Science.gov

Sample records for down-regulating lps-induced activity

  1. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

    PubMed

    Chen, Wen-Ying; Huang, Yi-Chun; Yang, Ming-Ling; Lee, Chien-Ying; Chen, Chun-Jung; Yeh, Chung-Hsin; Pan, Pin-Ho; Horng, Chi-Ting; Kuo, Wu-Hsien; Kuan, Yu-Hsiang

    2014-10-01

    Lipopolysaccharide (LPS), also called endotoxin, is the important pathogen of acute lung injury (ALI), which is a clinical syndrome that still lacks effective therapeutic medicine. Rutin belongs to vitamin P and possesses various beneficial effects. In this study, we investigate the potential protective effects and the mechanisms of rutin on LPS-induced ALI. Pre-administration with rutin inhibited LPS-induced arterial blood gas exchange and neutrophils infiltration in the lungs. LPS-induced expression of macrophage inflammatory protein (MIP)-2 and activation of matrix metalloproteinase (MMP)-9 were suppressed by rutin. In addition, the inhibitory concentration of rutin on phosphorylation of Akt was similar as MIP-2 expression and MMP-9 activation. In conclusion, rutin is a potential protective agent for ALI via suppressing the blood gas exchange and neutrophil infiltration. The mechanism of rutin is down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

  2. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  3. Monocyte B7 and Sialyl Lewis X modulates the efficacy of IL-10 down-regulation of LPS-induced monocyte tissue factor in whole blood.

    PubMed

    Warnes, G; Biggerstaff, J P; Francis, J L

    1998-07-01

    Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.

  4. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  5. GSK-3β inhibition attenuates LPS-induced death but aggravates radiation-induced death via down-regulation of IL-6.

    PubMed

    Li, Bailong; Zhang, Chaoxiong; He, Feng; Liu, Wen; Yang, Yanyong; Liu, Hu; Liu, Xin; Wang, Jie; Zhang, Lin; Deng, Bo; Gao, Fu; Cui, Jianguo; Liu, Cong; Cai, Jianming

    2013-01-01

    Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS), the ligands of Toll-like receptor 4(TLR4), could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β) promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. WT or IL-6(-/-)mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6(-/-) mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  6. LPS-induced inflammation in the chicken is associated with CCAAT/enhancer binding protein beta-mediated fat mass and obesity associated gene down-regulation in the liver but not hypothalamus.

    PubMed

    Zhang, Yanhong; Guo, Feng; Ni, Yingdong; Zhao, Ruqian

    2013-12-17

    The fat mass and obesity associated gene (FTO) is widely investigated in humans regarding its important roles in obesity and type 2 diabetes. Studies in mammals demonstrate that FTO is also associated with inflammation markers. However, the association of FTO with inflammation in chickens remains unclear. In this study, male chickens on day 28 posthatching were injected intraperitoneally with lipopolysaccharide (LPS) or saline to investigate whether the FTO gene is involved in LPS-induced inflammation. We detected significant down-regulation of FTO mRNA in the liver (P < 0.01), but not in the hypothalamus, 2 and 24 h after LPS challenge. Toll-like receptor (TLR) 2 (P < 0.01) and TLR4 (P < 0.01) followed the same pattern as FTO, being suppressed significantly in liver but not in hypothalamus. IL-1β was dramatically up-regulated (P < 0.01) in both liver and hypothalamus 2 h after LPS challenge, while activation of IL-6 was observed in the liver (P < 0.01), but not in hypothalamus. The 5'-flanking sequence of the chicken FTO gene contains nine predicted binding sites for CCAAT/enhancer binding protein beta (C/EBP beta) and one for signal transducer and activator of transcription 3 (STAT3). Significant elevation of C/EBP beta was detected in the liver (P < 0.01), but not in the hypothalamus, 2 h after LPS challenge. Lipopolysaccharide challenge increased the C/EBP beta binding to FTO promoter in the liver (P < 0.01 for fragment 1, P < 0.05 for fragment 2), although the protein content of C/EBP beta was not altered. Moreover, injection of LPS resulted in enhanced phosphorylation of liver STAT3, a downstream transcription factor in IL-6 signaling. Although phosphorylated STAT3 was not detected to directly bind to FTO promoter, it was found to interact with C/EBP beta. Our results reveal that FTO expression in liver, but not in hypothalamus, is affected by the i.p. injection of LPS, which may be mediated through tissue-specific FTO

  7. LPS-induced inflammation in the chicken is associated with CCAAT/enhancer binding protein beta-mediated fat mass and obesity associated gene down-regulation in the liver but not hypothalamus

    PubMed Central

    2013-01-01

    Background The fat mass and obesity associated gene (FTO) is widely investigated in humans regarding its important roles in obesity and type 2 diabetes. Studies in mammals demonstrate that FTO is also associated with inflammation markers. However, the association of FTO with inflammation in chickens remains unclear. In this study, male chickens on day 28 posthatching were injected intraperitoneally with lipopolysaccharide (LPS) or saline to investigate whether the FTO gene is involved in LPS-induced inflammation. Results We detected significant down-regulation of FTO mRNA in the liver (P < 0.01), but not in the hypothalamus, 2 and 24 h after LPS challenge. Toll-like receptor (TLR) 2 (P < 0.01) and TLR4 (P < 0.01) followed the same pattern as FTO, being suppressed significantly in liver but not in hypothalamus. IL-1β was dramatically up-regulated (P < 0.01) in both liver and hypothalamus 2 h after LPS challenge, while activation of IL-6 was observed in the liver (P < 0.01), but not in hypothalamus. The 5′-flanking sequence of the chicken FTO gene contains nine predicted binding sites for CCAAT/enhancer binding protein beta (C/EBP beta) and one for signal transducer and activator of transcription 3 (STAT3). Significant elevation of C/EBP beta was detected in the liver (P < 0.01), but not in the hypothalamus, 2 h after LPS challenge. Lipopolysaccharide challenge increased the C/EBP beta binding to FTO promoter in the liver (P < 0.01 for fragment 1, P < 0.05 for fragment 2), although the protein content of C/EBP beta was not altered. Moreover, injection of LPS resulted in enhanced phosphorylation of liver STAT3, a downstream transcription factor in IL-6 signaling. Although phosphorylated STAT3 was not detected to directly bind to FTO promoter, it was found to interact with C/EBP beta. Conclusion Our results reveal that FTO expression in liver, but not in hypothalamus, is affected by the i.p. injection of LPS, which may be mediated

  8. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  9. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination.

    PubMed

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.

  10. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    PubMed

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  11. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    PubMed Central

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases. PMID:28878677

  12. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation.

  13. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway.

    PubMed

    Liu, Yitong; Fang, Silian; Li, Xiaoyan; Feng, Jie; Du, Juan; Guo, Lijia; Su, Yingying; Zhou, Jian; Ding, Gang; Bai, Yuxing; Wang, Songling; Wang, Hao; Liu, Yi

    2017-09-14

    Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.

  14. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  15. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    PubMed

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  16. Lithium Ameliorates LPS-Induced Astrocytes Activation Partly via Inhibition of Toll-Like Receptor 4 Expression.

    PubMed

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Zhang, Susu; Sun, Jie; Qian, Yanning

    2016-01-01

    Astrocytes are critical for the development of postoperative cognitive dysfunction (POCD). In addition, astrocytes express toll-like receptors 4 (TLR4) and build up responses to innate immune triggers by releasing pro-inflammatory molecules. The pathogenesis of neurological disorders often involves the activation of astrocytes and associated inflammatory processes. Lithium, a primary drug for the treatment of bipolar disorder, has recently been suggested to have a role in neuroprotection during neurodegenerative diseases. In this study, we aimed to investigate whether lithium can ameliorate LPS-induced astrocytes activation via inhibition of TLR4 expression. Primary astrocytes cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). Cellular activation, cytokine production, and TLR4 expression, were assessed. Lithium significantly inhibited LPS-induced astrocytes activation and pro-inflammatory cytokine production, as well as LPS-induced TLR4 expression. Lithium can inhibit LPS-induced TLR4 expression and astrocytes activation. These results indicate that lithium plays an important role in astrocytes activation and neuroinflammation-related diseases, which may open new avenues for neuroscience and biomedical research, and also offers new insight into the treatment of POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Mogroside IIIE Attenuates LPS-Induced Acute Lung Injury in Mice Partly Through Regulation of the TLR4/MAPK/NF-κB Axis via AMPK Activation.

    PubMed

    Tao, Lijun; Cao, Fengyan; Xu, Gonghao; Xie, Haifeng; Zhang, Mian; Zhang, Chaofeng

    2017-07-01

    Acute lung injury (ALI) often leads to high mortality, and there is as yet no effective drug treatment. The present study aimed to investigate protective effects of mogroside IIIE (MGIIIE, a cucurbitane-type triterpenoid from Siraitia grosvenorii Fruits) in experimental ALI and its underlying mechanism. MGIIIE (1, 10 0r 20 mg/kg) was orally administered for 1 h before a single intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg). MGIIIE treatment dose-dependently suppressed pulmonary oedema, pro-inflammatory mediators (IL-1β, IL-6, TNF-α and HMGB1) release and higher MPO activity in lung tissues induced by LPS challenge. Molecular researches showed that mogroside IIIE (20 mg/kg) not only increased the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) but suppressed the over-expression of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In addition, MGIIIE also inhibited the activation of MAPKs and nuclear factor κB (NF-κB) signalling in lung tissues from LPS-challenged mice. Similar antiinflammatory effects of MGIIIE were obtained in LPS-treated macrophages. Compound C (a pharmacological AMPK inhibitor) obviously reversed the antiinflammatory effect of MGIIIE in LPS-induced ALI mice. Taken together, AMPK activation plays a crucial role in the antiinflammatory effects of MGIIIE in LPS-induced ALI by down-regulating TLR4/MAPK/NF-κB signalling pathways. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  19. Autotaxin downregulates LPS-induced microglia activation and pro-inflammatory cytokines production.

    PubMed

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G Jean; d'Hellencourt, Christian Lefebvre

    2014-12-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death, and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A +) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6, and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1, and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1, and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. © 2014 Wiley Periodicals, Inc.

  20. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  1. Metformin Suppresses Lipopolysaccharide (LPS)-induced Inflammatory Response in Murine Macrophages via Activating Transcription Factor-3 (ATF-3) Induction*

    PubMed Central

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-01-01

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. PMID:24973221

  2. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction.

    PubMed

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-08-15

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages

    PubMed Central

    Wei, Zhengkai; Wang, Jingjing; Shi, Mingyu; Liu, Weijian; Yang, Zhengtao; Fu, Yunhe

    2016-01-01

    The aim of this study was to investigate the effects of SSa on LPS-induced endotoxemia in mice and clarify the possible mechanism. An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of SSa in vivo. The primary mouse macrophages were used to investigate the molecular mechanism and targets of SSa in vitro. In vivo, the results showed that SSa improved survival during lethal endotoxemia. In vitro, our results showed that SSa dose-dependently inhibited the expression of TNF-α, IL-6, IL-1β, IFN-β-and RANTES in LPS-stimulated primary mouse macrophages. Western blot analysis showed that SSa suppressed LPS-induced NF-κB and IRF3 activation. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol and inhibited TLR4 translocation into lipid rafts. Moreover, SSa activated LXRα, ABCA1 and ABCG1. Silencing LXRα abrogated the effect of SSa. In conclusion, the anti-inflammatory effects of SSa is associated with activating LXRα dependent cholesterol efflux pathway which result in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts, thereby attenuating LPS mediated inflammatory response. PMID:27285988

  4. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering.

    PubMed

    Singh-Jasuja, Harpreet; Thiolat, Allan; Ribon, Matthieu; Boissier, Marie-Christophe; Bessis, Natacha; Rammensee, Hans-Georg; Decker, Patrice

    2013-01-01

    Dendritic cells (DC) play a key role in regulating immune responses and are the best professional antigen-presenting cells. Two major DC populations are defined in part according to cell surface CD11c expression levels. Unexpectedly, we observed that mouse DC strongly down-regulate the typical DC marker CD11c upon activation. To better characterize DC responses, we have analyzed CD11c expression on mouse and human myeloid DC after Toll-like receptor (TLR) triggering. Here we show that mouse bone marrow-derived DC (BMDC) as well as spleen DC down-regulate cell surface CD11c upon activation by TLR3/4/9 agonists. In all cases, full DC activation was reached, as determined by cytokine secretion, cell stimulation in mixed leukocyte reactions (MLR), and CD40/CD86/major histocompatibility complex (MHC) up-regulation. Interestingly, membrane CD11c down-regulation correlated with increased cytoplasmic pools of CD11c. In contrast to the up-regulation of CD40 and MHC class II molecules, lipopolysaccharide (LPS)-induced CD11c down-regulation was MyD88-dependent. Polyinosinic-polycytidylic acid (poly I:C), which does not signal through MyD88, also induced cell surface CD11c down-regulation. Notably, CD11c down-regulation was not observed upon activation of human DC, either through TLR-dependent or -independent cell activation. Thus, activated mouse DC may be transiently CD11c-negative in vivo, hampering the identification of those cells. On the other hand, cell surface CD11c down-regulation may serve as a new activation marker for mouse DC. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages.

    PubMed

    Eswarappa, Sandeepa M; Pareek, Vidhi; Chakravortty, Dipshikha

    2008-10-01

    Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.

  6. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    PubMed

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, thus leading to superoxide anion (O2(-)) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66(Shc) mitochondrial translocation, decrease O2(-) generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66(Shc)-Ser(36) dephosphorylation and p66(Shc) mitochondrial translocation, decreasing O2(-) generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-{kappa}B and MAPK activation in RAW 264.7 macrophages

    SciTech Connect

    Reddy, D. Bharat; Reddanna, Pallu

    2009-03-27

    Chebulagic acid (CA), a natural anti-oxidant, showed potent anti-inflammatory effects in LPS-stimulated RAW 264.7, a mouse macrophage cell line. These effects were exerted via inhibition of NO and PGE{sub 2} production and down-regulation of iNOS, COX-2, 5-LOX, TNF-{alpha} and IL-6. CA inhibited NF-{kappa}B activation by LPS, and this was associated with the abrogation of I{kappa}B-{alpha} phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK 1/2 and JNK in LPS-stimulated RAW 264.7 cells was suppressed by CA in a concentration-dependent manner. LPS-induced generation of reactive oxygen species (ROS) was also effectively inhibited by CA. These results suggest that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-{kappa}B activation and MAP kinase phosphorylation.

  8. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP2-PLC☆

    PubMed Central

    Mateos, Melina V.; Kamerbeek, Constanza B.; Giusto, Norma M.; Salvador, Gabriela A.

    2016-01-01

    This article presents additional data regarding the study “The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium” [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  9. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  10. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Inhibition of LPS-induced NO production and NF-kappaB activation by a sesquiterpene from Saussurea lappa.

    PubMed

    Jin, M; Lee, H J; Ryu, J H; Chung, K S

    2000-02-01

    To elucidate the molecular mechanisms for the suppression of LPS-induced nitric oxide (NO) production by a dehydrocostus lactone (DL) from Saussurea lappa, we examined the preventive effect of this compound on NF-kappaB activation in LPS-treated RAW 264.7 macrophages and U937 human monocytic cells. The results suggest that the suppression of NO production is mediated by the inhibitory action on the i-NOS gene expression through the inactivation of NF-kappaB and this sesquiterpene lactone can act as a pharmacological inhibitor of the NF-kappaB activation.

  12. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1

    PubMed Central

    Wang, Guizuo; Song, Yang; Feng, Wei; Liu, Lu; Zhu, Yanting; Xie, Xinming; Pan, Yilin; Ke, Rui; Li, Shaojun; Li, Fangwei; Yang, Lan; Li, Manxiang

    2016-01-01

    Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions. PMID:27602077

  13. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  14. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart.

    PubMed

    Unuma, Kana; Aki, Toshihiko; Funakoshi, Takeshi; Yoshida, Ken-ichi; Uemura, Koichi

    2013-01-01

    Lipopolysaccharide (LPS)-induced myocardial dysfunction is caused, at least in part, by mitochondrial dysfunction. Mitochondrial dysfunction and the oxidative damage associated with it are scavenged through various cellular defense systems such as autophagy to prevent harmful effects. Our recent study has demonstrated that cobalt protoporphyrin IX (CoPPIX), a potent inducer of heme oxygenase-1 (HO-1), ameliorates septic liver injuries by enhancing mitochondrial autophagy in rats. In our current study, we show that CoPPIX (5 mg/kg s.c.) not only accelerates the autophagic response but also promotes lysosome reformation in the rat heart treated with LPS (15 mg/kg i.p.). Lysosomal membrane-associated protein-2 (LAMP2), which is essential to the maintenance of lysosomal functions in the heart, is depleted transiently but restored rapidly during LPS administration in the rat. Activation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, was also observed, indicating a hyper consumption and subsequent reformation of the lysosome to meet the increased demand for autophagosome cleaning. CoPPIX was found to promote these processes and tended to restore the LPS-induced suppression of cardiac performances whilst chloroquine (CQ; 20 mg/kg i.p.), an inhibitor of lysosomes and autophagic protein degradation, abrogates these beneficial effects. The cardioprotective effect of CoPPIX against LPS toxicity was also observed via decreased levels of cardiac releasing enzymes in the plasma. Taken together, our current data indicate that lysosome reformation mediated by TFEB may be involved in cardioprotection against LPS-induced septic insults, and serve as a novel mechanism by which CoPPIX protects the heart against oxidative stress.

  15. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    PubMed

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  16. tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation.

    PubMed

    Koh, Kyungmi; Cha, Youngnam; Kim, Sunyoung; Kim, Jiyoung

    2009-03-13

    Role of microglial Nrf2 activation in preventing neuronal death caused by microglial hyperactivation is investigated by using BV-2 microglial cells as modulator and primary neurons as target. Pretreatment of microglial cells with tBHQ, a phenolic antioxidant activating Nrf2, attenuated the LPS-derived overproduction of pro-inflammatory neurotoxic mediators like TNF-alpha, IL-1beta, IL-6, PGE(2), and NO as well as the morphological changes associated with microglial hyperactivation. Pretreatment of BV-2 cells with tBHQ suppressed LPS-induced phosphorylation of p38 required for overproduction of neurotoxic mediators. Results obtained using Nrf2-specific shRNA showed that expression of Nrf2 in microglia plays a critical role in tBHQ-derived suppression of LPS-induced p38 phosphorylation and microglial hyperactivation. Conditioned culture media taken from LPS-stimulated microglia cause neuronal death. However, the conditioned media taken from tBHQ-pretreated and LPS-stimulated microglia did not cause death of primary neurons. This suggested that prior activation of Nrf2 in microglia may inhibit microglial hyperactivation and prevent neuronal death.

  17. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  18. Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-kappaB DNA-binding Activity in RAW 264.7 Cells.

    PubMed

    Kim, Seong Keun; Kim, Young Mi; Yeum, Chung Eun; Jin, Song-Hyo; Chae, Gue Tae; Lee, Seong-Beom

    2009-12-01

    Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-alpha. Since NF-kappaB is a major transcription factor that regulates genes for TLR2 and TNF-alpha, we examined the effect of rifampicin on the LPS-induced NF-kappaB activation. Rifampicin inhibited NF-kappaB DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKKalpha/beta activity. However, rifampicin slightly inhibited the nuclear translocation of NF-kappaB p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-kappaB p65, suggesting pregnane X receptor interferes with NF-kappaB binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-kappaB DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-kappaB DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

  19. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  20. Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation.

    PubMed

    Usui, Michihiko; Okamatsu, Yoshimasa; Sato, Tsuyoshi; Hanatani, Tomoya; Moritani, Yuki; Sano, Kotaro; Yamamoto, Matsuo; Nakashima, Keisuke

    2016-06-01

    P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Eriobotryae folium extract suppresses LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB and MAPK activation in murine macrophages.

    PubMed

    Uto, Takuhiro; Suangkaew, Natnaprach; Morinaga, Osamu; Kariyazono, Hiroko; Oiso, Shigeru; Shoyama, Yukihiro

    2010-01-01

    Eriobotryae folium (EF), the dried leaves of Eriobotrya japonica (Thunb.) Lindl. has been traditionally used to treat various diseases such as chronic bronchitis, cough, inflammation, skin diseases, and diabetes. In this study, we examined the effects of Eriobotryae folium extract (EFE) on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2(PGE2) in RAW264 murine macrophage cells. EFE suppressed LPS-induced NO and PGE2 production in a dose-dependent manner. Consistent with these observations, EFE reduced the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both protein and mRNA levels. Furthermore, EFE significantly inhibited LPS-induced NF-kappaB binding activity, which was associated with the inhibition of IkappaB-alpha degradation. EFE also attenuated LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). These results suggest that the anti-inflammatory properties of EF might result from inhibition of iNOS and COX-2 expression through the downregulation of NF-kappaB activation and MAPK phosphorylation in LPS-stimulated RAW264 cells.

  2. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    PubMed

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  3. Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation.

    PubMed

    Hsu, Chun-Chieh; Lien, Jin-Cherng; Chang, Chia-Wen; Chang, Chien-Hsin; Kuo, Sheng-Chu; Huang, Tur-Fu

    2013-02-01

    Phagocytes release inflammatory mediators to defense harmful stimuli upon bacterial invasion, however, excessive inflammatory reaction leads to tissue damage and manifestation of pathological states. Therefore, targeting on uncontrolled inflammation seems feasible to control numerous inflammation-associated diseases. Under the drug screening process of synthetic diphenylpyrazole derivatives, we discovered compound yuwen02f1 possesses anti-inflammatory effects in decreasing the release of pro-inflammatory cytokines including TNFα and IL-6, nitric oxide, reactive oxygen species (ROS) as well as inhibiting migration of LPS-stimulated phagocytes. In addition, we observed that the molecular mechanism of yuwen02f1-mediated anti-inflammation is associated with decreasing phosphorylation of MAPK molecules including ERK1/2, JNK and p38, and attenuating translocation of p47(phox) and p67(phox) to the cell membrane. Yuwen02f1 also reverses IκBα degradation and attenuates the expression of NFκB-related downstream inducible enzymes like iNOS and COX-2. Furthermore, we found that yuwen02f1 attenuates some pathological syndromes of LPS-induced sepsis and adjuvant-induced arthritis in mice, as evidenced by decreasing the cytokine production, reversing thrombocytopenic syndrome, protecting the mice from tissue injury in septic mice, and attenuating paw edema in arthritic mice as well. These results suggest that yuwen02f1 is a potential anti-inflammatory agent for alleviating syndromes of acute and chronic inflammatory diseases as evidenced by attenuating the generation of cytokines and down-regulating the expression of iNOS and COX-2 through the blockade of ROS generation and NADPH oxidase, NFκB and MAPK activation pathways in LPS-stimulated phagocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells.

    PubMed

    Tien, Yun-Chen; Lin, Jing-Ying; Lai, Chao-Hung; Kuo, Chia-Hua; Lin, Wen-Yuan; Tsai, Chang-Hai; Tsai, Fuu-Jen; Cheng, Yi-Chang; Peng, Wen-Huang; Huang, Chih-Yang

    2010-08-09

    Severe and potentially fatal hypotension and cardiac contractile dysfunction are common symptoms in patients with sepsis. In our previous study, we found that estradiol and estrogen-receptor alpha have cardio-protective effects in myocardial cells exposed to LPS. Estradiol supplementation has been shown to induce breast and cervical cancers. Flos Carthami, the flower of Carthamus tinctorius L. (Compositae) is an important traditional Chinese medicine used for the treatment of heart disease and inflammation, and therefore might be a potential alternative to Estradiol in the prevention of heart damage. This study investigated the effect of Flos Carthami (FC(EtOH)) ethanolic extract on LPS-induced apoptosis in H9c2 cardiomyoblast cells. H9c2 cells induced apoptosis with LPS administration (1 microg/mL). H9c2 cells were divided into five groups: Control, LPS (1 microg/mL), and three FC(EtOH) (31.25, 62.5,and 125 microg/mL). We detected apoptosis using MTT, LDH, TUNEL assay. JC-1 staining and Western blot were used to detect pro-apoptosis proteins, anti-apoptosis proteins, MAPK proteins (JNK, ERK, and P38), and NFkappaB expression. FC(EtOH) (62.5 microg/mL) inhibited LPS-induced apoptosis by suppressing JNK1/2 activity, which resulted in the reduction of both IkappaB degradation and NFkappaB activation. In addition, FC(EtOH) led to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, the stabilization of the mitochondria membrane and the down-regulation of extrinsic and intrinsic pro-apoptotic proteins, such as TNFalpha, active caspase-8, t-Bid, Bax, active caspases-9, and -3. Carthamus tinctorius L. possesses the ability to suppress JNK activity and inhibit LPS-induced TNFalpha activation and apoptosis in H9c2 cardiomyoblast cells. Carthamus tinctorius L could potentially serve as a cardio-protective agent against LPS-induced apoptosis. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production.

    PubMed

    Shen, Lei; Zhou, Ting; Wang, Jing; Sang, Xiumei; Lan, Lei; Luo, Lan; Yin, Zhimin

    2017-07-01

    Here, we used various approaches to investigate the suppressive role of daphnetin in LPS-induced inflammatory response, with the goal to understand the underlining molecular mechanism by which daphnetin regulated these processes. We examined the survival rate and the lung injury in the mice model of LPS-induced endotoxemia. The production of pro-inflammatory factors including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was measured by ELISA and nitrite analysis, respectively. The expression of inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2), and the activation of signaling molecules was determined by immunoblotting. The production of reactive oxygen species (ROS) was measured by the ROS assay. In vivo study showed that daphnetin enhanced the survival rate and reduced the lung injury in mice with LPS-induced endotoxemia. Both in vivo and in vitro study showed that daphnetin prevented the production of pro-inflammatory factors including TNF-α, IL-1β, IL-6, NO, and PGE2 after LPS challenge. In Raw264.7 cells, we found that daphnetin reduced LPS-induced expression of iNOS and COX-2, and suppressed LPS-induced ROS production. In addition, we found that daphnetin suppressed the activation of JAK/STATs pathway and inhibited the nucleus import of STAT1 and STAT3. Here, our results indicate that daphnetin shows anti-inflammatory properties, at least in part, through suppressing LPS-induced activation of JAK/STATs cascades and ROS production.

  6. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    PubMed Central

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-01-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders. PMID:28367982

  7. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages.

    PubMed

    Du, Jianhai; Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A; Shi, Yang

    2009-09-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide ((*)NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on (*)NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of (*)NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IkappaB kinase beta (IKKbeta), IkappaB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH(2)-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1beta, and IL-6 but not tumor necrosis factor (TNF)-alpha. Tetrahydrobiopterin (BH(4)), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH(2)). Roscovitine significantly inhibited LPS-induced BH(4) biosynthesis and decreased BH(4)-to-BH(2) ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH(4) biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced (*)NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited (*)NO production, iNOS, and COX-2 upregulation, activation of NFkappaB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced (*)NO production in macrophages by suppressing nuclear factor-kappaB activation and BH(4) biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which

  8. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  9. Association between activation of phase 2 enzymes and down-regulation of dendritic cell maturation by c9,t11-conjugated linoleic acid.

    PubMed

    Bergamo, Paolo; Maurano, Francesco; D'Arienzo, Rossana; David, Chella; Rossi, Mauro

    2008-05-15

    Antioxidant and cytoprotective enzymes (phase 2) exert protective activity against reactive oxygen species (ROS)-induced injury. We have recently shown how the beneficial effects of conjugated linoleic acid (CLA) in a mouse model of an autoimmune disease are parallel with the activation of phase 2 enzymes. In the present study we found that c9,t11-CLA isomer activates cytoprotective enzymes and down-regulates LPS- or gliadin-induced maturation in dendritic cells (DCs) obtained from a murine model of celiac disease. As expected, the enhancement of LPS-induced maturation (increased NFkappaB p65 nuclear translocation, CD86 expression and decreased CD11c+ cell number) was exacerbated by specific glutathione (GSH) inhibitor (buthionine sulphoximine; BSO). Conversely, the down-regulation of DC maturation by antioxidant N-acetylcysteine (NAC) was associated with the marked increase of intracellular thiol concentration. c9,t11-CLA activation of phase 2 enzymes in mouse DCs was observed first. Next, we found that the significant reduction of LPS- and gliadin-induced DC maturation in cultures pre-treated with c9,t11-CLA improved cellular redox status (decreased ROS and higher antioxidant defenses). Finally, the process of DC maturation triggered by gliadin, in contrast with that exhibited by LPS, was not associated with enhanced NFkappaB nuclear translocation and pro-inflammatory cytokines synthesis. These results demonstrate that c9,t11-CLA renders DCs more resistant to gliadin- or LPS-induced maturation, thus indicating that a cytoprotective mechanism elicited by c9,t11-CLA may modulate DC responsiveness.

  10. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation.

    PubMed

    Liu, Yueying; Bao, Luer; Xuan, Liying; Song, Baohua; Lin, Lin; Han, Hao

    2015-07-01

    Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.

  11. Retinoic acid dampens LPS-induced NF-kappaB activity: results from human monoblasts and in vivo imaging of NF-kappaB reporter mice.

    PubMed

    Austenaa, Liv M; Carlsen, Harald; Hollung, Kristin; Blomhoff, Heidi K; Blomhoff, Rune

    2009-09-01

    Bacterial lipopolysaccharide (LPS) is a major inducer of systemic inflammatory reactions and oxidative stress in response to microbial infections and may cause sepsis. In the present study, we demonstrate that retinoic acid inhibits LPS-induced activation in transgenic reporter mice and human monoblasts through inhibition of nuclear factor kappaB (NF-kappaB). By using noninvasive molecular imaging of NF-kappaB luciferase reporter mice, we showed that administration of retinoic acid repressed LPS-induced whole-body luminescence, demonstrating in vivo the dynamics of retinoic acid's ability to repress physiologic response to LPS. Retinoic acid also inhibited LPS-induced NF-kappaB activity in the human myeloblastic cell line U937. Retinoic-acid-receptor-selective agonists mimicked - while specific antagonists inhibited - the effects of retinoic acid, suggesting the involvement of nuclear retinoic acid receptors. Retinoic acid also repressed LPS-induced transcription of NF-kappaB target genes such as IL-6, MCP-1 and COX-2. The effect of retinoic acid was dependent on new protein synthesis, was obstructed by a deacetylase inhibitor and was partly eliminated by a signal transducer and activator of transcription-1 (STAT1)/methyltransferase inhibitor, indicating that retinoic acid induces a new protein, possibly STAT1, that is involved in inhibiting NF-kappaB. This provides more evidence for retinoic acid's anti-inflammatory potential, which may have clinical implications in terms of fighting microbial infections.

  12. Bovine dentine organic matrix down-regulates osteoclast activity.

    PubMed

    Sriarj, Wantida; Aoki, Kazuhiro; Ohya, Keiichi; Takagi, Yuzo; Shimokawa, Hitoyata

    2009-01-01

    Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)(2)-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.

  13. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines.

    PubMed

    Low, Pauline; Clark, Amanda M; Chou, Tz-Chong; Chang, Tsu-Chung; Reynolds, Maxwell; Ralph, Stephen J

    2015-05-01

    Melaleuca alternifolia concentrate (MAC) is a mixture predominantly composed of monoterpenoids and sesquiterpenes, refined from the essential oil of the tea tree by removing up to 99% of the more toxic, hydrophobic monoterpenes. MAC was examined here for its immunomodulatory effects on the human THP1 and murine RAW264.7 myeloid leukemic cell lines as models for macrophage-like cells. Firstly, MAC levels were determined that did not affect either the survival or proliferation of these cell lines in vitro. Next, the levels of lipopolysaccharide (LPS)-induced production of cytokines (IL-6, TNFα, IL-10, GM-CSF, IFNγ and IL-3) were examined from the myeloid cell lines using multiplex assays. Many of the LPS-inducible cytokines produced by either cell lines could be significantly inhibited by MAC. Closer examination of the mechanism of action of MAC showed that it inhibited the LPS-induced activation of IκB phosphorylation and nuclear factor (NF)-κB signalling and translocation, inhibiting iNOS protein expression and NO production. These results demonstrate that MAC exerts its immunomodulatory effects by inhibiting NF-κB signalling activation and levels of cytokine production by macrophage-like cell lines. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    PubMed

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  15. Peripheral Blood Mononuclear Cells Infiltration Downregulates Decidual FAAH Activity in an LPS-Induced Embryo Resorption Model.

    PubMed

    Wolfson, Manuel Luis; Aisemberg, Julieta; Correa, Fernando; Franchi, Ana María

    2017-06-01

    Maternal infections with gram-negative bacteria are associated with miscarriage and are one of the most common complications during pregnancy. Previous studies from our group have shown that lipopolysaccharide (LPS)-activated infiltrating peripheral blood mononuclear cells (PBMC) into decidual tissue plays an important role in the establishment of a local inflammatory process that results in embryo cytotoxicity and early embryo resorption. Moreover, we have also shown that an increased endocannabinoid tone mediates LPS-induced deleterious effects during early pregnancy loss. Here, we sought to investigate whether the infiltrating PBMC modulates the decidual endocannabinoid tone and the molecular mechanisms involved. PBMC isolated from 7-day pregnant mice subjected to different treatments were co-cultured in a transwell system with decidual tissue from control 7-day pregnant mice. Decidual fatty acid amide hydrolase (FAAH) activity was measured by radioconvertion, total decidual protein nitration by Western blot (WB), and decidual FAAH nitration by immunoprecipitation followed by WB. We found that co-culture of PBMC obtained from LPS-treated mice increased the level of nitration of decidual FAAH, which resulted in a negative modulation of decidual FAAH activity. Interestingly, co-treatment with progesterone or aminoguanidine prevented this effect. We found that LPS-treated PBMC release high amounts of nitric oxide (NO) which causes tyrosine nitration of decidual FAAH, diminishing its enzymatic activity. Inactivation of FAAH, the main degrading enzyme of anandamide and similar endocannabinoids, could lead to an increased decidual endocannabinoid tone with embryotoxic effects. J. Cell. Physiol. 232: 1441-1447, 2017. © 2016 Wiley Periodicals, Inc.

  16. Lanostane triterpenoids from Ganoderma curtisii and their NO production inhibitory activities of LPS-induced microglia.

    PubMed

    Jiao, Yang; Xie, Ting; Zou, Lu-Hui; Wei, Qian; Qiu, Li; Chen, Li-Xia

    2016-08-01

    Twenty-nine lanostane triterpenoids (1-29) were obtained from the EtOH extract of fruiting bodies of the Ganoderma curtisii. Among them, compound 1 was a new lanostane triterpenoid and compounds 2-5 were isolated from the genus Ganoderma for the first time and their structures were unambiguously identified in this work. The NMR data of the four known lanostane triterpenoids (2-5) were reported for the first time because their structures were all tentatively characterized by interpreting the MS data from the methanol extract of Ganoderma lucidum or from the metabolites in rat bile after oral administration of crude extract of the fruiting bodies of G. lucidum using fragmentation rules. Their anti-inflammatory activities were tested by measuring their inhibitory effects on nitric oxide (NO) production in BV-2 microglia cells activated by lipopolysaccharide. Their IC50 values were in a range from 3.65±0.41 to 28.04±2.81μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation.

    PubMed

    Abraham, E; Kaneko, D J; Shenkar, R

    1999-01-01

    Endotoxemia produces elevations in catecholamine levels in the pulmonary and systemic circulation as well as rapid increases in neutrophil number and proinflammatory cytokine expression in the lungs. In the present experiments, we examined the effects of endogenous and exogenous adrenergic stimulation on endotoxin-induced lung neutrophil accumulation and activation. Levels of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and macrophage inflammatory protein (MIP)-2 mRNAs were increased in lung neutrophils from endotoxemic mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic or control mice. Treatment with the beta-adrenergic antagonist propranolol before endotoxin administration did not affect trafficking of neutrophils to the lungs or the expression of IL-1beta, TNF-alpha, or MIP-2 by lung neutrophils. Administration of the alpha-adrenergic antagonist phentolamine before endotoxemia did not alter lung neutrophil accumulation as measured by myeloperoxidase (MPO) levels but did result in significant increases in IL-1beta, TNF-alpha, and MIP-2 mRNA expression by lung neutrophils compared with endotoxemia alone. Administration of the alpha1-adrenergic agonist phenylephrine before endotoxin did not affect trafficking of neutrophils to the lungs but was associated with significantly increased expression of TNF-alpha and MIP-2 mRNAs by lung neutrophils compared with that found after endotoxin alone. In contrast, treatment with the alpha2-adrenergic agonist UK-14304 prevented endotoxin-induced increases in lung MPO and lung neutrophil cytokine mRNA levels. The suppressive effects of UK-14304 on endotoxin-induced increases in lung MPO were not affected by administration of the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester. These data demonstrate that the initial accumulation and activation of neutrophils in the lungs after endotoxemia can be significantly diminished by alpha

  18. Inhibition of CDKS by roscovitine suppressed LPS-induced ·NO production through inhibiting NFκB activation and BH4 biosynthesis in macrophages

    PubMed Central

    Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A.

    2009-01-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide (·NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on ·NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of ·NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IκB kinase β (IKKβ), IκB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH2-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1β, and IL-6 but not tumor necrosis factor (TNF)-α. Tetrahydrobiopterin (BH4), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH2). Roscovitine significantly inhibited LPS-induced BH4 biosynthesis and decreased BH4-to-BH2 ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH4 biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced ·NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited ·NO production, iNOS, and COX-2 upregulation, activation of NFκB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced ·NO production in macrophages by suppressing nuclear factor-κB activation and BH4 biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which roscovitine attenuates inflammation. PMID:19553566

  19. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    PubMed

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.

  20. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  1. Genistein Suppresses LPS-Induced Inflammatory Response through Inhibiting NF-κB following AMP Kinase Activation in RAW 264.7 Macrophages

    PubMed Central

    Ji, Guiyuan; Zhang, Yupei; Yang, Qinhe; Cheng, Shaobin; Hao, Jing; Zhao, Xihong; Jiang, Zhuoqin

    2012-01-01

    Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases. PMID:23300870

  2. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    PubMed

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

  3. Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice.

    PubMed

    Huang, Xiao; Kong, Guiqing; Li, Yan; Zhu, Weiwei; Xu, Haixiao; Zhang, Xiaohua; Li, Jiankui; Wang, Lipeng; Zhang, Zhongwen; Wu, Yaru; Liu, Xiangyong; Wang, Xiaozhi

    2016-12-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) and 5-azacitidine (Aza), an inhibitor of DNA methyltransferases, possess a wide range of anti-metabolic and anti-cancer activities. This study examined the effects of DAC and Aza on inflammatory and oxidative injuries, as well as on glycocalyx and MAPK signaling pathways, in a LPS-stimulated ARDS mouse model. Results of ELISA revealed that DAC and Aza significantly inhibited the production of TNF-α and IL-1β and prevented LPS-induced elevation of myeloperoxidase and malondialdehyde levels in serum. The W/D ratio of lung and histopathologic examination with hematoxylin and eosin staining showed that DAC and Aza pretreatment substantially improved lung tissue injury. DAC and Aza reduced the level of glycocalyx degradation products (e.g., heparan sulfate and haluronic acid) and protected glycocalyx integrity. Western blot assay demonstrated that DAC and Aza both significantly suppressed LPS-induced activation of the MAPK signaling pathways by blocking the phosphorylation of JNK, ERK and P38 in lung tissues. Bisulfite sequencing PCR and real time-PCR showed that DAC reversed the RASSF1A promoter hypermethylation and furthermore elevated the expression of RASSF1A, which is a tumor suppressor that regulates MAPK signaling pathway. These results suggested that DAC inhibited the MAPK signaling pathway in LPS-induced ARDS mice might via demethylation in RASSF1A promoter region and by restoring its expression. This study highlighted the close relationship between DNA methylation and the development and progression of ARDS.

  4. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  5. In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice.

    PubMed

    Ribeiro, André Luiz Teroso; Shimada, Ana Lúcia Borges; Hebeda, Cristina Bichels; de Oliveira, Tiago Franco; de Melo Loureiro, Ana Paula; Filho, Walter Dos Reis Pereira; Santos, Alcinéa Meigikos Dos Anjos; de Lima, Wothan Tavares; Farsky, Sandra Helena Poliselli

    2011-10-09

    Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50ppm HQ (1h/day for 5 days). One hour later, oxidative burst, cell cycle, DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1h later the last exposures, inflammation was induced by LPS inhalation (0.1mg/ml/10min) and 3h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of β(2) and β(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ

  6. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  7. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  8. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Choi, Hoonsung; Kim, Bokyung; Chae, Unbin; Lee, Dong Gil; Lee, Sang-Rae; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-10-01

    Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca(2+) homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca(2+)/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca(2+)/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.

  9. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  10. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    PubMed

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  11. Artemisolide is a typical inhibitor of I{kappa}B kinase {beta} targeting cysteine-179 residue and down-regulates NF-{kappa}B-dependent TNF-{alpha} expression in LPS-activated macrophages

    SciTech Connect

    Kim, Byung Hak; Lee, Jun-Young; Seo, Jee Hee; Lee, Hwa Young; Ryu, Shi Yong; Ahn, Byung Woo; Lee, Chong-Kil; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2007-09-28

    Nuclear factor (NF)-{kappa}B regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-{kappa}B inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-{kappa}B activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of I{kappa}B kinase {beta} (IKK{beta}), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-{kappa}B activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKK{beta} and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKK{beta} activity was completely abolished by substitution of Cys-179 residue of IKK{beta} to Ala residue, indicating direct targeting site of ATM. ATM could inhibit I{kappa}B{alpha} phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-{kappa}B activation. Further, we demonstrate that ATM down-regulates NF-{kappa}B-dependent TNF-{alpha} expression. Taken together, this study provides a pharmacological potential of ATM in NF-{kappa}B-dependent inflammatory disorders.

  12. Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of lps-induced nitric oxide production.

    PubMed

    Hong, Seong Su; Lee, Seon A; Han, Xiang Hua; Lee, Min Hee; Hwang, Ji Sang; Park, Jeong Sook; Oh, Ki-Wan; Han, Kun; Lee, Myung Koo; Lee, Heesoon; Kim, Wook; Lee, Dongho; Hwang, Bang Yeon

    2008-02-01

    Two new melampolide-type sesquiterpene lactones, 8beta-epoxyangeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (1) and 8beta-angeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (2), were isolated from the leaves of yacon [Smallanthus sonchifolia (POEPP. et ENDL.) H. Robinson] along with eleven known melampolides, allo-schkuhriolide (3), enhydrin (4), polymatin A (5), fluctuanin (6), 8beta-angeloyloxy-9alpha-acetoxy-14-oxo-acanthospermolide (7), 8beta-angeloyloxy-14-oxo-acanthospermolide (8), 8beta-methacryloyloxymelampolid-14-oic acid methyl ester (9), uvedalin (10), polymatin B (11), 8beta-tigloyloxymelampolid-14-oic acid methyl ester (12), and sonchifolin (13). Their structures were established on the basis of spectroscopic evidence including 1D- and 2D-NMR experiments. All isolates were evaluated for inhibition of LPS-induced nitric oxide production in murine macrophage RAW 264.7 cells.

  13. Constituents of PG201 (Layla(®)), a multi-component phytopharmaceutical, with inhibitory activity on LPS-induced nitric oxide and prostaglandin E2 productions in macrophages.

    PubMed

    Kim, Hyun Ji; Kim, Hye Mi; Ryu, Byeol; Lee, Woo-Seok; Shin, Ji-Sun; Lee, Kyung-Tae; Jang, Dae Sik

    2016-02-01

    Fourteen compounds, coumarin (1), demethylsuberosin (2), xanthotoxin (3), psoralen (4), decursinol (5), decursin (6), decursinol angelate (7), chikusetsusaponin IVa (8), chikusetsusaponin IVa methyl ester (9), ethyl caffeate (10), syringaresinol (11), cnidilide (12), farnesol (13), and linoleic acid (14), were isolated from phytopharmaceutical PG201 (Layla(®)) by activity-guided fractionation utilizing inhibitory activity on nitric oxide (NO) production in vitro. The isolates 1-14 were evaluated for their inhibitory activity on LPS-induced NO and prostaglandin E2 (PGE2) productions in RAW 264.7 cells. All the compounds except 14 displayed suppressive effects on LPS-induced NO and PGE2 production with IC50 values ranging from 8 to 60 μM. Among these, compound 10 showed the most potent inhibitory effect on NO production from RAW 264.7 cells with an IC50 value of 8.25 μM. Compounds 2, 9, and 10 exhibited high inhibitory effects on PGE2 production with the IC50 values of 9.42, 7.51, and 6.49 μM, respectively. These findings suggest that compounds 2, 9, and 10 are the potential anti-inflammatory active constituents of PG201 and further study may be needed to explain their mechanism of action.

  14. Hypoxic Stress Facilitates Acute Activation and Chronic Down-Regulation of Fanconi Anemia Proteins

    PubMed Central

    Scanlon, Susan E.; Glazer, Peter M.

    2014-01-01

    Hypoxia induces genomic instability through replication stress and dysregulation of vital DNA repair pathways. The Fanconi anemia (FA) proteins, FANCD2 and FANCI, are key members of a DNA repair pathway that responds to replicative stress, suggesting that they undergo regulation by hypoxic conditions. Here acute hypoxic stress activates the FA pathway via ubiquitination of FANCD2 and FANCI in an ATR-dependent manner. In addition, the presence of an intact FA pathway is required for preventing hypoxia-induced DNA damage measurable by the comet assay, limiting the accumulation of γH2AX (a marker of DNA damage or stalled replication), and protecting cells from hypoxia-induced apoptosis. Furthermore, prolonged hypoxia induces transcriptional repression of FANCD2 in a manner analogous to the hypoxic down-regulation of BRCA1 and RAD51. Thus, hypoxia-induced FA pathway activation plays a key role in maintaining genome integrity and cell survival, while FA protein down-regulation with prolonged hypoxia contributes to genomic instability. PMID:24688021

  15. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  16. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    SciTech Connect

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo . E-mail: miyazawa@biochem.tohoku.ac.jp

    2006-09-15

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with {delta}-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol.

  17. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts

    PubMed Central

    Gao, Anqi; Kantarci, Alpdogan; Herrera, Bruno Schneider; Gao, Hongwei

    2013-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13. PMID:23638389

  18. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    PubMed Central

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  19. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  20. Anthemis wiedemanniana essential oil prevents LPS-induced production of NO in RAW 264.7 macrophages and exerts antiproliferative and antibacterial activities in vitro.

    PubMed

    Conforti, Filomena; Menichini, Federica; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Bruno, Maurizio; Rosselli, Sergio; Celik, Sezgin

    2012-01-01

    Anthemis wiedemanniana is known in folk medicine for the treatment of microbial infections, cancer and also urinary and pulmonary problems. In this study, the chemical composition of the essential oil from A. wiedemanniana was evaluated and its antibacterial activity was tested against 10 bacterial strains. The oil was also tested for its potentiality to inhibit nitric oxide production in RAW 264.7 macrophages and for its cytotoxicity against four human cancer cell lines. A. wiedemanniana oil, rich of oxygenated monoterpenes (25.4%), showed a good antibacterial activity against Gram-positive bacteria and a good activity against the two Gram-negative bacteria, Escherichia coli and Proteus vulgaris. Besides that, it exhibited a high inhibitory effect on the LPS-induced nitrite production and a strong cytotoxic activity, especially against amelanotic melanoma (C32) and large lung cell carcinoma (COR-L23) cell lines.

  1. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  2. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation.

    PubMed

    Martín-Garrido, A; Boyano-Adánez, M C; Alique, M; Calleros, L; Serrano, I; Griera, M; Rodríguez-Puyol, D; Griendling, K K; Rodríguez-Puyol, M

    2009-11-15

    Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.

  3. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  4. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.

    PubMed

    Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon

    2013-01-04

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.

  5. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells.

  6. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages.

    PubMed

    Xu, Kewei; Harrison, Rene E

    2015-07-31

    Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.

  7. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages*

    PubMed Central

    Xu, Kewei; Harrison, Rene E.

    2015-01-01

    Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages. PMID:26082487

  8. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells.

    PubMed

    Ke, Xiao; Hu, Guanghong; Fang, Wenyi; Chen, Jintuan; Zhang, Xin; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2015-04-01

    Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.

  9. Activation of Toll-like receptor 9 inhibits LPS-induced receptor activator of NF-κB ligand expression in rat B lymphocytes

    PubMed Central

    Yu, Xiaoqian; Lin, Jiang; Yu, Qing; Kawai, Toshihisa; Taubman, Martin A.; Han, Xiaozhe

    2014-01-01

    B lymphocytes express multiple Toll-like receptors (TLRs) that regulate cytokine production by these B cells. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF-κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand E. coli LPS and/or TLR9 ligand CpG-oligodeoxynucleotide (CpG-ODN) for 2 days. RANKL mRNA expressions and the percentage of RANKL-positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. Such increase was diminished when cells were treated with both CpG-ODN and E. coli LPS. Microarray results revealed that expressions of multiple cyclin-dependent kinase (CDK) pathway-related genes were up-regulated only in cells treated with both E. coli LPS and CpG-ODN. This study suggests that CpG-ODN inhibit LPS-induced RANKL expression in rat B cells via regulation of CDK pathway. PMID:24661200

  10. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  11. Top-down regulation of default mode activity in spatial visual attention

    PubMed Central

    Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou

    2013-01-01

    Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood-oxygen-level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN→DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN→TCN, are negatively correlated with behavioral performance. Third, stronger DMN→TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN→DMN and DMN BOLD activity is unsystematic. These results suggest that during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842

  12. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor gamma in adipocytes.

    PubMed

    Kajita, Kazuo; Ishizuka, Tatsuo; Mune, Tomoatsu; Miura, Atsushi; Ishizawa, Masayoshi; Kanoh, Yoshinori; Kawai, Yasunori; Natsume, Yoshiyuki; Yasuda, Keigo

    2003-01-01

    Dehydroepiandrosterone (DHEA) is expected to have a weight-reducing effect. In this study, we evaluated the effect of DHEA on genetically obese Otsuka Long Evans Fatty rats (OLETF) compared with Long-Evans Tokushima rats (LETO) as control. Feeding with 0.4% DHEA-containing food for 2 wk reduced the weight of sc, epididymal, and perirenal adipose tissue in association with decreased plasma leptin levels in OLETF. Adipose tissue from OLETF showed increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) protein, which was prevented by DHEA treatment. Further, we examined the effect of DHEA on PPARgamma in primary cultured adipocytes and monolayer adipocytes differentiated from rat preadipocytes. PPARgamma protein level was decreased in a time- and concentration-dependent manner, and DHEA significantly reduced mRNA levels of PPARgamma, adipocyte lipid-binding protein, and sterol regulatory element-binding protein, but not CCAAT/enhancer binding protein alpha. DHEA-sulfate also reduced the PPARgamma protein, but dexamethasone, testosterone, or androstenedione did not alter its expression. In addition, treatment with DHEA for 5 d reduced the triglyceride content in monolayer adipocytes. These results suggest that DHEA down-regulates adiposity through the reduction of PPARgamma in adipocytes.

  13. Down-regulation of linear and activation of cyclic electron transport during drought.

    PubMed

    Golding, Alison J; Johnson, Giles N

    2003-11-01

    The effects of short-term drought on the regulation of electron transport through photosystems I and II (PSI and PSII) have been studied in Hordeum vulgare L. cv. Chariot. Fluorescence measurements demonstrated that electron flow through PSII decreased in response to both drought and CO2 limitation. This was due to regulation, as opposed to photoinhibition. We demonstrate that this regulation occurs between the two photosystems--in contrast to PSII, PSI became more oxidised and the rate constant for P700 re-reduction decreased under these conditions. Thus, when carbon fixation is inhibited, electron transport is down-regulated to match the reduced requirement for electrons and minimise reactive oxygen production. At the same time non-photochemical quenching (NPQ) increases, alleviating the excitation pressure placed on PSII. We observe an increase in the proportion of PSI centres that are 'active' (i.e. can be oxidised with a saturating flash and then rapidly re-reduced) under the conditions when NPQ is increased. We suggest that these additional centres are primarily involved in cyclic electron transport, which generates the DeltapH to support NPQ and protect PSII.

  14. alpha-Synuclein stimulates differentiation of osteosarcoma cells: relevance to down-regulation of proteasome activity.

    PubMed

    Fujita, Masayo; Sugama, Shuei; Nakai, Masaaki; Takenouchi, Takato; Wei, Jianshe; Urano, Tomohiko; Inoue, Satoshi; Hashimoto, Makoto

    2007-02-23

    Because a limited study previously showed that alpha-synuclein (alpha-syn), the major pathogenic protein for Parkinson disease, was expressed in differentiating brain tumors as well as various peripheral cancers, the main objective of the present study was to determine whether alpha-syn might be involved in the regulation of tumor differentiation. For this purpose, alpha-syn and its non-amyloidogenic homologue beta-syn were stably transfected to human osteosarcoma MG63 cell line. Compared with beta-syn-overexpressing and vector-transfected cells, alpha-syn-overexpressing cells exhibited distinct features of differentiated osteoblastic phenotype, as shown by up-regulation of alkaline phosphatase and osteocalcin as well as inductive matrix mineralization. Further studies revealed that proteasome activity was significantly decreased in alpha-syn-overexpressing cells compared with other cell types, consistent with the fact that proteasome inhibitors stimulate differentiation of various osteoblastic cells. In alpha-syn-overexpressing cells, protein kinase C (PKC) activity was significantly decreased, and reactivation of PKC by phorbol ester significantly restored the proteasome activity and abrogated cellular differentiation. Moreover, activity of lysosome was up-regulated in alpha-syn-overexpressing cells, and treatment of these cells with autophagy-lysosomal inhibitors resulted in a decrease of proteasome activity associated with up-regulation of alpha-syn expression, leading to enhance cellular differentiation. Taken together, these results suggest that the stimulatory effect of alpha-syn on tumor differentiation may be attributed to down-regulation of proteasome, which is further modulated by alterations of various factors, such as protein kinase C signaling pathway and a autophagy-lysosomal degradation system. Thus, the mechanism of alpha-syn regulation of tumor differentiation and neuropathological effects of alpha-syn may considerably overlap with each other.

  15. Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro.

    PubMed

    Lanzilli, Giulia; Fuggetta, Maria Pia; Tricarico, Maria; Cottarelli, Andrea; Serafino, Annalucia; Falchetti, Roberto; Ravagnan, Giampietro; Turriziani, Mario; Adamo, Riccardo; Franzese, Ornella; Bonmassar, Enzo

    2006-03-01

    A number of previous studies investigated the in vitro effects of resveratrol on malignant human breast epithelial cell replication. The aim of the present study was to evaluate the activity of resveratrol on human metastatic breast cancer cells. The study was performed on the MCF-7 tumor cell line. Cell growth, cell cycle perturbation and apoptosis were evaluated by trypan blue dye exclusion assay, flow cytometric analysis and confocal fluorescence microscopy. TRAP assay and Western blot analysis respectively detected levels of telomerase activity and levels of hTERT in intracellular compartments of MCF-7 cells treated with resveratrol. Resveratrol has a direct inhibitory effect on cell proliferation. The results demonstrate that the drug induces apoptosis in MCF-7 cells, in a time- and concentration-related manner. Our results also show that the growth-inhibitory effect of resveratrol on malignant cells is mainly due to its ability to induce S-phase arrest and apoptosis in association with reduced levels of telomerase activity. In particular, TRAP assay and Western blot analysis respectively showed that resveratrol treatment down-regulates the telomerase activity of target cells and the nuclear levels of hTERT, the reverse transcriptase subunit of the telomerase complex. In our experimental model of breast cancer, resveratrol shows direct antiproliferative and pro-apoptotic effects. Studies on telomerase function and intracellular hTERT distribution point out that this agent is endowed with additional suppressive functions on critical tumor biological properties. These results speak in favor of a potential role of resveratrol in chemoprevention/chemotherapy of breast cancer.

  16. Insulin receptor activation and down-regulation by cationic lipid transfection reagents.

    PubMed

    Pramfalk, Camilla; Lanner, Johanna; Andersson, Monica; Danielsson, Eva; Kaiser, Christina; Renström, Ing-Marie; Warolén, Malin; James, Stephen R

    2004-01-26

    Transfection agents comprised of cationic lipid preparations are widely used to transfect cell lines in culture with specific recombinant complementary DNA molecules. We have found that cells in culture are often resistant to stimulation with insulin subsequent to treatment with transfection agents such as LipofectAMINE 2000 and FuGENE-6. This is seen with a variety of different readouts, including insulin receptor signalling, glucose uptake into muscle cells, phosphorylation of protein kinase B and reporter gene activity in a variety of different cell types We now show that this is due in part to the fact that cationic lipid agents activate the insulin receptor fully during typical transfection experiments, which is then down-regulated. In attempts to circumvent this problem, we investigated the effects of increasing concentrations of LipofectAMINE 2000 on insulin receptor phosphorylation in Chinese hamster ovary cells expressing the human insulin receptor. In addition, the efficiency of transfection that is supported by the same concentrations of transfection reagent was studied by using a green fluorescent protein construct. Our data indicate that considerably lower concentrations of LipofectAMINE 2000 can be used than are recommended by the manufacturers. This is without sacrificing transfection efficiency markedly and avoids the problem of reducing insulin receptor expression in the cells. Widely-used cationic lipid transfection reagents cause a state of insulin unresponsiveness in cells in culture due to fully activating and subsequently reducing the expression of the receptor in cells. This phenomenon can be avoided by reducing the concentration of reagent used in the transfection process.

  17. Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2014-12-15

    The aim of the present study was to explore the signaling pathways associated with the effect of simvastatin on matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia K562 cells. In sharp contrast to its insignificant effect on MMP-2, simvastatin down-regulated MMP-9 protein expression and mRNA levels in K562 cells. Simvastatin-induced Pin1 down-regulation evoked NFκB/p65 degradation. Meanwhile, simvastatin induced JNK-mediated c-Jun and ATF-2 activation. Over-expression of Pin1 suppressed simvastatin-induced MMP-9 down-regulation. Treatment with SP600125 (a JNK inhibitor) or knock-down of JNK1 reduced MMP-2 expression in simvastatin-treated cells. Simvastatin enhanced the binding of c-Jun/ATF-2 with the MMP-2 promoter. Down-regulation of c-Jun or ATF-2 by siRNA revealed that c-Jun/ATF-2 activation was crucial for MMP-2 expression. Suppression of p65 activation or knock-down of Pin1 by shRNA reduced MMP-2 and MMP-9 expression in K562 cells. Over-expression of constitutively active JNK1 rescued MMP-2 expression in Pin1 shRNA-transfected cells. Simvastatin treatment also suppressed MMP-9 but not MMP-2 expression in human leukemia U937 and KU812 cells. Taken together, our data indicate that simvastatin-induced p65 instability leads to MMP-9 down-regulation in leukemia cells, while simvastatin-induced JNK1/c-Jun/ATF-2 activation maintains the MMP-2 expression underlying p65 down-regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    PubMed Central

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  19. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    PubMed

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.

  20. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    PubMed

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  1. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Wu, Lehao; Fan, Yunpeng; Fan, Chao; Yu, Yang; Sun, Lei; Jin, Yu; Zhang, Yan; Ye, Richard D

    2017-04-15

    The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.

  2. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  3. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells.

    PubMed

    Grunz-Borgmann, Elizabeth; Mossine, Valeri; Fritsche, Kevin; Parrish, Alan R

    2015-12-15

    The aging kidney is marked by a chronic inflammation, which may exacerbate the progression of renal dysfunction, as well as increase the susceptibility to acute injury. The identification of strategies to alleviate inflammation may have translational impact to attenuate kidney disease. We tested the potential of ashwaganda, sutherlandia and elderberry on tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induced chemokine (CCL2 and CCL5) expression in vitro. Elderberry water-soluble extract (WSE) was pro-inflammatory, while sutherlandia WSE only partially attenuated the TNF-α-induced changes in CCL5. However, ashwaganda WSE completely prevented TNF-α-induced increases in CCL5, while attenuating the increase in CCL2 expression and NF-κB activation. The same pattern of ashwagandha protection was seen using LPS as the pro-inflammatory stimuli. Taken together, these results demonstrate the ashwaganda WSE as a valid candidate for evaluation of therapeutic potential for the treatment of chronic renal dysfunction.

  4. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  5. Quercetin induces tumor-selective apoptosis through down-regulation of Mcl-1 and activation of Bax

    PubMed Central

    Cheng, Senping; Gao, Ning; Zhang, Zhuo; Chen, Gang; Budhraja, Amit; Ke, Zunji; Son, Young-ok; Wang, Xin; Luo, Jia; Shi, Xianglin

    2010-01-01

    Purpose To investigate the in vivo antitumor efficacy of querctin in U937 xenografts and the functional role of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia cells. Experimental Design Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercein, as well as Mcl-1 expression and Bax activation were investigated in xenografts of leukemia cells. Results Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells, but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 down-regulation and Bax conformational change and mitochondrial translocation which triggered cytochrome c release. Knockdown of Bax by siRNA reversed querctin-induced apoptosis. Knockout of Bax abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 down-regulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 down-regulation and Bax activation were observed in xenografts. Conclusions These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells, through a process involving Mcl-1 down-regulation, which in turn potentiates Bax activation and mitochondrial translocation, culminating in apoptosis. PMID:21138867

  6. The Antimalarial Chloroquine Suppresses LPS-Induced NLRP3 Inflammasome Activation and Confers Protection against Murine Endotoxic Shock

    PubMed Central

    2017-01-01

    Activation of the NLRP3 inflammasome, which catalyzes maturation of proinflammatory cytokines like IL-1β and IL-18, is implicated and essentially involved in many kinds of inflammatory disorders. Chloroquine (CQ) is a traditional antimalarial drug and also possesses an anti-inflammatory property. In this study, we investigated whether CQ suppresses NLRP3 inflammasome activation and thereby confers protection against murine endotoxic shock. CQ attenuated NF-κB and MAPK activation and prohibited expression of IL-1β, IL-18, and Nlrp3 in LPS treated murine bone marrow-derived macrophages (BMDMs), demonstrating its inhibitory effect on the priming signal of NLRP3 activation. Then, CQ was shown to inhibit caspase-1 activation and ASC specks formation in BMDMs, which indicates that CQ also suppresses inflammasome assembly, the second signal for NLRP3 inflammasome activation. In a murine endotoxic shock model, CQ effectively improved survival and markedly reduced IL-1β and IL-18 production in serum, peritoneal fluid, and lung tissues. Moreover, CQ reduced protein levels of NLRP3 and caspases-1 p10 in lung homogenates of mice with endotoxic shock, which may possibly explain its anti-inflammatory activity and life protection efficacy in vivo. Overall, our results demonstrate a new role of CQ that facilitates negative regulation on NLRP3 inflammasome, which thereby confers protection against lethal endotoxic shock. PMID:28321151

  7. LPS-induced NO inhibition and antioxidant activities of ethanol extracts and their solvent partitioned fractions from four brown seaweeds

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan

    2013-12-01

    The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.

  8. Neuropeptidase activity is down-regulated by estradiol in steroid-sensitive regions of the hypothalamus in female mice

    PubMed Central

    Bruce, Lisa A.; Cyr, Nicole E.; Qiao, Jana W.; DeFries, Christa C.; Tetel, Marc J.; Wolfson, Adele J.

    2012-01-01

    Thimet oligopeptidase (TOP) and prolyl endopeptidase (PEP) are neuropeptidases involved in the hydrolysis of gonadotropin-releasing hormone, a key component of the hypothalamic-pituitary-gonadal axis. GnRH is regulated in part by feedback from steroid hormones such as estradiol. Previously, we demonstrated that TOP levels are down-regulated by estradiol in reproductively-relevant regions of the female rodent brain. The present study supports these findings by showing that TOP enzyme activity, as well as protein levels, in the ventromedial hypothalamic nucleus of female mice are controlled estradiol. We further demonstrate that PEP levels in this same brain region are down-regulated by estradiol in parallel with those of TOP. These findings provide evidence that these neuropeptidases are part of the fine control of hormone levels in the HPG axis. PMID:22672888

  9. Central serotonin attenuates LPS-induced systemic inflammation.

    PubMed

    Mota, Clarissa M D; Rodrigues-Santos, Caroline; Fernández, Rodrigo A R; Carolino, Ruither O G; Antunes-Rodrigues, José; Anselmo-Franci, Janete A; Branco, Luiz G S

    2017-07-16

    a U-shaped dose-response curve in LPS fever, in which the intermediate dose reduced the febrile response. Icv 5-HT (10μg/μL) microinjection prevented the LPS-induced increases in AVPO PGE2 (whereas not altering PGD2), plasma CORT and IL-6 levels, as well as preventing reduced HLI. Our data are consistent with the notion that AVPO 5-HT synthesis is down-regulated during SI, favoring AVPO PGE2 synthesis and consequently potentiating the immune response. These results reveal a novel effect of central 5-HT as an anti-inflammatory neuromodulator that may take place during psychiatric disorder treatment with 5-HT reuptake inhibitors as well as suggesting that 5-HT modulation per se is a potential therapeutic approach for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    PubMed

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  11. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor.

    PubMed

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes.

  12. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells.

    PubMed

    He, Aiqin; Ji, Rui; Shao, Jia; He, Chenyun; Jin, Ming; Xu, Yunzhao

    2016-02-01

    The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV-) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

  13. The anti-inflammatory potential of Cortex Phellodendron in vivo and in vitro: down-regulation of NO and iNOS through suppression of NF-κB and MAPK activation.

    PubMed

    Choi, You Yeon; Kim, Mi Hye; Han, Jae Min; Hong, Jongki; Lee, Tae-Hee; Kim, Sung-Hoon; Yang, Woong Mo

    2014-04-01

    Cortex Phellodendri amurensis (CPA), derived from the dried bark of Phellodendron amurense Rupr., is a traditional medicine widely used to treat various inflammation-related diseases. The aim of this study was to investigate the anti-inflammatory activity and molecular mechanism of CPA in vivo and in vitro. Mice were pretreated with CPA (200 mg/kg, p.o.) for three consecutive days; 2h after the last CPA treatment, mice were intraperitoneally injected with lipopolysaccharide (LPS) to induce endotoxemia (35 mg/kg). After treatment, we assessed survival rate, protein levels and cytokine expression. In addition, we confirmed the molecular mechanism of anti-inflammatory effects of CPA in LPS-stimulated macrophage RAW 264.7 cells. The results showed that CPA significantly increased mice survival rates and down-regulated LPS-induced interleukin (IL)-6, IL-1β and macrophage chemo-attractant protein (MCP)-1 in serum. In addition, CPA inhibited inducible nitric oxide synthase (iNOS), activation of nuclear factor (NF)-κB by degradation and phosphorylation of IκBα, and attenuated phosphorylation of mitogen-activated protein kinases (MAPKs; ERK 1/2, p38 and JNK) from mice challenged with LPS. Moreover, in RAW 264.7 cells, CPA dose-dependently down-regulated LPS-stimulated NO, iNOS expression, as well as inflammatory cytokines and protein expression, consistent with the results in vivo. The anti-inflammatory properties of CPA in vitro and in vivo suggest its utility for attenuating inflammation-related diseases.

  14. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APCmin mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APCmin/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  15. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    SciTech Connect

    Schroecksnadel, Sebastian; Jenny, Marcel; Kurz, Katharina; Klein, Angela; Ledochowski, Maximilian; Uberall, Florian; Fuchs, Dietmar

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  16. Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis.

    PubMed

    Sarajärvi, Timo; Haapasalo, Annakaisa; Viswanathan, Jayashree; Mäkinen, Petra; Laitinen, Marjo; Soininen, Hilkka; Hiltunen, Mikko

    2009-12-04

    Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against beta-amyloid (Abeta) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the beta-secretase (BACE1) function and beta-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that approximately 60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Abeta secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized gamma-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced beta-amyloidogenic processing of APP and ultimately increased Abeta production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased beta-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease

  17. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity

    SciTech Connect

    Kim, Jae-Hwan; Choi, Soo-Youn; Kang, Byung-Hee; Lee, Soon-Min; Cho, Eun-Jung; Youn, Hong-Duk

    2013-02-01

    Highlights: ► AMPK phosphorylates CtBP1 on serine 158. ► AMPK-mediated phosphorylation of CtBP1 causes the ubiquitination and nuclear export of CtBP1. ► AMPK downregulates the CtBP1-mediated repression of Bax transcription. -- Abstract: CtBP is a transcriptional repressor which plays a significant role in the regulation of cell proliferation and tumor progression. It was reported that glucose withdrawal causes induction of Bax due to the dissociation of CtBP from the Bax promoter. However, the precise mechanism involved in the regulation of CtBP still remains unclear. In this study, we found that an activated AMP-activated protein kinase (AMPK) phosphorylates CtBP1 on Ser-158 upon metabolic stresses. Moreover, AMPK-mediated phosphorylation of CtBP1 (S158) attenuates the repressive function of CtBP1. We also confirmed that triggering activation of AMPK by various factors resulted in an increase of Bax gene expression. These findings provide connections of AMPK with CtBP1-mediated regulation of Bax expression for cell death under metabolic stresses.

  18. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced

  19. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    SciTech Connect

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  20. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells.

    PubMed

    Kim, You Ah; Kong, Chang-Suk; Park, Hyo Hyun; Lee, Eunkyung; Jang, Mi-Soon; Nam, Ki-Ho; Seo, Youngwan

    2015-08-10

    The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).

  1. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated brown Norway and Dahl S rat hearts: roles of mitochondrial function, NF-κB activation, and TNF-α production.

    PubMed

    An, Jianzhong; Du, Jianhai; Wei, Na; Guan, Tongju; Camara, Amadou K S; Shi, Yang

    2012-03-01

    Recently, we reported that Brown Norway (BN) rats were more resistant to lipopolysaccharide (LPS)-induced myocardial dysfunction than Dahl S (SS) rats. This differential sensitivity was exemplified by reduced production of proinflammatory cytokines and diminished nuclear factor-κB pathway activation. To further clarify the mechanisms of different susceptibility of these two strains to endotoxin, this study was designed to examine the alterations of cardiac and mitochondrial bioenergetics, proinflammatory cytokines, and signaling pathways after hearts were isolated and exposed to LPS ex vivo. Isolated BN and SS hearts were perfused with LPS (4 μg/mL) for 30 min in the Langendorff preparation. Lipopolysaccharide depressed cardiac function as evident by reduced left ventricular developed pressure and decreased peak rate of contraction and relaxation in SS hearts but not in BN hearts. These findings are consistent with our previous in-vivo data. Under complex I substrates, a higher oxygen consumption and hydrogen peroxide (H2O2) production were observed in mitochondria from SS hearts than those from BN hearts. Lipopolysaccharide significantly increased H2O2 levels in both SS and BN heart mitochondria; however, the increase in oxygen consumption and H2O2 production in BN heart mitochondria was much lower than that in SS heart mitochondria. In addition, LPS significantly decreased complex I activity in SS hearts but not in BN hearts. Furthermore, LPS induced higher levels of tumor necrosis factor-α and increased phosphorylation of IκκB and p65 more in SS hearts than in BN hearts. Our results clearly demonstrate that less mitochondrial dysfunction combined with a reduced production of tumor necrosis factor-α and diminished activation of nuclear factor-κB are involved in the mechanisms by which isolated BN hearts were more resistant to LPS-induced myocardial dysfunction.

  2. Role of activator protein-1 in the down-regulation of the human CYP2J2 gene in hypoxia.

    PubMed Central

    Marden, Nicole Y; Fiala-Beer, Eva; Xiang, Shi-Hua; Murray, Michael

    2003-01-01

    The cytochrome P450 (CYP) 2J2 arachidonic acid epoxygenase gene was down-regulated at a pre-translational level in human hepatoma-derived HepG2 cells incubated in a hypoxic environment; under these conditions, the expression of c-Jun and c-Fos mRNA and protein was increased. The 5'-upstream region of the CYP2J2 gene was isolated by amplification of a 2341 bp fragment and putative regulatory elements that resembled activator protein-1 (AP-1)-like sequences were identified. From transient transfection analysis, c-Jun was found to strongly activate a CYP2J2 -luciferase reporter construct, but co-transfection with plasmids encoding c-Fos or c-Fos-related antigens, Fra-1 and -2, abrogated reporter activity. Using a series of deletion-reporter constructs, a c-Jun-responsive module was identified between bp -152 and -50 in CYP2J2 : this region contained an AP-1-like element between bp -56 and -63. The capacity of this element to interact directly with c-Jun, but not c-Fos, was confirmed by electromobility-shift assay analysis. Mutagenesis of the -56/-63 element abolished most, but not all, of the activation of CYP2J2 by c-Jun, thus implicating an additional site within the c-Jun-responsive region. The present results establish an important role for c-Jun in the control of CYP2J2 expression in liver cells. Activation of c-Fos expression by hypoxia promotes the formation of c-Jun/c-Fos heterodimers, which decrease the binding of c-Jun to the CYP2J2 upstream region, leading to gene down-regulation. PMID:12737630

  3. Suppression of Oral Carcinoma Oncogenic Activity by microRNA-203 via Down-regulation of SEMA6A.

    PubMed

    Lim, Hyoung-Sup; Kim, Chun Sung; Kim, Jae-Sung; Yu, Sun-Kyoung; Go, Dae-San; Lee, Seul Ah; Moon, Sung Min; Chun, Hong Sung; Kim, Su Gwan; Kim, DO Kyung

    2017-10-01

    The purpose of this study was to elucidate the molecular mechanism underlying regulation of semaphorin-6A (SEMA6A) involving microRNA-203 (miR-203) as a tumor suppressor in YD-38 human oral cancer cells. miRNA arrays, polymerase chain reaction analyses, MTT assays, immunoblotting, and luciferase assays were carried out in YD-38 cells. MiRNA microarray results showed that expression of miR-203 was significantly down-regulated in YD-38 cells compared to normal human oral keratinocytes. The viability of YD-38 cells was reduced by miR-203 in time- and dose-dependent manners. Overexpression of miR-203 increased the nuclear condensation of YD-38 cells and activated the apoptotic signaling pathway by up-regulating pro-apoptotic factors, such as BCL-2-associated X protein (BAX) and BCL-2 homologous antagonist killer (BAK), and the active forms of caspase-9, caspase-3, and poly-(ADP-ribose)-polymerase (PARP). Furthermore, target gene array analyses revealed that the expression of class 6 semaphorin A (SEMA6A) was down-regulated by miR-203 in YD-38 cells. Both the mRNA and protein levels of SEMA6A were reduced in YD-38 cells transfected with miR-203. Luciferase activity assay confirmed that miR-203 directly targets the SEMA6A 3'-untranslated region to suppress gene expression. Our results indicate that miR-203 induces the apoptosis of YD-38 human oral cancer cells by directly targeting SEMA6A, suggesting its potential application in anticancer therapeutics. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.

    PubMed

    Zhao, Kai; Song, Xiuming; Huang, Yujie; Yao, Jing; Zhou, Mi; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-08-15

    Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  6. Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation.

    PubMed

    Beaumel, Sylvain; Picciocchi, Antoine; Debeurme, Franck; Vivès, Corinne; Hesse, Anne-Marie; Ferro, Myriam; Grunwald, Didier; Stieglitz, Heather; Thepchatri, Pahk; Smith, Susan M E; Fieschi, Franck; José Stasia, Marie

    2017-09-13

    NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4). All contained functional heme and were expressed normally at the plasma membrane of differentiated PLB-985 cells. However, NOX2-ΔNIS and NOX2-NIS1 had neither NADPH-oxidase nor reductase activity and exhibited abnormal translocation of p47(phox) and p67(phox) to the phagosomal membrane. This suggested a functional role of NIS. Interestingly after activation, NOX2-NIS3 cells exhibited superoxide overproduction compared with wild-type cells. Paradoxically, the Vmax of purified unstimulated NOX2-NIS3 was only one-third of that of WT-NOX2. We therefore hypothesized that post-translational events regulate NOX2 activity and differ between NOX2-NIS3 and WT-NOX2. We demonstrated that Ser486, a phosphorylation target of ataxia telangiectasia mutated kinase (ATM kinase) located in the NIS of NOX2 (NOX2-NIS), was phosphorylated in purified cytochrome b558 after stimulation with phorbol 12-myristate-13-acetate (PMA). Moreover, ATM kinase inhibition and a NOX2 Ser486Ala mutation enhanced NOX activity whereas a Ser486Glu mutation inhibited it. Thus, the absence of Ser486 in NIS3 could explain the superoxide overproduction in the NOX2-NIS3 mutant. These results suggest that PMA-stimulated NOX2-NIS phosphorylation by ATM kinase causes a dynamic switch that deactivates NOX2 activity. We hypothesize that this downregulation is defective in NOX2-NIS3 mutant because of the absence of Ser486. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The reported clinical utility of taurine in ischemic disorders may reflect a down-regulation of neutrophil activation and adhesion.

    PubMed

    McCarty, M F

    1999-10-01

    The first publications regarding clinical use of taurine were Italian reports claiming therapeutic efficacy in angina, intermittent claudication and symptomatic cerebral arteriosclerosis. A down-regulation of neutrophil activation and endothelial adhesion might plausibly account for these observations. Endothelial platelet-activating factor (PAF) is a crucial stimulus to neutrophil adhesion and activation, whereas endothelial nitric oxide (NO) suppresses PAF production and acts in various other ways to antagonize binding and activation of neutrophils. Hypochlorous acid (HOCl), a neutrophil product which avidly oxidizes many sulfhydryl-dependent proteins, can be expected to inhibit NO synthase while up-regulating PAF generation; thus, a vicious circle can be postulated whereby HOCl released by marginating neutrophils acts on capillary or venular endothelium to promote further neutrophil adhesion and activation. Taurine is the natural detoxicant of HOCl, and thus has the potential to intervene in this vicious circle, promoting a less adhesive endothelium and restraining excessive neutrophil activation. Agents which inhibit the action of PAF on neutrophils, such as ginkgolides and pentoxifylline, have documented utility in ischemic disorders and presumably would complement the efficacy of taurine in this regard. Fish oil, which inhibits endothelial expression of various adhesion factors and probably PAF as well, and which suppresses neutrophil leukotriene production, may likewise be useful in ischemia. These agents may additionally constitute a non-toxic strategy for treating inflammatory disorders in which activated neutrophils play a prominent pathogenic role. Double-blind studies to confirm the efficacy of taurine in symptomatic chronic ischemia are needed.

  8. Down-regulation of ERK1 and ERK2 activity during differentiation of the intestinal cell line HT-29.

    PubMed

    Luongo, Diomira; Mazzarella, Giuseppe; Della, Ragione Fulvio; Maurano, Francesco; Rossi, Mauro

    2002-02-01

    The role and regulation of signal transduction pathways in proliferation and differentiation of intestinal epithelial cells are still poorly understood. However, growing evidences have been recently accumulated demonstrating that mitogen-activated protein kinases (MAPKs) play a pivotal function in the normal development of intestine. We have investigated, in the intestinal cell line HT-29, the regulation (namely activity and phosphorylation degree) of MAP kinases ERK 1 (p44) and ERK 2 (p42) during differentiation. Addition of fetal calf serum to HT-29 undifferentiated resting cells caused a rapid phosphorylation of both ERKs and an increase of their specific kinase activity. Moreover, nuclear translocation of ERK 1 and ERK 2 occurred concurrently to their activation, leading to the conclusion that ERK 1 and ERK 2 are classically regulated when quiescent HT-29 cells are induced to proliferate. Butyrate addition to the intestinal cell line resulted in terminal differentiation and in a selective down-regulation of ERK 2 activity (and phosphorylation degree) without any effect on ERK 1. Conversely, when HT-29 cells were differentiated by repeated passages in a glucose-free medium, we observed a progressive dephosphorylation and inactivation of p42 and p44 kinases along with the failure of serum to activate both the enzymes. Our findings suggest that, during the differentiation of intestinal cells, remarkable changes occur in ERK 1 and ERK 2 control mechanisms leading to an unresponsiveness of MAP kinase pathway.

  9. Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation.

    PubMed

    Maiuri, Luigi; Luciani, Alessandro; Giardino, Ida; Raia, Valeria; Villella, Valeria R; D'Apolito, Maria; Pettoello-Mantovani, Massimo; Guido, Stefano; Ciacci, Carolina; Cimmino, Mariano; Cexus, Olivier N; Londei, Marco; Quaratino, Sonia

    2008-06-01

    Cystic fibrosis (CF), the most common life-threatening inherited disease in Caucasians, is due to mutations in the CF transmembrane conductance regulator (CFTR) gene and is characterized by airways chronic inflammation and pulmonary infections. The inflammatory response is not secondary to the pulmonary infections. Indeed, several studies have shown an increased proinflammatory activity in the CF tissues, regardless of bacterial infections, because inflammation is similarly observed in CFTR-defective cell lines kept in sterile conditions. Despite recent studies that have indicated that CF airway epithelial cells can spontaneously initiate the inflammatory cascade, we still do not have a clear insight of the molecular mechanisms involved in this increased inflammatory response. In this study, to understand these mechanisms, we investigated ex vivo cultures of nasal polyp mucosal explants of CF patients and controls, CFTR-defective IB3-1 bronchial epithelial cells, C38 isogenic CFTR corrected, and 16HBE normal bronchial epithelial cell lines. We have shown that a defective CFTR induces a remarkable up-regulation of tissue transglutaminase (TG2) in both tissues and cell lines. The increased TG2 activity leads to functional sequestration of the anti-inflammatory peroxisome proliferator-activated receptor gamma and increase of the classic parameters of inflammation, such as TNF-alpha, tyrosine phosphorylation, and MAPKs. Specific inhibition of TG2 was able to reinstate normal levels of peroxisome proliferator-activated receptor-gamma and dampen down inflammation both in CF tissues and CFTR-defective cells. Our results highlight an unpredicted central role of TG2 in the mechanistic pathway of CF inflammation, also opening a possible new wave of therapies for sufferers of chronic inflammatory diseases.

  10. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1

    PubMed Central

    Callender, Tracy L.; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T.; Gaines, William A.; Kwon, YoungHo; Börner, G. Valentin; Nicolas, Alain; Neiman, Aaron M.

    2016-01-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1. PMID:27483004

  11. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    PubMed

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  12. Peroxisome proliferator-activated receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes.

    PubMed

    Reynders, Veerle; Loitsch, Stefan; Steinhauer, Constanze; Wagner, Thomas; Steinhilber, Dieter; Bargon, Joachim

    2006-07-30

    PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response. PPARalpha, beta and gamma mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARalpha protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARalpha was analyzed by gel shift assay. In lymphocytes, the expression of PPARalpha mRNA, but not of PPARbeta, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARalpha was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARalpha and PPARbeta mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARgamma mRNA levels were below the detection limit. Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARalpha may therefore contribute to the inflammatory processes that are observed in CF.

  13. Down-regulation of NF-κB signaling by Gordonia bronchialis prevents the activation of gut epithelial cells.

    PubMed

    Smaldini, Paola L; Stanford, John; Romanin, David E; Fossati, Carlos A; Docena, Guillermo H

    2014-08-01

    The immunomodulatory power of heat-killed Gordonia bronchialis was studied on gut epithelial cells activated with pro-inflammatory stimuli (flagellin, TNF-α or IL-1β). Light emission of luciferase-transfected epithelial cells and mRNA expression of IL-1β, TNF-α, IL-6, CCL20, IL-8 and MCP-1 were measured. NF-κB activation was assessed by immunofluorescence and immunoblotting, and induction of reactive oxygen species (ROS) was evaluated. In vivo inhibitory properties of G. bronchialis were studied with ligated intestinal loop assay and in a mouse model of food allergy. G. bronchialis promoted the down-regulation of the expression of CCL20 and IL-1β on activated epithelial cells in a dose-dependent manner. A concomitant blocking of nuclear p65 translocation with increased production of ROS was found. In vivo experiments confirmed the inhibition of CCL20 expression and the suppression of IgE sensitization and hypersensitivity symptoms in the food allergy mouse model. In conclusion, heat-killed G. bronchialis inhibited the activation of NF-κB pathway in human epithelial cells, and suppressed the expression of CCL20. These results indicate that G. bronchialis may be used to modulate the initial steps of innate immune activation, which further suppress the allergic sensitization. This approach may be exploited as a therapy for intestinal inflammation. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Nitric oxide suppresses LPS-induced inflammation in a mouse asthma model by attenuating the interaction of IKK and Hsp90

    PubMed Central

    Lee, Ming-Yung; Sun, Kuang-Hui; Chiang, Chien-Ping; Huang, Ching-Feng; Sun, Guang-Huan; Tsou, Yu-Chi; Liu, Huan-Yun

    2015-01-01

    A feature of allergic airway disease is the observed increase of nitric oxide (NO) in exhaled breath. Gram-negative bacterial infections have also been linked with asthma exacerbations. However, the role of NO in asthma exacerbations with gram-negative bacterial infections is still unclear. In this study, we examined the role of NO in lipopolysaccharide (LPS)-induced inflammation in an ovalbumin (OVA)-challenged mouse asthma model. To determine whether NO affected the LPS-induced response, a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) or a selective inhibitor of NO synthase (1400W) was injected intraperitoneally into the mice before the LPS stimulation. Decreased levels of proinflammatory cytokines were demonstrated in the bronchoalveolar lavage fluid from mice treated with SNAP, whereas increased levels of cytokines were found in the 1400W-treated mice. To further explore the molecular mechanism of NO-mediated inhibition of proinflammatory responses in macrophages, RAW 264.7 cells were treated with 1400W or SNAP before LPS stimulation. LPS-induced inflammation in the cells was attenuated by the presence of NO. The LPS-induced IκB kinase (IKK) activation and the expression of IKK were reduced by NO through attenuation of the interaction between Hsp90 and IKK in the cells. The IKK decrease in the lung immunohistopathology was verified in SNAP-treated asthma mice, whereas IKK increased in the 1400W-treated group. We report for the first time that NO attenuates the interaction between Hsp90 and IKK, decreasing the stability of IKK and causing the down-regulation of the proinflammatory response. Furthermore, the results suggest that NO may repress LPS-stimulated innate immunity to promote pulmonary bacterial infection in asthma patients. PMID:25519430

  15. Zinc Oxide Nanoparticles Suppress LPS-Induced NF-κB Activation by Inducing A20, a Negative Regulator of NF-κB, in RAW 264.7 Macrophages.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2015-09-01

    Zinc contained in solar salt and bamboo salt plays a critical role in various immune responses. Zinc oxide is a source of zinc, and recently it has been reported that zinc oxide nanoparticles (ZO-NP) more effectively decrease allergic inflammatory reactions than zinc oxide bulk material. The aim of this work was to investigate the regulatory effect of ZO-NP on interferon (IFN)-γ plus lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ZO-NP (0.1-10 μg/mL) did not affect cell viability but toxicity was evident at a ZO-NP concentration of 100 μg/mL. ZO-NP (10 μg/mL) inhibited the IFN-γ plus LPS-induced production of nitric oxide and the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2. The productions of inflammatory cytokines, such as, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased by IFN-γ plus LPS but down-regulated by ZO-NP treatment. Furthermore, the up-regulations of IL-1β and TNF-α mRNAs by IFN-γ plus LPS were reduced by ZO-NP at low (0.1 μg/mL) and high (10 μg/mL) concentrations. ZO-NP (0.1, 1, and 10 μg/mL) inhibited the nuclear translocation of nuclear factor-κB by blocking IκBα phosphorylation and degradation. In addition, ZO-NP induced the expression of A20, a zinc finger protein and negative regulator of NF-κB. In conclusion, the present study demonstrated that ZO-NP offer a potential means of treating inflammatory diseases.

  16. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    SciTech Connect

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart . E-mail: Bart.Staels@pasteur-lille.fr; Lestavel, Sophie

    2006-02-24

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPAR{alpha}) and liver X receptors (LXR{alpha} and LXR{beta}) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPAR{alpha} and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPAR{alpha} ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis.

  17. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells

    PubMed Central

    Wang, Lixia; Yin, Xuyuan; Yan, Jingzhe; Wang, Zhiwei

    2016-01-01

    Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients. PMID:27738325

  18. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation

    PubMed Central

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-01-01

    BACKGROUND AND PURPOSE We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE2 production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. EXPERIMENTAL APPROACH The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. KEY RESULTS BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. CONCLUSION AND IMPLICATIONS Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. PMID:21913901

  19. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation.

    PubMed

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-03-01

    We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE(2) production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation.

    PubMed

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes.

  1. Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala

    PubMed Central

    Guo, Yan-yan; Liu, Shui-bing; Cui, Guang-Bin; Ma, Lan; Feng, Bin; Xing, Jiang-hao; Yang, Qi; Li, Xiao-qiang; Wu, Yu-mei; Xiong, Li-ze; Zhang, Weiqi; Zhao, Ming-gao

    2012-01-01

    Large-conductance Ca2+-activated potassium channels (BKCa) are highly expressed in the lateral amygdala (LA), which is closely involved in assigning stress disorders, but data on their role in the neuronal circuits of stress disorders are limited. In the present study, a significant reduction in BKCa channel expression in the amygdala of mice accompanied anxiety-like behaviour induced by acute stress. Whole-cell patch-clamp recordings from LA neurons of the anxious animals revealed a pronounced reduction in the fast after-hyperpolarization (fAHP) of action potentials mediated by BKCa channels that led to hyperexcitability of the LA neurons. Activation of BKCa channels in the LA reversed stress-induced anxiety-like behaviour after stress. Furthermore, down-regulated BKCa channels notably increased the evoked NMDA receptor-mediated excitatory postsynaptic potentials at the thalamo-LA synapses. These data demonstrate, for the first time, that restraint stress-induced anxiety-like behaviour could at least partly be explained by alterations in the functional BKCa channels in the LA. PMID:22199169

  2. Serine 649 phosphorylation within the protein kinase C-regulated domain down-regulates CARMA1 activity in lymphocytes.

    PubMed

    Moreno-García, Miguel E; Sommer, Karen; Haftmann, Claudia; Sontheimer, Clayton; Andrews, Sarah F; Rawlings, David J

    2009-12-01

    Phosphorylation of CARMA1 is a crucial event initiating the assembly of IkappaB kinase and JNK signaling complexes downstream of activated Ag receptors. We previously mapped three protein kinase C (PKC) target sites in murine CARMA1 in vitro, and demonstrated that mutation of two of these serines (S564 and S657) resulted in reduced NF-kappaB activation, whereas mutation of the third serine (S649) had no clear effect. In this study, we report that when low concentrations of Ag receptor activators are used, loss of S649 (by mutation to alanine) promotes enhanced IkappaB kinase and JNK activation in both B and T cell lines. Reconstitution of CARMA1(-/-) DT40 B cells with CARMA1 S649A leads to increased cell death and reduced cell growth in comparison to wild-type CARMA1, likely a result of enhanced JNK activation. To directly determine whether S649 is modified in vivo, we generated phospho-specific Abs recognizing phospho-S649, and phospho-S657 as a positive control. Although phospho-S657 peaked and declined rapidly after Ag receptor stimulation, phospho-S649 occurred later and was maintained for a significantly longer period poststimulation in both B and T cells. Interestingly, phospho-S657 was completely abolished in PKCbeta-deficient B cells, whereas delayed phosphorylation at S649 was partially intact and depended, in part, upon novel PKC activity. Thus, distinct PKC-mediated CARMA1 phosphorylation events exert opposing effects on the activation status of CARMA1. We propose that early phosphorylation events at S657 and S564 promote the initial assembly of the CARMA1 signalosome, whereas later phosphorylation at S649 triggers CARMA1 down-regulation.

  3. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  4. Down-regulation of ARNT promotes cancer metastasis by activating the fibronectin/integrin β1/FAK axis

    PubMed Central

    Huang, Chi-Ruei; Lee, Chung-Ta; Chang, Kwang-Yu; Chang, Wen-Chang; Liu, Yao-Wen; Lee, Jenq-Chang; Chen, Ben-Kuen

    2015-01-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is broadly involved in regulating tumorigenesis by inducing genes that are involved in tumor growth and angiogenesis. Tumorigenesis usually involves normoxic conditions. However, the role of ARNT in tumor metastasis during normoxia remains unclear. Here, we demonstrate that ARNT protein levels were decreased in late-stage human colorectal cancer using immunohistochemical analysis. Down-regulation of ARNT protein promoted cancer cell migration and invasion, which was mediated by activation of the fibronectin/integrin β1/FAK signaling axis. In addition, the enhancement of migration and invasion in ANRT knockdown cells was blocked when ARNT was restored in the cells. In xenografts in severe combined immunodeficiency mice, tumor growth was significantly inhibited in the ARNT-knockdown condition. However, the tail-vein injection animal model revealed that the depletion of ARNT-induced metastatic lung colonies was further enhanced when ARNT expression was recovered post-injection. Interestingly, chemotherapeutic drugs inhibited ARNT expression and promoted the invasion of residual tumor cells. These results suggest that ARNT may play a positive role during tumor growth (either in early-stage tumor growth or in organ metastases), but plays a negative role in tumor migration and invasion. Therefore, the efficiency of ARNT-targeted therapy during different cancer stages should be carefully evaluated. PMID:25839165

  5. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity.

  6. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  7. AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

    PubMed

    Nieves-Cintrón, Madeline; Hirenallur-Shanthappa, Dinesh; Nygren, Patrick J; Hinke, Simon A; Dell'Acqua, Mark L; Langeberg, Lorene K; Navedo, Manuel; Santana, Luis F; Scott, John D

    2016-07-01

    The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.

  8. Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death.

    PubMed

    Burns, Kelly E; Thévenin, Damien

    2015-12-15

    Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signalling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G-proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumour while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. In the present study, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumours. We find that the conjugation of a peptide fragment derived from the third intracellular loop (i3) of the protease-activated receptor 1 (PAR1) to a peptide that can selectively target tumours solely based on their acidity [pH(Low) Insertion Peptide (pHLIP)], produces a construct capable of effectively down-regulating PAR1 activity in a concentration- and pH-dependent manner and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs.

  9. Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase.

    PubMed

    Sopjani, Mentor; Alesutan, Ioana; Dërmaku-Sopjani, Miribane; Fraser, Scott; Kemp, Bruce E; Föller, Michael; Lang, Florian

    2010-06-01

    The glutamate transporters EAAT3 and EAAT4 are expressed in neurons. They contribute to the cellular uptake of glutamate and aspartate and thus to the clearance of the excitatory transmitters from the extracellular space. During ischemia, extracellular accumulation of glutamate may trigger excitotoxicity. Energy depletion leads to activation of the AMP-activated protein kinase (AMPK), a kinase enhancing energy production and limiting energy expenditure. The present study thus explored the possibility that AMPK regulates EAAT3 and/or EAAT4. To this end, EAAT3 or EAAT4 were expressed in Xenopus oocytes with or without AMPK and electrogenic glutamate transport determined by dual electrode voltage clamp. In EAAT3- and in EAAT4-expressing oocytes glutamate generated a current (I(g)), which was half maximal (K(M)) at 74 microM (EAAT3) or at 4 microM (EAAT4) glutamate. Co-expression of constitutively active (gammaR70Q)AMPK or of wild type AMPK did not affect K(M) but significantly decreased the maximal I(g) in both EAAT3- (by 34%) and EAAT4- (by 49%) expressing oocytes. Co-expression of the inactive mutant (alphaK45R)AMPK [alpha1(K45R)beta1gamma1] did not appreciably affect I(g). According to confocal microscopy and chemiluminescence co-expression of (gammaR70Q)AMPK or of wild type AMPK reduced the membrane abundance of EAAT3 and EAAT4. The observations show that AMPK down-regulates Na(+)-coupled glutamate transport.

  10. Down-regulated Peroxisome Proliferator-activated Receptor γ (PPARγ) in Lung Epithelial Cells Promotes a PPARγ Agonist-reversible Proinflammatory Phenotype in Chronic Obstructive Pulmonary Disease (COPD)*

    PubMed Central

    Lakshmi, Sowmya P.; Reddy, Aravind T.; Zhang, Yingze; Sciurba, Frank C.; Mallampalli, Rama K.; Duncan, Steven R.; Reddy, Raju C.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment. PMID:24368768

  11. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C

    2014-03-07

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.

  12. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  13. YC-1 inhibits proliferation of breast cancer cells by down-regulating EZH2 expression via activation of c-Cbl and ERK

    PubMed Central

    Chang, Ling-Chu; Lin, Hui-Yi; Tsai, Meng-Tung; Chou, Ruey-Hwang; Lee, Fang-Yu; Teng, Che-Ming; Hsieh, Min-Tsang; Hung, Hsin-Yi; Huang, Li-Jiau; Yu, Yung-Luen; Kuo, Sheng-Chu

    2014-01-01

    Background and Purpose YC-1 exhibits potent anticancer activity via numerous actions in many cancer cell lines. Hence, we investigated the in vivo antitumour efficacy of YC-1 in an MDA-MB-468 xenograft model and elucidated the mechanism of down-regulation of enhancer of zeste homology 2 (EZH2) by YC-1 in breast cancer cells. Experimental Approach In YC–1-treated breast cancer cells and tumour specimens from YC–1-treated MDA-MB-468 xenografts, EZH2 expression was analysed by Western blotting. Pharmacological inhibitors and short hairpin RNA-mediated knockdown were applied to identify possible signalling pathways involved in EZH2 down-regulation by YC-1. Key Results YC-1 reduced the viability of breast cancer cells and tumour growth in MDA-MB-468 xenografts. In breast cancer cells, YC-1 down-regulated EZH2 expression in a concentration- and time-dependent manner. Depletion of EZH2 reduced the proliferation and susceptibility of breast cancer cells to YC–1-induced apoptosis. EZH2 expression was suppressed in tumour specimens from YC–1-treated MDA-MB-468 xenograft mice. YC-1 enhanced both the degradation rate and ubiquitination of EZH2. The down-regulation of EZH2 by YC-1 was associated with activation of PKA and Src–Raf–ERK-mediated signalling pathways. Furthermore, depletion of Casitas B-lineage lymphoma (c-Cbl), an E3 ubiquitin ligase, abolished YC–1-induced apoptosis and suppression of EZH2. YC-1 rapidly activated c-Cbl to induce signalling associated with ERK and EZH2. Conclusion and Implications We discovered that YC-1 induces apoptosis and inhibits tumour growth of breast cancer cells via down-regulation of EZH2 by activating c-Cbl and ERK. These data suggest that YC-1 is a potential anticancer drug candidate for triple-negative breast cancer. PMID:24697523

  14. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    PubMed

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  15. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  16. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  17. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated alpha pathway in C2C12 skeletal muscle cells.

    PubMed

    Cabrero, Agatha; Alegret, Marta; Sanchez, Rosa M; Adzet, Tomas; Laguna, Juan C; Carrera, Manuel Vazquez

    2002-03-22

    Generation of reactive oxygen species may contribute to the pathogenesis of diseases involving intracellular lipid accumulation. To explore the mechanisms leading to these pathologies we tested the effects of etomoxir, an inhibitor of carnitine palmitoyltransferase I which contains a fatty acid-derived structure, in C2C12 skeletal muscle cells. Etomoxir treatment for 24 h resulted in a down-regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) mRNA expression, achieving an 87% reduction at 80 microm etomoxir. The mRNA levels of most of the PPARalpha target genes studied were reduced at 100 microm etomoxir. By using several inhibitors of de novo ceramide synthesis and C(2)-ceramide we showed that they were not involved in the effects of etomoxir. Interestingly, the addition of triacsin C, a potent inhibitor of acyl-CoA synthetase, to etomoxir-treated C2C12 skeletal muscle cells did not prevent the down-regulation in PPARalpha mRNA levels, suggesting that the active form of the drug, etomoxir-CoA, was not involved. Given that saturated fatty acids may generate reactive oxygen species (ROS), we determined whether the addition of etomoxir resulted in ROS generation. Etomoxir increased ROS production and the activity of the well known redox transcription factor NF-kappaB. In the presence of the pyrrolidine dithiocarbamate, a potent antioxidant and inhibitor of NF-kappaB activity, etomoxir did not down-regulate PPARalpha mRNA in C2C12 skeletal muscle cells. These results indicate that ROS generation and NF-kappaB activation are responsible for the down-regulation of PPARalpha and may provide a new mechanism by which intracellular lipid accumulation occurs in skeletal muscle cells.

  18. Polyubiquitination of Insulin-like Growth Factor I Receptor (IGF-IR) Activation Loop Promotes Antibody-induced Receptor Internalization and Down-regulation*

    PubMed Central

    Mao, Yifan; Shang, Yonglei; Pham, Victoria C.; Ernst, James A.; Lill, Jennie R.; Scales, Suzie J.; Zha, Jiping

    2011-01-01

    Ubiquitination has been implicated in negatively regulating insulin-like growth factor I receptor (IGF-IR) activity. Because of the relative stability of IGF-IR in the presence of ligand stimulation, IGF-IR ubiquitination sites have yet to be mapped and characterized, thus preventing a direct demonstration of how the receptor ubiquitination contributes to downstream molecular cascades. We took advantage of an anti-IGF-IR antibody (h10H5) that induces more efficient receptor down-regulation to show that IGF-IR is promptly and robustly ubiquitinated. The ubiquitination sites were mapped to the two lysine residues in the IGF-IR activation loop (Lys-1138 and Lys-1141) and consisted of polyubiquitin chains formed through both Lys-48 and Lys-29 linkages. Mutation of these ubiquitinated lysine residues resulted in decreased h10H5-induced IGF-IR internalization and down-regulation as well as a reduced cellular response to h10H5 treatment. We have therefore demonstrated that IGF-IR ubiquitination contributes critically to the down-regulating and antiproliferative activity of h10H5. This finding is physiologically relevant because insulin-like growth factor I appears to mediate ubiquitination of the same major sites as h10H5 (albeit to a lesser extent), and ubiquitination is facilitated by pre-existing phosphorylation of the receptor in both cases. Furthermore, identification of a breast cancer cell line with a defect in IGF-IR ubiquitination suggests that this could be an important tumor resistance mechanism to evade down-regulation-mediated negative regulation of IGF-IR activity in cancer. PMID:21994939

  19. Coniferaldehyde inhibits LPS-induced apoptosis through the PKC α/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells.

    PubMed

    Kim, Ki Mo; Heo, Deok Rim; Kim, Young-A; Lee, Jun; Kim, No Soo; Bang, Ok-Sun

    2016-12-01

    Coniferaldehyde (CA) exerts anti-inflammatory properties by inducing heme oxygenase-1 (HO-1). To define the regulation mechanism by which CA induces a cytoprotective function and HO-1 expression, the up-stream regulations involved in the activation of nuclear transcription factor-erythroid 2-related factor (Nrf)-2/HO-1 pathway were investigated. CA dramatically increased the Nrf-2 nuclear translocation and HO-1 expression. Lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and cell death were down-regulated by CA, which were reversed by inhibition of HO-1 activity. Furthermore, CA specifically enhanced the phosphorylation of protein kinase C (PKC) α/β II. Selective inhibition of PKC α/β II using Go6976 or siRNA abolished the CA-induced Nrf-2/HO-1 signaling, and consequently suppressed the cytoprotective activity of CA on the LPS-induced cell death. Together, our results elucidate the regulatory mechanism of PKC α/β II as the upstream molecule of Nrf-2 required for HO-1 expression during CA-induced anti-inflammatory cytoprotective function in LPS stimulated macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  1. Stevioside protects LPS-induced acute lung injury in mice.

    PubMed

    Yingkun, Nie; Zhenyu, Wang; Jing, Lin; Xiuyun, Lu; Huimin, Yu

    2013-02-01

    Stevioside, a diterpene glycoside component of Stevia rebaudiana, has been known to exhibit anti-inflammatory properties. To evaluate the effect and the possible mechanism of stevioside in lipopolysaccharide (LPS)-induced acute lung injury, male BALB/c mice were pretreated with stevioside or dexamethasone 1 h before intranasal instillation of LPS. Seven hours later, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid (BALF) were measured by using enzyme-linked immunosorbent assay. The number of total cells, neutrophils, and macrophages in the BALF were also determined. The right lung was excised for histological examination and analysis of myeloperoxidase activity and nitrate/nitrite content. Cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), nuclear factor-kappa B (NF-κB), inhibitory kappa B protein were detected by western blot. The results showed that stevioside markedly attenuated the LPS-induced histological alterations in the lung. Stevioside inhibited the production of pro-inflammatory cytokines and the expression of COX-2 and iNOS induced by LPS. In addition, not only was the wet-to-dry weight ratio of lung tissue significantly decreased, the number of total cells, neutrophils, and macrophages in the BALF were also significantly reduced after treatment with stevioside. Moreover, western blotting showed that stevioside inhibited the phosphorylation of IκB-α and NF-κB caused by LPS. Taken together, our results suggest that anti-inflammatory effect of stevioside against the LPS-induced acute lung injury may be due to its ability of inhibition of the NF-κB signaling pathway. Stevioside may be a promising potential therapeutic reagent for acute lung injury treatment.

  2. Antioxidant and Anti-inflammatory Activities of N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline in LPS-Induced BV2 Microglial Cells.

    PubMed

    Moniruzzaman, Md; Lee, Gyeongjun; Bose, Shambhunath; Choi, Minho; Jung, Jae-Kyung; Lee, Heesoon; Cho, Jungsook

    2015-01-01

    Microglial activation is known to cause inflammation resulting in neurotoxicity in several neurological diseases. N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline (BL-M), a chromene derivative, was originally synthesized with the perspective of inhibiting nuclear factor-kappa B (NF-κB), a key regulator of inflammation. The present study evaluated the antioxidant and anti-inflammatory potential of BL-M in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Our results demonstrated that BL-M significantly inhibited the formation of 1,1-diphenyl-2-picrylhydrazyl radicals, as well as lipid peroxidation in rat brain homogenate in a concentration-dependent manner. In addition, it suppressed the generation of intracellular reactive oxygen species, and the levels of pro-inflammatory mediators including nitric oxide, tumor necrosis factor-α, and interleukin-6 in LPS-induced BV2 cells. Western blotting analyses revealed the inhibition of inhibitor of kappa B alpha (IκBα) phosphorylation and NF-κB translocation by BL-M in LPS-activated cells. Therefore, our study highlights marked antioxidant and anti-inflammatory activities of BL-M, and suggests that this compound may have a beneficial impact on various neurodegenerative diseases associated with inflammation.

  3. Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one.

    PubMed

    Park, Hyo S; Nelson, David E; Taylor, Zachary E; Hayes, James B; Cunningham, Kirsten D; Arivett, Brock A; Ghosh, Rajarshi; Wolf, Larissa C; Taylor, Kimberley M; Farone, Mary B; Handy, Scott T; Farone, Anthony L

    2017-02-01

    Suppressing cytokine responses has frequently been shown to have promising therapeutic effects for many chronic inflammatory and autoimmune diseases. However, the severe side effects associated with the long-term use of current treatments, such as allergic reactions and increased risk of stroke, have focused attention towards the targeting of intracellular signaling mechanisms, such as NF-κB, that regulate inflammation. We synthesized a series of non-natural aurone derivatives and investigated their ability to suppress pro-inflammatory signaling in human monocyte (THP-1) and murine macrophage-like (RAW 267.4) cell lines. One of these derivatives, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one (aurone 1), was found to inhibit LPS-induced secretion of the pro-inflammatory cytokines, tumor-necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-8 by THP-1 cells. To investigate the mechanism, we probed the effect of aurone 1 on LPS-induced MAPK and NF-κB signaling in both THP-1 and RAW264.7. While aurone 1 pre-treatment had no effect on the phosphorylation of ERK, JNK, or p38 MAPK, it strongly suppressed activation of IKK-β, as indicated by attenuation of Ser176/180 phosphorylation, resulting in decreased phosphorylation of p65 (ser536) as well as phosphorylation (ser32) and degradation of IκBα. Consistent with this, aurone 1 significantly reduced LPS-stimulated nuclear translocation of p65-containing NF-κB transcription factors and expression of an mCherry reporter of TNFα gene transactivation in RAW264.7 cells. Inhibition of TNFα expression at the transcription level was also demonstrated in THP-1 by qRT-PCR. In addition to its effects on cytokine expression, aurone 1 pre-treatment decreased expression of iNOS, a bona fide NF-κB target gene and marker of macrophage M1 polarization, resulting in decreased NO production in RAW264.7 cells. Together, these data indicate that aurone 1 may have the potential to function as a

  4. Aqueous Extract of Gracilaria tenuistipitata Suppresses LPS-Induced NF-κB and MAPK Activation in RAW 264.7 and Rat Peritoneal Macrophages and Exerts Hepatoprotective Effects on Carbon Tetrachloride-Treated Rat

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases. PMID:24475143

  5. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  6. Costunolide inhibits interleukin-1beta expression by down-regulation of AP-1 and MAPK activity in LPS-stimulated RAW 264.7 cells.

    PubMed

    Kang, Jong Soon; Yoon, Yeo Dae; Lee, Ki Hoon; Park, Song-Kyu; Kim, Hwan Mook

    2004-01-02

    Costunolide, a sesquiterpene lactone isolated from the root of Saussurea lappa Clarke, is known to have a variety of biological activities, including anti-carcinogenic and anti-fungal activities. Here, we demonstrated the inhibitory effect of costunolide on the protein and mRNA expression of interleukin-1beta (IL-1beta) in LPS-stimulated RAW 264.7 cells. We also showed that costunolide suppressed the transcriptional activity of the IL-1beta promoter. Moreover, costunolide inhibited the activity of AP-1 transcription factor, and the phosphorylation of MAPKs, including SAPK/JNK and p38 MAP kinase. The inhibitory effect of costunolide on AP-1 activity was also confirmed by an electrophoretic mobility shift assay. Additionally, specific inhibitors of SAPK/JNK and p38 MAP kinase, SP600125 and SB203580, also suppressed LPS-induced increase in IL-1beta gene expression and AP-1 DNA binding. Taken together, these results demonstrate that costunolide inhibits IL-1beta gene expression by blocking the activation of MAPKs and DNA binding of AP-1 in LPS-stimulated RAW 264.7 cells.

  7. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation.

    PubMed

    Sun, Li-Hua; Ban, Tao; Liu, Cheng-Di; Chen, Qing-Xin; Wang, Xu; Yan, Mei-Ling; Hu, Xue-Ling; Su, Xiao-Lin; Bao, Ya-Nan; Sun, Lin-Lin; Zhao, Lin-Jing; Pei, Shuang-Chao; Jiang, Xue-Mei; Zong, De-Kang; Ai, Jing

    2015-09-01

    Chronic brain hypoperfusion (CBH) is a common clinical feature of Alzheimer's disease and vascular dementia, but the underlying molecular mechanism is unclear. Our previous study reported that the down-regulation of microRNA-195 (miR-195) promotes amyloidogenesis via regulation of amyloid precursor protein and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) expression at the post-transcriptional level in CBH rats with bilateral common carotid artery occlusion (2VO). CBH owing to unilateral common carotid artery occlusion (UCCAO) increases tau phosphorylation levels at multiple phosphorylation sites in the brain, but the molecular mechanism is poorly understood. The purpose of this study was to investigate whether miR-195 could both deregulate amyloid metabolism and indirectly deregulate tau phosphorylation in CBH. We observed that 2VO leads to tau hyperphosphorylation at Ser202/Thr205, Ser262, Thr231, and Ser422 and to the conversion from cyclin-dependent kinase 5 (Cdk5)/p35 to Cdk5/p25 in rat hippocampi. Endogenous miR-195 was knocked down using over-expression of its antisense molecule (pre-AMO-miR-195) via a lentivirus (lenti-pre-AMO-miR-195); this knockdown increased the tau phosphorylation at Ser202/Thr205, Ser262, Thr231, Ser422, and the Cdk5/p25 activation, but over-expression of miR-195 using lenti-pre-miR-195 decreased the tau phosphorylation and Cdk5/p25 activation. Further in vitro studies demonstrated that miR-195 over-expression prevented tau hyperphosphorylation and Cdk5/p35 activity, which were increased by miR-195 inhibition. A dual luciferase reporter assay showed that miR-195 bound to the Cdk5r1 gene, which encodes p35 protein, in the 3'UTR and inhibited p35 expression. We concluded that tau hyperphosphorylation involves the down-regulation of miR-195, which is mediated by Cdk5/p25 activation in 2VO rats. Our findings demonstrated that down-regulation of miR-195 led to increased vulnerability via the regulation of multiple targets

  8. LPS-induced c-Fos activation in NTS neurons and plasmatic cortisol increases in septic rats are suppressed by bilateral carotid chemodenervation.

    PubMed

    Reyes, Edison-Pablo; Abarzúa, Sebastián; Martin, Aldo; Rodríguez, Jorge; Cortés, Paula P; Fernández, Ricardo

    2012-01-01

    Lipopolysaccharide (LPS) administered I.P. increases significantly the activation of c-Fos in neurons of the nucleus of the solitary tract (NTS), which in turn activates hypothalamus-pituitary-adrenal axis. The vagus nerve appears to play a role in conveying cytokines signals to the central nervous system (CNS), since -in rodent models of sepsis- bilateral vagotomy abolishes increases in plasmatic glucocorticoid levels, but does not suppress c-Fos NTS activation. Considering that NTS also receives sensory inputs from carotid body chemoreceptors, we evaluated c-Fos activation and plasmatic cortisol levels 90 min after I.P. administration of 15 mg/kg LPS. Experiments were performed in male Sprague-Dawley rats, in control conditions and after bilateral carotid neurotomy (BCN). LPS administration significantly increases the number of c-Fos positive NTS neurons and plasmatic cortisol levels in animals with intact carotid/sinus nerves. When LPS was injected after BCN, the number of c-Fos positive NTS neurons, and plasmatic cortisol levels were not significantly modified. Our data suggest that carotid body chemoreceptors might mediate CNS activation during sepsis.

  9. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  10. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation.

    PubMed

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.

  11. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation

    PubMed Central

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic–polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation. PMID:25927603

  12. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2

    USDA-ARS?s Scientific Manuscript database

    Walnuts are a rich source of essential fatty acids, including the polyunsaturated fatty acids alpha-linolenic acid (ALA) and linoleic acid (LA). Essential fatty acids have been shown to modulate a number of cellular processes in the brain, including the activation state of microglia. Microglial acti...

  13. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms

    PubMed Central

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  14. In cardiac myocytes, cAMP elevation triggers the down-regulation of transcripts and promoter activity for cyclic AMP phosphodiesterase-4A10 (PDE4A10).

    PubMed

    McCahill, Angela; Campbell, Lachlan; McSorley, Theresa; Sood, Arvind; Lynch, Martin J; Li, Xiang; Yan, Chen; Baillie, George S; Houslay, Miles D

    2008-11-01

    Transcripts for the PDE4A10 cyclic AMP phosphodiesterase isoform are present in a wide variety of rat tissues including the heart. Sequence comparisons between the putative human and mouse promoters revealed a number of conserved regions including both an Sp1 and a CREB-binding site. The putative mouse PDE4A10 promoter was amplified from genomic DNA and sub-cloned into a luciferase reporter vector for investigation of activity in neonatal cardiac myocytes. Transfection with this construct identified a high level of luciferase expression in neonatal cardiac myocytes. Surprisingly, this activity was down-regulated by elevation of intracellular cAMP through a process involving PKA, but not EPAC, signalling. Such inhibition of the rodent PDE4A10 promoter activity in response to elevated cAMP levels is in contrast to the PDE4 promoters so far described. Site-directed mutagenesis revealed that the Sp1 binding site at promoter position -348 to -336 is responsible for the basal constitutive expression of murine PDE4A10. The conserved CREB-binding motif at position -370 to -363 also contributes to basal promoter activity but does not in itself confer cAMP inhibition upon the PDE4A10 promoter. EMSA analysis confirmed the authenticity of CREB and Sp1 binding sites. The transcriptional start site was identified to be an adenine residue at position -55 in the mouse PDE4A10 promoter. We present evidence that this novel down-regulation of PDE4A10 is mediated by the transcription factor ICER in a PKA dependent manner. The pool of cAMP in cardiac myocytes that down-regulates PDE4A10 is regulated by beta-adrenoceptor coupled adenylyl cyclase activity and via hydrolysis determined predominantly by the action of PDE4 (cAMP phosphodiesterase-4) and not PDE3 (cAMP phosphodiesterase-3). We suggest that increased cAMP may remodel cAMP-mediated signalling events by not only increasing the expression of specific PDE4 cAMP phosphodiesterases but also by down-regulating specific isoforms

  15. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    SciTech Connect

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  16. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia.

    PubMed

    Gessi, Stefania; Borea, Pier Andrea; Bencivenni, Serena; Fazzi, Debora; Varani, Katia; Merighi, Stefania

    2016-09-01

    Increased production of proinflammatory cytokines has a prominent role in tolerance to opioids. The objectives of this study were to examine whether μ-opioid receptor affects proinflammatory signalling through the activation of NF-kB in microglia. The novelty of the described research is that a low dose of morphine, exerting its effects via the μ-opioid receptor, increases the DNA-binding activity of NF-kB via PKCε, while a high dose of morphine triggers a nonopiate receptor response mediated by TLR4 and, interestingly, PKCε signalling. The identification of morphine as a crucial upstream regulator of PKCε-NF-κB signalling in microglia argues for a central role of these pathways in neuroinflammation development and progression. Therefore, the morphine-PKCε-NF-κB pathway may provide novel targets to induce neuroprotective mechanisms, thereby reducing tolerance to opioids.

  17. Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

    PubMed Central

    Juknat, Ana; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Gao, Fuying; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2013-01-01

    Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005). Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2), cell cycle related (Cdkn2b, Gadd45a) as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1). The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress response and

  18. Down-regulation of the large-conductance Ca(2+)-activated K+ channel, K(Ca)1.1 in the prostatic stromal cells of benign prostate hyperplasia.

    PubMed

    Niwa, Satomi; Ohya, Susumu; Kojima, Yoshiyuki; Sasaki, Shoichi; Yamamura, Hisao; Sakuragi, Motomu; Kohri, Kenjiro; Imaizumi, Yuji

    2012-01-01

    Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel encoded by K(Ca)1.1 plays an important role in the control of smooth muscle tone by modulating membrane potential and intracellular Ca(2+) mobilization. BK(Ca) channel is functionally expressed in prostatic smooth muscle cells, and is activated by α(1)-adrenoceptor agonists. The main objective of this study was to elucidate the pathophysiological significance of changes in prostatic K(Ca)1.1 expressions in benign prostatic hyperplasia (BPH). Our previous study has shown that K(Ca)3.1 encoding intermediate-conductance K(Ca) (IK(Ca)) channel is up-regulated in stromal cells of implanted urogenital sinuses (UGSs) of stromal hyperplasia BPH model rats and in those of prostatic tissues from BPH patients. In the present study, the results from real-time polymerase chain reaction (PCR), Western blot, and immunohistochemical analyses showed significant down-regulation of K(Ca)1.1 transcripts and proteins and negative correlation between K(Ca)1.1 and K(Ca)3.1 transcript expressions in prostatic stromal cells of both BPH model rats and BPH patients. Corresponding to down-regulation of K(Ca)1.1 expression in stromal cells of implanted UGSs, membrane depolarization by application of the BK(Ca) channel blocker was disappeared. Down-regulation of K(Ca)1.1 may be involved in the phenotype switch from contractile profile to proliferative one in prostatic stromal cells of BPH patients.

  19. The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation

    PubMed Central

    Cui, Pei H; Petrovic, Nenad; Murray, Michael

    2011-01-01

    BACKGROUND AND PURPOSE Dietary intake of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) like eicosapentaenoic acid (EPA) decreases cancer risk, while arachidonic acid and other ω-6 PUFAs increase risk, but the underlying mechanisms are unclear. Cytochrome P450 (CYP)-derived epoxides contribute to enhanced tumourigenesis due to ω-6 PUFA intake. Thus, ω-6 arachidonic acid epoxides (EETs) inhibit apoptosis and stimulate proliferation by up-regulating cyclin D1 expression in cells. The present study evaluated the corresponding ω-3 PUFA epoxides and assessed their role in the regulation of cell proliferation. EXPERIMENTAL APPROACH Four chemically stable EPA epoxides (formed at the 8,9-, 11,12-, 14,15- and 17,18-olefinic bonds) were synthesized and tested against growth-related signalling pathways in brain microvascular endothelial bEND.3 cells. Cell cycle distribution was determined by flow cytometry and cyclin gene expression by immunoblotting and real-time PCR. The role of the p38 mitogen-activated protein (MAP) kinase in cyclin D1 dysregulation was assessed using specific inhibitors and dominant-negative expression plasmids. KEY RESULTS The ω-3 17,18-epoxide of EPA decreased cell proliferation, interrupted the cell cycle in S-phase and down-regulated the cyclin D1/cyclin-dependent kinase (CDK)-4 complex, whereas the 8,9-, 11,12- and 14,15-epoxides were either inactive or enhanced proliferation. Cyclin D1 down-regulation by 17,18-epoxy-EPA was mediated by activation of the growth-suppressing p38 MAP kinase, but the alternate EPA-epoxides were inactive. CONCLUSIONS AND IMPLICATIONS The present findings suggest that the epoxide formed by CYP enzymes at the ω-3 olefinic bond may contribute to the beneficial effects of ω-3 PUFA by down-regulating cyclin D1 and suppressing cell proliferation. PMID:21077851

  20. Collagen I-induced dendritic cells activation is regulated by TNF-alpha production through down-regulation of IRF4.

    PubMed

    Poudel, Barun; Ki, Hyeon-Hui; Lee, Young-Mi; Kim, Dae-Ki

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)- alpha, interleukin (IL)-1 beta and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF-alpha on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- alpha inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- alpha production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF-alpha therapeutics for several inflammatory diseases.

  1. Oncogenic activity of Epstein-Barr virus latent membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1.

    PubMed

    Pandya, Jyotsna; Walling, Dennis M

    2006-08-01

    The Epstein-Barr virus (EBV) is an oncogenic human herpesvirus. EBV latent membrane protein 1 (LMP-1) is a viral oncogene that manifests its oncogenic phenotype through activation of cellular signaling pathways involved in cell growth, survival, differentiation, and transformation. Lytic LMP-1 (lyLMP-1) is a related EBV gene without oncogenic properties. The lyLMP-1 gene is found in 60% of the EBV strains circulating in nature, but it is not found in EBV strains associated with nasopharyngeal carcinoma. We recently demonstrated that lyLMP-1 down-regulates the half-life of LMP-1 in epithelial cells. Therefore in this study, we tested the hypothesis that lyLMP-1 concomitantly down-regulates LMP-1 oncogenic activity. The results demonstrated that lyLMP-1 inhibits LMP-1-mediated intracellular signaling activation, epithelial cell growth and survival, and fibroblast cell transformation in a dose-dependent manner. Lytic LMP-1 manifested this effect through the promotion of LMP-1 degradation and a reduction in the expressed quantity of LMP-1. Thus, lyLMP-1 functions as a posttranslational negative regulator of LMP-1 oncogenesis. These results support a model of EBV-associated epithelial oncogenesis in which lyLMP-1 may act in vivo to reduce the risk of LMP-1-mediated transformation and is therefore subjected to negative selection in nasopharyngeal carcinoma pathogenesis.

  2. [Diallyl disulfide inhibits invasion and metastasis of MCF-7 breast cancer cells in vitro by down-regulating p38 activity].

    PubMed

    Chen, Xiao-Xiao; Liu, Xiao-Wang; Zhou, Zhi-Gang; Chen, Xue-Yan; Li, Li-Ding; Xiong, Ting; Peng, Lu; Tu, Jian

    2016-06-01

    To investigate the effect of diallyl disulfide (DADS) on invasion and metastasis of human breast cancer MCF-7 cells and explore the possible mechanism. MCF-7 cells treated with 100, 200, and 400 µmol/L of DADS for 24 h were examined for cell invasion and migration capacities using Transwell assay and wound healing assay, respectively. The protein expression of E-cadherin, vimentin, MMP-9 and p-p38 in the cells were detected with Western blotting. The effect of transforming growth factor-β1 (TGF-β1) as the agonist of p38 activity was tested in antagonizing the effects of DADS. DADS inhibited the invasion and migration of MCF-7 cells in a dose-dependent manner, down-regulated the protein expression of Vimentin and MMP-9 and up-regulated E-cadherin expression in the cells. Treatment with TGF-β1 to up-regulate p38 activity obviously antagonized the inhibitory effect of DADS on the invasion and metastasis of MCF-7 cells. DADS can inhibit the invasion and metastasis of MCF-7 cells in vitro by down-regulating p38 activity.

  3. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  4. 2-DEOXY-GLUCOSE DOWN REGULATES ENDOTHELIAL AKT AND ERK VIA INTERFERENCE WITH N-LINKED GLYCOSYLATION, INDUCTION OF ENDOPLASMIC RETICULUM STRESS AND GSK-3β ACTIVATION

    PubMed Central

    Kovács, Krisztina; Decatur, Christina; Toro, Marcela; Pham, Dien G.; Liu, Huaping; Jing, Yuqi; Murray, Timothy G.; Lampidis, Theodore J.; Merchan, Jaime R.

    2015-01-01

    Interference with endothelial cell metabolism is a promising, yet unexploited strategy for angiogenesis inhibition. We reported that the glucose analog, 2-deoxy-D-Glucose (2-DG) inhibits angiogenesis at significantly lower concentrations than those required for tumor cytotoxicity. Here, we found that hypersensitivity to 2-DG in endothelial cells is not associated with enhanced drug uptake compared to tumor cells, but with time dependent, endothelial selective inhibition of Akt and Erk phosphorylation. Down regulation of these critical survival pathways is shown to be due to 2-DG’s interference with N-linked glycosylation, leading to alterations in VEGFR2 (and downstream signaling) as well as induction of endoplasmic reticulum (ER) stress, GSK-3β activation and apoptosis. In vivo, periocular administration of 2-DG in LHBETATAG mice was associated with significant reduction of newly formed (CD 105 +) tumor capillaries, ER stress (GRP 78 expression), and endothelial apoptosis (TUNEL). These findings uniquely link N-linked glycosylation inhibition, ER stress and Erk/Akt down regulation in endothelial cells, and provide a novel drug development strategy to overcome resistance mechanisms to currently available antiangiogenic agents. PMID:26637370

  5. PI3K inhibitors LY294002 and IC87114 reduce inflammation in carrageenan-induced paw oedema and down-regulate inflammatory gene expression in activated macrophages.

    PubMed

    Eräsalo, Heikki; Laavola, Mirka; Hämäläinen, Mari; Leppänen, Tiina; Nieminen, Riina; Moilanen, Eeva

    2015-01-01

    PI3K/Akt pathway is a well-characterized pathway controlling cellular processes such as proliferation, migration and survival, and its role in cancer is vastly studied. There is also evidence to suggest the involvement of this pathway in the regulation of inflammatory responses. In this study, an attempt was made to investigate the role of PI3Ks in acute inflammation in vivo using pharmacological inhibitors against PI3Ks in the carrageenan-induced paw oedema model. A non-selective PI3K inhibitor LY294002 and a PI3Kδ-selective inhibitor IC87114 were used. Both of these inhibitors reduced inflammatory oedema upon carrageenan challenge in the mouse paw. To explain this result, the effects of the two inhibitors on inflammatory gene expression were investigated in activated macrophages. LY294002 and IC87114 prevented Akt phosphorylation as expected and down-regulated the expression of inflammatory factors IL-6, MCP-1,TNFα and iNOS. These findings suggest that PI3K inhibitors could be used to attenuate inflammatory responses and that the mechanism of action behind this effect is the down-regulation of inflammatory gene expression.

  6. A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation.

    PubMed

    Dangles-Marie, Virginie; Richon, Sophie; El-Behi, Mohamed; Echchakir, Hamid; Dorothée, Guillaume; Thiery, Jérôme; Validire, Pierre; Vergnon, Isabelle; Menez, Jeanne; Ladjimi, Moncef; Chouaib, Salem; Bellet, Dominique; Mami-Chouaib, Fathia

    2003-07-01

    We described previously a CTL clone able to lyse the autologous carcinoma cell line IGR-Heu after specific recognition of an HLA-A2/mutated alpha-actinin-4 peptide complex. Here, we used IGR-Heu, cultured either as standard two-dimensional monolayers or as three-dimensional spheroids, to further analyze the influence of target architecture on CTL reactivity. Interestingly, we found that changes in the tumor structure from two- to three-dimensional induced a dramatic decrease in its capacity to activate autologous CTL, as measured by IFN-gamma and tumor necrosis factor-alpha secretion. These functional alterations were attributable neither to MHC class I expression nor to tumor antigen (Ag) down-regulation, because IGR-Heu, cultured as two- or three-dimensional, expressed similar levels of HLA-A2 and alpha-actinin-4. More importantly, incubation of three-dimensional cells with synthetic epitope completely restored cytokine release by CTL. This defective Ag presentation correlated with a decrease in heat shock protein (hsp)70 expression by three-dimensional tumors compared with two-dimensional cells. Furthermore, transfection of the tumor cells with hsp70 cDNA completely restored the Ag-presenting potential of spheroids and, therefore, cytokine production by T cells. These data strongly suggest that hsp70 down-regulation in three-dimensional cells may result in tumor resistance to the immune response.

  7. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes.

    PubMed

    Chang, Chih-Hung; Hsu, Yuan-Ming; Chen, Yu-Chun; Lin, Feng-Huei; Sadhasivam, Subramaniam; Loo, Siow-Tung; Savitha, Sivasubramanian

    2014-04-01

    The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Down-Regulation of Rad51 Activity during Meiosis in Yeast Prevents Competition with Dmc1 for Repair of Double-Strand Breaks

    PubMed Central

    Liu, Yan; Gaines, William A.; Callender, Tracy; Busygina, Valeria; Oke, Ashwini; Sung, Patrick; Fung, Jennifer C.; Hollingsworth, Nancy M.

    2014-01-01

    Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs. PMID:24465215

  9. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process.

    PubMed

    McCarty, Mark F

    2003-06-01

    A considerable amount of evidence is consistent with the proposition that systemic IGF-I activity acts as pacesetter in the aging process. A reduction in IGF-I activity is the common characteristic of rodents whose maximal lifespan has been increased by a wide range of genetic or dietary measures, including caloric restriction. The lifespans of breeds of dogs and strains of rats tend to be inversely proportional to their mature weight and IGF-I levels. The link between IGF-I and aging appears to be evolutionarily conserved; in worms and flies, lifespan is increased by reduction-of-function mutations in signaling intermediates homologous to those which mediate insulin/IGF-I activity in mammals. The fact that an increase in IGF-I activity plays a key role in the induction of sexual maturity, is consistent with a broader role for-IGF-I in aging regulation. If down-regulation of IGF-I activity could indeed slow aging in humans, a range of practical measures for achieving this may be at hand. These include a low-fat, whole-food, vegan diet, exercise training, soluble fiber, insulin sensitizers, appetite suppressants, and agents such as flax lignans, oral estrogen, or tamoxifen that decrease hepatic synthesis of IGF-I. Many of these measures would also be expected to decrease risk for common age-related diseases. Regimens combining several of these approaches might have a sufficient impact on IGF-I activity to achieve a useful retardation of the aging process. However, in light of the fact that IGF-I promotes endothelial production of nitric oxide and may be of especial importance to cerebrovascular health, additional measures for stroke prevention-most notably salt restriction-may be advisable when attempting to down-regulate IGF-I activity as a pro-longevity strategy.

  10. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. Copyright © 2015. Published by Elsevier GmbH.

  11. Phytic acid down-regulates IL-8 secretion from colonic epithelial cells by influencing mitogen-activated protein kinase signaling pathway.

    PubMed

    Wawszczyk, Joanna; Orchel, Arkadiusz; Kapral, Małgorzata; Hollek, Andrzej; Weglarz, Ludmiła

    2012-01-01

    Phytic acid (IP6) is an essential component of high fiber diet physiologically present in human large gut. It has been recognized to possess various significant health benefits effects including chemopreventive and have antineoplastic activity against various types of cancer. Moreover, its role in immune response through modulation of the secretion of proinflammatory cytokines and chemokines has been postulated. One of the signal transduction pathways involved in a variety of inflammatory responses is p38 mitogen-activated protein kinase (MAPK) pathway. The aim of this study was to examine effect of IP6 on human p38alpha MAP kinase activity and the expression of gene encoding p38 MAP kinase in unstimulated and IL-1beta-stimulated Caco-2 cells. Furthermore, the role of signaling pathways involving p38 MAP kinase in IP6-induced down-regulation of IL-8 secretion by unstimulated and IL-1beta-stimulated cells in the presence of p38 MAP kinase activator (anisomycin) and inhibitor (SB 203580) was evaluated. IP6 inhibited activity of recombinant p38 MAPK activity in dose-dependent manner. Treatment of cells with IP6 for 3 h resulted in decreased p38 MAP kinase expression in both unstimulated and stimulated with IL-1beta cells. The similar level of p38alpha mRNA was found in untreated and treated with IP6 cells after 6 and 12 h. Incubation of Caco-2 cells with anisomycin resulted in upregulation of IL-8 secretion and their pretreatment with anisomycin prior to IP6 addition showed down-regulation of IL-8 secretion compared to cells treated with anisomycin alone. The findings of this study show that p38 MAPK could be one of the molecular targets for IP6 in the intestinal epithelial cells and that IP6 inhibitory effect on IL-8 secretion by Caco-2 cells could be mediated by its inhibition of p38 activity.

  12. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper.

    PubMed Central

    Verhaegh, G W; Richard, M J; Hainaut, P

    1997-01-01

    Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function. PMID:9315628

  13. Pigment epithelium-derived factor 34-mer peptide prevents liver fibrosis and hepatic stellate cell activation through down-regulation of the PDGF receptor.

    PubMed

    Tsai, Tung-Han; Shih, Shou-Chuan; Ho, Tsung-Chuan; Ma, Hsin-I; Liu, Ming-Ying; Chen, Show-Li; Tsao, Yeou-Ping

    2014-01-01

    Pigment epithelium-derived factor (PEDF) has been shown previously to prevent liver fibrosis and hepatic stellate cell (HSC) activation. By investigating the functional domains in PEDF, we identified a 34-mer peptide (residues Asp44-Asn77) that harbors the same function as the full-length PEDF protein. Not only did the 34-mer suppress the development of fibrosis in carbon tetrachloride (CCl4)-treated mouse liver but it also upregulated peroxisome proliferator-activated receptor-gamma (PPARγ) expression in HSCs in vivo. Platelet-derived growth factor (PDGF) plays a crucial role on the process of HSC activation in response to liver damage. The 34-mer suppressed PDGF-induced cell proliferation and expression of myofibroblastic marker proteins in primary rat HSC culture, increased the levels of PPARγ mRNA and protein in a dose-dependent manner and markedly reduced the level of active β-catenin protein, an HSC activating factor, in HSC-T6 cells. Similarly, IWR-1, an inhibitor of the Wnt response, displayed the same effect as the 34-mer in preventing HSC-T6 activation. The Wnt signaling-mediated PPARγ suppression was abolished by both the IWR-1 inhibitor and a small interfering RNA (siRNA) targeting β-catenin and the Wnt coreceptor, LRP6. Both PEDF and the 34-mer down-regulated PDGF receptor-α/β expression and blocked the PDGF-induced phosphorylation of Akt and ERK. Moreover, the inhibitory effect on PDGF receptor expression was abolished by PPARγ antagonists and PPARγ siRNA. Our observations indicate that the PEDF-derived 34-mer peptide can mimic PEDF in attenuating HSC activation. Investigation of this 34-mer peptide led to the identification of a signaling mechanism involving PPARγ induction, suppression of Wnt/β-catenin signaling and down-regulation of the PDGF receptor-α/β.

  14. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. HIV-1 gp120Bal down-regulates phosphorylated NMDA receptor subunit 1 in cortical neurons via activation of glutamate and chemokine receptors

    PubMed Central

    Ru, Wenjuan; Tang, Shao-Jun

    2015-01-01

    HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit 1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection. PMID:26582091

  16. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

  17. Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells.

    PubMed

    Guo, Wei-Jian; Zeng, Mu-Sheng; Yadav, Ajay; Song, Li-Bing; Guo, Bao-Hong; Band, Vimla; Dimri, Goberdhan P

    2007-06-01

    The Bmi-1 oncogene is overexpressed in a number of malignancies including breast cancer. In addition to Bmi-1, mammalian cells also express four other polycomb group (PcG) proteins that are closely related to Bmi-1. Virtually nothing is known about the role of these PcG proteins in oncogenesis. We have recently reported that Mel-18, a Bmi-1-related PcG protein, negatively regulates Bmi-1 expression, and that its expression negatively correlates with Bmi-1 in proliferating and senescing human fibroblasts. Here, we report that the expression of Bmi-1 and Mel-18 inversely correlates in a number of breast cancer cell lines and in a significant number of breast tumor samples. Overexpression of Mel-18 results in repression of Bmi-1 and reduction of the transformed phenotype in malignant breast cancer cells. Furthermore, the repression of Bmi-1 by Mel-18 is accompanied by the reduction of Akt/protein kinase B (PKB) activity in breast cancer cells. Similarly, Bmi-1 knockdown using RNA interference approach results in down-regulation of Akt/PKB activity and reduction in transformed phenotype of MCF7 cells. Importantly, we show that overexpression of constitutively active Akt overrides tumor-suppressive effect of Mel-18 overexpression and the knockdown of Bmi-1 expression. Thus, our studies suggest that Mel-18 and Bmi-1 may regulate the Akt pathway in breast cancer cells, and that Mel-18 functions as a tumor suppressor by repressing the expression of Bmi-1 and consequently down-regulating Akt activity.

  18. Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases.

    PubMed

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2007-11-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process.

  19. Stress-activated Protein Kinase-mediated Down-Regulation of the Cell Integrity Pathway Mitogen-activated Protein Kinase Pmk1p by Protein Phosphatases

    PubMed Central

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Cansado, José

    2007-01-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process. PMID:17761528

  20. MCPIP1 Negatively Regulates Toll-like Receptor 4 Signaling and Protects Mice from LPS-induced Septic Shock

    PubMed Central

    Huang, Shengping; Miao, Ruidong; Zhou, Zhou; Wang, Tianyi; Liu, Jianguo; Liu, Gang; Chen, Y. Eugene; Xin, Hong-Bo; Zhang, Jifeng; Fu, Mingui

    2013-01-01

    Septic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPS), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deificient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock. PMID:23422584

  1. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity.

    PubMed

    Heijink, Irene H; Kies, P Marcel; Kauffman, Henk F; Postma, Dirkje S; van Oosterhout, Antoon J M; Vellenga, Edo

    2007-06-15

    Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.

  2. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages.

    PubMed

    Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae

    2014-12-02

    Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Down-regulation of Slit-Robo pathway mediating neuronal cytoskeletal remodeling processes facilitates the antidepressive-like activity of Gastrodia elata Blume.

    PubMed

    Lin, Shih-Hang; Chen, Wei-Cheng; Lu, Kuan-Hung; Chen, Pei-Ju; Hsieh, Shu-Chen; Pan, Tzu-Ming; Chen, Shui-Tein; Sheen, Lee-Yan

    2014-10-29

    Nowadays, depression is a serious psychological disorder that causes extreme economic loss and social problems. Previously, we discovered that the water extract of Gastrodia elata Blume (WGE) improved depressive-like behavior by influencing neurotransmitters in rats subjected to the forced swimming test. To elucidate possible mechanisms, in the present study, we performed a proteomics and bioinformatics analysis to identify the related pathways. Western blot-validated results indicated that the core protein network modulated by WGE administration was closely associated with down-regulation of the Slit-Robo pathway, which modulates neuronal cytoskeletal remodeling processes. Although Slit-Robo signaling has been well investigated in neuronal development, its relationship with depression is not fully understood. We provide a potential hint on the mechanism responsible for the antidepressive-like activity of WGE. In conclusion, we suggest that the Slit-Robo pathway and neuronal cytoskeleton remodeling are possibly one of the pathways associated with the antidepressive-like effects of WGE.

  4. The Active Tamoxifen Metabolite Endoxifen (4OHNDtam) Strongly Down-Regulates Cytokeratin 6 (CK6) in MCF-7 Breast Cancer Cells

    PubMed Central

    Dankel, Simon; Fenne, Ingvild S.; Skartveit, Linn; Drangevåg, Andreas; Bozickovic, Olivera; Flågeng, Marianne Hauglid; Søiland, Håvard; Mellgren, Gunnar; Lien, Ernst A.

    2015-01-01

    Introduction Tamoxifen is an anti-estrogen drug used in treatment of Estrogen Receptor (ER) positive breast cancer. Effects and side effects of tamoxifen is the sum of tamoxifen and all its metabolites. 4-Hydroxytamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam, endoxifen) both have ER affinity exceeding that of the parent drug tamoxifen. 4OHNDtam is considered the main active metabolite of tamoxifen. Ndesmethyltamoxifen (NDtam) is the major tamoxifen metabolite. It has low affinity to the ER and is not believed to influence tumor growth. However, NDtam might mediate adverse effects of tamoxifen treatment. In this study we investigated the gene regulatory effects of the three metabolites of tamoxifen in MCF-7 breast cancer cells. Material and Methods Using concentrations that mimic the clinical situation we examined effects of 4OHtam, 4OHNDtam and NDtam on global gene expression in 17β-estradiol (E2) treated MCF-7 cells. Transcriptomic responses were assessed by correspondence analysis, differential expression, gene ontology analysis and quantitative real time PCR (Q-rt-PCR). E2 deprivation and knockdown of Steroid Receptor Coactivator-3 (SRC-3)/Amplified in Breast Cancer 1 (AIB1) mRNA in MCF-7 cells were performed to further characterize specific effects on gene expression. Results 4OHNDtam and 4OHtam caused major changes in gene expression compared to treatment with E2 alone, with a stronger effect of 4OHNDtam. NDtam had nearly no effect on the global gene expression profile. Treatment of MCF-7 cells with 4OHNDtam led to a strong down-regulation of the CytoKeratin 6 isoforms (KRT6A, KRT6B and KRT6C). The CytoKeratin 6 mRNAs were also down-regulated in MCF-7 cells after E2 deprivation and after SRC-3/AIB1 knockdown. Conclusion Using concentrations that mimic the clinical situation we report global gene expression changes that were most pronounced with 4OHNDtam and minimal with NDtam. Genes encoding CytoKeratin 6, were highly down-regulated by 4

  5. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    PubMed Central

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  6. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    SciTech Connect

    Ji, Fang; Chen, Rongjing; Liu, Baojun; Zhang, Xiaoping; Han, Junli; Wang, Haining; Shen, Gang; Tao, Jiang

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  7. Cholesterol-lowering activity of sesamin is associated with down-regulation on genes of sterol transporters involved in cholesterol absorption.

    PubMed

    Liang, Yin Tong; Chen, Jingnan; Jiao, Rui; Peng, Cheng; Zuo, Yuanyuan; Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Ma, Ka Ying; Huang, Yu; Chen, Zhen-Yu

    2015-03-25

    Sesame seed is rich in sesamin. The present study was to (i) investigate the plasma cholesterol-lowering activity of dietary sesamin and (ii) examine the interaction of dietary sesamin with the gene expression of sterol transporters, enzymes, receptors, and proteins involved in cholesterol metabolism. Thirty hamsters were divided into three groups fed the control diet (CON) or one of two experimental diets containing 0.2% (SL) and 0.5% (SH) sesamin, respectively, for 6 weeks. Plasma total cholesterol (TC) levels in hamsters given the CON, SL, and SH diets were 6.62 ± 0.40, 5.32 ± 0.40, and 5.00 ± 0.44 mmol/L, respectively, indicating dietary sesamin could reduce plasma TC in a dose-dependent manner. Similarly, the excretion of total fecal neutral sterols was dose-dependently increased with the amounts of sesamin in diets (CON, 2.65 ± 0.57; SL, 4.30 ± 0.65; and SH, 5.84 ± 1.27 μmol/day). Addition of sesamin into diets was associated with down-regulation of mRNA of intestinal Niemann-Pick C1 like 1 protein (NPC1L1), acyl-CoA:cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and ATP-binding cassette transporters subfamily G members 5 and 8 (ABCG5 and ABCG8). Results also showed that dietary sesamin could up-regulate hepatic cholesterol-7α-hydroxylase (CYP7A1), whereas it down-regulated hepatic 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and liver X receptor alpha (LXRα). It was concluded that the cholesterol-lowering activity of sesamin was mediated by promoting the fecal excretion of sterols and modulating the genes involved in cholesterol absorption and metabolism.

  8. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  9. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  10. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  11. The Fps/Fes kinase regulates the inflammatory response to endotoxin through down-regulation of TLR4, NF-kappaB activation, and TNF-alpha secretion in macrophages.

    PubMed

    Parsons, Sean A; Greer, Peter A

    2006-12-01

    Fps/Fes and Fer are members of a distinct subfamily of cytoplasmic protein tyrosine kinases that have recently been implicated in the regulation of innate immunity. Previous studies showed that mice lacking Fps/Fes are hypersensitive to systemic LPS challenge, and Fer-deficient mice displayed enhanced recruitment of leukocytes in response to local LPS challenge. This study identifies physiological, cellular, and molecular defects that contribute to the hyperinflammatory phenotype in Fps/Fes null mice. Plasma TNF-alpha levels were elevated in LPS challenged Fps/Fes null mice as compared with wild-type mice and cultured Fps/Fes null peritoneal macrophages treated with LPS showed increased TNF-alpha production. Cultured Fps/Fes null macrophages also displayed prolonged LPS-induced degradation of IkappaB-alpha, increased phosphorylation of the p65 subunit of NF-kappaB, and defective TLR4 internalization, compared with wild-type macrophages. Together, these observations provide a likely mechanistic basis for elevated proinflammatory cytokine secretion by Fps/Fes null macrophages and the increased sensitivity of Fps/Fes null mice to endotoxin. We posit that Fps/Fes modulates the innate immune response of macrophages to LPS, in part, by regulating internalization and down-regulation of the TLR4 receptor complex.

  12. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  13. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Wang, Yang; Velkov, Tony; Xiao, Xilong

    2017-09-01

    Nephrotoxicity is the major adverse effect patients experience during colistin therapy. The development of effective nephroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. To investigate the nephroprotective effect of baicalein, a component of the root of Scutellaria baicalensis, against colistin-induced nephrotoxicity using a mouse model. C57BL/6 mice were randomly divided into the following groups: control, baicalein 100 mg/kg/day (administered orally), colistin (18 mg/kg/day administered intraperitoneally) and colistin (18 mg/kg/day) plus baicalein (25, 50 and 100 mg/kg/day). After 7 day treatments, histopathological damage, the markers of renal functions, oxidative stress and inflammation were examined. The expressions of Nrf2, HO-1 and NF-κB mRNAs were also further examined using quantitative RT-PCR examination. Baicalein co-administration markedly attenuated colistin-induced oxidative and nitrative stress, apoptosis, the infiltration of inflammatory cells, and caused decreases in IL-1β and TNF-α levels (all P < 0.05 or 0.01) in the kidney tissues. Baicalein co-administration up-regulated expression of Nrf2 and HO-1 mRNAs and down-regulated the expression of NF-κB mRNA, compared with those in the colistin alone group. To the best of our knowledge, this is the first study demonstrating the protective effect of baicalein on colistin-induced nephrotoxicity and apoptosis by activating the antioxidant defence mechanism in kidneys and down-regulating the inflammatory response. Our study highlights that oral baicalein could potentially ameliorate nephrotoxicity in patients undergoing polymyxin therapy.

  14. PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs

    PubMed Central

    Lee, Seung Hoon; Park, Jin-Sil; Byun, Jae-Kyung; Jhun, JooYeon; Jung, KyungAh; Seo, Hyeon-Beom; Moon, Young-Mee; Kim, Ho-Youn; Park, Sung-Hwan; Cho, Mi-La

    2016-01-01

    PTEN is a tyrosine phosphatase with significant function in inhibiting STAT3 activation. Recently, inactivation of STAT3 has been demonstrated as a therapeutic candidate for autoimmune arthritis. The expression of PTEN controlled by p53 regulates autoimmune arthritis through modulating the balance between Th17 and Treg. We hypothesized that PTEN regulated by p53 might reduce CIA severity and inflammatory response via inhibiting STAT3 activation. Our results revealed that PTEN could ameliorate experimental autoimmune arthritis by reducing STAT3 activity and Th17 differentiation. Systemic infusion of PTEN overexpression downregulated CIA severity. In addition, PTEN overexpression decreased the activation of T cells and modulated reciprocal differentiation of Th17 and Treg cells. We observed that PTEN expression downregulated by p53 deficiency induced the activation of STAT3. Loss of p53 exacerbated autoimmune arthritis and dysregulated the population of Th17 and Treg. These data suggest that induction of STAT3-modulatory activity of PTEN may be a therapeutic target for rheumatoid arthritis therapy. PMID:27708408

  15. PTEN ameliorates autoimmune arthritis through down-regulating STAT3 activation with reciprocal balance of Th17 and Tregs.

    PubMed

    Lee, Seung Hoon; Park, Jin-Sil; Byun, Jae-Kyung; Jhun, JooYeon; Jung, KyungAh; Seo, Hyeon-Beom; Moon, Young-Mee; Kim, Ho-Youn; Park, Sung-Hwan; Cho, Mi-La

    2016-10-06

    PTEN is a tyrosine phosphatase with significant function in inhibiting STAT3 activation. Recently, inactivation of STAT3 has been demonstrated as a therapeutic candidate for autoimmune arthritis. The expression of PTEN controlled by p53 regulates autoimmune arthritis through modulating the balance between Th17 and Treg. We hypothesized that PTEN regulated by p53 might reduce CIA severity and inflammatory response via inhibiting STAT3 activation. Our results revealed that PTEN could ameliorate experimental autoimmune arthritis by reducing STAT3 activity and Th17 differentiation. Systemic infusion of PTEN overexpression downregulated CIA severity. In addition, PTEN overexpression decreased the activation of T cells and modulated reciprocal differentiation of Th17 and Treg cells. We observed that PTEN expression downregulated by p53 deficiency induced the activation of STAT3. Loss of p53 exacerbated autoimmune arthritis and dysregulated the population of Th17 and Treg. These data suggest that induction of STAT3-modulatory activity of PTEN may be a therapeutic target for rheumatoid arthritis therapy.

  16. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    PubMed

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-03-04

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus.

  17. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways.

    PubMed

    Jung, Hyun-Joo; Kim, Su-Jung; Jeon, Woo-Kwang; Kim, Byung-Chul; Ahn, Kisup; Kim, Kyunghoon; Kim, Young-Myeong; Park, Eun-Hee; Lim, Chang-Jin

    2011-10-01

    The present study aimed to assess anti-inflammatory activity and underlying mechanism of n-propyl gallate, the n-propyl ester of gallic acid. n-Propyl gallate was shown to contain anti-inflammatory activity using two experimental animal models, acetic acid-induced permeability model in mice, and air pouch model in rats. It suppressed production of nitric oxide and induction of inducible nitric oxide synthase and cyclooxygenase-2 in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. It was able to diminish reactive oxygen species level elevated in the LPS-stimulated RAW264.7 macrophage cells. It also suppressed gelatinolytic activity of matrix metalloproteinase-9 enhanced in the LPS-stimulated RAW264.7 macrophage cells. It inhibited inhibitory κB-α degradation and enhanced NF-κB promoter activity in the stimulated macrophage cells. It was able to suppress phosphorylation of c-Jun NH(2)-terminal kinase 1/2 (JNK1/2) and activation of c-Jun promoter activity in the stimulated macrophage cells. In brief, n-propyl gallate possesses anti-inflammatory activity via down-regulation of NF-κB and JNK pathways.

  18. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  19. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e

    PubMed Central

    Li, Ping; Fan, Jian-bo; Gao, Yanxia; Zhang, Ming; Zhang, Li; Yang, Ning; Zhao, Xiaojing

    2016-01-01

    AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA (“miRNA”) downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p (“miR-135b-5p”) downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation. PMID:27793001

  20. S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening.

    PubMed

    Rodríguez-Ruiz, Marta; Mioto, Paulo; Palma, José M; Corpas, Francisco J

    2017-08-01

    Pepper (Capsicum annuum L.) is an annual plant species of great agronomic importance whose fruits undergo major metabolic changes through development and ripening. These changes include emission of volatile organic compounds associated with respiration, destruction of chlorophylls and synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyans) responsible for color shift, protein degradation/synthesis and changes in total soluble reducing equivalents. Previous data have shown that, during the ripening of pepper fruit, an enhancement of protein tyrosine nitration takes place. On the other hand, it is well known that S-nitrosoglutathione reductase (GSNOR) activity can modulate the transnitrosylation equilibrium between GSNO and S-nitrosylated proteins and, consequently, regulate cellular NO homeostasis. In this study, GSNOR activity, protein content and gene expression were analyzed in green and red pepper fruits. The content of S-nitrosylated proteins on diaminofluorescein (DAF) gels was also studied. The data show that, while GSNOR activity and protein expression diminished during fruit ripening, S-nitrosylated protein content increased. Some of the protein candidates for S-nitrosylation identified, such as cytochorme c oxidase and peroxiredoxin II E, have previously been described as targets of this posttranslational modification in other plant species. These findings corroborate the important role played by GSNOR activity in the NO metabolism during the process of pepper fruit ripening. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii.

    PubMed

    Michelet, Laure; Roach, Thomas; Fischer, Beat B; Bedhomme, Mariette; Lemaire, Stéphane D; Krieger-Liszkay, Anja

    2013-06-01

    In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.

  2. Hyaluronan inhibits Akt, leading to nuclear factor-κB down-regulation in lipopolysaccharide-stimulated U937 macrophages.

    PubMed

    Yasuda, Tadashi

    2011-01-01

    Hyaluronan (HA) of high molecular weight is used in the treatment of osteoarthritis and rheumatoid arthritis by intra-articular injection. While HA has been shown to suppress nuclear factor (NF)-κB activation by proinflammatory cytokines and lipopolysaccharide (LPS), intracellular upstream events that cause NF-κB down-regulation in response to HA remain unclear. Thus, this study was performed to investigate the involvement of phosphoinositide-3-OH kinase (PI3K)/Akt in the inhibition of the LPS-activated NF-κB pathway by HA in U937 macrophages. In adherent U937 macrophage cultures, pretreatment with HA of 2700 kDa (1 mg/ml, 1 h) significantly inhibited interleukin-6 (IL-6) production by LPS (200 ng/ml, 24 h)-stimulated U937 cells. LPS (200 ng/ml) activated Akt and NF-κB, whereas HA (1 mg/ml) down-regulated LPS-stimulated phosphorylation of Akt and NF-κB. Inhibition studies using LY294002 (20 µM) revealed the requirement of the PI3K/Akt pathway for LPS-stimulated IL-6 production and NF-κB activation. Pretreatment with anti-intercellular adhesion molecule-1 (ICAM-1) antibody (20 µg/ml) reversed the inhibitory effects of HA on LPS-induced production of IL-6 and activation of Akt and NF-κB. Herein, we provided the first evidence that HA suppresses the LPS-activated PI3K/Akt pathway, leading to down-regulation of NF-κB with diminished IL-6 production through interaction with ICAM-1.

  3. Coordinate regulation of ribosomal component synthesis in Acanthamoeba castellanii: 5S RNA transcription is down regulated during encystment by alteration of TFIIIA activity.

    PubMed Central

    Matthews, J L; Zwick, M G; Paule, M R

    1995-01-01

    Transcription of large rRNA precursor and 5S RNA were examined during encystment of Acanthamoeba castellanii. Both transcription units are down regulated almost coordinately during this process, though 5S RNA transcription is not as completely shut down as rRNA transcription. The protein components necessary for transcription of 5S RNA and tRNA were determined, and fractions containing transcription factors comparable to TFIIIA, TFIIIB, and TFIIIC, as well as RNA polymerase III and a 3'-end processing activity, were identified. Regulation of 5S RNA transcription could be recapitulated in vitro, and the activities of the required components were compared. In contrast to regulation of precursor rRNA, there is no apparent change during encystment in the activity of the polymerase dedicated to 5S RNA expression. Similarly, the transcriptional and promoter-binding activities of TFIIIC are not altered in parallel with 5S RNA regulation. TFIIIB transcriptional activity is unaltered in encysting cells. In contrast, both the transcriptional and DNA-binding activities of TFIIIA are strongly reduced in nuclear extracts from transcriptionally inactive cells. These results were analyzed in terms of mechanisms for coordinate regulation of rRNA and 5S RNA expression. PMID:7760828

  4. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders

    PubMed Central

    Wang, Hui; Xu, You Song; Wang, Miao Lin; Cheng, Chao; Bian, Rui; Yuan, Hao; Wang, Yi; Guo, Ting; Zhu, Lin Lin; Zhou, Hang

    2017-01-01

    Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders. PMID:28260042

  5. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma.

    PubMed

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    SciTech Connect

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  7. The novel atypical retinoid ST5589 down-regulates Aurora Kinase A and has anti-tumour activity in lymphoma pre-clinical models.

    PubMed

    Bernasconi, Elena; Gaudio, Eugenio; Kwee, Ivo; Rinaldi, Andrea; Cascione, Luciano; Tarantelli, Chiara; Mensah, Afua Adjeiwaa; Stathis, Anastasios; Zucca, Emanuele; Vesci, Loredana; Giannini, Giuseppe; Bertoni, Francesco

    2015-11-01

    Despite the marked improvements in the treatment of lymphomas, there is still a need for new therapeutic agents. Synthetic retinoids represent a class of compounds with anti-cancer activity. Here, we report the preclinical activity of a new member of this class, the ST1926-derivative ST5589, in lymphomas. ST5589 presented a dose-dependent anti-proliferative activity in almost all of the 25 lymphoma cell lines analysed, with a median 50% inhibitory concentration of 433 nM. Apoptosis was observed in 8/11 cell lines. ST5589 induced changes in the gene expression profiles of the cell lines, including the down-regulation of Aurora Kinase A (AURKA). Specific gene expression signatures were associated with a higher sensitivity to the compound and combination of ST5589 with carfilzomib revealed the importance of proteasome activity in mediating the anti-tumour activity of ST5589. In conclusion, we have identified a new mechanism of action of atypical retinoids as anti-cancer compounds, and the encouraging results obtained with the new ST1926-derivative ST5589 provide the basis for further developments of the compound.

  8. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Song, Guanbin

    Microgravity induces observed bone loss in space flight or simulated experiments, while the mechanism underlying it is still obscure. Here, we utilized a clinostat to model simulated microgravity (SMG) and found that SMG obviously inhibited osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). We detected that SMG dramatically inhibited the expression of the transcriptional coactivator with PDZ-binding motif (TAZ), which acts as a vital regulator of osteogenesis. Interestingly, we found that lysophosphatidic acid (LPA) could activate TAZ and retain osteogenic differentiation of BMSCs under SMG. Our data further demonstrated that depletion of TAZ by siRNA blocked the LPA-induced increase in osteogenic differentiation of BMSCs under SMG. Moreover, Y27632 (the Rock inhibitor) abrogated the activation of TAZ and the increased osteogenic differentiation induced by LPA. Taken together, we propose that microgravity inhibits osteogenic differentiation of BMSCs due to decreased TAZ expression and that LPA can efficiently reverse the reduced osteogenic differentiation via the Rock-TAZ pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. AOP-1 interacts with cardiac-specific protein kinase TNNI3K and down-regulates its kinase activity.

    PubMed

    Feng, Yan; Liu, Dong-Qing; Wang, Zhen; Liu, Zhao; Cao, Hui-Qing; Wang, Lai-Yuan; Shi, Na; Meng, Xian-Min

    2007-11-01

    In the present study, a yeast two-hybrid screening system was used to identify the interaction partners of cardiac troponin I-interacting kinase (TNNI3K) that might serve as regulators or targets, and thus in turn to gain some insights on the roles of TNNI3K. After screening the adult heart cDNA library with a bait construct encoding the ANK motif of TNNI3K, antioxidant protein 1 (AOP-1) was isolated. The interaction between TNNI3K and AOP-1 was confirmed by the in vitro binding assay and coexpression experiments in vivo. The colocalization of TNNI3K and AOP-1 was clarified by confocal immunofluorescence. Moreover, coexpression of AOP-1 inhibited TNNI3K kinase activity in the in vitro kinase assay.

  10. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'.

    PubMed

    Jiang, Yonghua; Liu, Cuihua; Yan, Dan; Wen, Xiaohong; Liu, Yanli; Wang, Haojie; Dai, Jieyu; Zhang, Yujie; Liu, Yanfei; Zhou, Bin; Ren, Xiaolin

    2017-03-06

    Coloration in apple (Malus×domestica) flesh is mainly caused by the accumulation of anthocyanin. Anthocyanin is biosynthesized through the flavonoid pathway and regulated by MYB, bHLH, and WD40 transcription factors (TFs). Here, we report that the HD-Zip I TF MdHB1 was also involved in the regulation of anthocyanin accumulation. MdHB1 silencing caused the accumulation of anthocyanin in 'Granny Smith' flesh, whereas its overexpression reduced the flesh content of anthocyanin in 'Ballerina' (red-fleshed apple). Moreover, flowers of transgenic tobacco (Nicotiana tabacum 'NC89') overexpressing MdHB1 showed a remarkable reduction in pigmentation. Transient promoter activation assays and yeast one-hybrid results indicated that MdHB1 indirectly inhibited expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT). Yeast two-hybrid and bimolecular fluorescence complementation determined that MdHB1 acted as a homodimer and could interact with MYB, bHLH, and WD40 in the cytoplasm, consistent with its cytoplasmic localization by green fluorescent protein fluorescence observations. Together, these results suggest that MdHB1 constrains MdMYB10, MdbHLH3, and MdTTG1 to the cytoplasm, and then represses the transcription of MdDFR and MdUFGT indirectly. When MdHB1 is silenced, these TFs are released to activate the expression of MdDFR and MdUFGT and also anthocyanin biosynthesis, resulting in red flesh in 'Granny Smith'.

  11. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    SciTech Connect

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae . E-mail: kwanghoe@kribb.re.kr

    2007-08-10

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.

  12. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis

    PubMed Central

    Kim, Ju-Young; Cheon, Yoon-Hee; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2014-01-01

    Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456] PMID:24314143

  13. SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer

    PubMed Central

    Clausen, Kathryn A.; Blish, Kimberly R.; Birse, Charles E.; Triplette, Matthew A.; Kute, Timothy E.; Russell, Gregory B.; D’Agostino, Ralph B.; Miller, Lance D.; Torti, Frank M.; Torti, Suzy V.

    2013-01-01

    Sclerostin domain containing 1 (SOSTDC1) protein regulates processes from development to cancer by modulating activity of bone morphogenetic protein (BMP) and wingless/int (Wnt) signaling pathways. As dysregulation of both BMP and Wnt signaling has been observed in breast cancer, we investigated whether disruption of SOSTDC1 signaling occurs in breast cancer. SOSTDC1 mRNA expression levels in breast tissue were examined using a dot blot. Affymetrix microarray data on SOSTDC1 levels were correlated with breast cancer patient survival using Kaplan–Meier plots. Correlations between SOSTDC1 protein levels and clinical parameters were assessed by immunohistochemistry of a breast cancer tissue microarray. SOSTDC1 secretion and BMP and Wnt signaling were investigated using immunoblotting. We found that SOSTDC1 is expressed in normal breast tissue and this expression is reduced in breast cancer. High levels of SOSTDC1 mRNA correlated with increased patient survival; conversely, SOSTDC1 protein levels decreased as tumor size and disease stage increased. Treatment of breast cancer cells with recombinant SOSTDC1 or Wise, a SOSTDC1 orthologue, demonstrated that SOSTDC1 selectively blocks BMP-7-induced Smad phosphorylation without diminishing BMP-2 or Wnt3a-induced signaling. In conclusion, SOSTDC1 mRNA and protein are reduced in breast cancer. High SOSTDC1 mRNA levels correlate with increased distant metastasis-free survival in breast cancer patients. SOSTDC1 differentially affects Wnt3a, BMP-2, and BMP-7 signaling in breast cancer cells. These results identify SOSTDC1 as a clinically important extracellular regulator of multiple signaling pathways in breast cancer. PMID:21113658

  14. Perforin down-regulation and adhesion molecules activation in pulmonary sarcoidosis: an induced sputum and BAL study.

    PubMed

    Antoniou, Katerina M; Tsiligianni, Ioanna; Kyriakou, Despina; Tzanakis, Nikolaos; Tzouvelekis, Argyris; Siafakas, Nikolaos M; Bouros, Demosthenes

    2006-06-01

    Sarcoidosis is thought to be a T-helper type 1 cytokine-mediated disorder. Sputum induction has been proposed as a useful noninvasive method mainly for the assessment of airway diseases. However, it is unknown whether the balance of T-cytotoxic (Tc1) type 1 and Tc2 cells is altered in sarcoidosis. The primary aim of this study was to characterize the CD8+ T lymphocyte subpopulations in induced sputum from sarcoidosis patients, and to compare these subpopulations to those found in BAL fluid (BALF) from sarcoidosis patients. To further investigate the mechanism of the cytotoxic activity of CD8+ lymphocytes, we measured their perforin expression. Additionally, two adhesion molecules (CD62 and CD71), which are expressed on CD8+ T cells and may serve as novel immunologic markers, were detected. Department of Thoracic Medicine, University of Crete, and Department of Pneumonology, Democritus University of Thrace, Alexandroupolis, Greece. We prospectively studied 22 patients with sarcoidosis (median age, 48 years; age range, 25 to 65 years) and 10 healthy subjects (5 female and 5 male; median age, 39 years; age range, 26 to 60 years). The stimulation of lymphocytes with phorbol 12-myristate 13-acetate was followed by the use of double immunocytochemical methods to identify CD8+ interferon (IFN)-gamma producing cells (ie, Tc1) and CD8+ interleukin-4 producing cells (ie, Tc2). We found a significant decrease in the prestimulation percentage of IFN-gamma-positive CD8+ T cells in the BALF (p = 0.001) and induced sputum (p = 0.001) of sarcoidosis patients compared to the number in samples from healthy control subjects. However, no significant difference was documented between lymphocyte subsets poststimulation. Decreased levels of perforin expression were found in BALF (p = 0.001) and induced sputum (p < 0.001) of sarcoidosis patients compared to those in control subjects. The adhesion molecules were significantly increased in both the BALF and induced sputum of the sarcoid

  15. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage.

    PubMed

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2-Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    PubMed

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  17. Bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex a new apoptotic agent through Flk-1 down regulation, caspase-3 activation and oligonucleosomes DNA fragmentation.

    PubMed

    Azab, Hassan A; Hussein, Belal H M; El-Azab, Mona F; Gomaa, Mohamed; El-Falouji, Abdullah I

    2013-01-01

    New bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex was synthesized and characterized. In vivo anti-angiogenic activities of bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex against Ehrlich ascites carcinoma (EAC) cells are described. The newly synthesized complex resulted in inhibition of proliferation of EAC cells and ascites formation. The anti-tumor effect was found to be through anti-angiogenic activity as evident by the reduction of microvessel density in EAC solid tumors. The anti-angiogenic effect is mediated through down-regulation of VEGF receptor type-2 (Flk-1). The complex was also found to significantly increase the level of caspase-3 in laboratory animals compared to the acridine ligand and to the control group. This was also consistent with the DNA fragmentation detected by capillary electrophoresis that proved the apoptotic effect of the new complex. Our complex exhibited anti-angiogenic and apoptotic activity in vivo, a thing that makes it a potential effective chemotherapeutic agent. The interaction of calf thymus DNA (ct-DNA) with bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex has been investigated using fluorescence technique. A competitive experiment of the europium(III)-acridine complex with ethidium bromide (EB) to bind DNA revealed that interaction between the europium(III)-acridine and DNA was via intercalation. The interaction of the synthesized complex with tyrosine kinases was also studied using molecular docking simulation to further substantiate its mode of action.

  18. Down-regulation of P2U-purinergic nucleotide receptor messenger RNA expression during in vitro differentiation of human myeloid leukocytes by phorbol esters or inflammatory activators.

    PubMed

    Martin, K A; Kertesy, S B; Dubyak, G R

    1997-01-01

    HL-60 human promyelocytic leukocytes express G protein-coupled P2U-purinergic nucleotide receptors (P2UR or P2Y2R) that activate inositol phospholipid hydrolysis and Ca24 mobilization in response to ATP or UTP. We examined the expression of functional P2UR and P2UR mRNA levels during in vitro differentiation of HL-60 cells by dibutyryl-cAMP (Bt2cAMP), which induces a granulocyte/neutrophil phenotype, or by phorbol-12-myristate-13-acetate (PMA), which induces a monocyte/macrophage phenotype. Both P2UR function and P2UR mRNA levels were only modestly attenuated during granulocytic differentiation by Bt2cAMP. In contrast, P2UR function, as assayed by either Ca2+ mobilization or inositol trisphosphate generation, was greatly reduced in PMA-differentiated cells. This inhibition of P2UR function was strongly correlated with PMA-induced decreases in P2UR mRNA levels, as assayed by Northern blot analysis or reverse transcription-polymerase chain reaction-based quantification. Although PMA induced an early, transient up-regulation of P2UR mRNA, this was rapidly followed by a sustained decrease in P2UR mRNA to a level 5-10-fold lower than that in undifferentiated HL-60 cells. The half-life of the P2UR transcript in HL-60 cells was approximately 60 min, and this was not affected by acute exposure (< or = 4 hr) to Bt2cAMP or PMA. PMA down-regulated P2UR mRNA in THP-1 monocytes and HL-60 granulocytes but not in A431 human epithelial cells or human keratinocytes. P2UR mRNA was also down-regulated in THP-1 monocytes differentiated into inflammatory macrophages by gamma-interferon and endotoxin. These data indicate that myeloid leukocytes possess tissue-specific mechanisms for the rapid modulation of P2UR expression and function during differentiation and inflammatory activation.

  19. Down-Regulation of Ca2+-Activated K+ Channel KCa1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists

    PubMed Central

    Khatun, Anowara; Fujimoto, Mayu; Kito, Hiroaki; Niwa, Satomi; Suzuki, Takayoshi; Ohya, Susumu

    2016-01-01

    Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K+ channel KCa1.1 regulates intracellular Ca2+ signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR) agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells. PMID:27973439

  20. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity.

    PubMed

    Sani, Iman Karimi; Marashi, Seyed Hassan; Kalalinia, Fatemeh

    2015-08-01

    Solamargine is a steroidal alkaloid glycoside isolated from Solanum nigrum. The aim of this study was to investigate the effects of solamargine on tumor migration and invasion in aggressive human hepatocellular carcinoma cells. The MTT assay was used to assess the effects of solamargine on the viability of HepG2 cells. Migration and invasion ability of HepG2 cells under solamargine treatment were examined by a wound healing migration assay and Boyden chamber assay, respectively. Western blotting assays were used to detect the expression of MMP-2 and MMP-9 proteins and MMP-2 and MMP-9 activity were analyzed by gelatin zymography assay. Solamargine reduced HepG2 cell viability in a concentration-dependent manner. At 7.5μM solamargine decreased cell viability by less than 20% in HepG2 cells. A wound healing migration assay and Boyden chamber invasion assay showed that solamargine significantly inhibited in vitro migration and invasion of HepG2 cells. At the highest dose, solamargine decreased cell migration and invasion by more than 70% and 72% in HepG2 cells, respectively. Western blotting and gelatin zymography results showed that solamargine reduced expression and function of MMP-2 and MMP-9 proteins. In conclusion, the results showed that solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity.

  1. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  2. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor kappa-B ligand-induced nuclear factor of activated T cells c1 expression.

    PubMed

    Kwak, Sung Chul; Lee, Cheol; Kim, Ju-Young; Oh, Hyun Mee; So, Hong-Seob; Lee, Myeung Su; Rho, Mun Chual; Oh, Jaemin

    2013-01-01

    Excessive osteoclastic bone resorption plays a critical role in inflammation-induced bone loss such as rheumatoid arthritis and periodontal bone erosion. Therefore, identification of osteoclast targeted-agents may be a therapeutic approach to the treatment of pathological bone loss. In this study, we isolated chlorogenic acid (CGA) from fructus of Gardenia jasminoides to discover anti-bone resorptive agents. CGA is a polyphenol with anti-inflammatory and anti-oxidant activities, however, its effects on osteoclast differentiation is unknown. Thus, we investigated the effect of CGA in receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation and RANKL signaling. CGA dose-dependently inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) without any evidence of cytotoxicity. CGA inhibited the phosphorylation of p38, Akt, extracellular signal-regulated kinase (ERK), and inhibitor of nuclear factor-kappa B (IκB), and IκB degradation by RANKL treatment. CGA suppressed the mRNA expression of nuclear factor of activated T cells c1 (NFATc1), TRAP and OSCAR in RANKL-treated bone marrow macrophages (BMMs). Also, overexpression of NFATc1 in BMMs blocked the inhibitory effect of CGA on RANKL-mediated osteoclast differentiation. Furthermore, to evaluate the effects of CGA in vivo, lipopolysaccharide (LPS)-induced bone erosion study was carried out. CGA remarkably attenuated LPS-induced bone loss based on micro-computed tomography and histologic analysis of femurs. Taken together, our findings suggest that CGA may be a potential treatment option for osteoclast-related diseases with inflammatory bone destruction.

  3. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    SciTech Connect

    Wu, Cheng-Jang; Lu, Chun-Hao; Chen, Li-Chen; Nguyen, Duc T.; Huang, Yi-Shu; Lin, Hsi-Hsien; Lin, Chun-Yen; Kuo, Ming-Ling

    2016-05-13

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27{sup kip1} and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4{sup +} T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  4. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients.

    PubMed

    de la Barrera, S; Aleman, M; Musella, R; Schierloh, P; Pasquinelli, V; Garcia, V; Abbate, E; Sasiain, M del C

    2004-10-01

    Activation of T cells requires both TCR-specific ligation and costimulation through accessory molecules during T cell priming. IFNgamma is a key cytokine responsible for macrophage activation during Mycobacterium tuberculosis (Mtb) infection while IL-10 is associated with suppression of cell mediated immunity in intracellular infection. In this paper we evaluated the role of IFNgamma and IL-10 on the function of cytotoxic T cells (CTL) and on the modulation of costimulatory molecules in healthy controls and patients with active tuberculosis (TB). gamma-irradiated-Mtb (i-Mtb) induced IL-10 production from CD14(+) cells from TB patients. Moreover, CD3(+) T cells of patients with advanced disease also produced IL-10 after i-Mtb stimulation. In healthy donors, IL-10 decreased the lytic activity of CD4(+) and CD8(+) T cells whereas it increased gammadelta-mediated cytotoxicity. Furthermore, we found that the presence of IL-10 induced a loss of the alternative processing pathways of antigen presentation along with a down-regulation of the expression of costimulatory molecule expression on monocytes and macrophages from healthy individuals. Conversely, neutralization of endogenous IL-10 or addition of IFNgamma to either effector or target cells from TB patients induced a strong lytic activity mediated by CD8(+) CTL together with an up-regulation of CD54 and CD86 expression on target cells. Moreover, we observed that macrophages from TB patients could use alternative pathways for i-Mtb presentation. Taken together, our results demonstrate that the presence of IL-10 during Mtb infection might contribute to mycobacteria persistence inside host macrophages through a mechanism that involved inhibition of MHC-restricted cytotoxicity against infected macrophages.

  5. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer.

    PubMed

    Xiong, Jing; Su, Tiefen; Qu, Zhiling; Yang, Qin; Wang, Yu; Li, Jiansha; Zhou, Sheng

    2016-04-26

    Triptolide has been shown to exhibit anticancer activity. However, its mechanism of action is not clearly defined. Herein we report a novel signaling pathway, MDM2/Akt, is involved in the anticancer mechanism of triptolide. We observed that triptolide inhibits MDM2 expression in human breast cancer cells with either wild-type or mutant p53. This MDM2 inhibition resulted in decreased Akt activation. More specifically, triptolide interfered with the interaction between MDM2 and the transcription factor REST to increase expression of the regulatory subunit of PI3-kinase p85 and consequently inhibit Akt activation. We further showed that, regardless of p53 status, triptolide inhibited proliferation, induced apoptosis, and caused G1 phase cell cycle arrest. Triptolide also enhanced the cytotoxic effect of doxorubicin. MDM2 inhibition plays a causative role in these effects. The inhibitory effect of triptolide on MDM2-mediated Akt activation was eliminated with MDM2 overexpression. MDM2-overexpressing tumor cells, in turn, were less susceptible to the anticancer and chemosensitization effects of triptolide than control cells. Triptolide also exhibited anticancer and chemosensitization effects in nude mouse xenograft model. When it was administered to tumor-bearing nude mice, triptolide inhibited tumor growth and enhanced the antitumor effects of doxorubicin. In summary, triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Our study helps to elucidate the p53-independent regulatory function of MDM2 in Akt signaling, offering a novel view of the mechanism by which triptolide functions as an anticancer agent.

  6. Terpenoids from Tripterygium hypoglaucum and their inhibition of LPS-induced NO production.

    PubMed

    Zhao, Peng; Wang, Hao; Jin, Da-Qing; Ohizumi, Yasushi; Xu, Jing; Guo, Yuanqiang

    2014-01-01

    One new (1) and three known (2-4) sesquiterpenes and four known diterpenes (5-8) were isolated from the root bark of Tripterygium hypoglaucum. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D-NMR, and 2D-NMR). The inhibitory activity toward LPS-induced NO production of these terpenoids was evaluated, all the compounds showing inhibitory effects.

  7. Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neurons

    PubMed Central

    Castro, Patricio A.; Ramirez, Alejandra; Sepúlveda, Fernando J.; Peters, Christian; Fierro, Humberto; Waldron, Javier; Luza, Sandra; Fuentealba, Jorge; Muñoz, Francisco J.; De Ferrari, Giancarlo V.; Bush, Ashley I.; Aguayo, Luis G.; Opazo, Carlos M.

    2014-01-01

    Extracellular and intracellular copper and zinc regulate synaptic activity and plasticity, which may impact brain functionality and human behavior. We have found that a metal coordinating molecule, Neocuproine, transiently increases free intracellular copper and zinc levels (i.e., min) in hippocampal neurons as monitored by Phen Green and FluoZin-3 fluorescence, respectively. The changes in free intracellular zinc induced by Neocuproine were abolished by the presence of a non-permeant copper chelator, Bathocuproine (BC), indicating that copper influx is needed for the action of Neocuproine on intracellular Zn levels. Moreover, Neocuproine decreased the mRNA levels of Synapsin and Dynamin, and did not affect the expression of Bassoon, tubulin or superoxide dismutase (SOD). Western blot analysis showed that protein levels of synapsin and dynamin were also down regulated in the presence of Neocuproine and that these changes were accompanied by a decrease in calcium transients and neuronal activity. Furthermore, Neocuproine decreased the number of active neurons, effect that was blocked by the presence of BC, indicating that copper influx is needed for the action of Neocuproine. We finally show that Neocuproine blocks the epileptiform-like activity induced by bicuculline in hippocampal neurons. Collectively, our data indicates that presynaptic protein configuration and function of primary hippocampal neurons is sensitive to transient changes in transition metal homeostasis. Therefore, small molecules able to coordinate transition metals and penetrate the blood-brain barrier might modify neurotransmission at the Central Nervous System (CNS). This might be useful to establish therapeutic approaches to control the neuronal hyperexcitabiltity observed in brain conditions that are associated to copper dyshomeotasis such as Alzheimer’s and Menkes diseases. Our work also opens a new avenue to find novel and effective antiepilepsy drugs based in metal coordinating molecules

  8. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    PubMed

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-02-07

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  9. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  10. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation

    PubMed Central

    Saryu Malhotra, Sudha; Suman, Pankaj; Kumar Gupta, Satish

    2015-01-01

    The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process. PMID:26053549

  11. A CD4+ T cell antagonist epitope down-regulates activating signaling proteins, up-regulates inhibitory signaling proteins and abrogates HIV-specific T cell function.

    PubMed

    Jacobs, Evan S; Persad, Desmond; Ran, Longsi; Danesh, Ali; Heitman, John W; Deng, Xutao; Cameron, Mark J; Kelvin, David J; Norris, Philip J

    2014-07-05

    CD4+ T cells are critically important in HIV infection, being both the primary cells infected by HIV and likely playing a direct or indirect role in helping control virus replication. Key areas of interest in HIV vaccine research are mechanisms of viral escape from the immune response. Interestingly, in HIV infection it has been shown that peptide sequence variation can reduce CD4+ T cell responses to the virus, and small changes to peptide sequences can transform agonist peptides into antagonist peptides. We describe, at a molecular level, the consequences of antagonism of HIV p24-specific CD4+ T cells. Antagonist peptide exposure in the presence of agonist peptide caused a global suppression of agonist-induced gene expression and signaling molecule phosphorylation. In addition to down-regulation of factors associated with T cell activation, a smaller subset of genes associated with negative regulation of cell activation was up-regulated, including KFL-2, SOCS-1, and SPDEY9P. Finally, antagonist peptide in the absence of agonist peptide also delivered a negative signal to T cells. Small changes in p24-specific peptides can result in T cell antagonism and reductions of both T cell receptor signaling and activation. These changes are at least in part mediated by a dominant negative signal delivered by antagonist peptide, as evidenced by up-regulation of negative regulatory genes in the presence of agonist plus antagonist stimulation. Antagonism can have dramatic effects on CD4+ T cell function and presents a potential obstacle to HIV vaccine development.

  12. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway.

    PubMed

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway.

  13. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway

    PubMed Central

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway. PMID:25400741

  14. The Nrf2-Inducible Antioxidant Defense in Astrocytes can be Both Up- and Down-Regulated by Activated Microglia: Involvement of p38 MAPK

    PubMed Central

    CORREA, FERNANDO; LJUNGGREN, ELIN; MALLARD, CARINA; NILSSON, MICHAEL; WEBER, STEPHEN G.; SANDBERG, MATS

    2012-01-01

    The effects of microglia-conditioned medium (MCM) on the inducible Nrf2 system in astrocyte-rich cultures were investigated by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the modulatory subunit of γGCL (γGCL-M) and activated MAP kinases (ERK1/2, JNK and p38). Microglia were either cultured for 24 h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM0), used as control condition, or activated with different concentrations (0.1–1,000 ng mL–1)of lipopolysaccharide (LPS) to produce MCM0.1–1,000. Acute exposure (24 h) to MCM100 increased GSH, γGCL activity, the protein levels of γGCL-M, Nrf2, and activated JNK and ERK1/2 in astrocyte-rich cultures. In contrast, treatment with MCM10 for 24 h decreased components of the Nrf2 system in parallel with activation of p38 MAPK. Stimulation of the Nrf2 system by tBHQ was partly intact after 24 h but blocked after 72 h treatment with MCM10 and MCM100. This down-regulation after 72 h correlated with activation of p38 MAPK and lack of ERK1/2 and JNK activation. The negative effects were partly reversed by an inhibitor of p38 which restored tBHQ mediated protection against oxidative stress. In conclusion, the study showed a negative effect of MCM10 on the inducible anti-oxidant defense in astrocyte-rich cultures at both 24 and 72 h that correlated with activation of p38 and was partly reversed by a p38 inhibitor. A transient protective effect of MCM100 on astrocyte-rich cultures against H2O2 toxicity was observed at 24 h which coincided with activation of JNK and ERK1/2. PMID:21351160

  15. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    PubMed

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  16. Four-and-a-half-LIM protein 1 down-regulates estrogen receptor α activity through repression of AKT phosphorylation in human breast cancer cell.

    PubMed

    Zhang, Fan; Feng, Fan; Yang, Pingxun; Li, Zijian; You, Junhao; Xie, Wenxiu; Gao, Xudong; Yang, Junlan

    2012-02-01

    The Four-and-a-half LIM protein 1 (FHL-1) is a member of LIM-only protein family. It plays important roles in proliferation and apoptosis regulation of certain hepatocellular carcinoma and human breast cancer. Estrogen receptor α (ERα) is involved in the development and progression of human breast cancer. IGF/PI3K/AKT signaling pathway also plays certain roles in the program and regulation of human breast cancer and ovary cancer. However, the biological function of FHL-1 in regulation of human breast cancer and in the cross-talk of estrogen and IGF signaling pathway remains largely unknown. In this paper, we show that FHL-1 protein interacts with ERα and AKT. FHL-1 represses the translation and transcription of estrogen receptor-responsive genes through down-regulating AKT activation. In addition, FHL-1 is not only an ERα-interacting co-regulation protein, but also decreases the phosphorylation of AKT and ERα. Depression of endogenous FHL-1 by FHL-1 targeted small interfering RNA enhances the expression of these proteins and phosphorylation of AKT and ERα. These data suggest that FHL-1 may regulate ER signaling function through regulation of AKT activation besides the physical and functional interaction with ERα. By establishing a linkage role of the FHL-1 between the estrogen ERα signaling pathway and IGF/PI3K/AKT signaling pathway, this study identifies that FHL-1 proteins may be a useful molecular target for human breast cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Activity-guided fractionation to characterize a coffee beverage that effectively down-regulates mechanisms of gastric acid secretion as compared to regular coffee.

    PubMed

    Rubach, Malte; Lang, Roman; Skupin, Carola; Hofmann, Thomas; Somoza, Veronika

    2010-04-14

    In some individuals, the consumption of coffee beverages is related to symptoms of gastric irritation. Hot water steam-treatment of raw coffee beans is hypothesized to reduce the contents of stomach irritating compounds, and products to which this technology is applied are launched as stomach-friendly coffee. However, data on the effect of steam-treated coffee on gastric acid secretion are conflicting and it has not been proven yet as to which coffee components act as pro- or antisecretory stimulants. The work presented here aimed at the characterization of a coffee beverage that effectively down-regulates mechanisms of proton secretion in human gastric cells (HGT-1). At first, a regular coffee beverage was fractionated by using solvents of different polarity: water, ethylacetate, dichloromethane, and pentane. Functional assays on the proton secretory activity (PSA) of these solvent fractions revealed the least pronounced effect for the water fraction, for which quantitative analyses demonstrated the highest distribution of chlorogenic acid (95%), (beta)N-alkanoyl-5-hydroxytryptamides (55%), and N-methylpyridinium (N-MP, >99%) among all fractions. Following experiments demonstrated that HGT-1 cells treated with regular coffee fortified with N-MP at a concentration of about 20 mg/mL N-MP showed a significantly decreased PSA as compared to cells which were exposed to coffee beverages containing higher (32-34 mg/L) or lower (5 mg/L) N-MP concentrations. Results from cellular pathway analyses of transcription (ATF-1 and Akt1) and signaling (cAMP and EGFr) factors and kinases (ERK1/2), and experiments on the gene expression of pro (histamine-HRH2 and acetylcholine-CHRM3)- and anti (somatostatin-SSTR1)-secretory receptors and H(+),K(+)-ATPase verified this antisecretory activity of N-MP in coffee beverages.

  18. Age-dependent down-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 4 causes deterioration of canine sinoatrial node function.

    PubMed

    Du, Jianlin; Deng, Songbai; Pu, Di; Liu, Yajie; Xiao, Jun; She, Qiang

    2017-03-23

    The activity of pacemaker cells in the sinoatrial node (SAN) is an indicator of normal sinus rhythm. Clinical studies have revealed that the dysfunction of the SAN progressively increases with aging. In this study, we determined the changes in hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) expression and the relationship between aging and canine SAN dysfunction. The results of cardiac electrophysiological determination revealed that the intrinsic heart rate decreased from 168 ± 11 beats min-1 in young canines to 120 ± 9 beats min-1 in adults and to 88 ± 9 beats min-1 in aged canines. The sinus node recovery time (SNRT) increased from 412 ± 32 ms in young canines to 620 ± 56 ms in adults and to 838 ± 120 ms in aged canines. Corrected SNRT (CSNRT) increased from 55 ± 12 ms in young canines to 117 ± 27 ms in adults and to 171 ± 37 ms in aged canines. These results indicated that SAN function deteriorated with aging in the canine heart. However, histological staining illustrated that fibrosis was not significantly increased with aging in canine SAN. Real-time polymerase chain reaction indicated that the expression of HCN4 mRNA was downregulated in the elderly canine SAN. Similarly, we also verified that HCN4 protein expression within the SAN declined with aging via immunofluorescence staining and western blot analysis. Taken together, our data show that electrical remodeling, related to the down-regulation of HCN4, is responsible for the gradually increased incidence of SAN dysfunction with aging. Our results provide further evidence for explaining the mechanisms of age-related deterioration in the SAN.

  19. CoCl2-induced biochemical hypoxia down regulates activities and expression of super oxide dismutase and catalase in cerebral cortex of mice.

    PubMed

    Rani, Anupama; Prasad, S

    2014-09-01

    Hypoxia-induced oxidative stress is one of the major hallmark reasons underlying brain dysfunction. In the present manuscript, we have used CoCl2-induced hypoxic mice to investigate alterations in the activities of chief antioxidative stress enzymes- superoxide dismutase (SOD) and catalase (CAT) and expression of their genes Sod1 and Cat in the cerebral cortex as this model has not been routinely used for carrying out such study. Hypoxia mimetic mice model was accordingly developed by oral CoCl2 administration to mice and validated by analyzing alterations in the expression of the hypoxia inducible factor gene Hif-1α and its immediate responsive genes. Our Western blot data demonstrated that a dose of 40 mg/kg BW of CoCl2 was able to generate hypoxia like condition in mice in which Hif-1α and its immediate responsive genes-glutamate transporter-1 (Slc2a1) and erythropoietin (Epo) expression were up regulated. Our in-gel assay data indicated that SOD and CAT activities significantly declined and it was associated with significant down regulation of Sod1 and Epo expression as evident from our semi quantitative RT-PCR and Western blot data, which might be correlated with up regulation of Hif-1α expression in the cerebral cortex of the CoCl2-treated hypoxic mice. Our findings suggest that CoCl2-induced hypoxic mouse model is useful for studying alterations in the anti oxidative enzymes and biochemical/molecular/neurobiological analysis of hypoxia-induced alterations in brain function.

  20. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  1. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells.

    PubMed

    Ohno, Yosuke; Kitamura, Hidemitsu; Takahashi, Norihiko; Ohtake, Junya; Kaneumi, Shun; Sumida, Kentaro; Homma, Shigenori; Kawamura, Hideki; Minagawa, Nozomi; Shibasaki, Susumu; Taketomi, Akinobu

    2016-02-01

    Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.

  2. Lugrandoside attenuates LPS-induced acute respiratory distress syndrome by anti-inflammation and anti-apoptosis in mice

    PubMed Central

    Li, Chengbao; Huang, Ying; Yao, Xueya; Hu, Baoji; Wu, Suzhen; Chen, Guannan; Lv, Xin; Tian, Fubo

    2016-01-01

    This study aimed to investigate the protective effects and specific mechanisms of lugrandoside (LG) on lipopolysaccharides (LPS)-induced acute respiratory distress syndrome (ARDS). LG is a novel phenylpropanoid glycoside with many biological properties, isolated from the culinary leaves of Digitalis lutea L. and Digitalis grandiflora Miller. The primary indicators to assess the lung injury were infiltration of inflammatory cells; pulmonary edema; expression of proinflammatory cytokines, cyclo-oxygenase 2, and intracellular adhesion molecule 1; activation of nuclear factor-κB pathways; and cellular apoptosis. The results showed that LG evidently alleviated the inflammatory response, decreased the apoptosis of alveolar macrophages, and improved the lung injury in mice with LPS-induced ARDS. In conclusion, LG improved LPS-induced ARDS by anti-inflammation and anti-apoptosis and might be a promising pharmacological therapy for ARDS. PMID:28078026

  3. Inhibition of Glycogen Synthase Kinase 3β Ameliorates D-GalN/LPS-Induced Liver Injury by Reducing Endoplasmic Reticulum Stress-Triggered Apoptosis

    PubMed Central

    Zhang, Haiyan; Wen, Tao; Piao, Zhengfu; Zhou, Li; Zheng, Sujun; Zhang, Jing; Chen, Yu; Han, Yuanping; Duan, Zhongping; Ma, Yingji

    2012-01-01

    Background Glycogen synthase kinase 3β(GSK3β) is a ubiquitous serine-threonine protein kinase that participates in numerous cellular processes and disease pathophysiology. We aimed to determine therapeutic potential of GSK3β inhibition and its mechanism in a well-characterized model of lipopolysaccharide (LPS)-induced model of acute liver failure (ALF). Methodology In a murine ALF model induced by D-GalN(700 mg/kg)/LPS(10 µg/kg), we analyzed GSK3β mechanisms using a specific chemical inhibitor, SB216763, and detected the role of endoplasmic reticulum stress (ERS). Mice were administered SB216763 at 2 h before or after D-GalN/LPS injection, respectively, and then sacrificed 6 h after D-GalN/LPS treatment to evaluate its prophylactic and therapeutic function. The lethality rate, liver damage, ERS, cytokine expression, MAP kinase, hepatocyte apoptosis and expression of TLR 4 were evaluated, respectively. Whether the inhibition of GSK3β activation protected hepatocyte from ERS-induced apoptosis was investigated in vitro. Principal Findings GSK3β became quickly activated (dephosphorylated) upon D-GalN/LPS exposure. Administration of SB216763 not only ameliorated liver injury, as evidenced by reduced transaminase levels, and well-preserved liver architecture, but also decreased lethality. Moreover, GSK3β inhibition resulted in down-regulation of pro-apoptotic proteins C/EBP–homologous protein(CHOP) and caspase-12, which are related to ERS. To further demonstrate the role of ERS, we found that GSK3β inhibition protected hepatocyte from ERS-induced cell death. GSK3β inhibition down-regulated the MAPK pathways, reduced expression of inflammatory cytokines and decreased expression of TLR4. Conclusions Our findings demonstrate the key function of GSK3β signaling in the pathophysiology of ALF, especially in regulating the ERS, and provide a rationale for targeting GSK3β as a potential therapeutic strategy to ameliorate ALF. PMID:23028846

  4. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  5. Signaling pathways and mediators in LPS-induced lung inflammation in diabetic rats: role of insulin.

    PubMed

    Martins, Joilson O; Ferracini, Matheus; Anger, Denise B C; Martins, Daniel O; Ribeiro, Luciano F; Sannomiya, Paulina; Jancar, Sonia

    2010-01-01

    Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 microg/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3'-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.

  6. Down-Regulation of miRNA-128 Contributes to Neuropathic Pain Following Spinal Cord Injury via Activation of P38

    PubMed Central

    Yang, Zhaoyun; Xu, Junmei; Zhu, Rong; Liu, Lei

    2017-01-01

    Background Neuropathic pain (NPP) arises from a lesion or dysfunction of the somatosensory nervous system. Recent studies have demonstrated multiple microRNAs (miRNAs) play key roles in NPP development. This study aimed to investigate the effects of miR-128 on microglial cells. Material/Methods We established a compressive spinal cord injury (SCI) model and collected the spinal cord segment-derived conditioned medium (CM). We then measured the expression of miR-128 in the murine microglial cell line BV2 treated with CM-SCI or CM obtained from control (CM-NC). Furthermore, lentivirus production of miR-128 and scrambled control were transfected into BV2 cells, which were first treated with CM-SCI or CM-NC. Moreover, the effects of miR-128 on cell viability, M1/M2 microglial gene expression, inflammatory cytokines concentration, and the protein expression of P38 and phosphorylated P38 (P-P38) were investigated. Results The expression of miR-128 was downregulated in murine microglial BV2 cells treated with CM-SCI. Overexpression of miR-128 markedly promoted the viability of murine microglial cells. In addition, miR-128 overexpression significantly decreased the expression levels of microglial M1 phenotypic markers CD86 and CD32, and increased the expression levels of M2 phenotypic markers Arg1 and CD206. Furthermore, miR-128 overexpression obviously decreased the concentration of TNF-α, IL-1β, and IL-6. We found that miR-128 overexpression significantly downregulated the expression levels of P38 andP-P38. Conclusions Our findings indicate that down-regulation of miR-128 in murine microglial cells may contribute to the development of NPP following SCI via activation of P38. MiR-128 may be a potential intervention target for NPP. PMID:28114268

  7. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  8. Stromal down-regulation of macrophage CD4/CCR5 expression and NF-κB activation mediates HIV-1 non-permissiveness in intestinal macrophages.

    PubMed

    Shen, Ruizhong; Meng, Gang; Ochsenbauer, Christina; Clapham, Paul R; Grams, Jayleen; Novak, Lea; Kappes, John C; Smythies, Lesley E; Smith, Phillip D

    2011-05-01

    Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-β in S-CM and recombinant TGF-β studies showed that stromal TGF-β inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation.

  9. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  10. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response

    PubMed Central

    Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned. PMID:28704412

  11. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis.

  12. Bovine dialyzable leukocyte extract protects against LPS-induced, murine endotoxic shock.

    PubMed

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Castillo-León, Leonardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-12-15

    The pathophysiology of endotoxic shock is characterized by the activation of multiple pro-inflammatory genes and their products which initiate the inflammatory process. Endotoxic shock is a serious condition with high mortality. Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated leukocytes of the blood or lymphoid tissue obtained from homogenized bovine spleen. bDLE is clinically effective for a broad spectrum of diseases. To determine whether bDLE improves survival and modulates the expression of pro-inflammatory cytokine genes in LPS-induced, murine endotoxic shock, Balb/C mice were treated with bDLE (1 U) after pretreatment with LPS (17 mg/kg). The bDLE improved survival (90%), suppressed IL-10 and IL-6, and decreased IL-1beta, TNF-alpha, and IL-12p40 mRNA expression; and decreased the production of IL-10 (P<0.01), TNF-alpha (P<0.01), and IL-6 (P<0.01) in LPS-induced, murine endotoxic shock. Our results demonstrate that bDLE leads to improved survival in LPS-induced endotoxic shock in mice, modulating the pro-inflammatory cytokine gene expression, suggesting that bDLE is an effective therapeutic agent for inflammatory illnesses associated with an unbalanced expression of pro-inflammatory cytokine genes such as in endotoxic shock, rheumatic arthritis and other diseases.

  13. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  14. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan; Mueller, Martin

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.

  15. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion

    PubMed Central

    2011-01-01

    Background Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Results Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. Conclusions We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling

  16. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland.

    PubMed

    Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2006-09-01

    Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.

  17. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264.7 cells.

    PubMed

    Zhang, Hao; Shan, Yun; Wu, Yun; Xu, Chuanchong; Yu, Xizhong; Zhao, Juan; Yan, Jing; Shang, Wenbin

    2017-09-07

    Chronic inflammation is a major contributing factor in the pathogenesis of many diseases. Natural product berberine (BBR) exhibits potent anti-inflammatory effect in vitro and in vivo, while the underlying mechanisms remain elusive. Sirt1, a NAD(+)-dependent protein deacetylase, was recently found to play an important role in modulating the development and progression of inflammation. Thus, we speculate that Sirt1 might mediate the inhibitory effect of BBR on inflammation. In LPS-stimulated RAW264.7 macrophages, BBR treatment significantly downregulated the expression of proinflammatory cytokines such as MCP-1, IL-6 and TNF-α. Importantly, BBR potently reversed LPS-induced down-regulation of Sirt1. Consistently, the inhibitory effects of BBR on proinflammatory cytokines expression was largely abrogated by Sirt1 inhibition either by EX527, a Sirt1 inhibitor or Sirt1 siRNA. Further mechanistic studies revealed that BBR-induced inhibition of NF-κB is Sirt1-dependent, as either pharmacologically or genetically inactivating Sirt1 enhanced the IκΒα degradation, IKK phosphorylation, NF-κB p65 acetylation and DNA-binding activity. Taken together, our results provide the first evidence that BBR potently suppressed inflammatory responses in macrophages through inhibition of NF-κB signaling via Sirt1-dependent mechanisms. Copyright © 2017. Published by Elsevier B.V.

  18. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    SciTech Connect

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh; Kuo, Yueh-Hsiung; Wu, Chieh-Hsi

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  19. miR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor-1

    PubMed Central

    Zhu, En-Dong; Li, Na; Li, Bo-Sheng; Li, Wei; Zhang, Wei-Jun; Mao, Xu-Hu; Guo, Gang; Zou, Quan-Ming; Xiao, Bin

    2014-01-01

    Background Gastric cancer is one of the most common malignant diseases worldwide. Emerging evidence has shown that microRNAs (miRNAs) are associated with tumor development and progression. Our previous studies have revealed that H. pylori infection was able to induce the altered expression of miR-30b in gastric epithelial cells. However, little is known about the potential role of miR-30b in gastric cancer. Methods We analyzed the expression of miR-30b in gastric cancer cell lines and human gastric cancer tissues. We examined the effect of miR-30b mimics on the apoptosis of gastric cancer cells in vitro by flow cytometry (FCM) and caspase-3/7 activity assays. Nude mouse xenograft model was used to determine whether miR-30b is involved in tumorigenesis of gastric cancer. The target of miR-30b was identified by bioinformatics analysis, luciferase assay and Western blot. Finally, we performed the correlation analysis between miR-30b and its target expression in gastric cancer. Results miR-30b was significantly down-regulated in gastric cancer cells and human gastric cancer tissues. Enforced expression of miR-30b promoted the apoptosis of gastric cancer cells in vitro, and miR-30b could significantly inhibit tumorigenicity of gastric cancer by increasing the apoptosis proportion of cancer cells in vivo. Moreover, plasminogen activator inhibitor-1 (PAI-1) was identified as the potential target of miR-30b, and miR-30b level was inversely correlated with PAI-1 expression in gastric cancer. In addition, silencing of PAI-1 was able to phenocopy the effect of miR-30b overexpression on apoptosis regulation of cancer cells, and overexpression of PAI-1 could suppressed the effect of promoting cell apoptosis by miR-30b, indicating PAI-1 is potentially involved in miR-30b-induced apoptosis on cancer cells. Conclusion miR-30b may function as a novel tumor suppressor gene in gastric cancer by targeting PAI-1 and regulating the apoptosis of cancer cells. miR-30b could serve as a

  20. Oxygenized low density lipoprotein down-regulates the TRPV4 protein expression of macrophage through activation of peroxisome proliferator-activated receptor γ.

    PubMed

    Xue, Chao; Gong, Jun; Guo, Yuming; Yin, Jun; He, Xiaohua; Huang, Hua; Zhou, Xuefeng; Zhao, Jinping

    2017-02-01

    TRPV4, a non-selective cation channel, is involved in lipometabolism and atherosclerosis. However, whether TRPV4 participates in oxygenized low density lipoprotein (oxLDL)-induced foam cell formation remains unknown. The present study investigates the effect of oxLDL on the expression of TRPV4 in macrophages and its underlying mechanisms. The expression of TRPV4 in RAW264.7 and phorbol-12-myristate-13-acetate (PMA) induced U937, THP-1 cells was detected by immunofluorescence, and western blot was used to detect the TRPV4 expression before and after PMA induction. Each cell line was divided into three groups, including control group, native low-density lipoprotein (nLDL) (100 μg/mL) group and oxLDL (100μg/mL) group; the expression of TRPV4 in each group was measured using immunohistochemistry and western blot. TRPV4 protein expression was detected by western blot after RAW 264.7 cells were treated with 0, 0.01 μM, 0.1 μM and 1 μM T0070907 or preincubated with 0.1 μM T0070709 for 1 h before incubation with oxLDL for 24 h. In all macrophage cell lines, TRPV4 was widely expressed. PMA increased TRPV4 expression in U937 and THP-1 cells. There was no significant difference in TRPV4 expression in the nLDL group compared to that in the control group; however a significant reduction in TRPV4 expression was detected in the oxLDL group compared to that in the control and nLDL groups using measurements obtained from both immunohistochemistry and western blot. The PPARγ inhibitor T0070907 enhanced the basal expression of TRPV4 and protected RAW264.7 cells from oxLDL-induced TRPV4 down-regulation. This study revealed that TRPV4 was widely expressed in macrophages and that oxLDL could induce the down-regulation of TRPV4 expression through its actions on PPARγ. This study may serve as an important first step for further investigation into the roles of TRPV4 in macrophage-derived foam cell formation in atherosclerosis.

  1. Advanced glycation end products promote human aortic smooth muscle cell calcification in vitro via activating NF-κB and down-regulating IGF1R expression.

    PubMed

    Wang, Yi; Zhang, Zhen-yu; Chen, Xiao-qing; Wang, Xiang; Cao, Heng; Liu, Shao-wen

    2013-04-01

    To investigate the effects of advanced glycation end products (AGEs) on calcification in human aortic smooth muscle cells (HASMCs) in vitro and the underlying mechanisms. AGEs were artificially prepared. Calcification of HASMCs was induced by adding inorganic phosphate (Pi, 2 mmol/L) in the media, and observed with Alizarin red staining. The calcium content in the supernatant was measured using QuantiChrome Calcium Assay Kit. Expression of the related mRNAs and proteins was analyzed using real-time PCR and Western blot, respectively. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NF-κB to the putative IGF1R promoter. AGEs (100 μg/mL) significantly enhanced Pi-induced calcification and the levels of osteocalcin and Cbfα1 in HASMCs. Furthermore, the treatment decreased the expression of insulin-like growth factor 1 receptor (IGF1R). Over-expression of IGF1R in HASMCs suppressed the AGEs-induced increase in calcium deposition. When IGF1R expression was knocked down in HASMCs, AGEs did not enhance the calcium deposition. Meanwhile, AGEs time-dependently decreased the amounts of IκBα and Flag-tagged p65 in the cytoplasmic extracts, and increased the amount of nuclear p65 in HASMCs. In the presence of NF-κB inhibitor PDTC (50 μmol/L), the AGEs-induced increase in calcium deposition was blocked. Over-expression of p65 significantly enhanced Pi-induced mineralization, but suppressed IGF1R mRNA level. Knockdown of p65 suppressed the AGEs-induced increase in calcium deposition, and rescued the IGF1R expression. The ChIP analysis revealed that NF-κB bound the putative IGF1R promoter at position -230 to -219 bp. The inhibition of IGF1R by NF-κB was abolished when IGF1R reporter plasmid contained mutated binding sequence for NF-κB or an NF-κB reporter vector. The results demonstrate that AGEs promote calcification of human aortic smooth muscle cells in vitro via activation of NF-κB and down-regulation of IGF1R expression.

  2. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  3. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    PubMed

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. OVOL2, an Inhibitor of WNT Signaling, Reduces Invasive Activities of Human and Mouse Cancer Cells and Is Down-regulated in Human Colorectal Tumors.

    PubMed

    Ye, Guo-Dong; Sun, Guang-Bin; Jiao, Peng; Chen, Chen; Liu, Qing-Feng; Huang, Xiao-Li; Zhang, Rui; Cai, Wang-Yu; Li, Sheng-Nan; Wu, Jia-Fa; Liu, Yun-Jia; Wu, Rong-Si; Xie, Yuan-Yuan; Chan, Err-Cheng; Liou, Yih-Cherng; Li, Bo-An

    2016-03-01

    -catenin, facilitating recruitment of histone deacetylase 1 to the TCF4-β-catenin complex; this inhibited expression of epithelial-to-mesenchymal transition-related genes regulated by WNT, such as SLUG, in CRC cell lines. OVOL2 was a downstream target of WNT signaling in LS174T and SW480 cells. The OVOL2 promoter was hypermethylated in late-stage CRC specimens from patients and in SW620 cells; hypermethylation resulted in OVOL2 down-regulation and an inability to inhibit WNT signaling. Disruption of Ovol2 in Apc(min/+) mice increased WNT activity in intestinal tissues and the formation of invasive intestinal tumors. OVOL2 is a colorectal tumor suppressor that blocks WNT signaling by facilitating the recruitment of histone deacetylase 1 to the TCF4-β-catenin complex. Strategies to increase levels of OVOL2 might be developed to reduce colorectal tumor progression and metastasis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Hypocholesterolemic Activity of Curcumin Is Mediated by Down-regulating the Expression of Niemann-Pick C1-like 1 in Hamsters.

    PubMed

    Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Lu, Minqi

    2017-01-18

    We previously demonstrated that curcumin reduces cholesterol absorption in Caco-2 cells through down-regulating Niemann-Pick C1-like 1 (NPC1L1) expression, but the in vivo effect of curcumin on intestinal cholesterol absorption remains unknown. The present study aimed to investigate the effects and mechanisms of curcumin consumption on cholesterol absorption in hamsters. Male hamsters were fed a high-fat diet supplemented with or without curcumin (0.05% w/w) for 12 weeks. Curcumin supplementation significantly decreased serum total cholesterol (TC) (from 6.86 ± 0.27 to 3.50 ± 0.24 mmol/L), triglyceride (TG) (from 5.07 ± 0.34 to 3.72 ± 0.40 mmol/L), and low-density lipoprotein cholesterol (from 2.58 ± 0.19 to 1.71 ± 0.15 mmol/L) levels as well as liver TC (from 11.6 ± 0.05 to 7.2 ± 0.03 mg/g) and TG (from 30.3 ± 0.22 to 25.2 ± 0.18 mg/g) levels (P < 0.05 for all). In contrast, curcumin treatment markedly enhanced fecal cholesterol output (P < 0.01). Moreover, curcumin supplementation down-regulated the mRNA and protein expressions of sterol regulatory element binding protein-2 (SREBP-2) and NPC1L1 in the small intestine (P < 0.05). Our current results indicate that curcumin inhibits cholesterol absorption in hamsters by suppressing SREBP-2 and subsequently down-regulating NPC1L1 expression, which may be responsible for the hypocholesterolemic effects of curcumin.

  6. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.

  7. Down-regulation of mitogen-activated protein kinases and nuclear factor-κB signaling is involved in rapamycin suppression of TLR2-induced inflammatory response in monocytic THP-1 cells.

    PubMed

    Sun, Ruili; Zhang, Yi; Ma, Shijiang; Qi, Hengtian; Wang, Mingyong; Duan, Juhong; Ma, Shujun; Zhu, Xiaofei; Li, Guancheng; Wang, Hui

    2015-10-01

    Tripalmitoyl-S-glycero-Cys-(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signal pathway. Rapamycin can suppress TLR-induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2-induced inflammatory responses was investigated. It was found that Pam3CSK4-induced pro-inflammatory cytokines were significantly down-regulated at both the mRNA and protein levels in THP-1 cells pre-treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling did not suppress the expression of pro-inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT-PCR showed that Erk and NF-κB signal pathways are related to the production of pro-inflammatory cytokines. Inhibition of Erk or NF-κB signaling significantly down-regulated production of pro-inflammatory cytokines. Additionally, western blot showed that pre-treatment of THP-1 cells with rapamycin down-regulates MAPKs and NF-κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4-induced pro-inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2-induced inflammatory responses by down-regulation of Erk and NF-κB signaling.

  8. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways

    PubMed Central

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C.K.

    2016-01-01

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration. PMID:27542208

  9. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways.

    PubMed

    Xiong, Siyuan; Cheng, Jung-Chien; Klausen, Christian; Zhao, Jianfang; Leung, Peter C K

    2016-09-20

    PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.

  10. TNFα Mediates LPS-Induced Microglial Toxicity to Developing Oligodendrocytes When Astrocytes Are Present

    PubMed Central

    Li, Jianrong; Radhika Ramenaden, E.; Peng, Jie; Koito, Hisami; Volpe, Joseph J.; Rosenberg, Paul A.

    2009-01-01

    Reactive microglia and astrocytes are present in lesions of white matter disorders, such as periventricular leukomalacia and multiple sclerosis. However, it is not clear whether they are actively involved in the pathogenesis of these disorders. Previous studies demonstrated that microglia, but not astrocytes, are required for lipopolysaccharide (LPS)-induced selective killing of developing oligodendrocytes (preOLs), and that the toxicity is mediated by microglia-derived peroxynitrite. Here we report that when astrocytes are present, the LPS-induced, microglia-dependent toxicity to preOLs is no longer mediated by peroxynitrite but instead by a mechanism dependent on TNFα signaling. Blocking peroxynitrite formation with nitric oxide synthase (NOS) inhibitors or a decomposition catalyst did not prevent LPS-induced loss of preOLs in mixed glial cultures. PreOLs were highly vulnerable to peroxynitrite; however, the presence of astrocytes prevented the toxicity. While LPS failed to kill preOLs in cocultures of microglia and preOLs deficient in inducible NOS (iNOS) or gp91phox, the catalytic subunit of the superoxide-generating NADPH oxidase, LPS caused a similar degree of preOL death in mixed glial cultures of wildtype, iNOS-/- and gp91phox-/- mice. TNFα neutralizing antibody inhibited LPS toxicity, and addition of TNFα induced selective preOL injury in mixed glial cultures. Furthermore, disrupting the genes encoding TNFα or its receptors TNFR1/2 completely abolished the deleterious effect of LPS. Our results reveal that TNFα signaling, rather than peroxynitrite, is essential in LPS-triggered preOL death in an environment containing all major glial cell types, and underscore the importance of intercellular communication in determining the mechanism underlying inflammatory preOL death. PMID:18480288

  11. Iloprost improves endothelial barrier function in LPS-induced lung injury

    PubMed Central

    Birukova, Anna A.; Wu, Tinghuai; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Tian, Xinyong; Leff, Alan; Birukov, Konstantin G.

    2013-01-01

    RATIONALE Protective effects of prostacyclin and its stable analog Iloprost are mediated by elevation of intracellular cAMP leading to enhancement of peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lypopolysacharide (LPS). METHODS Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically, and analysis of LPS-activated inflammatory signaling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3′,5′-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation. RESULTS Iloprost and Br-cAMP attenuated disruption of endothelial monolayer and suppressed activation of p38 mitogen activated protein (MAP) kinase, NFκB pathway, Rho signaling, ICAM1 expression, and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid and reduced myeloperoxidase activation, ICAM-1 expression, and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished barrier protective and anti-inflammatory effects of iloprost and Br-cAMP. CONCLUSION Iloprost-induced elevation of intracellular cAMP triggers Rac signaling, which attenuates LPS-induced NFκB and p38 MAPK inflammatory pathways and Rho-dependent mechanism of endothelial permeability. PMID:22790920

  12. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.

  13. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    PubMed

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  14. Angiotensin II down-regulates natriuretic peptide receptor-A expression and guanylyl cyclase activity in H9c2 (2-1) cardiac myoblast cells: Role of ROS and NF-κB.

    PubMed

    Gopi, Venkatachalam; Subramanian, Vimala; Manivasagam, Senthamizharasi; Vellaichamy, Elangovan

    2015-11-01

    Atrial natriuretic peptide (ANP)/natriuretic peptide receptor-A (NPR-A) system is suggested as an endogenous anti-hypertrophic protective mechanism of the heart. We have shown previously that Angiotensin II (ANG II), an effector molecule of renin-angiotensin-aldosterone system, down-regulates NPR-A expression and its activity in vivo rat heart. However, the underlying mechanism by which ANG II down-regulates NPR-A expression in the heart is not well understood. Hence, the present investigation was aimed to determine whether ANG II-stimulated reactive oxygen species (ROS) and NF-κB are involved in the down-regulation of NPR-A activity in H9c2 (2-1) cardiac myoblast cells. The H9c2 (2-1) cardiac myoblast cells were exposed to ANG II (10(-7) M for 20 h) with/or without blocker treatment (losartan-10 µM, N-acetyl cysteine (NAC)-10 mM and pyrrolidine dithiocarbamate (PDTC)-100 µM). On exposure, ANG II induced a significant decrease (P < 0.001) in the expression of Npr1 (coding for NPR-A) gene and NPR-A receptor-dependent guanylyl cyclase (GC) activity. The level of expression of proto-oncogenes (c-fos, c-myc, and c-jun) and natriuretic peptides (ANP and BNP) was increased in ANG II-treated cells when compared with control cells. Interestingly, ANG II-dependent repression of Npr1 gene expression and guanylyl cyclase (GC) activity was completely restored on treatment with losartan, while only a partial reversal was observed in NAC- and PDTC-co-treated cells. In conclusion, the results of this study suggest that ROS-mediated NF-κB activation mechanism is critically involved in the ANG II-mediated down-regulation of NPR-A expression and its GC activity.

  15. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

    PubMed

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J W; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J; Janssen-Megens, Eva M; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G; Martens, Joost H A; Logie, Colin; Stunnenberg, Hendrik G

    2016-11-17

    Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response From Peripheral Blood Mononuclear Cells

    PubMed Central

    Nydam, Trevor L.; Clarke, Jason H.; Banerjee, Anirban; Silliman, Christopher C.; McCarter, Martin D.

    2009-01-01

    Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of immunologically active substances with blood storage, and prestorage leukoreduction reduces many of these mediators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukoreduced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. IL-1β, TNF-α, and IL-6 were significantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant significantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR significantly attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinflammatory LPS-induced cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated with leukoreduction. These findings may partially explain the immune activation seen clinically after blood transfusion. PMID:19441884

  17. Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid*

    PubMed Central

    Comba, Andrea; Almada, Luciana L.; Tolosa, Ezequiel J.; Iguchi, Eriko; Marks, David L.; Vara Messler, Marianela; Silva, Renata; Fernandez-Barrena, Maite G.; Enriquez-Hesles, Elisa; Vrabel, Anne L.; Botta, Bruno; Di Marcotulio, Lucia; Ellenrieder, Volker; Eynard, Aldo R.; Pasqualini, Maria E.; Fernandez-Zapico, Martin E.

    2016-01-01

    Numerous reports have demonstrated a tumor inhibitory effect of polyunsaturated fatty acids (PUFAs). However, the molecular mechanisms modulating this phenomenon are in part poorly understood. Here, we provide evidence of a novel antitumoral mechanism of the PUFA arachidonic acid (AA). In vivo and in vitro experiments showed that AA treatment decreased tumor growth and metastasis and increased apoptosis. Molecular analysis of this effect showed significantly reduced expression of a subset of antiapoptotic proteins, including BCL2, BFL1/A1, and 4-1BB, in AA-treated cells. We demonstrated that down-regulation of the transcription factor glioma-associated protein 1 (GLI1) in AA-treated cells is the underlying mechanism controlling BCL2, BFL1/A1, and 4-1BB expression. Using luciferase reporters, chromatin immunoprecipitation, and expression studies, we found that GLI1 binds to the promoter of these antiapoptotic molecules and regulates their expression and promoter activity. We provide evidence that AA-induced apoptosis and down-regulation of antiapoptotic genes can be inhibited by overexpressing GLI1 in AA-sensitive cells. Conversely, inhibition of GLI1 mimics AA treatments, leading to decreased tumor growth, cell viability, and expression of antiapoptotic molecules. Further characterization showed that AA represses GLI1 expression by stimulating nuclear translocation of NFATc1, which then binds the GLI1 promoter and represses its transcription. AA was shown to increase reactive oxygen species. Treatment with antioxidants impaired the AA-induced apoptosis and down-regulation of GLI1 and NFATc1 activation, indicating that NFATc1 activation and GLI1 repression require the generation of reactive oxygen species. Collectively, these results define a novel mechanism underlying AA antitumoral functions that may serve as a foundation for future PUFA-based therapeutic approaches. PMID:26601952

  18. Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid.

    PubMed

    Comba, Andrea; Almada, Luciana L; Tolosa, Ezequiel J; Iguchi, Eriko; Marks, David L; Vara Messler, Marianela; Silva, Renata; Fernandez-Barrena, Maite G; Enriquez-Hesles, Elisa; Vrabel, Anne L; Botta, Bruno; Di Marcotulio, Lucia; Ellenrieder, Volker; Eynard, Aldo R; Pasqualini, Maria E; Fernandez-Zapico, Martin E

    2016-01-22

    Numerous reports have demonstrated a tumor inhibitory effect of polyunsaturated fatty acids (PUFAs). However, the molecular mechanisms modulating this phenomenon are in part poorly understood. Here, we provide evidence of a novel antitumoral mechanism of the PUFA arachidonic acid (AA). In vivo and in vitro experiments showed that AA treatment decreased tumor growth and metastasis and increased apoptosis. Molecular analysis of this effect showed significantly reduced expression of a subset of antiapoptotic proteins, including BCL2, BFL1/A1, and 4-1BB, in AA-treated cells. We demonstrated that down-regulation of the transcription factor glioma-associated protein 1 (GLI1) in AA-treated cells is the underlying mechanism controlling BCL2, BFL1/A1, and 4-1BB expression. Using luciferase reporters, chromatin immunoprecipitation, and expression studies, we found that GLI1 binds to the promoter of these antiapoptotic molecules and regulates their expression and promoter activity. We provide evidence that AA-induced apoptosis and down-regulation of antiapoptotic genes can be inhibited by overexpressing GLI1 in AA-sensitive cells. Conversely, inhibition of GLI1 mimics AA treatments, leading to decreased tumor growth, cell viability, and expression of antiapoptotic molecules. Further characterization showed that AA represses GLI1 expression by stimulating nuclear translocation of NFATc1, which then binds the GLI1 promoter and represses its transcription. AA was shown to increase reactive oxygen species. Treatment with antioxidants impaired the AA-induced apoptosis and down-regulation of GLI1 and NFATc1 activation, indicating that NFATc1 activation and GLI1 repression require the generation of reactive oxygen species. Collectively, these results define a novel mechanism underlying AA antitumoral functions that may serve as a foundation for future PUFA-based therapeutic approaches. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway.

    PubMed

    Fu, Haiyan; Hu, Zhansheng; Di, Xingwei; Zhang, Qiuhong; Zhou, Rongbin; Du, Hongyang

    2016-11-15

    Tenuigenin (TNG) has been reported to have various pharmacological activities, such as anti-oxidative and anti-inflammatory activities. However, the protective effects of TNG on lipopolysaccharides (LPS)-induced acute kidney injury (AKI) are still not clear. The aim of this study was to investigate the protective effects and mechanism of TGN on LPS-induced AKI in mice. The kidney histological change, levels of blood urea nitrogen (BUN), and creatinine were measured to assess the protective effects of TNG on LPS-induced AKI. The levels of TNF-α, IL-1β, and IL-6 in serum and kidney tissues were detected by ELISA. The extent of nuclear factor kappa-B (NF-κB) p65 and the expression of Toll-like receptor-4 (TLR4) were detected by western blot analysis. The results showed that TNG markedly attenuated the histological alterations, BUN and creatinine levels in kidney. TNG also suppressed LPS-induced TNF-α, IL-1β, and IL-6 production. Furthermore, the expression of TLR4 and NF-κB activation induced by LPS were markedly inhibited by TNG. In conclusion, this study demonstrated that TNG protected against LPS-induced AKI by inhibiting TLR4/NF-κB signaling pathway.

  20. Ciliary neurotrophic factor induces down-regulation of its receptor and desensitization of signal transduction pathways in vivo: non-equivalence with pharmacological activity.

    PubMed

    DiStefano, P S; Boulton, T G; Stark, J L; Zhu, Y; Adryan, K M; Ryan, T E; Lindsay, R M

    1996-09-13

    Despite the widespread use of polypeptide growth factors as pharmacological agents, little is known about the extent to which these molecules regulate their cognate cell surface receptors and signal transduction pathways in vivo. We have addressed this issue with respect to the neurotrophic molecule ciliary neurotrophic factor (CNTF). Administration of CNTF in vivo resulted in modest decreases in levels of CNTFRalpha mRNA and protein in skeletal muscle. CNTF causes the rapid tyrosine phosphorylation of LIFRbeta and gp130 and the induction of the immediate-early gene, tis11; injection of CNTF 3-7 h after an initial exposure failed to re-stimulate these immediate-early responses, suggesting a biochemical desensitization to CNTF not accounted for by decreased receptor protein. To determine whether the desensitization of immediate-early responses caused by CNTF resulted in a functional desensitization, we compared the efficacy of multiple daily injections versus a single daily dose of CNTF in preventing the denervation-induced atrophy of skeletal muscle. Surprisingly, injections of CNTF every 6 h, which falls within the putative refractory period for biochemical responses, resulted in efficacy equal to or greater than injections once daily. These results suggest that although much of the CNTF signal transduction machinery is down-regulated with frequent CNTF dosing, biological signals continue to be recognized and interpreted by the cell.

  1. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases

    PubMed Central

    2010-01-01

    Background The development of new modulator possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcome P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in cancer treatment. In this study, we suggest a new molecular mechanism that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) down-regulates P-glycoprotein (P-gp) through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases and thereby sensitize MDR cells to MDR-related drugs. Results MDR variants, CEM/VLB10-2, CEM/VLB55-8 and CEM/VLB100 cells, with gradually increased levels of P-gp derived from human lymphoblastic leukemia CEM cells, were gradually more susceptible to TRAIL-induced apoptosis and cytotoxicity than parental CEM cells. The P-gp level of MDR variants was positively correlated with the levels of DNA-PKcs, pAkt, pGSK-3β and c-Myc as well as DR5 and negatively correlated with the level of c-FLIPs. Hypersensitivity of CEM/VLB100 cells to TRAIL was accompanied by the activation of mitochondrial apoptotic pathway as well as the activation of initiator caspases. In addition, TRAIL-induced down-regulation of DNA-PKcs/Akt/GSK-3β pathway and c-FLIP and up-regulation of cell surface expression of death receptors were associated with the increased susceptibility to TRAIL of MDR cells. Moreover, TRAIL inhibited P-gp efflux function via caspase-3-dependent degradation of P-gp as well as DNA-PKcs and subsequently sensitized MDR cells to MDR-related drugs such as vinblastine and doxorubicin. We also found that suppression of DNA-PKcs by siRNA enhanced the susceptibility of MDR cells to vincristine as well as TRAIL via down-regulation of c-FLIP and P-gp expression and up-regulation of DR5. Conclusion This study showed for the first time that the MDR variant of CEM cells was hypersensitive to TRAIL due to up-regulation of DR5 and concomitant down-regulation of c-FLIP, and degradation of P-gp and DNA-PKcs by activation of caspase-3 might be

  2. Peroxisome proliferator-activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes.

    PubMed

    Torabi, Sheida; Yeganehjoo, Hoda; Shen, Chwan-Li; Mo, Huanbiao

    2016-12-01

    Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol-induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.

  3. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  4. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways.

    PubMed

    Lai, Jin-Lun; Liu, Yu-Hui; Liu, Chang; Qi, Ming-Pu; Liu, Rui-Ning; Zhu, Xi-Fang; Zhou, Qiu-Ge; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-02-01

    Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.

  5. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway

    PubMed Central

    He, Hui-qiong; Wu, Ya-xian; Nie, Yun-juan; Wang, Jun; Ge, Mei; Qian, Feng

    2017-01-01

    Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries. PMID:28112185

  6. The effect of alpha-tocopherol on the synthesis, phosphorylation and activity of protein kinase C in smooth muscle cells after phorbol 12-myristate 13-acetate down-regulation.

    PubMed

    Clément, S; Tasinato, A; Boscoboinik, D; Azzi, A

    1997-06-15

    Previous work had established that, in smooth muscle cells, alpha-tocopherol negatively regulates protein kinase C by preventing its activation [Tasinato, A., Boscoboinik, D., Bartoli, G. M., Maroni, P. & Azzi, A. (1995) Proc. Natl Acad. Sci. USA 92, 12190-12194]. In this study, the mechanism by which this event takes place has been analyzed. The regulation by alpha-tocopherol of protein kinase C expression, activity and phosphorylation has been followed during the synthesis of protein kinase C after its down-regulation by phorbol 12-myristate 13-acetate. The data show that protein kinase C isoenzyme alpha is synthesised significantly more (30% 72 h after down-regulation) in the presence of alpha-tocopherol. However, its activity is significantly less (45% diminution) and its phosphorylation state is also decreased (60% diminution). The effect of alpha-tocopherol appears not to be shared by the analogue beta-tocopherol, provided with similar radical-scavenging properties. The data are interpreted in terms of a diminution of protein kinase C phosphorylation, specifically caused by alpha-tocopherol, resulting in a decreased enzyme specific activity.

  7. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.

  8. The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice.

    PubMed

    Xu, Xiaohan; Liu, Ning; Zhang, Yu-Xin; Cao, Jinjin; Wu, Donglin; Peng, Qisheng; Wang, Hong-Bing; Sun, Wan-Chun

    2016-01-11

    Acute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies. We have reported that HJB-1, a 17-hydroxy-jolkinolide B derivative, exhibited strong anti-inflammatory effects in vitro. In this study, we investigated its impacts on LPS-induced ARDS mice. We found that HJB-1 significantly alleviated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNF-α, IL-1β and IL-6 in BALF. In addition, HJB-1 markedly suppressed LPS-induced IκB-α degradation, nuclear accumulation of NF-κB p65 subunit and MAPK phosphorylation. These results suggested that HJB-1 improved LPS-induced ARDS by suppressing LPS-induced NF-κB and MAPK activation.

  9. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    PubMed

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  10. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  11. Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors.

    PubMed

    Shimizu, Takahiro; Yokotani, Kunihiko

    2009-09-18

    The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-alpha-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 degrees C for 3h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective beta-adrenoreceptor antagonist) (2mg/animal) or SR59230A (a selective beta(3)-adrenoreceptor antagonist) (2mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated beta(3)-adrenoreceptor-mediated mechanisms in rats.

  12. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  13. Extract from Acanthopanax senticosus prevents LPS-induced monocytic cell adhesion via suppression of LFA-1 and Mac-1.

    PubMed

    Kim, Hyun Jeong; McLean, Danielle; Pyee, Jaeho; Kim, Jongmin; Park, Heonyong

    2014-04-01

    A crude extract from Acanthopanax senticosus (AS) has drawn increased attention because of its potentially beneficial activities, including anti-fatigue, anti-stress, anti-gastric-ulcer, and immunoenhancing effects. We previously reported that AS crude extract exerts anti-inflammatory activity through blockade of monocytic adhesion to endothelial cells. However, the underlying mechanisms remained unknown, and so this study was designed to investigate the pathways involved. It was confirmed that AS extract inhibited lipopolysaccharide (LPS)-induced adhesion of monocytes to endothelial cells, and we found that whole extract was superior to eleutheroside E, a principal functional component of AS. A series of PCR experiments revealed that AS extract inhibited LPS-induced expression of genes encoding lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in THP-1 cells. Consistently, protein levels and cell surface expression of LFA-1 and Mac-1 were noticeably reduced upon treatment with AS extract. This inhibitory effect was mediated by the suppression of LPS-induced degradation of IκB-α, a known inhibitor of nuclear factor-κB (NF-κB). In conclusion, AS extract exerts anti-inflammatory activity via the suppression of LFA-1 and Mac-1, lending itself as a potential therapeutic galenical for the prevention and treatment of various inflammatory diseases.

  14. Disparate roles of marrow- and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation

    PubMed Central

    Juskewitch, Justin E.; Platt, Jeffrey L.; Knudsen, Bruce E.; Knutson, Keith L.; Brunn, Gregory J.; Grande, Joseph P.

    2012-01-01

    Systemic inflammatory response syndrome (SIRS) occurs in a range of infectious and non-infectious disease processes. Toll-like receptors (TLRs) initiate such responses. We have shown that parenchymal cell TLR4 activation drives LPS-induced systemic inflammation; SIRS does not develop in mice lacking TLR4 expression on parenchymal cells. The parenchymal cell types whose TLR4 activation directs this process have not been identified. Employing a bone marrow transplant model to compartmentalize TLR4 signaling, we characterized blood neutrophil and cytokine responses, NF-κB1 activation, and Tnf-α, Il6, and Ccl2 induction in several organs (spleen, aorta, liver, lung) near the time of LPS-induced symptom onset. Aorta, liver, and lung gene responses corresponded with both LPS-induced symptom onset patterns and plasma cytokine/chemokine levels. Parenchymal cells in aorta, liver, and lung bearing TLR4 responded to LPS with chemokine generation and were associated with increased plasma chemokine levels. We propose that parenchymal cells direct SIRS in response to LPS. PMID:23213355

  15. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  16. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  17. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway.

    PubMed

    Choi, Dong-Young; Lee, Jae Woong; Lin, Guihua; Lee, Yong Kyung; Lee, Yeon Hee; Choi, Im Seop; Han, Sang Bae; Jung, Jae Kyung; Kim, Young Hee; Kim, Ki Ho; Oh, Ki-Wan; Hong, Jin Tae; Lee, Moon Soon

    2012-01-01

    Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer's disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ₁₋₄₂ formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.

  18. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway

    PubMed Central

    Yan, Chunguang; Ward, Peter A.; Wang, Ximo; Gao, Hongwei

    2013-01-01

    Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3fl/fl). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3fl/fl mice and the wild-type (WT) mice (SOCS3fl/fl). LysM-cre SOCS3fl/fl mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.—Yan, C., Ward, P. A., Wang, X., Gao, H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. PMID:23585399

  19. Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells.

    PubMed

    Shinya, Eiji; Shimizu, Masumi; Owaki, Atsuko; Paoletti, Samantha; Mori, Lucia; De Libero, Gennaro; Takahashi, Hidemi

    2016-01-01

    Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates CD1 expression besides MHC. Moreover, CD1d-restricted CD4(+) NKT cells are infected by HIV-1, reducing the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/glycolipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral therapy.

  20. Down-regulation of peroxisome proliferator activated receptor γ coactivator 1α induces oxidative stress and toxicity of 1-(4-Chlorophenyl)-benzo-2,5-quinone in HaCaT human keratinocytes

    PubMed Central

    Xiao, Wusheng; Goswami, Prabhat C.

    2015-01-01

    Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that is known to regulate oxidative stress response by enhancing the expression of antioxidant genes. We have shown previously that 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone-metabolite of 4-monochlorobiphenyl (PCB3) induces oxidative stress and toxicity in human skin keratinocytes, and breast and prostate epithelial cells. In this study, we investigate whether PGC-1α regulates oxidative stress and toxicity in 4-ClBQ treated HaCaT human keratinocytes. Results showed significant down-regulation in the expression of PGC-1α and catalase in 4-ClBQ treated HaCaT cells. Down-regulation of PGC-1α expression was associated with 4-ClBQ induced increase in the steady-state levels of cellular reactive oxygen species (ROS) and toxicity. Overexpression of pgc-1α enhanced the expression of catalase and suppressed 4-ClBQ induced increase in cellular ROS levels and toxicity. These results suggest that pgc-1α mediates 4-ClBQ induced oxidative stress and toxicity in HaCaT cells presumably by regulating catalase expression. PMID:26004620

  1. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    SciTech Connect

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho . E-mail: ykim@knu.ac.kr

    2007-07-15

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 {mu}M) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins.

  2. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation.

    PubMed

    Sun, Zhengwu; Lan, Xiaoyan; Ahsan, Anil; Xi, Yalin; Liu, Shumin; Zhang, Zonghui; Chu, Peng; Song, Yushu; Piao, Fengyuan; Peng, Jinyong; Lin, Yuan; Han, Guozhu; Tang, Zeyao

    2016-03-01

    Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.

  3. Glucagon-like peptide 2 prevents down-regulation of intestinal multidrug resistance-associated protein 2 and P-glycoprotein in endotoxemic rats.

    PubMed

    Arana, Maite Rocío; Tocchetti, Guillermo Nicolás; Zecchinati, Felipe; Londero, Ana Sofía; Dominguez, Camila; Perdomo, Virginia; Rigalli, Juan Pablo; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo

    2017-08-23

    Multidrug resistance-associated protein 2 (Mrp2, ABCC2) and P-glycoprotein (P-gp, ABCB1) constitute essential components of the intestinal biochemical barrier that prevent incorporation of food contaminants, drugs or toxic metabolites into the blood stream. Endotoxemia induced in rats by administration of bacterial lipopolysaccharide (LPS) results in elevated intestinal permeability and toxicity of xenobiotics in part associated with down-regulation of expression and activity of Mrp2 and P-gp. We evaluated the protective effect of glucagon-like peptide 2 (GLP-2), a peptide hormone with enterotrophic properties, on Mrp2 and P-gp alterations induced by single i.p. injection of LPS (5mg/kg b.wt.) to rats. Two different protocols of GLP-2 administration, namely prevention and reversion, were examined. The prevention protocol consisted of 7s.c. injections of GLP-2 (125μg/kg b.wt.) administered every 12h, starting 60h before LPS administration. The reversion protocol consisted of 2 doses of GLP-2, starting 3h after LPS injection. Intestinal samples were collected 24h after LPS administration and expression (protein and mRNA) and activity of Mrp2 were evaluated in proximal jejunum whereas those of P-gp were studied in ileum. GLP-2 completely neutralized down-regulation of expression of Mrp2 and P-gp and loss of their respective activities induced by LPS under prevention protocol. GLP-2 was also able to prevent internalization of both transporters from the apical membrane of the enterocyte to intracellular compartments, as detected by confocal microscopy. LPS induced an increase in IL-1β and oxidized glutathione tissue levels, which were also counterbalanced by GLP-2 administration. In contrast, the reversion protocol failed to attenuate Mrp2 and P-gp down-regulation induced by LPS. We conclude that GLP-2 can prevent down-regulation of intestinal expression and activity of Mrp2 and P-gp in endotoxemic rats and that IL-1β and oxidative stress constitute potential targets

  4. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  5. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  6. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    PubMed

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  8. Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells.

    PubMed

    Khodagholi, Fariba; Tusi, Solaleh Khoramian

    2011-08-01

    The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.

  9. Flavones Inhibit LPS-Induced Atrogin-1/MAFbx Expression in Mouse C2C12 Skeletal Myotubes.

    PubMed

    Shiota, Chieko; Abe, Tomoki; Kawai, Nobuhiko; Ohno, Ayako; Teshima-Kondo, Shigetada; Mori, Hiroyo; Terao, Junji; Tanaka, Eiji; Nikawa, Takeshi

    2015-01-01

    Muscle atrophy is a complex process that occurs as a consequence of various stress events. Muscle atrophy-associated genes (atrogenes) such as atrogin-1/MAFbx and MuRF-1 are induced early in the atrophy process, and the increase in their expression precedes the loss of muscle weight. Although antioxidative nutrients suppress atrogene expression in skeletal muscle cells, the inhibitory effects of flavonoids on inflammation-induced atrogin-1/MAFbx expression have not been clarified. Here, we investigated the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced atrogin-1/MAFbx expression. We examined whether nine flavonoids belonging to six flavonoid categories inhibited atrogin-1/MAFbx expression in mouse C2C12 myotubes. Two major flavones, apigenin and luteolin, displayed potent inhibitory effects on atrogin-1/MAFbx expression. The pretreatment with apigenin and luteolin significantly prevented the decrease in C2C12 myotube diameter caused by LPS stimulation. Importantly, the pretreatment of LPS-stimulated myoblasts with these flavones significantly inhibited LPS-induced JNK phosphorylation in C2C12 myotubes, resulting in the significant suppression of atrogin-1/MAFbx promoter activity. These results suggest that apigenin and luteolin, prevent LPS-mediated atrogin-1/MAFbx expression through the inhibition of the JNK signaling pathway in C2C12 myotubes. Thus, these flavones, apigenin and luteolin, may be promising agents to prevent LPS-induced muscle atrophy.

  10. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.

    PubMed

    Ramani, Vijay; Madhusoodhanan, Rakhesh; Kosanke, Stanley; Awasthi, Shanjana

    2013-12-01

    The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.

  11. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  12. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  13. Escin Increases the Survival Rate of LPS-Induced Septic Mice Through Inhibition of HMGB1 Release from Macrophages.

    PubMed

    Cheng, Yajun; Wang, Hongrui; Mao, Min; Liang, Chao; Zhang, Yu; Yang, Deijun; Wei, Ziran; Gao, Shunxiang; Hu, Bo; Wang, Lianghua; Cai, Qingping

    2015-01-01

    Previous studies have described the effects of Escin on improving the survival rate of endotoxemic animals. The purpose of this study was to explore the molecular mechanisms of this potentially beneficial treatment. First, the survival rate of endotoxemic mice was monitored for up to 2 weeks after Escin pretreatment, Escin post-treatment, or Escin post-treatment + rHMGB1. The effects of Escin on the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and HMGB1 in the serum of endotoxemic mice and LPS-induced macrophages were evaluated by ELISA. Furthermore, the mRNA and protein levels of HMGB1 in LPS-induced macrophages were measured by qRT-PCR and Western blot, respectively. Additionally, the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 was evaluated by ELISA in rHMGB1-induced macrophages. Finally, the protein levels and the activity of NF-κB in macrophages were checked by Western blot and ELISA, respectively. Both pretreatment and post-treatment with Escin could improve the survival rate of endotoxemic mice, while exogenous rHMGB1 reversed this effect. In addition, Escin decreased the level of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 and HMGB1 in endotoxemic mice and in LPS-induced macrophages. Escin could also inhibit the mRNA levels and activity of HMGB1. The release of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 could be suppressed in rHMGB1-induced macrophages by Escin. Finally, Escin could suppress the activation of NF- κB in LPS-induced macrophages. Escin could improve the survival of mice with LPS-induced endotoxemia. This effect maybe meditated by reducing the release of HMGB1, resulting in the suppression of the release of pro-inflammatory cytokines. © 2015 S. Karger AG, Basel.

  14. Low-Dose Endothelial-Monocyte-Activating Polypeptide-II Induced Autophagy by Down-Regulating miR-20a in U-87 and U-251 Glioma Cells.

    PubMed

    Chen, Jiajia; Liu, Libo; Liu, Yunhui; Liu, Xiaobai; Qu, Chengbin; Meng, Fanjie; Ma, Jun; Lin, Yang; Xue, Yixue

    2016-01-01

    Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) induces autophagy and inhibits the viability of glioma cells via an unknown molecular mechanism. This study explored the possible mechanisms associated with EMAP-II-induced autophagy in glioma cells by regulation of the expression of microRNA-20a (miR-20a). EMAP-II effectively inhibited the viability, migration and invasion of human U-87 and U-251 glioma cells. EMAP-II also up-regulated the expression level of autophagy biomarker microtubule-associated protein one light chain 3 (LC3)-II/I, autophagy related gene ATG7 and ATG5, but down-regulated autophagy substrate P62/SQSTM1 protein expression. The expression levels of miR-20a decreased significantly after U-87 and U-251 cells were treated with EMAP-II. MiR-20a overexpression partly reversed the EMAP-II-induced up-regulation of LC3-II/I and down-regulation of P62/SQSTM1. MiR-20a had a negative regulatory effect on the expression of the proteins ATG7 and ATG5; which were also targets of miR-20a, as detected by a dual-luciferase reporter assay. In addition, both EMAP-II and miR-20a inhibition significantly reduced the viability, migration and invasion of U-87 and U-251 cells, and their combination showed a synergistic effect. Furthermore, nude mice carrying silencing-expressed miR-20a combined with EMAP-II treatment produced the smallest tumors and the highest survival. In summary, low-dose EMAP-II increased expression levels of ATG5 and ATG7 via down-regulation of the expression of miR-20a. This activated the autophagy pathway, thereby significantly inhibiting the viability, migration and invasion of U-87 and U-251 glioma cells. The combined treatment of EMAP-II with a miR-20a inhibitor showed a synergistic effect against glioma.

  15. Low-Dose Endothelial-Monocyte-Activating Polypeptide-II Induced Autophagy by Down-Regulating miR-20a in U-87 and U-251 Glioma Cells

    PubMed Central

    Chen, Jiajia; Liu, Libo; Liu, Yunhui; Liu, Xiaobai; Qu, Chengbin; Meng, Fanjie; Ma, Jun; Lin, Yang; Xue, Yixue

    2016-01-01

    Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) induces autophagy and inhibits the viability of glioma cells via an unknown molecular mechanism. This study explored the possible mechanisms associated with EMAP-II-induced autophagy in glioma cells by regulation of the expression of microRNA-20a (miR-20a). EMAP-II effectively inhibited the viability, migration and invasion of human U-87 and U-251 glioma cells. EMAP-II also up-regulated the expression level of autophagy biomarker microtubule-associated protein one light chain 3 (LC3)-II/I, autophagy related gene ATG7 and ATG5, but down-regulated autophagy substrate P62/SQSTM1 protein expression. The expression levels of miR-20a decreased significantly after U-87 and U-251 cells were treated with EMAP-II. MiR-20a overexpression partly reversed the EMAP-II-induced up-regulation of LC3-II/I and down-regulation of P62/SQSTM1. MiR-20a had a negative regulatory effect on the expression of the proteins ATG7 and ATG5; which were also targets of miR-20a, as detected by a dual-luciferase reporter assay. In addition, both EMAP-II and miR-20a inhibition significantly reduced the viability, migration and invasion of U-87 and U-251 cells, and their combination showed a synergistic effect. Furthermore, nude mice carrying silencing-expressed miR-20a combined with EMAP-II treatment produced the smallest tumors and the highest survival. In summary, low-dose EMAP-II increased expression levels of ATG5 and ATG7 via down-regulation of the expression of miR-20a. This activated the autophagy pathway, thereby significantly inhibiting the viability, migration and invasion of U-87 and U-251 glioma cells. The combined treatment of EMAP-II with a miR-20a inhibitor showed a synergistic effect against glioma. PMID:27242439

  16. Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine.

    PubMed

    Chintapakorn, Yupynn; Hamill, John D

    2003-09-01

    Nicotiana tabacum L. produces a number of pyridine alkaloids, with nicotine representing the major component and anatabine comprising most of the remainder of the alkaloid fraction. An antisense approach was used here to down-regulate activity of the important enzyme putrescine N-methyltransferase (PMT) in transformed roots of this species to determine effects upon alkaloid metabolism. Transformed root lines were produced that contained markedly reduced PMT activity, with a concomitant reduction in nicotine content compared to controls. No negative effects upon growth were observed. Several antisense-PMT transformed root lines, and also leaf tissues of regenerated transformed plants, showed a substantial increase in anatabine content relative to controls. Northern hybridization experiments indicated that the antisense-PMT manipulation had little or no effect upon the transcript levels of other genes encoding enzymes involved in alkaloid metabolism, including quinolinate acid phosphoribosyltransferase (QPT). The latter enzyme plays a key role in regulating the synthesis of nicotinic acid which supplies the pyridine ring necessary for both nicotine and anatabine synthesis. We suggest that elevated anatabine levels in antisense-PMT lines are a direct consequence of a relative oversupply of nicotinic acid which, in the absence of adequate levels of 1-methyl-delta(1)-pyrrolinium cation (the ultimate product of PMT activity), is used to synthesise anatabine directly. As is discussed, no naturally occurring species or varieties of Nicotiana are known that typically produce high levels of anatabine in root or leaf tissues, meaning that the antisense PMT transgenics produced in this study have no natural counterpart. These experiments thus represent an example of metabolic engineering of plant pyridine metabolism, via antisense down-regulation of gene expression in a contributing pathway leading to secondary metabolite biosynthesis.

  17. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    PubMed

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  18. Tanshinone IIA protects rabbits against LPS-induced disseminated intravascular coagulation (DIC).

    PubMed

    Wu, Liang-Cai; Lin, Xi; Sun, Hao

    2012-10-01

    To evaluate the effects of tanshinone IIA (Tan IIA), a lipophilic diterpene from the Chinese herb Salvia miltiorrhiza, on lipopolysaccharide (LPS)-induced disseminated intravascular coagulation (DIC) in rabbits. LPS-induced DIC model was made in adult male New Zealand rabbits by continuous intravenous infusion of LPS (0.5 mg/kg) via marginal ear vein for 6 h. The animals were simultaneously administered with Tan IIA (1, 3 and 10 mg/kg) or heparin (500 000 IU/kg) through continuous infusion via the contralateral marginal ear vein for 6 h. Before and 2 and 6 h after the start of LPS infusion, blood samples were taken for biochemical analyses. Continuous infusion of LPS into the rabbits gradually impaired the hemostatic parameters, damaged renal and liver functions, increased the plasma TNF-α level, and led to a high mortality rate (80%). Treatment of the rabbits with Tan IIA dose-dependently attenuated the increase in activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrin-fibrinogen degradation products (FDP); ameliorated the decrease in plasma levels of fibrinogen and platelets; and reversed the decline in activity of protein C and antithrombin III. Meanwhile, the treatment significantly suppressed the increase in the plasma levels of aminotransferase, creatinine and TNF-α, and led to much lower mortality (46.7% and 26.7% for the medium- and high-dose groups). Treatment of the rabbits with the high dose of heparin also effectively improved the hemostatic parameters, ameliorated liver and renal injuries, and reduced the plasma level of TNF-α, and significantly reduced the mortality (33.3%). Tan IIA exerts a protective effect against DIC in rabbits.

  19. LPS-induced systemic inflammation is more severe in P2Y12 null mice

    PubMed Central

    Liverani, Elisabetta; Rico, Mario C.; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y.; Kilpatrick, Laurie E.; Kunapuli, Satya P.

    2014-01-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade. PMID:24142066

  20. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines.

    PubMed

    Mali, A V; Wagh, U V; Hegde, M V; Chandorkar, S S; Surve, S V; Patole, M V

    2012-01-01

    Actin cytoskeleton is involved in actin-based cell adhesion, cell motility, and matrix metalloproteinases(MMPs) MMP2, MMP9, MMP11 and MMP14 are responsible for cell invasion in breast cancer metastasis. The dietary intake of lignan from flax seed gets converted to enterolactone (EL) and enterodiol in the human system. Here we show that the enterolactone has a very significant anti-metastatic activity as demonstrated by its ability to inhibit adhesion and invasion and migration in MCF-7 and MDA MB231 cell lines. Migration inhibition assay, actin-based cell motility assay along with reverse transcriptase polymerase chain reaction (RT-PCR) for MMP2, MMP9, MMP11 and MMP14 genes were performed in MCF-7 and MDA MB 231 cell lines. Enterolactone seems to inhibit actin-based cell motility as evidenced by confocal imaging and photo documentation of cell migration assay. The results are supported by the observation that the enterolactone in vitro significantly down-regulates the metastasis-related metalloproteinases MMP2, MMP9 and MMP14 gene expressions. No significant alteration in the MMP11 gene expression was found. Therefore we suggest that the anti-metastatic activity of EL is attributed to its ability to inhibit cell adhesion, cell invasion and cell motility. EL affects normal filopodia and lamellipodia structures, polymerization of actin filaments at their leading edges and thereby inhibits actin-based cell adhesion and cell motility. The process involves multiple force-generating mechanisms of actin filaments i.e. protrusion, traction, deadhesion and tail-retraction. By down-regulating the metastasis-related MMP2, MMP9 and MMP14 gene expressions, EL may be responsible for cell invasion step of metastasis.

  1. Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4α in Vitro and in Vivo*

    PubMed Central

    Zhao, Zhenhuan; Hong, Wei; Zeng, Zhengyang; Wu, Yingliang; Hu, Kanghong; Tian, Xiaohui; Li, Wenxin; Cao, Zhijian

    2012-01-01

    Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources. PMID:22791717

  2. Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes.

    PubMed

    Schmelzer, Constance; Döring, Frank

    2010-01-01

    Coenzyme Q(10) (CoQ(10)) is an obligatory element in the respiratory chain and functions as a potent antioxidant of lipid membranes. More recently, anti-inflammatory effects as well as an impact of CoQ(10) on gene expression have been observed. To reveal putative effects of Q(10) on LPS-induced gene expression, whole genome expression analysis was performed in the monocytic cell line THP-1. Thousand one hundred twenty-nine and 710 probe sets have been identified to be significantly (P activity (ERC1), cytokinesis (DIAPH2), or modulation of oxidative stress (MSRA). In conclusion, our data provide evidence that Q(10) downregulates LPS-inducible genes in the monocytic cell line THP-1. Thus, the previously described effects of Q(10) on the reduction of proinflammatory mediators might be due to its antioxidant impact on gene expression.

  3. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome.

    PubMed

    Gadang, Vidya; Gilbert, William; Hettiararchchy, Navam; Horax, Ronny; Katwa, Laxmansa; Devareddy, Latha

    2011-01-01

    The objective of this study was to examine the extent to which bitter melon seed (BMS) alleviates the symptoms associated with metabolic syndrome and elucidate the mechanism by which BMS exerts beneficial effects. Three-month-old female Zucker rats were assigned to following groups: lean control (L-Ctrl), obese control (O-Ctrl), and obese + BMS (O-BMS). The control groups were fed AIN-93M purified rodent diet, and the O-BMS group was fed AIN-93M diet modified to contain 3.0% (wt/wt) ground BMS for 100 days. After 100 days of treatment, BMS supplementation in the obese rats lowered the total serum cholesterol by 38% and low-density lipoprotein-cholesterol levels by about 52% and increased the ratio of serum high-density lipoprotein-cholesterol to total cholesterol compared to the O-Ctrl group. The percentage of total liver lipids was about 32% lower and serum triglyceride levels were 71% higher in the O-BMS group compared to the O-Ctrl group. Serum glucose levels were significantly lowered partly because of the increase in the serum insulin levels in the BMS-based diet groups. BMS supplementation increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the white adipose tissue of the obese rats significantly (P < .05) and down-regulated the expression of PPAR-γ, nuclear factor-κB (NF-κB), and interferon-γ mRNA in heart tissue of the obese rats. The findings of this study suggest that BMS improves the serum and liver lipid profiles and serum glucose levels by modulating PPAR-γ gene expression. To our knowledge, this study for the first time shows that BMS exerts cardioprotective effects by down-regulating the NF-κB inflammatory pathway.

  4. Lysine-specific demethylase 1 (LSD1/KDM1A) contributes to colorectal tumorigenesis via activation of the Wnt/β-catenin pathway by down-regulating Dickkopf-1 (DKK1) [corrected].

    PubMed

    Huang, Zebin; Li, Shangze; Song, Wei; Li, Xin; Li, Qinshan; Zhang, Zeyan; Han, Yongqing; Zhang, Xiaodong; Miao, Shiying; Du, Runlei; Wang, Linfang

    2013-01-01

    We collected paired samples of tumor and adjacent normal colorectal tissues from 22 patients with colorectal carcinoma to compare the differences in the expression of lysine specific demethylase 1 (LSD1) in these two tissues. The results showed that in 19 paired samples (86.4%), LSD1 is more highly expressed in tumor tissue than in normal tissue. To explore the role of LSD1 in colorectal tumorigenesis, we used somatic cell gene targeting to generate an LSD1 knockout (KO) HCT 116 human colorectal cancer cell line as a research model. The analysis of phenotypic changes showed that LSD1 KO colorectal cancer cells are less tumorigenic, both in vivo and in vitro. The differential expression analysis of the cells by mRNA sequencing (RNA-Seq) yielded 2,663 differentially expressed genes, and 28 of these genes had highly significant differences (Q <0.01). We then selected the 4 colorectal cancer-related genes ADM, DKK1, HAS3 and SMURF2 for quantitative real-time PCR verification. The results showed that the differences in the expression of ADM, DKK1 and HAS3 were consistent with those measured using the RNA-Seq data. As DKK1 was the gene with the most significant differential expression, we analyzed the key proteins of the DKK1-related Wnt/β-catenin signaling pathway and found that, after knocking out LSD1, the amount of free β-catenin translocated to the nucleus was significantly reduced and that the transcription of the signaling pathway target gene c-Myc was down-regulated. Our studies show that LSD1 activates the Wnt/β-catenin signaling pathway by down-regulating the pathway antagonist DKK1, which may be one of the mechanisms leading to colorectal tumorigenesis.

  5. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages.

    PubMed

    Wu, Trang-Tiau; Tsai, Chia-Wen; Yao, Hsien-Tsung; Lii, Chong-Kuei; Chen, Haw-Wen; Wu, Yu-Ling; Chen, Pei-Yin; Liu, Kai-Li

    2010-08-30

    Coriandrum sativum is used not only as a spice to aid flavour and taste values in food, but also as a folk medicine in many countries. Since little is known about the anti-inflammatory ability of the aerial parts (stem and leaf) of C. sativum, the present study investigated the effect of aerial parts of C. sativum on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We further explored the molecular mechanism underlying these pharmacological properties of C. sativum. Ethanolic extracts from both stem and leaf of C. sativum (CSEE) significantly decreased LPS-induced nitric oxide and prostaglandin E(2) production as well as inducible nitric oxide synthase, cyclooxygenase-2, and pro-interleukin-1beta expression. Moreover, LPS-induced IkappaB-alpha phosphorylation and nuclear p65 protein expression as well as nuclear factor-kappaB (NF-kappaB) nuclear protein-DNA binding affinity and reporter gene activity were dramatically inhibited by aerial parts of CSEE. Exogenous addition of CSEE stem and leaf significantly reduced LPS-induced expression of phosphorylated mitogen-activated protein kinases (MAPKs). Our data demonstrated that aerial parts of CSEE have a strong anti-inflammatory property which inhibits pro-inflammatory mediator expression by suppressing NF-kappaB activation and MAPK signal transduction pathway in LPS-induced macrophages. Copyright (c) 2010 Society of Chemical Industry.

  6. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK

    PubMed Central

    Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos; Kirkwood, Keith Lough; Rossa, Carlos

    2013-01-01

    Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK. PMID:24011306

  7. Galectin-8 Induces Apoptosis in Jurkat T Cells by Phosphatidic Acid-mediated ERK1/2 Activation Supported by Protein Kinase A Down-regulation*

    PubMed Central

    Norambuena, Andrés; Metz, Claudia; Vicuña, Lucas; Silva, Antonia; Pardo, Evelyn; Oyanadel, Claudia; Massardo, Loreto; González, Alfonso; Soza, Andrea

    2009-01-01

    Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity. PMID:19276072

  8. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  9. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  10. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.

    PubMed

    Bonfig, Katharina B; Gabler, Andrea; Simon, Uwe K; Luschin-Ebengreuth, Nora; Hatz, Martina; Berger, Susanne; Muhammad, Naseem; Zeier, Jürgen; Sinha, Alok K; Roitsch, Thomas

    2010-11-01

    There is increasing evidence that pathogens do not only elicit direct defense responses, but also cause pronounced changes in primary carbohydrate metabolism. Cell-wall-bound invertases belong to the key regulators of carbohydrate partitioning and source-sink relations. Whereas studies have focused so far only on the transcriptional induction of invertase genes in response to pathogen infection, the role of post-translational regulation of invertase activity has been neglected and was the focus of the present study. Expression analyses revealed that the high mRNA level of one out of three proteinaceous invertase inhibitors in source leaves of Arabidopsis thaliana is strongly repressed upon infection by a virulent strain of Pseudomonas syringae pv. tomato DC3000. This repression is paralleled by a decrease in invertase inhibitor activity. The physiological role of this regulatory mechanism is revealed by the finding that in situ invertase activity was detectable only upon infection by P. syringae. In contrast, a high invertase activity could be measured in vitro in crude and cell wall extracts prepared from both infected and non-infected leaves. The discrepancy between the in situ and in vitro invertase activity of control leaves and the high in situ invertase activity in infected leaves can be explained by the pathogen-dependent repression of invertase inhibitor expression and a concomitant reduction in invertase inhibitor activity. The functional importance of the release of invertase from post-translational inhibition for the defense response was substantiated by the application of the competitive chemical invertase inhibitor acarbose. Post-translational inhibition of extracellular invertase activity by infiltration of acarbose in leaves was shown to increase the susceptibility to P. syringae. The impact of invertase inhibition on spatial and temporal dynamics of the repression of photosynthesis and promotion of bacterial growth during pathogen infection supports

  11. Active compound of Zingiber cassumunar Roxb. down-regulates the expression of genes involved in joint erosion in a human synovial fibroblast cell line.

    PubMed

    Chaiwongsa, Rujirek; Ongchai, Siriwan; Boonsing, Phorani; Kongtawelert, Prachya; Panthong, Ampai; Reutrakul, Vichai

    2012-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovium. It is involved in up-regulation of pro-inflammatory cytokines and matrix metalloproteinases (MMPs), resulting in joint inflammation and erosion. Zingiber cassumunar Roxb. has long been used to reduce joint pain and inflammation. This study aimed to investigate the inhibitory activities of an active compound of Z. cassumunar, (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol (compound D), against cytokine-induced up-regulation of catabolic genes involved in cartilage degradation in RA. Synovial fibroblast cell line, SW982, was cultured in media containing interleukin-1β (IL-1β), in the presence or absence of compound D at the concentration range of 1 to 100 µM. After 24 hours, the cells were analyzed for the expressions of MMPs, IL-1β and interleukin-1β-converting enzyme (ICE) by RT-PCR. MMPs activities in the culture media were analyzed by zymographic techniques. Dexamethasone was used as the positive control. It was found that compound D at the concentration of 10 - 100 µM significantly decreased the mRNA expressions of MMP-1, -2, -3, and -13 which was induced by IL-1β (P<0.05) concomitantly with a decrease in activities of these MMPs in the culture media. An increase in the mRNA expression of IL-1β and ICE was also suppressed by compound D. The results suggest that the potent activities of this compound may be involved in the reduction of IL-1β protein synthesis in both pro-form and active form which played an important role in up-regulation of MMPs. This study first revealed the chondroprotective activity of Z. cassumunar in the transcriptional level by suppressing cytokine-induced catabolic genes which caused cartilage erosion in RA.

  12. Salvianolic Acid B Down-regulates Matrix Metalloproteinase-9 Activity and Expression in Tumor Necrosis Factor-α-induced Human Coronary Artery Endothelial Cells

    PubMed Central

    Ma, Le; Guan, Yun-Qian; Du, Zhong-Dong

    2015-01-01

    Background: Salvianolic acid B (Sal B) is a bioactive water-soluble compound of Salviae miltiorrhizae, a traditional herbal medicine that has been used clinically for the treatment of cardiovascular diseases. This study sought to evaluate the effect of Sal B on matrix metalloproteinase-9 (MMP-9) and on the underlying mechanisms in tumor necrosis factor-α (TNF-α)-activated human coronary artery endothelial cells (HCAECs), a cell model of Kawasaki disease. Methods: HCAECs were pretreated with 1–10 μmol/L of Sal B, and then stimulated by TNF-α at different time points. The protein expression and activity of MMP-9 were determined by Western blot assay and gelatin zymogram assay, respectively. Nuclear factor-κB (NF-κB) activation was detected with immunofluorescence, electrophoretic mobility shift assay, and Western blot assay. Protein expression levels of mitogen-activated protein kinase (c-Jun N-terminal kinase [JNK], extra-cellular signal-regulated kinase [ERK], and p38) were determined by Western blot assay. Results: After HCAECs were exposed to TNF-α, 1–10 μmol/L Sal B significantly inhibited TNF-α-induced MMP-9 expression and activity. Furthermore, Sal B significantly decreased IκBα phosphorylation and p65 nuclear translocation in HCAECs stimulated with TNF-α for 30 min. In addition, Sal B decreased the phosphorylation of JNK and ERK1/2 proteins in cells treated with TNF-α for 10 min. Conclusions: The data suggested that Sal B suppressed TNF-α-induced MMP-9 expression and activity by blocking the activation of NF-κB, JNK, and ERK1/2 signaling pathways. PMID:26415806

  13. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  14. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2.

    PubMed

    Simon, Marie Françoise; Daviaud, Danièle; Pradère, Jean Philippe; Grès, Sandra; Guigné, Charlotte; Wabitsch, Martin; Chun, Jerold; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2005-04-15

    Lysophosphatidic acid (LPA) is a bioactive phospholipid acting via specific G protein-coupled receptors that is synthesized at the extracellular face of adipocytes by a secreted lysophospholipase D (autotaxin). Preadipocytes mainly express the LPA(1) receptor subtype, and LPA increases their proliferation. In monocytes and CV1 cells LPA was recently reported to bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor also known to play a pivotal role in adipogenesis. Here we show that, unlike the PPARgamma agonist rosiglitazone, LPA was unable to increase transcription of PPARgamma-sensitive genes (PEPCK and ALBP) in the mouse preadipose cell line 3T3F442A. In contrast, treatment with LPA decreased PPARgamma2 expression, impaired the response of PPARgamma-sensitive genes to rosiglitazone, reduced triglyceride accumulation, and reduced the expression of adipocyte mRNA markers. The anti-adipogenic activity of LPA was also observed in the human SGBS (Simpson-Golabi-Behmel syndrome) preadipocyte cell line, as well as in primary preadipocytes isolated from wild type mice. Conversely, the anti-adipogenic activity of LPA was not observed in primary preadipocytes from LPA(1) receptor knock-out mice, which, in parallel, exhibited a higher adiposity than wild type mice. In conclusion, LPA does not behave as a potent PPARgamma agonist in adipocytes but, conversely, inhibits PPARgamma expression and adipogenesis via LPA(1) receptor activation. The local production of LPA may exert a tonic inhibitory effect on the development of adipose tissue.

  15. CD4+ T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids

    PubMed Central

    Brix, Susanne; Lund, Pia; Kjaer, Tanja M R; Straarup, Ellen M; Hellgren, Lars I; Frøkiær, Hanne

    2010-01-01

    Appropriate activation of CD4+ T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4+ T-cell activation is dependent on changes in membrane n-3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T cells, while the presence of CD40 and CD86 on DCs inversely affected inducible costimulator (ICOS) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) levels in CD4+ T cells. For all DC stimuli, cells high in n-3 PUFAs showed reduced ability to respond to CD28 stimulation, to proliferate, and to express ICOS and CTLA-4. Diminished T-cell receptor (TCR) and CD28 signalling was found to be responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4+ T-cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels, thereby affecting and shaping activation of acquired immunity by differential regulation of proliferation and costimulatory molecule expression in CD4+ T cells. PMID:19909377

  16. Down-regulation of acyl-CoA oxidase gene expression and increased NF-kappaB activity in etomoxir-induced cardiac hypertrophy.

    PubMed

    Cabrero, Agatha; Merlos, Manuel; Laguna, Juan C; Carrera, Manuel Vázquez

    2003-02-01

    Activation of nuclear factor-kappaB (NF-kappaB) is required for hypertrophic growth of cardiomyocytes. Etomoxir is an irreversible inhibitor of carnitine palmitoyltransferase I (CPT-I) that activates peroxisome proliferator-activated receptor alpha (PPARalpha) and induces cardiac hypertrophy through an unknown mechanism. We studied the mRNA expression of genes involved in fatty acid oxidation in the heart of mice treated for 1 or 10 days with etomoxir (100 mg/kg/day). Etomoxir administration for 1 day significantly increased (4.4-fold induction) the mRNA expression of acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in peroxisomal beta-oxidation. In contrast, etomoxir treatment for 10 days dramatically decreased ACO mRNA levels by 96%. The reduction in ACO expression in the hearts of 10-day etomoxir-treated mice was accompanied by an increase in the mRNA expression of the antioxidant enzyme glutathione peroxidase and the cardiac marker of oxidative stress bax. Moreover, the activity of the redox-regulated transcription factor NF-kappaB was increased in heart after 10 days of etomoxir treatment. Overall, the findings here presented show that etomoxir treatment may induce cardiac hypertrophy via increased cellular oxidative stress and NF-kappaB activation.

  17. DOWN-REGULATION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3 IMPROVES HUMAN ACUTE MYELOID LEUKEMIA-DERIVED DENDRITIC CELL FUNCTION

    PubMed Central

    Brady, Michael T.; Miller, Austin; Sait, Sheila N.; Ford, Laurie A.; Minderman, Hans; Wang, Eunice S.; Lee, Kelvin P.; Baumann, Heinz; Wetzler, Meir

    2013-01-01

    Signal transducer and activator of transcription (STAT) 3 inhibits dendritic cell (DC) differentiation and is constitutively activated in blasts of approximately half of AML patients. We investigated the correlation between STAT3 activity, DC maturation and the ability to stimulate T-cells in primary acute myeloid leukemia (AML)-derived DCs. STAT3 knock-down by shRNAmir increased the ability of AML-DCs to stimulate T-cells. Treatment of AML-DC with arsenic trioxide, but not AG490, JSI-124 or NSC-74859, led to a more mature phenotype and enhanced T-cell stimulation, while having minimal effect on normal DC. We conclude that AML-DCs have improved immunogenicity after reducing STAT3. PMID:23628554

  18. PKCα activation down-regulates ATM and radio-sensitizes androgen-sensitive human prostate cancer cells in vitro and in vivo

    PubMed Central

    Truman, Jean-Philip; Rotenberg, Susan A.; Kang, Ji-Hye; Lerman, Gabriel; Fuks, Zvi; Kolesnick, Richard; Marquez, Victor E.; Haimovitz-Friedman, Adriana

    2009-01-01

    We previously demonstrated that treatment of human androgen-responsive prostate cancer cell lines LNCaP and CWR22-Rv1 with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known protein kinase C (PKC) activator, decreases ATM protein levels, thus de-repressing the enzyme ceramide synthase (CS) and promoting apoptosis as well as radio-sensitizing these cells.1 Here we show that PKCα mediates the TPA effect on ATM expression, since ATM suppression and apoptosis induced by either TPA or diacylglycerol-lactone (DAG-lactone), both inducing PKCα activation,2 are abrogated in LNCaP cells following transfection of a kinase-dead PKCα mutant (KD-PKCα). Similarly, KD-PKCα blocks the apoptotic response elicited by combination of TPA and radiation, whereas expression of constitutively active PKCα is sufficient to sensitize cells to radiation alone, without a need to pre-treat the cells with TPA. These findings identify CS activation as a downstream event of PKCα activity in LNCaP cells. Similar results were obtained in CWR22-Rv1 cells with DAG-lactone treatment. Using the LNCaP orthotopic prostate model it is shown that treatment with TPA or DAG-lactone induces significant reduction in tumor ATM levels coupled with tumor growth delay. Furthermore, while fractionated radiation alone produces significant tumor growth delay, pretreatment with TPA or DAG-lactone significantly potentiates tumor cure. These findings support a model in which activation of PKCα downregulates ATM, thus relieving CS repression by ATM and enhancing apoptosis via ceramide generation. This model may provide a basis for the design of new therapies in prostate cancer. PMID:19029835

  19. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  20. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways.

    PubMed

    Zhang, Ao; Pan, Weiyun; Lv, Juan; Wu, Hui

    2017-03-16

    The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.

  1. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  2. Ability of Interleukin-33- and Immune Complex-Triggered Activation of Human Mast Cells to Down-Regulate Monocyte-Mediated Immune Responses.

    PubMed

    Rivellese, Felice; Suurmond, Jolien; Habets, Kim; Dorjée, Annemarie L; Ramamoorthi, Nandhini; Townsend, Michael J; de Paulis, Amato; Marone, Gianni; Huizinga, Tom W J; Pitzalis, Costantino; Toes, René E M

    2015-09-01

    Mast cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). In particular, their activation by interleukin-33 (IL-33) has been linked to the development of arthritis in animal models. The aim of this study was to evaluate the functional responses of human mast cells to IL-33 in the context of RA. Human mast cells were stimulated with IL-33 combined with plate-bound IgG or IgG anti-citrullinated protein antibodies (ACPAs), and their effects on monocyte activation were evaluated. Cellular interactions of mast cells in RA synovium were assessed by immunofluorescence analysis, and the expression of messenger RNA (mRNA) for mast cell-specific genes was evaluated in synovial biopsy tissue from patients with early RA who were naive to treatment with disease-modifying antirheumatic drugs. IL-33 induced the up-regulation of Fcγ receptor type IIa and enhanced the activation of mast cells by IgG, including IgG ACPAs, as indicated by the production of CXCL8/IL-8. Intriguingly, mast cell activation triggered with IL-33 and IgG led to the release of mediators such as histamine and IL-10, which inhibited monocyte activation. Synovial mast cells were found in contact with CD14+ monocyte/macrophages. Finally, mRNA levels of mast cell-specific genes were inversely associated with disease severity, and IL-33 mRNA levels showed an inverse correlation with the levels of proinflammatory markers. When human mast cells are activated by IL-33, an immunomodulatory phenotype develops, with human mast cells gaining the ability to suppress monocyte activation via the release of IL-10 and histamine. These findings, together with the presence of synovial mast cell-monocyte interactions and the inverse association between the expression of mast cell genes at the synovial level and disease activity, suggest that these newly described mast cell-mediated inhibitory pathways might have a functional relevance in the pathogenesis of RA. © 2015, American College of Rheumatology.

  3. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells.

    PubMed

    Zhao, Bo-xin; Sun, Ya-bin; Wang, Sheng-qi; Duan, Lian; Huo, Qi-lu; Ren, Fei; Li, Guo-feng

    2013-01-01

    The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB) activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-κB ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic.

  4. Linoleic Acid-Induced Growth Inhibition of Human Gastric Epithelial Adenocarcinoma AGS Cells is Associated with Down-Regulation of Prostaglandin E2 Synthesis and Telomerase Activity

    PubMed Central

    Choi, Yung Hyun

    2014-01-01

    Background: Linoleic acid is the most abundant polyunsaturated fatty acid in human nutrition and found in most vegetable oils and certain food products. In the present study, we investigated the effects of linoleic acid on the growth of human epithelial adenocarcinoma AGS cells. Methods: MTT assay, flow cytometry, RT-PCR and Western-blot analyses were used to investigate the effects and underlying mechanisms of linoleic acid on AGS cells. The effects of this compound were also tested on prostaglandin E2 (PGE2) production and telomerase activity. Results: Our data indicated that growth inhibition of AGS cells by linoleic acid treatment was associated with induction of apoptosis. Linoleic acid treatment decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of PGE2 synthesis. Linoleic acid treatment also decreased the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, and activity of telomerase, with inhibiting the expression of c-myc in a concentration-dependent manner. Conclusions: Taken together, our results indicate that linoleic acid inhibits the production of PGE2 and activity of telomerase by suppressing COX-2 and hTERT expression. PMID:25337570

  5. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    SciTech Connect

    Yang, Shuo; Li, Xianan; Cheng, Liang; Wu, Hongwei; Zhang, Can; Li, Kanghua

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  6. Activation of autophagic flux by epigallocatechin gallate mitigates TRAIL-induced tumor cell apoptosis via down-regulation of death receptors

    PubMed Central

    Park, Sang-Youel

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea. Recent studies have reported that EGCG can inhibit TRAIL-induced apoptosis and activate autophagic flux in cancer cells. However, the mechanism behind these processes is unclear. The present study found that EGCG prevents tumor cell death by antagonizing the TRAIL pathway and activating autophagy flux. Our results indicate that EGCG dose-dependently inhibits TRAIL-induced apoptosis and decreases the binding of death receptor 4 and 5 (DR4 and 5) to TRAIL. In addition, EGCG activates autophagy flux, which is involved in the inhibition of TRAIL cell death. We confirmed that the protective effect of EGCG can be reversed using genetic and pharmacological tools through re-sensitization to TRAIL. The inhibition of autophagy flux affects not only the re-sensitization of tumor cells to TRAIL, but also the restoration of death receptor proteins. This study demonstrates that EGCG inhibits TRAIL-induced apoptosis through the manipulation of autophagic flux and subsequent decrease in number of death receptors. On the basis of these results, we suggest further consideration of the use of autophagy activators such as EGCG in combination anti-tumor therapy with TRAIL. PMID:27582540

  7. Down-Regulation of miR-146a Expression Induces Allergic Conjunctivitis in Mice by Increasing TSLP Level

    PubMed Central

    Sun, Wen; Sheng, Yan; Chen, Jie; Xu, Dong; Gu, Yangshun

    2015-01-01

    Background Pollen is the most common aeroallergen to cause conjunctivitis. In this study, we established a short ragweed (SRW)-induced mouse model of allergic conjunctivitis (AC) and aimed to explore the potential role of miR-146a and its downstream molecules in the development of ocular allergic inflammation. Material/Methods The mouse model of challenge pollen was used for in vivo study. The culture model of primary human limbal epithelium (HLE) exposed to lipopolysaccharide (LPS) was performed for in vitro research. The numbers of eosinophils and total inflammatory cells were examined using Giemsa staining. The expression of mRNA and miR-146a was determined by quantitative RT-PCR, and protein production was evaluated by Western blotting. Results In vivo of mice, pollen challenge induced conjunctiva inflammatory response indicated by increased number of eosinophils and total inflammatory cells. Interestingly, pollen significantly attenuated miR-146a expression while it enhanced expression of thymic stromal lymphopoietin (TSLP) and its downstream molecules, including TSLP receptor (TSLPR)/ OX40 ligand (OX40L)/CD11C. In vitro of HCE, downregulation effect of miR-146a expression induced by LPS was reversed by Bay treatment, an inhibitor for nuclear factor kappa B (NF-κB), and LPS-induced cell inflammation is mediated by miR-146a-TSLP/TSLPR/OX40L/CD11C signaling pathway. This was further demonstrated by overexpression of miR-146a in mouse abrogated pollen-triggered conjunctiva inflammatory reaction as well as pollen-induced activity of TSLP/TSLPR/OX40L/CD11C signaling. Conclusions Down-regulation of miR-146a expression induces allergic conjunctivitis in mice by increasing TSLP level. PMID:26166175

  8. In vitro inhibitory effects of terpenoids from Chloranthus multistachys on epithelial-mesenchymal transition via down-regulation of Runx2 activation in human breast cancer.

    PubMed

    Fu, Jianjiang; Wang, Shan; Lu, Hong; Ma, Junchao; Ke, Xiaoqin; Liu, Ting; Luo, Yongming

    2015-01-15

    From Chloranthus multistachys, three terpenoids - lupeol (1), henrilabdane B (2), and istanbulin A (3) were isolated. Structures of compounds were established by NMR and MS. We reported here that ISTA (3) suppressed cell invasion, but lupeol (1) and henrilabdane B (2) did not. Furthermore, ISTA significantly inhibited the ability of adhesion and migration in vitro. Next, mechanisms of ISTA-induced inhibitory effects on in vitro metastasis were investigated. Sequential treatment data revealed that ISTA dramatically inhibited EGF-induced EMT. Western blot indicated that ISTA also significantly suppressed expression of E-cadherin, vimentin, and slug. In addition, ISTA inhibited Runx2 activation and phosph-Runx2 expression. Collectively, ISTA exhibited significant inhibitory effects on in vitro metastatic potential via inducing EMT inhibition, which may be associated with inhibition of transcriptional activity of Runx2.

  9. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal.

    PubMed Central

    Gottlieb, E; Haffner, R; von Rüden, T; Wagner, E F; Oren, M

    1994-01-01

    Overexpression of wild-type p53 in p53-deficient leukemic cells induces apoptosis, which can be inhibited by hematopoietic survival factors. This suggests that p53 may contribute to survival factor dependence. To assess the role of wild-type p53 in mediating apoptosis following survival factor withdrawal, we interfered with endogenous p53 activity in interleukin-3 (IL-3)-dependent cells. Extended survival without IL-3 was conferred by recombinant retroviruses encoding either a full-length p53 mutant or a C-terminal p53 miniprotein, both of which can act as negative-dominant inhibitors of wild-type p53. On the other hand, excess wild-type p53 activity failed to elicit apoptosis as long as IL-3 was present. We propose that p53 is a positive, though not exclusive, mediator of survival factor dependence in hematopoietic cells. Images PMID:8137820

  10. Hydroxysafflor yellow A of Carthamus tinctorius attenuates lung injury of aged rats exposed to gasoline engine exhaust by down-regulating platelet activation.

    PubMed

    Wang, Chaoyun; Wang, Chunhua; Ma, Chunlei; Huang, Qingxian; Sun, Hongliu; Zhang, Xiaomin; Bai, Xianyong

    2014-02-15

    Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation.

  11. Down-regulation of bile acid synthesis and a metabolic co-activator under hypoxic conditions - implications in obstructive sleep apnea.

    PubMed

    Johnson, Paul R

    2008-10-01

    Obstructive sleep apnea is characterized by episodes of intermittent hypoxia that occur while the afflicted person sleeps, and is believed to affect and have a negative impact on many people worldwide. Both observational evidence in obstructive sleep apnea patients and direct studies in mice mimicking the disease strongly support an increased risk for atherosclerosis in these groups. Studies to date on atherosclerosis in obstructive sleep apnea have been focused on cholesterol synthesis. However, dysregulation of bile acid synthesis, which is an important means of cholesterol removal, has not been considered in any sleep disorder model to date. While the relationship between hypoxia and bile acid regulation has been explored in a variety of models, no unifying theory currently ties in the pathologic effect of intermittent hypoxia on bile acid regulation in humans or animals. The goal of this article is to propose the role intermittent hypoxia plays in disrupting bile acid synthesis in patients with obstructive sleep apnea, and its metabolic consequences. Reviewed and discussed are the complex interactions of several key molecular players known to be involved in metabolism with emphasis on the principle bile acid synthesis enzyme, cholesterol 7-alpha-hydroxylase, which is proposed to have reduced activity under hypoxic conditions. Furthermore, the metabolic consequences of reduced levels of active peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) under hypoxia, and hypothetically in obstructive sleep apnea, are explored. A better molecular understanding of bile acid synthesis and metabolic dysregulation in this context will hopefully promote the study of new targets in human sleep apneas, and encourage clinical trials using existing therapeutic and dietary interventions in patients afflicted with these conditions.

  12. Taurine and niacin block lung injury and fibrosis by down-regulating bleomycin-induced activation of transcription nuclear factor-kappaB in mice.

    PubMed

    Gurujeyalakshmi, G; Wang, Y; Giri, S N

    2000-04-01

    The effects of taurine (T) and niacin (N) on bleomycin (BL)-induced increased production of tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1alpha, IL-6, and transforming growth factor-beta (TGF-beta) levels in the bronchoalveolar lavage fluid (BALF), and increased collagen content and nuclear factor-kappaB (NF-kappaB) activation in the lungs were investigated in mice. The mice were intratracheally instilled with saline (SA) or BL (0.1 U/mouse/50 microliter) under ketamine and xylazine anesthesia. They had ad libitum access to diet containing 2.5% niacin (w/w) or the same control diet (CD) and water with and without taurine (1%) 3 days before intratracheal instillation and throughout the study. The mice were sacrificed at different times for collecting BALF and lungs, which were appropriately processed for various measurements. Treatment with taurine and niacin attenuated the BL-induced increases in proinflammatory cytokines such as IL-1alpha, TNF-alpha, IL-6, and TGF-beta in BALF and lung hydroxyproline content of the mice in BL + TN groups. Reverse transcription-polymerase chain reaction analysis of total RNA from whole lung was performed to assess the induction of TNF-alpha and IL-1 mRNAs as markers of NF-kappaB activation. The NF-kappaB DNA-binding activity in whole-lung extract was evaluated by electrophoretic mobility shift assay. This revealed a progressive increase in NF-kappaB activation and IkBalpha depletion in lungs from mice in BL + CD groups from day 1 through day 21 compared with the corresponding SA + CD control groups. Treatment with taurine and niacin generally inhibited the BL-induced increases in the nuclear localization of NF-kappaB and preserved IkappaBalpha protein in BL + TN groups. This may be one of the mechanisms for the antifibrotic effect of taurine and niacin.

  13. Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog.

    PubMed

    MacKichan, M L; DeFranco, A L

    1999-01-15

    Ceramide and ceramide-activated enzymes have been implicated in responses to bacterial lipopolysaccharide (LPS) and the proinflammatory cytokines tumor necrosis factor-alpha (TNF) and interleukin-1beta (IL-1). Although TNF and IL-1 cause elevation of cellular ceramide, which is thought to act as a second messenger, LPS has been proposed to signal by virtue of structural similarity to ceramide. We have investigated the relationship between ceramide and LPS by comparing the effects of a cell-permeable ceramide analog (C2-ceramide) and LPS on murine macrophage cell lines and by measuring ceramide levels in macrophages exposed to LPS. We found that while both C2-ceramide and LPS activated c-Jun N-terminal kinase (JNK), only LPS also activated extracellular signal-regulated kinases (ERKs). C2-ceramide was also unable to activate NF-kappaB, a transcription factor important for LPS-induced gene expression. Upon measurement of cellular ceramide in macrophage lines, we observed a small but rapid rise in ceramide, similar to that seen upon IL-1 or TNF treatment, suggesting LPS induces an increase in ceramide rather than interacting directly with ceramide-responsive enzymes. We found that C2-ceramide activated JNK and induced growth arrest in macrophages cell lines from both normal mice (Lpsn) and mice genetically unresponsive to LPS (Lpsd), whereas only Lpsn macrophages made these responses to LPS. Surprisingly, LPS treatment of Lpsd macrophages induced a rise in ceramide similar to that observed in LPS-responsive cells. These results indicate that the wild type Lps allele is not required for LPS-induced ceramide generation and suggest that ceramide elevation alone is insufficent stimulus for most responses to LPS.

  14. Chronic lymphocytic choriomeningitis virus infection actively down-regulates CD4+ T cell responses directed against a broad range of epitopes.

    PubMed

    Mothé, Bianca R; Stewart, Barbara S; Oseroff, Carla; Bui, Huynh-Hoa; Stogiera, Stephanie; Garcia, Zacarias; Dow, Courtney; Rodriguez-Carreno, Maria Pilar; Kotturi, Maya; Pasquetto, Valerie; Botten, Jason; Crotty, Shane; Janssen, Edith; Buchmeier, Michael J; Sette, Alessandro

    2007-07-15

    Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.

  15. Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing.

    PubMed

    Schnappauf, Oskar; Beyes, Sven; Dertmann, Annika; Freihen, Vivien; Frey, Patrick; Jägle, Sabine; Rose, Katja; Michoel, Tom; Grosschedl, Rudolf; Hecht, Andreas

    2016-11-01

    Transcriptional silencing is a major cause for the inactivation of tumor suppressor genes, however, the underlying mechanisms are only poorly understood. The EPHB2 gene encodes a receptor tyrosine kinase that controls epithelial cell migration and allocation in intestinal crypts. Through its ability to restrict cell spreading, EPHB2 functions as a tumor suppressor in colorectal cancer whose expression is frequently lost as tumors progress to the carcinoma stage. Previously we reported that EPHB2 expression depends on a transcriptional enhancer whose activity is diminished in EPHB2 non-expressing cells. Here we investigated the mechanisms that lead to EPHB2 enhancer inactivation. We show that expression of EPHB2 and SNAIL1 - an inducer of epithelial-mesenchymal transition (EMT) - is anti-correlated in colorectal cancer cell lines and tumors. In a cellular model of Snail1-induced EMT, we observe that features of active chromatin at the EPHB2 enhancer are diminished upon expression of murine Snail1. We identify the transcription factors FOXA1, MYB, CDX2 and TCF7L2 as EPHB2 enhancer factors and demonstrate that Snail1 indirectly inactivates the EPHB2 enhancer by downregulation of FOXA1 and MYB. In addition, Snail1 induces the expression of Lymphoid enhancer factor 1 (LEF1) which competitively displaces TCF7L2 from the EPHB2 enhancer. In contrast to TCF7L2, however, LEF1 appears to repress the EPHB2 enhancer. Our findings underscore the importance of transcriptional enhancers for gene regulation under physiological and pathological conditions and show that SNAIL1 employs a combinatorial mechanism to inactivate the EPHB2 enhancer based on activator deprivation and competitive displacement of transcription factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord.

    PubMed

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  17. LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells.

    PubMed

    Shin, Jung-Young; Kim, Jeong-Oh; Lee, Suk Kyeong; Chae, Hiun-Suk; Kang, Jin-Hyoung

    2010-08-13

    As EBV-associated gastric cancer has unique features that are different from EBV (-) gastric cancer, EBV is considered to have a key role in gastric carcinogenesis. It has been reported that viral latent membrane protein 2A (LMP2A) in EBV-transformed tumor cells activates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which provides a survival signal and chemo-resistance to cytotoxic anti-cancer drugs. This study was to evaluate anti-proliferative effect and cell cycle change when 5-FU and LY294002 (LY), a selective inhibitor of PI3K, were treated separately or combined with different schedules in EBV positive gastric cancer cell line, SNU-719. After single treatment and sequential combination of 5-FU and LY, cytotoxic activity was measured by MTS assay. When 5-FU and LY were treated in single and sequential combinations, the expression of p-AKT, p-NFkB, p-p53 and bcl-2 was observed on different concentrations by Western blot analysis. We also investigated the effect on apoptosis and cell cycle distribution using flow cytometry. The LMP2A siRNA inhibition was done to confirm the reversal of decreased 5-FU activity and p-AKT. When 5-FU was sequentially combined with LY, the combination index (CI) value indicated synergistic anti-proliferative effect. The expression of p-AKT and p-NF kappaB was upregulated by 5-FU alone but sequential treatment of 5-FU and LY decreased the expression of both p-AKT and p-NF kappaB. When 5-FU was combined with LY, G0/G1 and sub G1 cell population (%) increased. When 5-FU was added to the cells transfected with LMP2A siRNA, its anti-proliferative effect increased and the expression of p-AKT decreased. In sequential combination of 5-FU and LY, the expression of p-p53 was increased and bcl-2 expression was diminished compared to 5-FU alone. These data suggest that sequential combination of 5-FU and LY induce synergistic cytotoxicity and overcome intrinsic and acquired resistance of 5-FU via downregulation of activated p-AKT and

  18. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  19. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR

    PubMed Central

    Verbrugge, Sue Ellen; Al, Marjon; Assaraf, Yehuda G.; Kammerer, Sarah; Chandrupatla, Durga M.S.H.; Honeywell, Richard; Musters, Rene P.J.; Giovannetti, Elisa; O'Toole, Tom; Scheffer, George L.; Krige, David; de Gruijl, Tanja D.; Niessen, Hans W.M.; Lems, Willem F.; Kramer, Pieternella A.; Scheper, Rik J.; Cloos, Jacqueline; Ossenkoppele, Gert J.; Peters, Godefridus J.; Jansen, Gerrit

    2016-01-01

    Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells. CHR2863 enters cells by diffusion and is retained therein upon esterase activity-mediated conversion to its hydrophilic active metabolite drug CHR6768, thereby exerting amino acid depletion. Carboxylesterases (CES) serve as candidate prodrug activating enzymes given CES1 expression in acute myeloid leukemia specimens. We established two novel myeloid leukemia sublines U937/CHR2863(200) and U937/CHR2863(5uM), with low (14-fold) and high level (270-fold) CHR2863 resistance. The latter drug resistant cells displayed: (i) complete loss of CES1-mediated drug activation associated with down-regulation of CES1 mRNA and protein, (ii) marked retention/sequestration of the prodrug, (iii) a substantial increase in intracellular lipid droplets, and (iv) a dominant activation of the pro-survival Akt/mTOR pathway. Remarkably, the latter feature coincided with a gain of sensitivity to the mTOR inhibitor rapamycin. These finding delineate the molecular basis of CHR2863 resistance and offer a novel modality to overcome this drug resistance in myeloid leukemia cells. PMID:26496029

  20. Distal-less homeobox 5 inhibits adipogenic differentiation through the down-regulation of peroxisome proliferator-activated receptor γ expression.

    PubMed

    Lee, Hye-Lim; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2013-01-01

    Distal-less homeobox 5 (Dlx5) is a positive regulator of osteoblast differentiation that contains a homeobox domain. Because there are possible reciprocal relationships between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (MSCs), we examined the regulatory role of Dlx5 in adipogenic differentiation in this study. Adipogenic stimuli suppressed the expression levels of Dlx5 mRNA in mouse bone marrow stromal cells. Over-expression of Dlx5 inhibited adipogenic differentiation in human bone marrow MSCs and 3T3-L1 preadipocytic cells whereas knockdown of Dlx5 enhanced adipogenic differentiation in 3T3-L1 cells. Over-expression of Dlx5 suppressed the expression of adipogenic marker genes, including CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). Dlx5-mediated suppression of adipogenic differentiation was overcome by over-expression of PPARγ but not by that of cAMP response element binding protein (CREB) or C/EBPα. Dlx5 decreased the transcriptional activity of CREB and C/EBPα in a dose-dependent manner. Dlx5 directly bound to CREB and C/EBPα and prevented them from binding to and subsequently transactivating the PPARγ promoter. These results suggest that Dlx5 plays an important regulatory role in fate determination of bone marrow MSCs toward the osteoblast lineage through the inhibition of adipocyte differentiation as well as the direct stimulation of osteoblast differentiation.

  1. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents.

    PubMed

    Guo, Rui; Pan, Fuqiang; Tian, Yanping; Li, Hongli; Li, Shirong; Cao, Chuan

    2016-06-01

    ClC-3, a member of the ClC chloride (Cl(-)) channel family, has recently been proposed as the primary Cl(-) channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl(-) current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl(-) channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies.

  2. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression.

    PubMed

    Jiao, Han-Wei; Jia, Xiao-Xiao; Zhao, Tian-Jing; Rong, Hui; Zhang, Jia-Ning; Cheng, Ying; Zhu, Hua-Pei; Xu, Kai-Lian; Guo, Shi-Yu; Shi, Qiao-Yun; Zhang, Hui; Wang, Feng-Yang; Chen, Chuang-Fu; Du, Li

    2016-01-01

    As a component of the outer membrane in Gram-negative bacteria, lipopolysaccharide (LPS)-induced proliferation and cell cycle progression of monocytes/macrophages. It has been suggested that the proapoptotic T-cell death-associated gene 51 (TDAG51) might be associated with cell proliferation and cell cycle progression; however, its role in the interaction between LPS and macrophages remains unclear. We attempted to elucidate the role(s) of TDAG51 played in the interaction between LPS and macrophages. We investigated TDAG51 expression in RAW264.7 cells stimulated with LPS and examined the effects of RNA interference-mediated TDAG51 down-regulation. We used CCK-8 assay and flow cytometry analysis to evaluate the interaction between TDAG51 and LPS-induced proliferation and cell cycle progression in RAW264.7 cells. Our findings indicate that TDAG51 is up-regulated in LPS-stimulated RAW264.7 cells, the TDAG51 siRNA effectively reduced TDAG51 protein up-regulation following LPS stimulation in RAW264.7 cells, the significant changes of the proliferation and cell cycle progression of RAW264.7 cells in TDAG51 Knockdown RAW264.7 cells treated with LPS were observed. These findings suggested that TDAG51 up-regulation is a dependent event during LPS-mediated proliferation and cell cycle progression, and which increase our understanding of the interaction mechanism between LPS and macrophages.

  3. Galphas-coupled receptor signaling actively down-regulates α4β1-integrin affinity: A possible mechanism for cell de-adhesion

    PubMed Central

    Chigaev, Alexandre; Waller, Anna; Amit, Or; Sklar, Larry A

    2008-01-01

    Background Activation of integrins in response to inside-out signaling serves as a basis for leukocyte arrest on endothelium, and migration of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule (i.e. change in the affinity for the ligand and molecular unbending (extension)), which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic stem cells, hematopoietic cancer cells, and others. Affinity and extension of VLA-4 are both rapidly up-regulated by inside-out signaling through several Gαi-coupled GPCRs. The goal of the current report was to study the effect of Gαs-coupled GPCRs upon integrin activation. Results Using real-time fluorescent ligand binding to assess affinity and a FRET based assay to probe α4β1-integrin unbending, we show that two Gαs-coupled GPCRs (H2-histamine receptor and β2-adrenergic receptor) as well as several cAMP agonists can rapidly down modulate the affinity of VLA-4 activated through two Gαi-coupled receptors (CXCR4 and FPR) in U937 cells and primary human peripheral blood monocytes. This down-modulation can be blocked by receptor-specific antagonists. The Gαs-induced responses were not associated with changes in the expression level of the Gαi-coupled receptors. In contrast, the molecular unbending of VLA-4 was not significantly affected by Gαs-coupled GPCR signaling. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by Gαs-coupled GPCR had a statistically significant effect upon cell aggregation. Conclusion We conclude that Gαs-coupled GPCRs can rapidly down modulate the affinity state of VLA-4 binding pocket through a cAMP dependent pathway. This plays an essential role in the regulation of cell adhesion. We discuss several possible implications of this described phenomenon. PMID:18534032

  4. Activated macrophages down-regulate expression of E-cadherin in hepatocellular carcinoma cells via NF-κB/Slug pathway.

    PubMed

    Wang, Xianteng; Wang, Hao; Li, Guosheng; Song, Yonghong; Wang, Shurong; Zhu, Faliang; Guo, Chun; Zhang, Lining; Shi, Yongyu

    2014-09-01

    Hepatocellular carcinomas are an aggressive malignancy mainly due to metastasis or postsurgical recurrence. Expression of E-cadherin is strongly reduced in Hepatocellular carcinoma (HCC) tissues, and its downregulation is connected to invasiveness and metastasis in hepatocellular carcinomas. The previous study showed that the supernatant from activated macrophages can downregulate the expression of E-cadherin in HCC cells. The partial known molecular mechanism is that tyrosine kinases c-Src- and EGFR phosphorylate β-catenin and E-cadherin leading to destabilization of E-cadherin/β-catenin complex. The aim of this study is to clarify other mechanism by which activated macrophages downregulate the expression of E-cadherin. We detect the expression of E-cadherin and macrophage infiltration in hepatocellular carcinoma tissues by double-staining immunohistochemistry and evaluate the relationship between macrophages and E-cadherin expression in hepatocellular carcinoma cells in vitro experiments. We found that reduced expression of E-cadherin was associated with macrophage infiltration along the border between the tumor nest and stroma in hepatocellular carcinoma tissues. Besides, protein expression of E-cadherin was significantly decreased in hepatocellular carcinoma cells co-cultured with macrophages derived from THP-1 cells. Consistently, mRNA expression of E-cadherin was also decreased in cancer cells co-cultured with THP-1-differentiated macrophages. Moreover, the downregulation of E-cadherin expression was companied by upregulation of Slug expression in cancer cells with conditional medium from THP-1-differentiated macrophage culture. The change in expression of E-cadherin and Slug was abrogated when NF-κB signaling pathway was blocked. All the findings suggested that macrophages contributed to the decreased expression of E-cadherin by NF-κB/Slug pathway in hepatocellular carcinomas.

  5. HMG-CoA reductase inhibitor improves endothelial dysfunction in spontaneous hypertensive rats via down-regulation of caveolin-1 and activation of endothelial nitric oxide synthase.

    PubMed

    Suh, Jung-Won; Choi, Dong-Ju; Chang, Hyuk-Jae; Cho, Young-Seok; Youn, Tae-Jin; Chae, In-Ho; Kim, Kwang-Il; Kim, Cheol-Ho; Kim, Hyo-Soo; Oh, Buyng-Hee; Park, Young-Bae

    2010-01-01

    Hypertension is associated with endothelial dysfunction and increased cardiovascular risk. Caveolin-1 regulates nitric oxide (NO) signaling by modulating endothelial nitric oxide synthase (eNOS). The purpose of this study was to examine whether HMG-CoA reductase inhibitor improves impaired endothelial function of the aorta in spontaneous hypertensive rat (SHR) and to determine the underlying mechanisms involved. Eight-week-old male SHR were assigned to either a control group (CON, n=11) or a rosuvastatin group (ROS, n=12), rosuvastatin (10 mg/kg/day) administered for eight weeks. Abdominal aortic rings were prepared and responses to acetylcholine (10(-9)-10(-4) M) were determined in vitro. To evaluate the potential role of NO and caveolin-1, we examined the plasma activity of NOx, eNOS, phosphorylated-eNOS and expression of caveolin-1. The relaxation in response to acetylcholine was significantly enhanced in ROS compared to CON. Expression of eNOS RNA was unchanged, whereas NOx level and phosphorylated-eNOS at serine-1177 was increased accompanied with depressed level of caveolin-1 in ROS. We conclude that 3-Hydroxy-3-methylglutaryl Coenzyme-A (HMG-CoA) reductase inhibitor can improve impaired endothelial dysfunction in SHR, and its underlying mechanisms are associated with increased NO production. Furthermore, HMG-CoA reductase inhibitor can activate the eNOS by phosphorylation related to decreased caveolin-1 abundance. These results imply the therapeutic strategies for the high blood pressure-associated endothelial dysfunction through modifying caveolin status.

  6. Hydrogen sulfide down-regulates BACE1 and PS1 via activating PI3K/Akt pathway in the brain of APP/PS1 transgenic mouse.

    PubMed

    He, Xuan-Li; Yan, Ning; Chen, Xiao-Shan; Qi, Yun-Wen; Yan, Yong; Cai, Zhiyou

    2016-10-01

    Endogenous hydrogen sulfide (H2S) may have multiple physiological functions in brain. Our previous study showed that H2S improved spatial memory impairment and decreased the production of Aβ in APP/PS1 transgenic mice. However, many of the underlying mechanisms are not still being elucidated. The aim of the present study is to investigate the neuroprotective mechanisms of H2S involving in the activity of β-secretase (BACE1), γ-secretase (PS1) and α-secretase (ADAM17). Morris water maze was used to measure the behavior change. The levels of Aβ40 and Aβ42 were quantified using colorimetric ELISA kits and immunohistochemical analysis. The levels of BACE1, PS1, ADAM17, pAkt, pp38MAPK, pERK and pJNK were tested by Western blot analysis in normal mice, APP/PS1 transgenic mice and 50μmol/kg-NaHS-treated transgenic mice. On the basis of exogenous H2S treatment, LY294002 (inhibitors of PI3K/Akt) or PD98059 (inhibitors of MAPK/ERK) was injected into lateral cerebral ventricle. The levels of BACE1, PS1 and pp38MAPK were increased and ADAM17 were decreased in the APP/PS1 transgenic mice. After intraperitoneal administration of an H2S donor (NaHS) into APP/PS1 mice, the levels of BACE1, PS1 and pp38MAPK were reduced and ADAM17 increased. The level of pp38 MAPKs, pAkt and pERK1/2 was increased in APP/PS1 transgenic mice compared with normal mice (p<0.05). There was no difference in the expression of pJNK between AD transgenic mice and normal mice (p>0.05). These results demonstrated that LY294002 inhibited the effect of H2S on decreasing the BACE1 and PS1, reducing the level of Aβ and improving memory impairment in APP/PS1 transgenic mice. PD98059 had no influence on the expression of BACE1 and PS1. H2S inhibits the expression of BACE1 and PS1 by activating PI3K/Akt pathway in AD. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation.

    PubMed

    Zhang, Sheng-Wei; Li, Chen-Hui; Cao, Jia; Zhang, Yong-Cun; Zhang, Su-Qiao; Xia, Yu-Feng; Sun, Da-Ye; Sun, Ying

    2009-12-01

    Plant architecture is determined by genetic and developmental programs as well as by environmental factors. Sessile plants have evolved a subtle adaptive mechanism that allows them to alter their growth and development during periods of stress. Phytohormones play a central role in this process; however, the molecules responsible for integrating growth- and stress-related signals are unknown. Here, we report a gain-of-function rice (Oryza sativa) mutant, tld1-D, characterized by (and named for) an increased number of tillers, enlarged leaf angles, and dwarfism. TLD1 is a rice GH3.13 gene that encodes indole-3-acetic acid (IAA)-amido synthetase, which is suppressed in aboveground tissues under normal conditions but which is dramatically induced by drought stress. The activation of TLD1 reduced the IAA maxima at the lamina joint, shoot base, and nodes, resulting in subsequent alterations in plant architecture and tissue patterning but enhancing drought tolerance. Accordingly, the decreased level of free IAA in tld1-D due to the conjugation of IAA with amino acids greatly facilitated the accumulation of late-embryogenesis abundant mRNA compared with the wild type. The direct regulation of such drought-inducible genes by changes in the concentration of IAA provides a model for changes in plant architecture via the process of drought adaptation, which occurs frequently in nature.

  8. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1.

    PubMed

    Takeda, Junko; Park, Ha-Young; Kunitake, Yuri; Yoshiura, Keiko; Matsui, Toshiro

    2013-06-15

    In the small intestine, peptide transporter 1 (PEPT1) plays a role in the transport of di- and tripeptides. In this study, we investigated whether theaflavins (TFs) affect the absorption of small peptides in human intestinal Caco-2 cells, since TFs do not penetrate through the cells and might be involved in intestinal transport systems. In transport experiments, the transport of glycyl-sarcosine (Gly-Sar, a model molecule for PEPT1 transport) and other dipeptides (Val-Tyr and Ile-Phe) were significantly reduced (P<0.05) in TFs-pretreated cells. In TF 3'-O-gallate-pretreated cells, Western blot analysis revealed attenuated expression of PEPT1 transporter and Gly-Sar transport was completely ameliorated by 10 μM Compound C, an AMP-activated protein kinase (AMPK) inhibitor. In conclusion, the present study demonstrated that TFs inhibit peptide transport across Caco-2 cell monolayers, probably through suppression of AMPK-mediated PEPT1 expression, which should be considered a new bioactivity of TFs in black tea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon isolated from marine algae-derived microorganisms induce down regulation of epidermal growth factor activated mitogenic signaling cascade in Hela cells

    PubMed Central

    2013-01-01

    Background Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase (RTK) family. Epidermal growth factor induces its dimerization and stimulates phosphorylation of intracellular tyrosine residues. Phosphorylation of EGFR is studied for cancer therapy because EGFR regulates many cellular processes including cell proliferation, differentiation, and survival. Hence, down-regulation of EGFR kinase activity results in inhibition of signaling cascades amenable for proliferation and progression of cell cycle. Methods In the study, we purified 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon from Aspergillus sp. isolated from marine brown alga Ishige okamurae and Phoma herbarum isolated from marine red alga Hypnea saidana respectively and determined its anti-tumor activities against HeLa human cervical cancer cells. Results Two compounds suppressed EGFR activity in vitro with IC50 values for 3,4-dihydroxyphenyl acetic acid and (+)-epoxydon were 2.8 and 0.6 μg/mL respectively and reduced the viable numbers of HeLa cells. Immunoblotting analysis exhibited that the compounds induced inhibition of cell growth by causing downregulation of the mitogenic signaling cascade, inactivation of p90RSK, and release of cytochrome c from mitochondria. Conclusions Results suggest that decreased expression of active EGFR and EGFR-related downstream molecules by treatment with the compounds may results in the inhibition of cell growth and inducement of apoptosis. PMID:23706036

  10. Nitric oxide down-regulation of carotenoid synthesis and PSII activity in relation to very high light-induced singlet oxygen production and oxidative stress in Chlamydomonas reinhardtii.

    PubMed

    Chang, Hsueh-Ling; Hsu, Yuan-Ting; Kang, Cheng-Yang; Lee, Tse-Min

    2013-08-01

    Nitric oxide (NO) was produced in Chlamydomonas reinhardtii cells 30 min after illumination at a very high light intensity of 3,000 µmol m⁻² s⁻¹ (VHL) followed by singlet oxygen (¹O₂) production, lipid peroxidation, expression of oxidative stress-related genes, irreversible PSII inactivation and cell death. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), an NO scavenger, effectively reduced ¹O₂ levels and VHL damage, while treatment with diphenylamine (DPA), an ¹O₂ scavenger, only slightly reduced NO levels, though VHL damage was still effectively reduced. In the presence of cPTIO, the decline in minimum (Fo, Ft) and maximum (Fm, Fm') fluorescence after 60 min of VHL illumination can be slowed, and after recovery to 50 µmol m⁻² s⁻¹ conditions, PSII activity (Fv/Fm, Fv'/Fm') and PSII donor-side and acceptor-side electron transfer were partially restored. This finding indicates that ¹O₂ production is induced by NO through inhibition of PSII electron transfer under VHL conditions. VHL illumination caused a decrease in carotenoid contents but a transient increase in the transcription of two enzymes involved in carotenoid synthesis, phytoene synthase (PSY) and phytoene desaturase (PDS), at 30 min followed by a decrease at 60 min. The VHL-induced decrease in PDS transcription can be inhibited in the presence of cPTIO. The results of the present study show that NO generated in C. reinhardtii cells under VHL conditions induces ¹O₂ accumulation due to a decrease in the ¹O₂-scavenging capacity caused by NO-mediated inhibition of carotenoid synthesis and PSII electron transport, which, in turn, leads to oxidative damage and cell death.

  11. Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway.

    PubMed

    Huang, X; Li, Y; Zhang, J; Xu, Y; Tian, Y; Ma, K

    2013-07-01

    Two related sublines derived from murine ascites hepatoma cell lines Hca-F25, which were selected for their markedly different metastatic potential to lymph nodes, were found to be distinct in their ganglioside patterns. The low metastatic cell line (HcaP) contained a major ganglioside GM3, whereas the high metastatic cell line (HcaF) contained a major ganglioside GM2. Suppression of GM3 by P4 enhanced the mobility and migration of the low metastatic HcaP cells in vitro. Increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 inhibited the mobility and migration. These results suggested that the differences in lymphatic metastasis potential between these two cell lines could be attributed to the differences in their ganglioside compositions, and GM3 could suppress the motility and migration of these cells. Further, we investigated the mechanism by which GM3 suppressed the cell mobility and migration. The results showed that suppression of GM3 synthesis by P4 in low metastatic HcaP cells promoted PKB/Akt phosphorylation at Ser473 and Thr308, and phosphorylation of EGFR at the Tyr1173. In contrast, increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 into the culture medium suppressed phosphorylation of PKB/Akt and EGFR at the same residues. Taken together, these results suggested that the mechanism of GM3-suppressed cell motility and migration may involve the inhibition of phosphorylation of EGFR and the activity of PI3K/AKT signaling pathway. Copyright © 2013 Wiley Periodicals, Inc.

  12. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  13. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury

    PubMed Central

    Yao, Lu; Chen, Weina; Song, Kyoungsub; Han, Chang; Gandhi, Chandrashekhar R.; Lim, Kyu; Wu, Tong

    2017-01-01

    The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism

  14. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    PubMed Central

    2010-01-01

    Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 μg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 μg/mL), or CA (0.384 μg/mL), or CO (0.057 μg/mL) or FA (0.038 μg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1β (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces a

  15. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata.

    PubMed

    Pearson, Wendy; Fletcher, Ronald S; Kott, Laima S; Hurtig, Mark B

    2010-05-11

    A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 microg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 microg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 microg/mL), or CA (0.384 microg/mL), or CO (0.057 microg/mL) or FA (0.038 microg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1beta (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). RA concentration of HRAMsim and CMsim was 49.3 and 0.4 microg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (> or = 8 microg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (> or = 80 microg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Our biological extraction procedure produces a

  16. DT-13, a saponin of dwarf lilyturf tuber, exhibits anti-cancer activity by down-regulating C-C chemokine receptor type 5 and vascular endothelial growth factor in MDA-MB-435 cells.

    PubMed

    Ren-Ping, Zhao; Sen-Sen, Lin; Yuan, Sheng-Tao; Yu, Bo-Yang; Bai, Xian-Shu; Sun, Li; Zhang, Lu-Yong

    2014-01-01

    To investigate the anticancer activity of DT-13 under normoxia and determine the underlying mechanisms of action. MDA-MB-435 cell proliferation, migration, and adhesion were performed to assess the anticancer activity of DT-13, a saponin from Ophiopogon japonicus, in vitro. In addition, the effects of DT-13 on tumor growth and metastasis in vivo were evaluated by orthotopic implantation of MDA-MB-435 cells into nude mice; mRNA levels of vascular endothelial growth factor (VEGF), C-C chemokine receptor type 5 (CCR5) and hypoxia-inducible factor 1α (HIF-1α) were evaluated by real-time quantitative PCR; and CCR5 protein levels were detected by Western blot assay. At 0.01 to 1 μmol·L(-1), DT-13 inhibited MDA-MB-435 cell proliferation, migration, and adhesion significantly in vitro. DT-13 reduced VEGF and CCR5 mRNAs, and decreased CCR5 protein expression by down-regulating HIF-1α. In addition, DT-13 inhibited MDA-MB-435 cell lung metastasis, and restricted tumor growth slightly in vivo. DT-13 inhibited MDA-MB-435 cell proliferation, adhesion, and migration in vitro, and lung metastasis in vivo by reducing VEGF, CCR5, and HIF-1α expression. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells.

    PubMed

    Jové, Mireia; Planavila, Anna; Laguna, Juan Carlos; Vázquez-Carrera, Manuel

    2005-07-01

    The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. Here, we report that exposure of C2C12 skeletal muscle cells to 0.5 mm palmitate results in increased mRNA levels (3.5-fold induction; P < 0.05) and secretion (control 375 +/- 57 vs. palmitate 1129 +/- 177 pg/ml; P < 0.001) of the proinflammatory cytokine IL-6. Palmitate increased nuclear factor-kappaB activation and coincubation of the cells with palmitate and the nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate prevented both IL-6 expression and secretion. Furthermore, incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C, and phorbol myristate acetate, that down-regulates protein kinase C in long-term incubations, abolished induction of IL-6 production. Finally, exposure of skeletal muscle cells to palmitate caused a fall in the mRNA levels of glucose transporter 4 and insulin-stimulated glucose uptake, whereas in the presence of anti-IL-6 antibody, which neutralizes the biological activity of mouse IL-6 in cell culture, these reductions were prevented. These findings suggest that IL-6 may mediate several of the prodiabetic effects of palmitate.

  18. Down-Regulation of Ca(2+)-Activated K⁺ Channel KCa1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists.

    PubMed

    Khatun, Anowara; Fujimoto, Mayu; Kito, Hiroaki; Niwa, Satomi; Suzuki, Takayoshi; Ohya, Susumu

    2016-12-11

    Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca(2+)-activated K⁺ channel KCa1.1 regulates intracellular Ca(2+) signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR) agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells.

  19. Inhibitory effects of cyclic AMP elevating agents on lipopolysaccharide (LPS)-induced microvascular permeability change in mouse skin.

    PubMed

    Irie, K; Fujii, E; Ishida, H; Wada, K; Suganuma, T; Nishikori, T; Yoshioka, T; Muraki, T

    2001-05-01

    Anti-inflammatory effects of cyclic AMP elevating agents were examined in a mouse model of lipopolysaccharide (LPS)-induced microvascular permeability change. Vascular permeability on the back skin was measured by the local accumulation of Pontamine sky blue (PSB) after subcutaneous injection of LPS (400 microg site-1) from Salmonella typhimurium. Dye leakage in the skin was significantly increased 2 h after injection of LPS. This LPS-induced dye leakage was suppressed by phosphodiesterase inhibitors, including pentoxifylline (160 mg kg-1), milrinone (5 - 10 mg kg-1), rolipram (0.5 - 10 mg kg-1) and zaprinast (5 - 10 mg kg-1). The dye leakage was also inhibited by beta-adrenoceptor agonists, including isoproterenol (0.5 - 5 mg kg-1) and salbutamol (0.05 - 5 mg kg-1), an adenylate cyclase activator, forskolin (5 mg kg-1), and a cell permeable cyclic AMP analogue, 8-bromo-cyclic AMP (8-Br-cAMP, 10 mg kg-1). LPS caused a transient increase in serum TNF-alpha level peaking at 1 h after the injection. This increase in serum TNF-alpha was completely blocked by a pretreatment with pentoxifylline (160 mg kg-1), milrinone (5 mg kg-1), rolipram (1 mg kg-1), zaprinast (10 mg kg-1), salbutamol (0.5 mg kg-1), forskolin (1 mg kg-1) and 8-Br-cAMP (10 mg kg-1). LPS caused an increase in serum IL-1alpha level peaking at 3 h after injection. This increase in serum IL-1alpha was not significantly suppressed by the cyclic AMP elevating agents. Our study suggests that cyclic AMP elevating agents attenuate LPS-induced microvascular permeability change by suppressing TNF-alpha up regulation.

  20. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation.

    PubMed

    Valenzuela, Rodrigo; Illesca, Paola; Echeverría, Francisca; Espinosa, Alejandra; Rincón-Cervera, Miguel Ángel; Ortiz, Macarena; Hernandez-Rodas, María Catalina; Valenzuela, Alfonso; Videla, Luis A

    2017-04-19

    Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by an increment in the liver fat content, with a concomitant reduction in the content of n-3-long chain polyunsaturated fatty acids (n-3 LCPUFAs), downregulation of PPAR-α activity, and upregulation of NF-κB activity, effects that induce pro-lipogenic and pro-inflammatory responses. Hydroxytyrosol (HT), a polyphenol with cytoprotective effects present in extra virgin olive oil, improves the cellular antioxidant capacity for activation of transcription factor Nrf2. The objective of this work is to evaluate the molecular adaptations involved in the anti-lipogenic, anti-inflammatory, and anti-oxidant effects of HT supplementation in high-fat diet (HFD)-fed mice. Male C57BL/6J mice received (i) control diet (10% fat); (ii) control diet + HT (daily doses of 5 mg per kg body weight), (iii) HFD (60% fat); or (iv) HFD + HT for 12 weeks. HFD-fed mice exhibited (i) liver steatosis; (ii) inflammation; (iii) oxidative stress; and (iv) depletion of n-3 LCPUFAs, together with down-regulation of PPAR-α and Nrf2, and up-regulation of NF-κB. HT supplementation attenuated the metabolic alterations produced by HFD, normalizing the activity of Nrf2, reducing the drop in activity of PPAR-α, and attenuating increment of NF-κB activation. Supplementation with HT activating transcription factors PPAR-α and Nrf2, along with the deactivation of NF-κB, may reduce the liver alterations induced in HFD-fed mice.

  1. Bone Morphogenetic Protein 4 Promotes Vascular Smooth Muscle Contractility by Activating MicroRNA-21 (miR-21), which Down-regulates Expression of Family of Dedicator of Cytokinesis (DOCK) Proteins*

    PubMed Central

    Kang, Hara; Davis-Dusenbery, Brandi N.; Nguyen, Peter H.; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-01-01

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins. PMID:22158624

  2. Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins.

    PubMed

    Kang, Hara; Davis-Dusenbery, Brandi N; Nguyen, Peter H; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-02-03

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins.

  3. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis.

    PubMed

    Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei

    2015-12-01

    Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.

  4. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  5. Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among down-regulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms.

    PubMed

    Cruces, Edgardo; Rautenberger, Ralf; Rojas-Lillo, Yesenia; Cubillos, Victor Mauricio; Arancibia-Miranda, Nicolás; Ramírez-Kushel, Eduardo; Gómez, Iván

    2017-02-01

    Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central-southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation. Major findings were that F v/F m, photosynthetic parameters (ETRmax, alpha, E k) and pigments in L. spicata showed an inverse relationship to the diurnal changes in solar radiation. Phlorotannins levels and antioxidant activity showed their highest values in treatment that included UV radiation. There was an increase in SOD and APX in relation at light stress, with a peak in activity between 5.2 and 10.1 W m(-2) of biologically effective dose. The increase in peroxidative damage was proportional to light dose. These results indicated that different light doses can trigger a series of complementary mechanisms of acclimation in L. spicata based on: (i) down-regulation of photochemistry activity and decrease in concentration of photosynthetic pigments; (ii) induction of phenolic compounds with specific UV-screening functions; and (iii) reactive oxygen species (ROS) scavenging activity via complementary repair of the oxidative damage through increased activity of antioxidant enzymes and potentially increased amounts of phenolic compounds.

  6. Transcriptional profiling of the LPS induced NF-κB response in macrophages

    PubMed Central

    Sharif, Omar; Bolshakov, Viacheslav N; Raines, Stephanie; Newham, Peter; Perkins, Neil D

    2007-01-01

    Background Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. Results Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-κB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. Conclusion This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in

  7. 6-7-Dimethoxy-4-methylcoumarin suppresses pro-inflammatory mediator expression through inactivation of the NF-κB and MAPK pathways in LPS-induced RAW 264.7 cells

    PubMed Central

    Kim, Kil-Nam; Yang, Hye-Won; Ko, Seok-Chun; Ko, Yeong-Jong; Kim, Eun-A; Roh, Seong Woon; Ko, Eun-Yi; Ahn, Ginnae; Heo, Soo-Jin; Jeon, You-Jin; Yoon, Weon-Jong; Hyun, Chang-Gu; Kim, Daekyung

    2014-01-01

    In this study, we investigated the ability of 6,7-dimethoxy-4-methylcoumarin (DMC) to inhibit lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators in mouse macrophage (RAW 264.7) cells, and the molecular mechanism through which this inhibition occurred. Our results indicated that DMC downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 cells. Furthermore, DMC suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. To elucidate the mechanism underlying the anti-inflammatory activity of DMC, we assessed its effects on the mitogen-activated protein kinase (MAPK) pathway and the activity and expression of nuclear transcription factor kappa-B (NF-κB). The experiments demonstrated that DMC inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. In addition, it attenuated LPS-induced NF-κB activation via the inhibition of IκB-α phosphorylation. Taken together, these data suggest that DMC exerts its anti-inflammatory effects in RAW 264.7 cells through the inhibition of LPS-stimulated NF-κB and MAPK signaling, thereby downregulating the expression of pro-inflammatory mediators. PMID:26417302

  8. The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior.

    PubMed

    Nakanishi, Hiroshi; Hayashi, Yoshinori; Wu, Zhou

    2011-02-01

    Microglia are the main cellular source of oxidation products and inflammatory molecules in the brain during aging. The accumulation of mitochondrial DNA (mtDNA) oxidative damage in microglia during aging results in the increased production of reactive oxygen species (ROS). The increased intracellular ROS, in turn, activates a redox-sensitive nuclear factor-κB (NF-κB) to provoke excessive neuroinflammation, resulting in memory deficits and the prolonged behavioral consequence of infection. Besides its role in regulating the gene copy number, mitochondrial transcription factor A (TFAM) is closely associated with the stabilization of mtDNA structures. Lipopolysaccharide (LPS) induces the generation of ROS from the actively respirating mitochondria as well as NADPH oxidase, and leads to the subsequent activation of the NF-κB-dependent inflammatory pathway in aging microglia. The overexpression of human TFAM improves the age-dependent prolonged LPS-induced sickness behaviors by ameliorating the mtDNA damage and reducing the resultant redox-regulated inflammatory responses. Therefore, 'microglia-aging' plays important roles in the age-dependent enhanced behavioral consequences of infection.

  9. Evidence that PGE2 in the dorsal and median raphe nuclei is involved in LPS-induced anorexia in rats.

    PubMed

    Kopf, Brigitte S; Langhans, Wolfgang; Geary, Nori; Hrupka, Brian; Asarian, Lori

    2011-09-01

    Anorexia is an element of the acute-phase immune response. Its mechanisms remain poorly understood. Activation of inducible cyclooxygenase-2 (COX-2) in blood-brain-barrier endothelial cells and subsequent release of prostaglandins (e.g., prostaglandin E2, PGE2) may be involved. Therefore, we sought to relate the effects of prostaglandins on the anorexia following gram-negative bacterial lipopolysaccharide treatment (LPS) to neural activity in the dorsal and median raphe nuclei (DRN and MnR) in rats. COX-2 antagonist (NS-398, 10mg/kg; IP) administration prior to LPS (100μg/kg; IP) prevented anorexia and reduced c-Fos expression the DRN, MnR, nucleus tractus solitarii and several related forebrain areas. These data indicate that COX-2-mediated prostaglandin synthesis is necessary for LPS anorexia and much of the initial LPS-induced neural activation. Injection of NS-398 into the DRN and MnR (1ng/site) attenuated LPS-induced anorexia to nearly the same extent as IP NS-398, suggesting that prostaglandin signaling in these areas is necessary for LPS anorexia. Because the DRN and MnR are sources of major serotonergic projections to the forebrain, these data suggest that serotonergic neurons originating in the midbrain raphe play an important role in acute-phase response anorexia. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells.

    PubMed

    Seo, Kyung Hye; Park, Mi Jin; Ra, Ji-Eun; Han, Sang-Ik; Nam, Min-Hee; Kim, Jin Hyo; Lee, Jin Hwan; Seo, Woo Duck

    2014-11-01

    Saponarin (SA), a natural flavonoid, is known for its antioxidant and hepatoprotective activities. SA is the predominant compound (1142.7 ± 0.9 mg per 100 g) in barley sprouts, constituting 72% of the total polyphenol content. We investigated, for the first time, the effects of SA from barley sprouts on cellular anti-inflammatory responses. In lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, SA suppressed the activation of NF-κB, as evidenced by the inhibition of NF-κB DNA binding, nuclear translocation, IκBα phosphorylation, and reporter gene expression, and it downregulated the expression of the pro-inflammatory mediator IL-6. Furthermore, SA reduced the transcription of NF-κB target molecules COX2 and FLIP inhibited the phosphorylation of mitogen-activated protein kinases ERK and p38. These results suggest that SA isolated from barley sprouts exerts anti-inflammatory effects in LPS-induced RAW 264.7 macrophages via inhibition of NF-κB, ERK and p38 signaling. Thus, SA may be a promising natural anti-inflammatory agent.

  11. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  12. Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by inhibiting SREBP-1c protein independently of the AMP-activated protein kinase pathway in H4IIEC3 hepatocytes.

    PubMed

    Tajima-Shirasaki, Natsumi; Ishii, Kiyo-Aki; Takayama, Hiroaki; Shirasaki, Takayoshi; Iwama, Hisakazu; Chikamoto, Keita; Saito, Yoshiro; Iwasaki, Yasumasa; Teraguchi, Atsushi; Lan, Fei; Kikuchi, Akihiro; Takeshita, Yumie; Murao, Koji; Matsugo, Seiichi; Kaneko, Shuichi; Misu, Hirofumi; Takamura, Toshinari

    2017-06-30

    Selenoprotein P (encoded by SELENOP in humans, Selenop in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting SELENOP expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses SELENOP expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment with EPA caused concentration- and time-dependent reduction in SELENOP promoter activity. EPA activated AMP-activated protein kinase (AMPK); however, the inhibitory effect of EPA on SELENOP promoter activity was not canceled with an AMPK inhibitor compound C and dominant-negative AMPK transfection. Deletion mutant promoter assays and computational analysis of transcription factor-binding sites conserved among the species resulted in identification of a sterol regulatory element (SRE)-like site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay revealed that EPA decreases binding of SREBP-1c to the SELENOP promoter. Knockdown of Srebf1 resulted in a significant down-regulation of Selenop expression. Conversely, SREBP-1c overexpression inhibited the suppressive effect of EPA. These data provide a novel mechanism of action for EPA involving improvement of systemic insulin sensitivity through the regulation of selenoprotein P production independently of the AMPK pathway and suggest an additional approach to developing anti-diabetic drugs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells.

    PubMed

    Park, Eun-Jung; Min, Hye-Young; Chung, Hwa-Jin; Hong, Ji-Young; Kang, You-Jin; Hung, Tran Manh; Youn, Ui Joung; Kim, Yeong Shik; Bae, Kihwan; Kang, Sam Sik; Lee, Sang Kook

    2009-05-18

    Honokiol is a naturally occurring neolignan abundant in Magnoliae Cortex and has showed anti-proliferative and pro-apoptotic effects in a wide range of human cancer cells. However, the molecular mechanisms on the anti-proliferative activity in cancer cells have been poorly elucidated. In this study, we evaluated the growth inhibitory activity of honokiol in cultured estrogen receptor (ER)-negative MDA-MB-231 human breast cancer cells. Honokiol exerted anti-proliferative activity with the cell cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death in a concentration-dependent manner. The honokiol-induced cell cycle arrest was well correlated with the suppressive expression of CDK4, cyclin D1, CDK2, cyclin E, c-Myc, and phosphorylated retinoblastoma protein (pRb) at Ser780. Apoptosis caused by honokiol was also concomitant with the cleavage of caspases (caspase-3, -8, and -9) and Bid along with the suppressive expression of Bcl-2, but it was independent on the expression of Bax and p53. In addition, honokiol-treated cells exhibited the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. In the analysis of signal transduction pathway, honokiol down-regulated the expression and phosphorylation of c-Src, epidermal growth factor receptor (EGFR), and Akt, and consequently led to the inactivation of mTOR and its downstream signal molecules including 4E-binding protein (4E-BP) and p70 S6 kinase. These findings suggest that honokiol-mediated inhibitory activity of cancer cell growth might be related with the cell cycle arrest and induction of apoptosis via modulating signal transduction pathways.

  14. Triptolide down-regulates COX-2 expression and PGE2 release by suppressing the activity