility and hepatotoxicity in male rabbits.
Sheweita, S A; El Banna, Y Y; Balbaa, M; Abdullah, I A; Hassan, H E
2017-09-01
N-nitrosamines are widely spread environmental pollutants of well-known toxicity and carcinogenicity in various animal species. These compounds are metabolically activated by cytochrome P450 system predominantly in the liver and in other tissues into more active metabolites leading to generation of both alkylating agents that alkylate DNA and reactive oxygen species. In the current study, we investigated the influence of four types of N-nitrosamines that are commonly present in the environment [methyethylnitrosamine, (MEN), diethylnitrosamine (DEN), diphenylnitroasamine (DPN) and dimethylnitrosamine (DMN)] on both livers and testes of male rabbits through assessment of 17 β-hydroxysteroid dehydrogenase (17 β-HSD) activity. The protein expression of the three cytochrome P450s (CYP11A1, CYP19A1, and CYP21A2) is involved in the steroidogenesis. The levels of testosterone (T) and estradiol (E2) were also determined in the plasma of N-nitrosamines-treated rabbits after one, four-, eight- and twelve weeks of treatment of male New Zealand rabbits with an oral dose of 0.5 mg/kg B.W/day of each compound. In addition, activities of glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and levels of free radicals measured as thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) level were quantified in both livers and testes. The present study showed that levels of free radicals (TBARS) were markedly increased, whereas GSH levels were depleted in the tissues of both livers and testes after treatment of rabbits with any of N-nitrosamines. In addition, all tested N-nitrosamines inhibited the activities of antioxidant enzyme activities (GR, GST, SOD, and CAT) in hepatic and testicular tissues of rabbits after 12 weeks of treatment. Histopathological examination showed that N-nitrosamines caused lymphocytic infiltration with vascular degeneration and necrosis, congestion of central vein with RBCs hemolysis, dilated sinusoids, as well as fibrosis around portal areas were seen in hepatic tissues. In the testes, histopathological examination displayed disorganized seminiferous tubules with degeneration of germinal epithelium and Sertoli cells. Also, spermatogenic cells had pyknotic nuclei and others were detached from basement membranes of seminiferous tubules, edema was seen between seminiferous tubules. Moreover, the present data showed that MEN and DEN down-regulated the protein expression of both CYP19A1 and 21A2 in both livers and testes of male rabbits. In addition, both MEN and DEN decreased levels of testosterone and estradiol in plasma of treated rabbits. On the one hand, DMN and DPN markedly up-regulated the protein expression of CYP19A1 in both hepatic and testicular tissues of treated rabbits. These compounds potentially increased estradiol and decreased testosterone levels. On the other hand, no correlation was found between the expression of CYP11A1 and levels of both testosterone and estradiol. It is concluded that most of tested N-nitrosamines induce different changes, which could be a new mechanism of infertility due to exposure to N-nitrosamines from different environmental sources. © 2017 Wiley Periodicals, Inc.
a Marca Pereira, M L; Eppler, E; Thorpe, K L; Wheeler, J R; Burkhardt-Holm, P
2014-02-01
A range of chemicals found in the aquatic environment have the potential to influence endocrine function and affect sexual development by mimicking or antagonizing the effects of hormones, or by altering the synthesis and metabolism of hormones. The aim of this study was to evaluate whether the effects of chemicals interfering with sex hormone synthesis may affect the regulation of early ovarian development via the modulation of sex steroid and insulin-like growth factor (IGF) systems. To this end, ex vivo ovary cultures of juvenile brown trout (Salmo trutta fario) were exposed for 2 days to either 1,4,6-androstatriene-3,17-dione (ATD, a specific aromatase inhibitor), prochloraz (an imidazole fungicide), or tributyltin (TBT, a persistent organic pollutant). Further, juvenile female brown trout were exposed in vivo for 2 days to prochloraz or TBT. The ex vivo and in vivo ovarian gene expression of the aromatase (CYP19), responsible for estrogen production, and of IGF1 and 2 were compared. Moreover, 17β-estradiol (E2) and testosterone (T) production from ex vivo ovary cultures was assessed. Ex vivo exposure to ATD inhibited ovarian E2 synthesis, while T levels accumulated. However, ATD did not affect ex vivo expression of cyp19, igf1, or igf2. Ex vivo exposure to prochloraz inhibited ovarian E2 production, but did not affect T levels. Further prochloraz up-regulated igf1 expression in both ex vivo and in vivo exposures. TBT exposure did not modify ex vivo synthesis of either E2 or T. However, in vivo exposure to TBT down-regulated igf2 expression. The results indicate that ovarian inhibition of E2 production in juvenile brown trout might not directly affect cyp19 and igf gene expression. Thus, we suggest that the test chemicals may interfere with both sex steroid and IGF systems in an independent manner, and based on published literature, potentially lead to endocrine dysfunction and altered sexual development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Lyne, Linden; Spearman, Hayley; Buffa, Francesca M.; Soilleux, Elizabeth J.; Banham, Alison H.
2017-01-01
Plasmablastic B-cell malignancies include plasmablastic lymphoma and subsets of multiple myeloma and diffuse large B-cell lymphomaDLBCL. These diseases can be difficult to diagnose and treat, and they lack well-characterized cell line models. Here, immunophenotyping and FOXP1 expression profiling identified plasmablastic characteristics in DLBCL cell lines HLY-1 and SU-DHL-9, associated with CTNNAL1, HPGD, RORA, IGF1, and/or vitamin D receptor (VDR) transcription. We demonstrated VDR protein expression in primary plasmablastic tumor cells and confirmed in cell lines expression of both VDR and the metabolic enzyme CYP27B1, which catalyzes active vitamin D3 production. Although Vdr and Cyp27b1 transcription in normal B cells were activated by interleukin 4 (IL-4) and CD40 signaling, respectively, unstimulated malignant plasmablastic cells lacking IL-4 expressed both VDR and CYP27B1. Positive autoregulation evidenced intact VDR function in all plasmablastic lines, and inhibition of growth by active vitamin D3 was both dependent on MYC protein inhibition and could be enhanced by cotreatment with a synthetic ROR ligand SR-1078. Furthermore, a VDR polymorphism, FOK1, was associated with greater vitamin D3–dependent growth inhibition. In summary, HLY-1 provides an important model of strongly plasmablastic lymphoma, and disruption of VDR pathway activity may be of therapeutic benefit in both plasmablastic lymphoma and myeloma. PMID:28001444
Goyal, Ravi; Zhang, Lubo; Blood, Arlin B; Baylink, David J; Longo, Lawrence D; Oshiro, Bryan; Mata-Greenwood, Eugenia
2014-02-01
Vitamin D deficiency has been associated with pregnancy complications such as preeclampsia, gestational diabetes, and recurrent miscarriage. Therefore, we hypothesized differences in vitamin D status between healthy [Sprague-Dawley (SD) and Lewis (LW)] and complicated [Brown Norway (BN)] rat pregnancies. In SD, LW, and BN rats, we analyzed the maternal plasma levels of the vitamin D metabolites 25-OH-D and 1,25-(OH)2-D at prepregnancy, pregnancy, and postpartum. Analysis of the active metabolite 1,25-(OH)2-D showed a twofold increase in pregnant SD and LW rats but a nearly 10-fold decrease in pregnant BN rats compared with nonpregnant controls. BN rats had a pregnancy-dependent upregulation of CYP24a1 expression, a key enzyme that inactivates vitamin D metabolites. In contrast, the maternal renal expression of CYP24a1 in SD and LW rats remained constant throughout pregnancy. Analysis of the vitamin D receptor (VDR) indicated that LW and SD but not BN rats experience a pregnancy-induced 10-fold decrease in maternal renal VDR protein levels. Further analysis of bisulfite-converted and genomic DNA indicated that the observed differences in maternal renal regulation of CYP24a1 during pregnancy and lactation are not due to differences in CYP24a1 promoter methylation or single-nucleotide polymorphisms. Finally, supplementation with 1,25-(OH)2-D significantly improved the reproductive phenotype of BN rats by increasing litter size and maternal-fetal weight outcomes. We conclude that BN rats represent a novel animal model of pregnancy-specific vitamin D deficiency that is linked to pregnancy complications. Vitamin D deficiency in BN rats correlates with maternal renal CYP24a1 upregulation followed by CYP27b1 upregulation.
Hao, Nan; Lee, Kian Leong; Furness, Sebastian G B; Bosdotter, Cecilia; Poellinger, Lorenz; Whitelaw, Murray L
2012-12-01
The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.
Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong
2015-12-01
The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.
2010-01-01
Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g. asthma) in the US. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from air-borne particulate matter (PM2.5) in Puerto Rico. Organic extracts from PM2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico. PMID:20026096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes-Mattei, Enrique, E-mail: enrique.fuentes@upr.ed; Center for Environmental and Toxicological Research, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan; Rivera, Evasomary
2010-03-15
Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM{sub 2.5}) in Puerto Rico. Organic extracts from PM{sub 2.5} collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells weremore » exposed to PM{sub 2.5} organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM{sub 2.5} consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1beta and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM{sub 2.5} organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.« less
The Mechanism of Autoinduction of Methadone N-demethylation in Human Hepatocytes
Campbell, Scott D.; Crafford, Amanda; Williamson, Brian L.; Kharasch, Evan D.
2013-01-01
Background There is considerable inter-and intraindividual variability in methadone metabolism and clearance. Methadone dosing is particularly challenging during initiation of therapy, due to time-dependent increases in hepatic clearance (autoinduction). Although methadone N-demethylation is catalyzed in vitro by cytochrome P4502B6 (CYP2B6) and CYP3A4, and clearance in vivo depends on CYP2B6, mechanism(s) of autoinduction are incompletely understood. In this investigation we determined mechanism(s) of methadone autoinduction using human hepatocytes. Methods Fresh human hepatocytes were exposed to 0.1-10 μM methadone for 72 hr. Cells were washed and methadone N-demethylation assessed. CYP2B6, CYP3A4, and CYP3A5 mRNA, protein expression (by gel-free high performance liquid chromatography-mass spectrometry) and catalytic activity (bupropion hydroxylation and alfentanil dealkylation for CYP2B6 and CYP3A4/5, respectively) were measured. Mechanisms of CYP induction were characterized using pregnane X receptor and constitutive androstane receptor reporter gene assays. Results Methadone (10 μM) increased methadone N-demethylation 2-fold, CYP2B6 and CYP3A4 mRNA 3-fold, and protein expression 2-fold. CYP3A5 mRNA was unchanged. CYP2B6 and CYP3A4/5 activities increased 2-fold. Induction by methadone enantiomers (R- vs S-methadone) did not differ. Induction was relatively weak compared with maximum induction by phenobarbital and rifampin. Lower methadone concentrations had smaller effects. Methadone was an agonist for the pregnane X receptor but not the constitutive androstane receptor. Conclusions Methadone caused concentration-dependent autoinduction of methadone N-demethylation in human hepatocytes, related to induction of CYP2B6 and CYP3A4 mRNA expression, protein expression, and catalytic activity. Induction was related to pregnane X receptor but not constitutive androstane receptor activation. These in vitro findings provide mechanistic insights into clinical autoinduction of methadone metabolism and clearance. PMID:23733841
Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua
2013-01-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678
Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai
2011-07-15
Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less
Muresan, Ximena Maria; Sticozzi, Claudia; Belmonte, Giuseppe; Savelli, Vinno; Evelson, Pablo; Valacchi, Giuseppe
2018-06-01
Scavenger receptor B1 (SR-B1) is a trans-membrane protein, involved in tissue reverse cholesterol transport. Several studies have demonstrated that SR-B1 is also implicated in other physiological processes, such as bacteria and apoptotic cells recognition and regulation of intracellular tocopherol and carotenoids levels. Among the tissues where it is localized, SR-B1 has been shown to be significantly expressed in human epidermis. Our group has demonstrated that SR-B1 levels are down-regulated in human cultured keratinocytes by environmental stressors, such as cigarette smoke, via cellular redox imbalance. Our present study aimed to investigate whether such down-regulation was confirmed in a 3D skin model and under other environmental challengers such as particulate matter and ozone. We also investigated the association between oxidation-induced SR-B1 modulation and impaired wound closure. The data obtained showed that not only cigarette, but also the other environmental stressors reduced SR-B1 expression in epidermal cutaneous tissues and that this effect might be involved in impaired wound healing. Published by Elsevier B.V.
Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase
Heck, Julie A.; Meng, Xiao; Frick, David N.
2009-01-01
Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B (Mol. Cell 19:111). We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis. PMID:19174155
Zhao, Yanling; He, Xuan; Ma, Xiao; Wen, Jianxia; Li, Pengyan; Wang, Jiabo; Li, Ruisheng; Zhu, Yun; Wei, Shizhang; Li, Haotian; Zhou, Xuelin; Li, Kun; Liu, Honghong; Xiao, Xiaohe
2017-05-01
Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na + /taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Nelson L.S.; Wang Huan; Wang Yun
2006-06-01
Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effectivemore » in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.« less
Chan, Nelson L S; Wang, Huan; Wang, Yun; Leung, Hau Yi; Leung, Lai K
2006-06-01
Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 microM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.
Zhang, Jie; Qiu, Hongmei; Huang, Jiajun; Ding, Shumei; Huang, Bo; Wu, Qin; Jiang, Qingsong
2018-07-07
Cardiac hypertrophy is one of the key structural changes in diabetic cardiomyopathy. Naringenin, a dihydroflavonoid extracted from citrus plants with multiple pharmacological activities, yet the underlying effects on diabetic cardiac hypertrophy remain unclear. This study aimed to evaluate the potential effects of naringenin on cardiac hypertrophy in diabetic mice. Long-term high-fat feeding combined with streptozotocin resulted in cardiac hypertrophy after a diabetic model has been established for 4 weeks in mice, which were improved by naringenin supplementation (25 or 75 mg/kg/day, i. g.) for another 4 weeks. The protein and mRNA expressions of PPARs were down-regulated, the protein express of CYP2J3 and level of 14, 15-EET were decreased following diabetic cardiac hypertrophy. Naringenin administration up-regulated PPARs expression, elevated CYP2J3 protein and 14,15-EET content. In conclusion, naringenin can improve cardiac hypertrophy in diabetic mice, which may be related to up-regulate the expression of CYP2J3, elevate the level of EETs, and activate the expression of PPARs. Copyright © 2018 Elsevier Inc. All rights reserved.
Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sangsoo Daniel; Antenos, Monica; Squires, E. James
2013-07-15
Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment ofmore » primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR induces CYP2A5 mRNA and protein expression. • BR increases CYP2A5 transcription via Nrf2 activation. • CYP2A5 overexpression increases BR clearance and reduces caspase-3 activation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cindy Yanfei; Lee, Soowan; Cade, Sara
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 and BDE-99, are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for four days. Followingmore » BDE-47 treatment, GF mice had higher level of 5-OH-BDE-47 but lower levels of 4 other metabolites in liver than CV mice; whereas following BDE-99 treatment, GF mice had lower levels of 4 minor metabolites in liver than CV mice. RNA- Seq demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal condition, the lack of gut microbiome up-regulated the Cyp2c subfamily but down-regulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated up- regulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.« less
MicroRNAs May Mediate the Down-Regulation of Neurokinin-1 Receptor in Chronic Bladder Pain Syndrome
Sanchez Freire, Veronica; Burkhard, Fiona C.; Kessler, Thomas M.; Kuhn, Annette; Draeger, Annette; Monastyrskaya, Katia
2010-01-01
Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B1 receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor. PMID:20008142
Aubert, Yann; Widemann, Emilie; Miesch, Laurence; Pinot, Franck; Heitz, Thierry
2015-01-01
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1–JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity. PMID:25903915
Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2017-04-01
This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Daoxiang; Xiang, Taihe; Li, Peihan; Bao, Lumin
2011-01-01
The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants. PMID:22215968
An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.
Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin
2017-05-01
P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB 1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB 1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB 1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Creemer, Olivia J; Ansari-Pour, Naser; Ekong, Rosemary; Tarekegn, Ayele; Plaster, Christopher; Bains, Ripudaman K; Itan, Yuval; Bekele, Endashaw; Bradman, Neil
2016-06-01
CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.
2011-01-01
Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524
Wang, Yong; Yu, Xing; Zhao, Qun-zi; Zheng, Shu; Qing, Wen-jie; Miao, Chun-di; Sanjay, Jaiswal
2016-01-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728
Wang, Yong; Yu, Xing; Zhao, Qun-Zi; Zheng, Shu; Qing, Wen-Jie; Miao, Chun-di; Sanjay, Jaiswal
2016-07-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, Chie; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509; Noda, Shiho
2008-05-15
Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21,more » 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.« less
Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni
2005-10-01
We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.
Effects of butylated hydroxyanisole on the steroidogenesis of rat immature Leydig cells.
Li, Xiaoheng; Cao, Shuyan; Mao, Baiping; Bai, Yanfang; Chen, Xiaomin; Wang, Xiudi; Wu, Ying; Li, Linxi; Lin, Han; Lian, Qingquan; Huang, Ping; Ge, Ren-Shan
2016-09-01
Butylated hydroxyanisole (BHA) is a synthetic antioxidant used for food preservation. Whether BHA affects testosterone biosynthesis is still unclear. The effects of BHA on the steroidogenesis in rat immature Leydig cells were investigated. Rat immature Leydig cells were isolated from 35-old-day rats and cultured with BHA (50 μM) for 3 h in combination with 22R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone or dihydrotestosterone, and the concentrations of 5α-androstanediol and testosterone in the media were measured. Leydig cells were cultured with BHA (0.05-50 μM) for 3 h. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1 and Akr1c14. The testis microsomes were prepared to detect the direct action of BHA on 3β-hydroxysteroid dehydrogenase 1 (HSD3B1), 17α-hydroxylase (CYP17A1) and 17β-hydroxysteroid dehydrogenase 3 activities. In Leydig cells, BHA (50 μM) significantly inhibited LH- and 8Br-cAMP-mediated androgen production. BHA directly inhibited rat testis CYP17A1 and HSD3B1 activities. At 50 μM, it also reduced the expression levels of Hsd17b3 and Srd5a1 and their protein levels. In conclusion, BHA directly inhibits the activities of CYP17A1 and HSD3B1, and the expression levels of Hsd17b3 and Srd5a1, leading to the lower production of androgen in Leydig cells.
Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio
2016-03-01
Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Individual bile acids have differential effects on bile acid signaling in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu
2015-02-15
Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and pharmacological concentrations of BAs. - Highlights: • All four major bile acids in humans activate the FXR in liver and intestine. • These bile acids decreased the mRNA of the bile acid synthetic enzymes Cyp7a1 and Cyp8b1. • These BAs did not alter the mRNA or protein of the conjugated BA transporters (Ntcp and Bsep). • Cholic acid and deoxycholic acid are more potent activators of FXR than chenodeoxycholic acid and lithocholic acid.« less
dos Anjos, Nislanha Ana; Schulze, Tobias; Brack, Werner; Val, Adalberto Luis; Schirmer, Kristin; Scholz, Stefan
2011-05-01
In order to monitor potential contamination deriving from exploration and transport of oil in the Urucu region (Brazil), there is a need to establish suitable biomarkers for native Amazonian fish. Therefore, the transcript expression of various potentially sensitive genes (ahr2(1), cyp1a, hmox1, hsp70, maft, mt, nfe212, gstp1 and nqo1) in fish exposed to water soluble fractions of oil (WSF) was compared. The analysis was first performed in an established laboratory model, the zebrafish embryo. The cyp1a gene proved to be the most sensitive and robust marker for oil contamination and, hence, was selected to study the effect of oil-derived contaminants in the Amazonian cichlid Astronotus ocellatus. Induction of cyp1a transcript expression was observed for ≥0.0061% (v/v) WSFs. In liver samples of fish, collected from different lakes in the Urucu oil mining area, no elevated expression of cyp1a transcripts was observed. The data demonstrate the high sensitivity of cyp1a as indicator of oil exposure; further studies should be considered to test its usefulness at known contaminated sites and to evaluate influential factors by, e.g. mesocosm experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sung Gu; Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536; Han, Seong-Su
Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCBmore » 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We demonstrated that EGCG can decrease PCB-induced inflammation. ► EGCG protection was via inhibition of AhR and induction of Nrf2 regulatory genes.« less
Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar
2013-01-01
Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255
Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar
2013-01-01
Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.
Sechman, A; Pawlowska, K; Hrabia, A
2011-10-01
In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR expression in F2 and F1 ones. The effects of 3,5-T2 caused elevated basal but diminished LH-stimulated HSD3B mRNA levels. In conclusion, data indicate that both iodothyronines are involved in P4 production in the GL of chicken preovulatory follicles acting alone and additively with LH. Effects of iodothyronines depend on follicle maturation and are associated with modulation of cAMP synthesis and STAR, CYP11A1, and HSD3B mRNA expression. We suggest that iodothyronines participate in maturation and ovulation of chicken follicles. Copyright © 2011 Elsevier Inc. All rights reserved.
Gascoyne, Duncan M; Lyne, Linden; Spearman, Hayley; Buffa, Francesca M; Soilleux, Elizabeth J; Banham, Alison H
2017-03-01
Plasmablastic B-cell malignancies include plasmablastic lymphoma and subsets of multiple myeloma and diffuse large B-cell lymphomaDLBCL. These diseases can be difficult to diagnose and treat, and they lack well-characterized cell line models. Here, immunophenotyping and FOXP1 expression profiling identified plasmablastic characteristics in DLBCL cell lines HLY-1 and SU-DHL-9, associated with CTNNAL1, HPGD, RORA, IGF1, and/or vitamin D receptor (VDR) transcription. We demonstrated VDR protein expression in primary plasmablastic tumor cells and confirmed in cell lines expression of both VDR and the metabolic enzyme CYP27B1, which catalyzes active vitamin D3 production. Although Vdr and Cyp27b1 transcription in normal B cells were activated by interleukin 4 (IL-4) and CD40 signaling, respectively, unstimulated malignant plasmablastic cells lacking IL-4 expressed both VDR and CYP27B1. Positive autoregulation evidenced intact VDR function in all plasmablastic lines, and inhibition of growth by active vitamin D3 was both dependent on MYC protein inhibition and could be enhanced by cotreatment with a synthetic ROR ligand SR-1078. Furthermore, a VDR polymorphism, FOK1, was associated with greater vitamin D3-dependent growth inhibition. In summary, HLY-1 provides an important model of strongly plasmablastic lymphoma, and disruption of VDR pathway activity may be of therapeutic benefit in both plasmablastic lymphoma and myeloma. Copyright © 2017 by the Endocrine Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Xin; Xu Ke; Xu Yufang
The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report heremore » that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P{sub 2} promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research Highlights: > B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. > B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. > B1 induced significant increase of p53 binding to Bcl-2 P{sub 2} promoter TATA box.« less
Lee, Sang Sook; Park, Hyun Ji; Yoon, Dae Hwa; Kim, Beom-Gi; Ahn, Jun Cheul; Luan, Sheng; Cho, Hye Sun
2015-10-01
Cyclophilin 18-2 (CYP18-2) genes, homologues of human peptidyl-prolyl isomerase-like 1 (PPiL1), are conserved across multicellular organisms and Schizosaccharomyces pombe. Although PPiL1 is known to interact with ski-interacting protein (SKIP), a transcriptional co-regulator and spliceosomal component, there have been no functional analyses of PPiL1 homologues in plants. Rice cyclophilin 18-2 (OsCYP18-2) bound directly to amino acids 56-95 of OsSKIP and its binding was independent of cyclosporin A, a cyclophilin-binding drug. Moreover, OsCYP18-2 exhibited PPIase activity regardless of its interaction with OsSKIP. Therefore, the binding site for OsCYP18-2's interaction with SKIP was distinct from the PPIase active site. OsCYP18-2's interaction with SKIP full-length protein enabled OsCYP18-2's translocation from the cytoplasm into the nucleus and AtSKIP interacted in planta with both AtCYP18-2 and OsCYP18-2. Drought and salt stress induced similar expression of OsCYP18-2 and OsSKIP. Overexpression of OsCYP18-2 in transgenic rice and Arabidopsis thaliana plants enhanced drought tolerance and altered expression and pre-mRNA splicing patterns of stress-related genes in Arabidopsis under drought conditions. Furthermore, OsCYP18-2 caused transcriptional activation with/without OsSKIP in the GAL4 system of yeast; thus the OsSKIP-OsCYP18-2 interaction has an important role in the transcriptional and post-transcriptional regulation of stress-related genes and increases tolerance to drought stress. © 2015 John Wiley & Sons Ltd.
Mair, Wesley J.; Deng, Weiwei; Mullins, Jonathan G. L.; West, Samuel; Wang, Penghao; Besharat, Naghmeh; Ellwood, Simon R.; Oliver, Richard P.; Lopez-Ruiz, Francisco J.
2016-01-01
Pyrenophora teres f. sp. teres is the cause of net form of net blotch (NFNB), an economically important foliar disease in barley (Hordeum vulgare). Net and spot forms of net blotch are widely controlled using site-specific systemic fungicides. Although resistance to succinate dehydrogenase inhibitors and quinone outside inhibitors has been addressed before in net blotches, mechanisms controlling demethylation inhibitor resistance have not yet been reported at the molecular level. Here we report the isolation of strains of NFNB in Australia since 2013 resistant to a range of demethylase inhibitor fungicides. Cyp51A:KO103-A1, an allele with the mutation F489L, corresponding to the archetype F495I in Aspergillus fumigatus, was only present in resistant strains and was correlated with resistance factors to various demethylase inhibitors ranging from 1.1 for epoxiconazole to 31.7 for prochloraz. Structural in silico modeling of the sensitive and resistant CYP51A proteins docked with different demethylase inhibitor fungicides showed how the interaction of F489L within the heme cavity produced a localized constriction of the region adjacent to the docking site that is predicted to result in lower binding affinities. Resistant strains also displayed enhanced induced expression of the two Cyp51A paralogs and of Cyp51B genes. While Cyp51B was found to be constitutively expressed in the absence of fungicide, Cyp51A was only detected at extremely low levels. Under fungicide induction, expression of Cyp51B, Cyp51A2, and Cyp51A1 was shown to be 1.6-, 3,- and 5.3-fold higher, respectively in the resistant isolate compared to the wild type. These increased levels of expression were not supported by changes in the promoters of any of the three genes. The implications of these findings on demethylase inhibitor activity will require current net blotch management strategies to be reconsidered in order to avoid the development of further resistance and preserve the lifespan of fungicides in use. PMID:27594852
Activating PXR by Imperatorin Attenuates Dextran Sulphate Sodium-Induced Colitis in Mice.
Liu, Meijing; Zhang, Guohui; Zheng, Chunge; Song, Meng; Liu, Fangle; Huang, Xiaotao; Bai, Shasha; Huang, Xinan; Lin, Chaozhan; Zhu, Chenchen; Hu, Yingjie; Mi, Suiqing; Liu, Changhui
2018-06-26
The activation of human pregnane X receptor (PXR) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally-occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels, and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity was evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by ELISA. IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 (SRC-1) to the ligand-binding domain of PXR, and increased the expression and activity of CYP3A4. However, PXR knockdown substantially reduced PXR-mediated CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed NF-κB nuclear translocation and downregulated lipopolysaccharide-induced proinflammatory gene expression. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. IMP serves as a PXR agonist to attenuate DSS-induced colitis by the suppression of the NF-κB-mediated proinflammatory response in a PXR/NF-κB- dependent manner. This article is protected by copyright. All rights reserved.
Wang, Duan; Li, Linhao; Fuhrman, Jennifer; Ferguson, Stephen; Wang, Hongbing
2013-01-01
Purpose The objective of this study was to investigate the roles of the constitutive androstane receptor (CAR) in cyclophosphamide (CPA)- and ifosfamide (IFO)-mediated induction of hepatic drug-metabolizing enzymes (DME). Methods Induction of DMEs was evaluated using real-time RT-PCR and Western blotting analysis in human primary hepatocyte (HPH) cultures. Activation of CAR, pregnane X receptor (PXR), and aryl hydrocarbon receptor by CPA and IFO was assessed in cell-based reporter assays in HepG2 cells and/or nuclear translocation assays in HPHs. Results CYP2B6 reporter activity was significantly enhanced by CPA and IFO in HepG2 cells co-transfected with CYP2B6 reporter plasmid and a chemical-responsive human CAR variant (CAR1+A) construct. Real-time RT-PCR and Western blotting analysis in HPHs showed that both CPA and IFO induced the expressions of CYP2B6 and CYP3A4. Notably, treatment of HPHs with CPA but not IFO resulted in significant nuclear accumulation of CAR, which represents the initial step of CAR activation. Further studies in HPHs demonstrated that selective inhibition of PXR by sulforaphane preferentially repressed IFO- over CPA-mediated induction of CYP2B6. Conclusion These results provide novel insights into the differential roles of CAR in the regulation of CPA- and IFO-induced DME expression and potential drug-drug interactions. PMID:21487929
Samir, Moafaq; Glister, Claire; Mattar, Dareen; Laird, Mhairi; Knight, Phil G
2017-07-01
Pro-inflammatory cytokines secreted by macrophages and other cell types are implicated as intraovarian factors affecting different aspects of ovarian function including follicle and corpus luteum 'turnover', steroidogenesis and angiogenesis. Here, we compared granulosal (GC) and thecal (TC) expression of TNF, IL6 and their receptors (TNFRSF1A, TNFRSF1B and IL6R) during bovine antral follicle development; all five mRNA transcripts were detected in both GC and TC and statistically significant cell-type and follicle stage-related differences were evident. Since few studies have examined cytokine actions on TC steroidogenesis, we cultured TC under conditions that retain a non-luteinized 'follicular' phenotype and treated them with TNFα and IL6 under basal and LH-stimulated conditions. Both TNFα and IL6 suppressed androgen secretion concomitantly with CYP17A1 and LHCGR mRNA expression. In addition, TNFα reduced INSL3, HSD3B1 and NOS3 expression but increased NOS2 expression. IL6 also reduced LHCGR and STAR expression but did not affect HSD3B1, INSL3, NOS2 or NOS3 expression. As macrophages are a prominent source of these cytokines in vivo , we next co-cultured TC with macrophages and observed an abolition of LH-induced androgen production accompanied by a reduction in CYP17A1, INSL3, LHCGR, STAR, CYP11A1 and HSD3B1 expression. Exposure of TC to bacterial lipopolysaccharide also blocked LH-induced androgen secretion, an effect reduced by a toll-like receptor blocker (TAK242). Collectively, the results support an inhibitory action of macrophages on thecal androgen production, likely mediated by their secretion of pro-inflammatory cytokines that downregulate the expression of LHCGR, CYP17A1 and INSL3. Bovine theca interna cells can also detect and respond directly to lipopolysaccharide. © 2017 Society for Reproduction and Fertility.
Rathor, Pravesh Kumar; Bhat, Irfan Ahmad; Rather, Mohd Ashraf; Gireesh-Babu, Pathakota; Kumar, Kundan; Purayil, Suresh Babu Padinhate; Sharma, Rupam
2017-11-01
Steroidogenic acute regulatory protein (StAR) is responsible for the relocation of cholesterol across mitochondrial membrane in vertebrates and is, therefore, a key factor in regulating the rate and timing of steroidogenesis. In the present study, we developed chitosan nanoparticle (CNP) conjugated StAR gene construct (CNP-pcDNA4-StAR) in a eukaryotic expression vector, pcDNA4/HisMax A. CNPs of 135.4nm diameter, 26.7mV zeta potential and 0.381 polydispersity index were used for conjugation. The loading efficiency (LE) of pcDNA4-StAR construct with CNPs was found to be 86%. After the 24h of intramuscular injection, the CNP-pcDNA4-StAR plasmid could be detected from testis, brain, kidney and muscle tissues of Clarias batrachus. The transcript levels of important reproductive genes viz. cyp11a1, cyp17a1, 3β-hsd, 17β-hsd and cyp19a1 in CNP-pcDNA4-StAR treated group were initially low up to 24h, but significantly increased subsequently up to 120h. In naked pcDNA4-StAR treated group, the mRNA level of 3β-hsd, 17β-hsd and cyp19a1 increased initially up to 24h, while cyp11a1 and cyp17a1 increased up to 48h and then started declining. Similar results were obtained for 11-Ketotestosterone and 17β-estradiol. The results indicate relatively long lasting effects of nano-conjugated construct compared to the construct alone. Furthermore, the histopathology of gonads and liver authenticates its possible role in the gonadal development in fish without any adverse effect. Copyright © 2017 Elsevier B.V. All rights reserved.
On the role of skin in the regulation of local and systemic steroidogenic activities
Slominski, Andrzej T.; Manna, Pulak R.; Tuckey, Robert C.
2015-01-01
The mammalian skin is a heterogeneous organ/tissue covering our body, showing regional variations and endowed with neuroendocrine activities. The latter is represented by its ability to produce and respond to neurotransmitters, neuropeptides, hormones and neurohormones, of which expression and phenotypic activities can be modified by ultraviolet radiation, chemical and physical factors, as well as by cytokines. The neuroendocrine contribution to the responses of skin to stress is served, in part, by local synthesis of all elements of the hypothalamo-pituitary-adrenal axis. Skin with subcutis can also be classified as a steroidogenic tissue because it expresses the enzyme, CYP11A1, which initiates steroid synthesis by converting cholesterol to pregnenolone, as in other steroidogenic tissues. Pregnenolone, or steroidal precursors from the circulation, are further transformed in the skin to corticosteroids or sex hormones. Furthermore, in the skin CYP11A1 acts on 7-dehydrocholesterol with production of 7-dehydropregnolone, which can be further metabolized to other Δ7steroids, which after exposure to UVB undergo photochemical transformation to vitamin D like compounds with a short side chain. Vitamin D and lumisterol, produced in the skin after exposure to UVB, are also metabolized by CYP11A1 to several hydroxyderivatives. Vitamin D hydroxyderivatives generated by action of CYP11A1 are biologically active and are subject to further hydroxylations by CYP27B1, CYP27A1 and CP24A. Establishment of which intermediates are produced in the epidermis in vivo and whether they circulate on the systemic level represent a future research challenge. In summary, skin is a neuroendocrine organ endowed with steroid/secosteroidogenic activities PMID:25988614