Science.gov

Sample records for downregulates dopamine synthesis

  1. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    SciTech Connect

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  2. Seasonal effects on human striatal presynaptic dopamine synthesis.

    PubMed

    Eisenberg, Daniel P; Kohn, Philip D; Baller, Erica B; Bronstein, Joel A; Masdeu, Joseph C; Berman, Karen F

    2010-11-01

    Past studies in rodents have demonstrated circannual variation in central dopaminergic activity as well as a host of compelling interactions between melatonin--a scotoperiod-responsive neurohormone closely tied to seasonal adaptation--and dopamine in the striatum and in midbrain neuronal populations with striatal projections. In humans, seasonal effects have been described for dopaminergic markers in CSF and postmortem brain, and there exists a range of affective, psychotic, and substance abuse disorders that have been associated with both seasonal symptomatic fluctuations and dopamine neurotransmission abnormalities. Together, these data indirectly suggest a potentially crucial link between circannual biorhythms and central dopamine systems. However, seasonal effects on dopamine function in the living, healthy human brain have never been tested. For this study, 86 healthy adults underwent (18)F-DOPA positron emission tomography scanning, each at a different time throughout the year. Striatal regions of interest (ROIs) were evaluated for differences in presynaptic dopamine synthesis, measured by the kinetic rate constant, K(i), between fall-winter and spring-summer scans. Analyses comparing ROI average K(i) values showed significantly greater putamen (18)F-DOPA K(i) in the fall-winter relative to the spring-summer group (p = 0.038). Analyses comparing voxelwise K(i) values confirmed this finding and evidenced intrastriatal localization of seasonal effects to the caudal putamen (p < 0.05, false-discovery rate corrected), a region that receives dopaminergic input predominantly from the substantia nigra. These data are the first to directly demonstrate a seasonal effect on striatal presynaptic dopamine synthesis and merit future research aimed at elucidating underlying mechanisms and implications for neuropsychiatric disease and new treatment approaches.

  3. Elevated dopamine concentration in light-adapted zebrafish retinas is correlated with increased dopamine synthesis and metabolism.

    PubMed

    Connaughton, Victoria P; Wetzell, Bradley; Arneson, Lynne S; DeLucia, Vittoria; Riley, Anthony L

    2015-10-01

    Probing zebrafish (Danio rerio) retinal cryostat sections, collected either 8 h into the light or dark cycle, with an antibody against tyrosine hydroxylase (TH) identified a single population of immunopositive cells in the inner retina. However, the observed labeling patterns were not identical in both sets of tissues - label intensity was brighter in light-adapted tissue. This difference was quantified by probing western blots of retinal homogenates with the same TH antibody, which showed that TH expression increased by 42% in light-adapted tissue. High-performance liquid chromatography with electrochemical detection revealed that the concentrations of both dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) are also elevated in light-adapted zebrafish retinal tissue. Dopamine levels increased by 14% and DOPAC levels increased by 25% when measured in retinal homogenates harvested during the light cycle. These results indicate that dopamine levels in zebrafish retina are significantly increased in light-adapted tissue. The increase in dopamine content is correlated with an increase in both TH and DOPAC, suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. Dopamine concentration is elevated in lighted-adapted zebrafish retinas. This increase is correlated with an increase in both tyrosine hydroxylase (TH) and DOPAC (3,4-dihydroxyphenylacetic acid), suggesting that changes in dopamine concentration are due to light-adaptive changes in the synthesis, release and metabolism of dopamine. This is applicable to studies examining retinal mutants, the role of dopamine in disease or visual system development.

  4. Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells.

    PubMed

    Ouazia, D; Levros, L-C; Rassart, E; Desrosiers, R R

    2014-05-16

    Parkinson's disease (PD) is a chronic and progressive neurological disorder that is characterized by the loss of dopaminergic neurons in the substantia nigra. Dopamine, via the oxidative stress that it generates in the cytosol, could contribute to the selective loss of neurons observed in PD. Protein L-isoaspartyl methyltransferase (PIMT) is an enzyme that repairs L-isoaspartyl-containing proteins and possesses anti-apoptotic properties. PIMT expression has been shown to decrease with age. Together, these observations prompted us to investigate whether dopamine can regulate PIMT expression in SH-SY5Y neuroblastoma cells. Here, we report that dopamine down-regulated PIMT at both gene and protein levels. The same inhibition of PIMT protein level was caused by the electron transport chain inhibitor, rotenone, which was accompanied, in both cases, by an increase in cell death and reactive oxygen species (ROS) production. In fact, pre-treatment with the antioxidant N-acetyl cysteine blocked PIMT dopamine-associated down-regulation. PCMT1 promoter mapping experiments allowed the identification of two regions that showed different sensitivity to DA action. A first region localized between 61 and 94bp upstream of transcription start site was very sensitive to dopamine inhibition while a second region between 41 and 61bp appeared more resistant to dopamine inhibitory effect. The inhibition of PCMT1 promoter activity was mediated by dopamine-induced ROS since it was prevented by the hydroxyl radical scavenger N,N'-dimethylthiourea. Conversely, H2O2 inhibited in a dose-dependent manner the transcriptional activity of PCMT1 promoter. Therefore, our findings identified new molecular mechanisms, cytosolic dopamine and its resulting ROS, as inhibitors of PIMT expression. This suggests that ROS generated from cytosolic dopamine could reduce both the PCMT1 gene promoter activity and the PIMT protein level thus decreasing its capacity to repair proteins involved in apoptosis and

  5. Dual Control of Dopamine Synthesis and Release by Presynaptic and Postsynaptic Dopamine D2 Receptors

    PubMed Central

    Anzalone, Andrea; Lizardi-Ortiz, José E.; Ramos, Maria; De Mei, Claudia; Hopf, F. Woodward; Iaccarino, Ciro; Halbout, Briac; Jacobsen, Jacob; Kinoshita, Chisato; Welter, Marc; Caron, Marc G.; Bonci, Antonello; Sulzer, David

    2012-01-01

    Dysfunctions of dopaminergic homeostasis leading to either low or high dopamine (DA) levels are causally linked to Parkinson's disease, schizophrenia, and addiction. Major sites of DA synthesis are the mesencephalic neurons originating in the substantia nigra and ventral tegmental area; these structures send major projections to the dorsal striatum (DSt) and nucleus accumbens (NAcc), respectively. DA finely tunes its own synthesis and release by activating DA D2 receptors (D2R). To date, this critical D2R-dependent function was thought to be solely due to activation of D2Rs on dopaminergic neurons (D2 autoreceptors); instead, using site-specific D2R knock-out mice, we uncover that D2 heteroreceptors located on non-DAergic medium spiny neurons participate in the control of DA levels. This D2 heteroreceptor-mediated mechanism is more efficient in the DSt than in NAcc, indicating that D2R signaling differentially regulates mesolimbic- versus nigrostriatal-mediated functions. This study reveals previously unappreciated control of DA signaling, shedding new light on region-specific regulation of DA-mediated effects. PMID:22745501

  6. Prefrontal dopamine regulates fear reinstatement through the downregulation of extinction circuits.

    PubMed

    Hitora-Imamura, Natsuko; Miura, Yuki; Teshirogi, Chie; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi

    2015-07-30

    Prevention of relapses is a major challenge in treating anxiety disorders. Fear reinstatement can cause relapse in spite of successful fear reduction through extinction-based exposure therapy. By utilising a contextual fear-conditioning task in mice, we found that reinstatement was accompanied by decreased c-Fos expression in the infralimbic cortex (IL) with reduction of synaptic input and enhanced c-Fos expression in the medial subdivision of the central nucleus of the amygdala (CeM). Moreover, we found that IL dopamine plays a key role in reinstatement. A reinstatement-inducing reminder shock induced c-Fos expression in the IL-projecting dopaminergic neurons in the ventral tegmental area, and the blocking of IL D1 signalling prevented reduction of synaptic input, CeM c-Fos expression, and fear reinstatement. These findings demonstrate that a dopamine-dependent inactivation of extinction circuits underlies fear reinstatement and may explain the comorbidity of substance use disorders and anxiety disorders.

  7. Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System.

    PubMed

    Karkhanis, Anushree N; Rose, Jamie H; Weiner, Jeffrey L; Jones, Sara R

    2016-08-01

    Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly

  8. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    NASA Technical Reports Server (NTRS)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  9. Evidence that amphetamine and Na+ gradient reversal increase striatal synaptosomal dopamine synthesis through carrier-mediated efflux of dopamine.

    PubMed

    Connor, C E; Kuczenski, R

    1986-09-15

    Amphetamine (AMPH) releases dopamine (DA) from striatal synaptosomes and concomitantly increases DA synthesis. Since AMPH may release DA through carrier-mediated diffusion via reversal of the DA uptake system, the increase in DA synthesis might depend on a functioning uptake carrier. Consistent with such a mechanism, the uptake inhibitors nomifensine (NMF) and benztropine (BZT) completely prevented the AMPH-induced increase in DA synthesis at concentrations known to inhibit DA uptake. Changes in the Na+ gradient across the synaptosomal membrane also promote DA release, since DA and Na+ are cotransported by the neuronal uptake carrier. Incubation of synaptosomes in medium containing decreasing Na+ increased DA synthesis inversely proportional to Na+ over the range 128 to 20 mM. Similarly, incubations in the presence of 10(-4) M ouabain to inhibit Na+, K+-ATPase and allow intracellular accumulation of Na+ also increased DA synthesis. These changes in DA synthesis could also be prevented by BZT and were non-additive with the AMPH-induced increase in DA synthesis. However, a concentration of ouabain (10(-6) M) which by itself did not increase DA synthesis, and does not promote DA release, potentiated the AMPH-induced increase in DA synthesis. Further, the increased DA synthesis promoted by all three manipulations was only marginally dependent on the presence of Ca2+ in the incubation medium. However, at 5 and 10 mM Na+, a second component of increased DA synthesis was observed which was insensitive to BZT, but was prevented by Ca2+ removal. These results suggest that the increase in DA synthesis, and presumably DA release promoted by AMPH, lowered Na+, and ouabain, depend on the availability of the DA carrier at the internal face of the neuronal membrane and the intracellular content of Na+. The second component of increased DA synthesis which is evident at 5 and 10 mM Na+ is discussed in terms of a possible Ca2+-mediated change in DA synthesis which is independent of

  10. Strontium vanadate nanoribbons: Synthesis, characterization and detection of dopamine

    SciTech Connect

    Zhou, Qing; Shao, Mingwang; Chen, Tao; Xu, Hongyan

    2010-09-15

    Large-scale, high-purity and uniform strontium vanadate (Sr{sub 2}V{sub 2}O{sub 7}) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  11. (+)-Dinapsoline: an efficient synthesis and pharmacological profile of a novel dopamine agonist.

    PubMed

    Sit, Sing-Yuen; Xie, Kai; Jacutin-Porte, Swanee; Taber, Matthew T; Gulwadi, Amit G; Korpinen, Carolyn D; Burris, Kevin D; Molski, Thaddeus F; Ryan, Elaine; Xu, Cen; Wong, Henry; Zhu, Juliang; Krishnananthan, Subramaniam; Gao, Qi; Verdoorn, Todd; Johnson, Graham

    2002-08-15

    A highly convergent synthesis was developed for the novel dopamine agonist dinapsoline (12) (Ghosh, D.; Snyder, S. E.; Watts, V. J.; Mailman, R. B.; Nichols, D. E. 8,9-Dihydroxy-2,3,7, 11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: A Potent Full Dopamine D(1) Agonist Containing a Rigid beta-Phenyldopamine Pharmacophore. J. Med. Chem. 1996, 39 (2), 549-555). The crucial step in the new synthesis was a free radical-initiated cyclization to give the complete dinapsoline framework. The improved synthesis required half as many steps as the original procedure (Nichols, D. E.; Mailman, R.; Ghosh, D. Preparation of novel naphtho[1,2,3-de]isoquinolines as dopamine receptor ligands. PCT Int. Appl. WO 9706799 A1, Feb 27, 1997). One of the late-stage intermediates (11) was resolved into a pair of enantiomers. From there, the (R)-(+)-12 (absolute configuration by X-ray) of dinapsoline was identified as the active enantiomer. In unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats, (+)-dinapsoline showed robust rotational behavior comparable to that of an external benchmark, trans-4,5,5a,6,7,11b-hexahydro-2-propyl-benzo[f]thieno[2,3-c]quinoline-9,10-diol, hydrochloride 18 (Michaelides, M. R.; Hong, Y. Preparation of heterotetracyclic compounds as dopamine agonists. PCT Int. Appl. WO 9422858 A1, Oct 13, 1994).

  12. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites

    SciTech Connect

    Dai, Sheng; Liu, Rui; Mahurin, Shannon Mark; Li, Chen; Unocic, Raymond R; Idrobo Tapia, Juan C; Gao, Hongjun; Pennycook, Stephen J

    2011-01-01

    A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk-shell Au{at}Carbon nanocomposites. The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au{at}C nanocomposites are catalytically active.

  13. A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis

    PubMed Central

    Parkhurst, Amy; Jeffery, William R.

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555

  14. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    PubMed

    Bilandžija, Helena; Ma, Li; Parkhurst, Amy; Jeffery, William R

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555

  15. Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone.

    PubMed

    Biggio, G; Casu, M; Corda, M G; Di Bello, C; Gessa, G L

    1978-05-01

    The intraventricular injection of methionine-enkephalin (50 to 100 micrograms) or [d-Ala2]-methionine-enkephalinamide (1.5 to 12 micrograms), a synthetic enkephalin analog resistant to enzyme degradation, caused a marked dose-dependent increase in dihydroxyphenylacetic acid and homovanillic acid concentrations in the rat striatum. The [d-Ala2] analog increased the accumulation of dopa in the striatum after aromatic amino acid decarboxylase inhibition, indicating that it increased dopamine synthesis. At the highest doses used both enkephalins failed to modify brain serotonin metabolism. The monolateral microinjection of the [d-Ala2

  16. Synthesis and SAR of aminothiazole fused benzazepines as selective dopamine D2 partial agonists.

    PubMed

    Urbanek, Rebecca A; Xiong, Hui; Wu, Ye; Blackwell, William; Steelman, Gary; Rosamond, Jim; Wesolowski, Steven S; Campbell, James B; Zhang, Minli; Brockel, Becky; Widzowski, Daniel V

    2013-01-15

    Dopamine (D(2)) partial agonists (D2PAs) have been regarded as a potential treatment for schizophrenia patients with expected better side effect profiles than currently marketed antipsychotics. Herein we report the synthesis and SAR of a series of aminothiazole fused benzazepines as selective D(2) partial agonists. These compounds have good selectivity, CNS drug-like properties and tunable D(2) partial agonism. One of the key compounds, 8h, has good in vitro/in vivo ADME characteristics, and is active in a rat amphetamine-induced locomotor activity model. PMID:23237836

  17. Downregulation of de Novo Fatty Acid Synthesis in Subcutaneous Adipose Tissue of Moderately Obese Women

    PubMed Central

    Guiu-Jurado, Esther; Auguet, Teresa; Berlanga, Alba; Aragonès, Gemma; Aguilar, Carmen; Sabench, Fàtima; Armengol, Sandra; Porras, José Antonio; Martí, Andreu; Jorba, Rosa; Hernández, Mercè; del Castillo, Daniel; Richart, Cristóbal

    2015-01-01

    The purpose of this work was to evaluate the expression of fatty acid metabolism-related genes in human adipose tissue from moderately obese women. We used qRT-PCR and Western Blot to analyze visceral (VAT) and subcutaneous (SAT) adipose tissue mRNA expression involved in de novo fatty acid synthesis (ACC1, FAS), fatty acid oxidation (PPARα, PPARδ) and inflammation (IL6, TNFα), in normal weight control women (BMI < 25 kg/m2, n = 35) and moderately obese women (BMI 30–38 kg/m2, n = 55). In SAT, ACC1, FAS and PPARα mRNA expression were significantly decreased in moderately obese women compared to controls. The downregulation reported in SAT was more pronounced when BMI increased. In VAT, lipogenic-related genes and PPARα were similar in both groups. Only PPARδ gene expression was significantly increased in moderately obese women. As far as inflammation is concerned, TNFα and IL6 were significantly increased in moderate obesity in both tissues. Our results indicate that there is a progressive downregulation in lipogenesis in SAT as BMI increases, which suggests that SAT decreases the synthesis of fatty acid de novo during the development of obesity, whereas in VAT lipogenesis remains active regardless of the degree of obesity. PMID:26694359

  18. Cypermethrin exposure during puberty disrupts testosterone synthesis via downregulating StAR in mouse testes.

    PubMed

    Wang, Hua; Wang, Qun; Zhao, Xian-Feng; Liu, Ping; Meng, Xiu-Hong; Yu, Tao; Ji, Yan-Li; Zhang, Heng; Zhang, Cheng; Zhang, Ying; Xu, De-Xiang

    2010-01-01

    Cypermethrin is a widely used synthetic pyrethroid insecticide. Previous studies showed that cypermethrin significantly decreased the fertility and reduced the number of implantation sites and viable fetuses in females impregnated by males exposed to cypermethrin. As yet, little is known about the mechanism of cypermethrin-induced reproductive toxicity. In the present study, we investigated the effects of cypermethrin exposure during puberty on steroidogenesis in mice. Young male mice were administered with cypermethrin (25 mg/kg) by gavage daily from postnatal day (PND) 35 to PND70. Results showed that the level of serum and testicular testosterone (T) was markedly decreased in cypermethrin-treated mice. Additional experiment showed that cypermethrin exposure during puberty markedly downregulated mRNA level of steroidogenic acute regulatory protein (StAR) in testes. Correspondingly, protein level of testicular StAR was significantly decreased in cypermethrin-treated mice. Cypermethrin exposure during puberty did not affect the number of Leydig cells in testes. Although cypermethrin exposure during puberty did not affect the weight of testes and epididymides, the number of sperm in the cauda epididymides was significantly decreased in cypermethrin-treated mice. Taken together, these results indicate that cypermethrin exposure during puberty significantly disrupts T synthesis via downregulating the expression of testicular StAR. The decreased T synthesis might be associated with cypermethrin-induced impairment in spermatogenesis in mice.

  19. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum.

    PubMed

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J M; Lorenz, Robert C; Buchert, Ralph; Buchholz, Hans-Georg; Plotkin, Michail; Kumakara, Yoshitaka; Cumming, Paul; Heinze, Hans-Jochen; Grace, Anthony A; Rapp, Michael A; Schlagenhauf, Florian; Heinz, Andreas

    2015-02-01

    Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug-related stimuli towards drug-related stimuli. Such 'hijacked' dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N = 27). All participants also underwent 6-[(18) F]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long-term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake. PMID:25546072

  20. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver.

    PubMed

    Harkitis, P; Daskalopoulos, E P; Malliou, F; Lang, M A; Marselos, M; Fotopoulos, A; Albucharali, G; Konstandi, M

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  1. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver.

    PubMed

    Harkitis, P; Daskalopoulos, E P; Malliou, F; Lang, M A; Marselos, M; Fotopoulos, A; Albucharali, G; Konstandi, M

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens.

  2. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  3. Non-dopaminergic neurons expressing dopamine synthesis enzymes: differentiation and functional significance.

    PubMed

    Ugryumov, M V; Mel'nikova, V I; Ershov, P V; Balan, I S; Kalas, A

    2002-01-01

    The development and functional significance of neurons in the arcuate nucleus expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase were studied in rat fetuses, neonates, and adults using immunocytochemical (single and double immunolabeling of tyrosine hydroxylase and aromatic L-amino acid decarboxylase) methods with a confocal microscope and computerized image analysis, HPLC with electrochemical detection, and radioimmunological analysis. Single-enzyme neurons containing tyrosine hydroxylase were first seen on day 18 of embryonic development in the ventrolateral part of the arcuate nucleus. Neurons expressing only aromatic L-amino acid decarboxylase or both enzymes of the dopamine synthesis pathway were first seen on day 20 of embryonic development, in the dorsomedial part of the nucleus. On days 20-21 of embryonic development, dopaminergic (containing both enzymes) neurons amounted to less than 1% of all neurons expressing tyrosine hydroxylase and/or aromatic L-amino acid decarboxylase. Nonetheless, in the ex vivo arcuate nucleus and in primary neuron cultures from this structure, there were relatively high leveLs of dopamine and L-dihydroxyphenylalanine (L-DOPA), and these substances were secreted spontaneously and in response to stimulation. In addition. dopamine levels in the arcuate nucleus in fetuses were sufficient to support the inhibitory regulation of prolactin secretion by the hypophysis, which is typical of adult animals. During development, the proportion of dopaminergic neurons increased, reaching 38% in adult rats. Specialized contacts between single-enzyme tyrosine hydroxylase-containing and aromatic L-amino acid decarboxylase-containing neurons were present by day 21 of embryonic development; these were probably involved in transporting L-DOPA from the former neurons to the latter. It was also demonstrated that the axons of single-enzyme decarboxylase-containing neurons projected into the median eminence, supporting the

  4. Aberrant Salience Is Related to Reduced Reinforcement Learning Signals and Elevated Dopamine Synthesis Capacity in Healthy Adults.

    PubMed

    Boehme, Rebecca; Deserno, Lorenz; Gleich, Tobias; Katthagen, Teresa; Pankow, Anne; Behr, Joachim; Buchert, Ralph; Roiser, Jonathan P; Heinz, Andreas; Schlagenhauf, Florian

    2015-07-15

    The striatum is known to play a key role in reinforcement learning, specifically in the encoding of teaching signals such as reward prediction errors (RPEs). It has been proposed that aberrant salience attribution is associated with impaired coding of RPE and heightened dopamine turnover in the striatum, and might be linked to the development of psychotic symptoms. However, the relationship of aberrant salience attribution, RPE coding, and dopamine synthesis capacity has not been directly investigated. Here we assessed the association between a behavioral measure of aberrant salience attribution, the salience attribution test, to neural correlates of RPEs measured via functional magnetic resonance imaging while healthy participants (n = 58) performed an instrumental learning task. A subset of participants (n = 27) also underwent positron emission tomography with the radiotracer [(18)F]fluoro-l-DOPA to quantify striatal presynaptic dopamine synthesis capacity. Individual variability in aberrant salience measures related negatively to ventral striatal and prefrontal RPE signals and in an exploratory analysis was found to be positively associated with ventral striatal presynaptic dopamine levels. These data provide the first evidence for a specific link between the constructs of aberrant salience attribution, reduced RPE processing, and potentially increased presynaptic dopamine function. PMID:26180188

  5. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  6. Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library

    PubMed Central

    2015-01-01

    A series of 1,4-disubstituted piperazine-based compounds were designed, synthesized, and evaluated as dopamine D2/D3 receptor ligands. The synthesis relies on the key multicomponent split-Ugi reaction, assessing its great potential in generating chemical diversity around the piperazine core. With the aim of evaluating the effect of such diversity on the dopamine receptor affinity, a small library of compounds was prepared, applying post-Ugi transformations. Ligand stimulated binding assays indicated that some compounds show a significant affinity, with Ki values up to 53 nM for the D2 receptor. Molecular docking studies with the D2 and D3 receptor homology models were also performed on selected compounds. They highlighted key interactions at the indole head and at the piperazine moiety, which resulted in good agreement with the known pharmacophore models, thus helping to explain the observed structure–activity relationship data. Molecular insights from this study could enable a rational improvement of the split-Ugi primary scaffold, toward more selective ligands. PMID:26288260

  7. Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT

    SciTech Connect

    Keil, R.; Hoffman, J.M.; Eschima, D.

    1996-05-01

    Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCA K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.

  8. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells

    PubMed Central

    Xing, Lei; McDonald, Heather; Da Fonte, Dillon F.; Gutierrez-Villagomez, Juan M.; Trudeau, Vance L.

    2015-01-01

    Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell. PMID:26388722

  9. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila

    PubMed Central

    Hanna, Marley E.; Bednár̂ová, Andrea; Rakshit, Kuntol; Chaudhuri, Anathbandhu; O’Donnell, Janis M.; Krishnan, Natraj

    2015-01-01

    The impact of mutations in four essential genes involved in dopamine (DA) synthesis and transport on longevity, motor behavior, and resistance to oxidative stress was monitored in Drosophila melanogaster. The fly lines used for this study were: (i) a loss of function mutation in Catecholamines up (Catsup26), which is a negative regulator of the rate limiting enzyme for DA synthesis, (ii) a mutant for the gene pale (ple2) that encodes for the rate limiting enzyme tyrosine hydroxylase (TH), (iii) a mutant for the gene Punch (PuZ22) that encodes guanosine triphosphate cyclohydrolase, required for TH activity, and (iv) a mutant in the vesicular monoamine transporter (VMATΔ14), which is required for packaging of DA as vesicles inside DA neurons. Median lifespans of ple2, PuZ22 and VMATΔ14 mutants were significantly decreased compared to Catsup26 and wild type controls that did not significantly differ between each other. Catsup26 flies survived longer when exposed to hydrogen peroxide (80 μM) or paraquat (10 mM) compared to ple2, PuZ22 or VMATΔ14 and controls. These flies also exhibited significantly higher negative geotaxis activity compared to ple2, PuZ22, VMATΔ14 and controls. All mutant flies demonstrated rhythmic circadian locomotor activity in general, albeit Catsup26 and VMATΔ14 flies had slightly weaker rhythms. Expression analysis of some key antioxidant genes revealed that glutathione S-transferase Omega-1 (GSTO1) expression was significantly up-regulated in all DA synthesis pathway mutants and especially in Catsup26 and VMATΔ14 flies at both mRNA and protein levels. Taken together, we hypothesize that DA could directly influence GSTO1 transcription and thus play a significant role in the regulation of response to oxidative stress. Additionally, perturbations in DA synthesis do not appear to have a significant impact on circadian locomotor activity rhythms per se, but do have an influence on general locomotor activity levels. PMID:25585352

  10. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    SciTech Connect

    Wilson, S.P. )

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  11. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum.

    PubMed

    Mertens, Birgit; Vanderheyden, Patrick; Michotte, Yvette; Sarre, Sophie

    2010-06-01

    A relationship between the central renin angiotensin system and the dopaminergic system has been described in the striatum. However, the role of the angiotensin II type 2 (AT(2)) receptor in this interaction has not yet been established. The present study examined the outcome of direct AT(2) receptor stimulation on dopamine (DA) release and synthesis by means of the recently developed nonpeptide AT(2) receptor agonist, compound 21 (C21). The effects of AT(2) receptor agonism on the release of DA and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine biosynthesis, were investigated using in vivo microdialysis. Local administration of C21 (0.1 and 1 microM) resulted in a decrease of the extracellular DOPAC levels, whereas extracellular DA concentrations remained unaltered, suggesting a reduced synthesis of DA. This effect was mediated by the AT(2) receptor since it could be blocked by the AT(2) receptor antagonist PD123319 (1 microM). A similar effect was observed after local striatal (10 nM) as well as systemic (0.3 and 3 mg/kg i.p.) administration of the AT(1) receptor antagonist, candesartan. TH activity as assessed by accumulation of extracellular levels of L-DOPA after inhibition of amino acid decarboxylase with NSD1015, was also reduced after local administration of C21 (0.1 and 1 microM) and candesartan (10 nM). Together, these data suggest that AT(1) and AT(2) receptors in the striatum exert an opposite effect on the modulation of DA synthesis rather than DA release. PMID:20097214

  12. Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis.

    PubMed

    Sheng, Yifeng; Sun, Guanqing; Ngai, To

    2016-04-01

    Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability. PMID:26963571

  13. Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis.

    PubMed

    Sheng, Yifeng; Sun, Guanqing; Ngai, To

    2016-04-01

    Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability.

  14. Dopamine D(3) receptors are down-regulated following heterologous endocytosis by a specific interaction with G protein-coupled receptor-associated sorting protein-1.

    PubMed

    Thompson, Dawn; Whistler, Jennifer L

    2011-01-14

    The D(3) dopamine receptor is endocytosed through a heterologous mechanism mediated by phorbol esters. Here, we show that following this endocytosis the D(3) dopamine receptors fail to recycle and are instead targeted for degradation through an interaction with the G protein-coupled receptor (GPCR)-associated sorting protein-1 (GASP-1). Furthermore, we identified a specific binding motif in the C terminus common to the D(3) and D(2) that confers GASP-1 binding. shRNA knockdown of GASP-1 delayed post-endocytic degradation of both the D(2) and D(3) dopamine receptors. In addition, mutation of the D(2) and D(3) receptor C termini to resemble the D(4), which does not interact with GASP-1, not only inhibited GASP-1 binding but slowed degradation after endocytosis. Conversely, mutation of the C terminus of the D(4) to resemble that of the D(2) and D(3) facilitated GASP-1 binding and promoted post-endocytic degradation of the mutant D(4) receptor. Thus, we have identified a motif that is both necessary and sufficient to promote GASP-1 binding and receptor degradation. In addition, these data demonstrated that GASP-1 can mediate post-endocytic degradation of dopamine receptors that have been endocytosed not only as a consequence of dopamine activation but also as a consequence of activation by phorbol esters.

  15. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  16. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports. PMID:26243663

  17. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. PMID:26210098

  18. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application.

  19. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    PubMed

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis.

  20. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus

    PubMed Central

    Arnaldo, Francis B.; Villar, Van Anthony M.; Konkalmatt, Prasad R.; Owens, Shaun A.; Asico, Laureano D.; Jones, John E.; Yang, Jian; Lovett, Donald L.; Armando, Ines; Concepcion, Gisela P.

    2014-01-01

    Dopamine-mediated regulation of Na+-K+-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na+-K+-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na+-K+-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na+-K+-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na+-K+-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na+-K+-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na+-K+-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496

  1. Dopamine transporter down-regulation following repeated cocaine: implications for 3,4-methylenedioxymethamphetamine-induced acute effects and long-term neurotoxicity in mice

    PubMed Central

    Peraile, I; Torres, E; Mayado, A; Izco, M; Lopez-Jimenez, A; Lopez-Moreno, JA; Colado, MI; O'Shea, E

    2010-01-01

    Background and purpose: 3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice. Experimental approach: Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured. Key results: Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline. Conclusions and implications: Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA. PMID:20015297

  2. The monoamine stabilizer (−)‐OSU6162 counteracts downregulated dopamine output in the nucleus accumbens of long‐term drinking Wistar rats

    PubMed Central

    Feltmann, Kristin; Fredriksson, Ida; Wirf, Malin; Schilström, Björn

    2015-01-01

    Abstract We recently established that the monoamine stabilizer (−)‐OSU6162 (OSU6162) decreased voluntary alcohol‐mediated behaviors, including alcohol intake and cue/priming‐induced reinstatement, in long‐term drinking rats, while blunting alcohol‐induced dopamine output in the nucleus accumbens (NAc) of alcohol‐naïve rats. Therefore, we hypothesized that OSU6162 attenuates alcohol‐mediated behaviors by blunting alcohol's rewarding effects. Here, we evaluated the effects of long‐term drinking and OSU6162 treatment (30 mg/kg, sc) on basal and alcohol‐induced (2.5 g/kg, ip) NAc dopamine outputs in Wistar rats after 10 months of intermittent access to 20% alcohol. The results showed that basal and alcohol‐induced NAc dopamine outputs were significantly lower in long‐term drinking rats, compared with alcohol‐naïve rats. In the long‐term drinking rats, OSU6162 slowly increased and maintained the dopamine output significantly elevated compared with baseline for at least 4 hours. Furthermore, OSU6162 pre‐treatment did not blunt the alcohol‐induced output in the long‐term drinking rats, a finding that contrasted with our previous results in alcohol‐naïve rats. Finally, OSU6162 did not induce conditioned place preference (CPP) in either long‐term drinking or alcohol‐naïve rats, indicating that OSU6162 has no reinforcing properties. To verify that the CPP results were not due to memory acquisition impairment, we demonstrated that OSU6162 did not affect novel object recognition. In conclusion, these results indicate that OSU6162 attenuates alcohol‐mediated behaviors by counteracting NAc dopamine deficits in long‐term drinking rats and that OSU6162 is not rewarding on its own. Together with OSU6162's beneficial side‐effect profile, the present study merits evaluation of OSU6162's clinical efficacy to attenuate alcohol use in alcohol‐dependent patients. PMID:26464265

  3. Synthesis, Pharmacological Evaluation and Molecular Modeling Studies of Triazole Containing Dopamine D3 Receptor Ligands

    PubMed Central

    Peng, Xin; Wang, Qi; Mishra, Yogesh; Xu, Jinbin; Reichert, David E.; Malik, Maninder; Taylor, Michelle; Luedtke, Robert R.; Mach, Robert H.

    2015-01-01

    A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay. Affinity at dopamine D4 and serotonin 5-HT1A receptors was also determined. In addition, information from previous molecular modeling studies of the binding of a panel of 163 structurally-related benzamide analogues at dopamine D2 and D3 receptors was applied to this series of compounds. The results of the modeling studies were consistent with our previous experimental data. More importantly, the modeling study results explained why the replacement of the amide linkage with the hetero-aromatic ring leads to a reduction in the affinity of these compounds at D3 receptors. PMID:25556097

  4. Zhichan powder regulates nigrostriatal dopamine synthesis and metabolism in Parkinson's disease rats☆

    PubMed Central

    Zhou, Qingwei; Chen, Jiajun; Yi, Shihong; Lou, Yongwei; Tang, Weimin; Liu, Yongmao; Zhang, Pengguo

    2012-01-01

    In this study, rat models of Parkinson’s disease induced by substantia nigra injection of 6-hydroxy-dopamine were intragastrically administered Zhichan powder daily for 50 days. Reverse transcription PCR results showed that tyrosine hydroxylase mRNA expression in the rat substantia nigra was significantly increased, while monoamine oxidase B mRNA expression was significantly decreased in the Zhichan powder group, compared with the model group. In addition, the levels of striatal dopamine and homovanillic acid, the ratio of dopamine to homovanillic acid, and the activity of blood superoxide dismutase were all higher in the Zhichan powder group than in the model group, but the content of malondialdehyde in blood was lower. Our experimental findings indicate that Zhichan powder has an antioxidant effect, it can regulate the expression of monoamine oxidase B and tyrosine hydroxylase in the substantia nigra of Parkinson’s disease rats, and it can facilitate the secretion of striatal dopamine and its metabolite homovanillic acid. PMID:25558223

  5. Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors.

    PubMed

    Salama, Ismail; Löber, Stefan; Hübner, Harald; Gmeiner, Peter

    2014-08-15

    Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites. PMID:25047579

  6. Incorporation of 5-hydroxyindazole into the self-polymerization of dopamine for novel polymer synthesis.

    PubMed

    Peterson, Matthew B; Le-Masurier, Solomon P; Lim, Khoon; Hook, James M; Martens, Penny; Granville, Anthony M

    2014-02-01

    Investigation into the mussel-inspired polymerization of dopamine has led to the realization that other compounds possessing potential quinone structures could undergo similar self-polymerizations in mild buffered aqueous conditions. To this end, 5-hydroxyindazole was added to a dopamine polymerization matrix in varying amounts, to study its incorporation into a polydopamine coating of silica particles. Solid-state (13) C NMR spectroscopy confirmed the presence of the indazole in the polymer shell when coated onto silica gel. SEM and DLS analysis also confirmed that the presence of the indazole in the reaction matrix yielded monodisperse polymer-coated particles, which retained their polymer shell upon HF etching, except when high levels of the indazole were used. Characterization data and examination of incorporation mechanism suggests that the 5-hydroxyindazole performs the function of a chain-terminating agent. Cytotoxicity studies of the polymer particles containing 5-hydroxyindazole showed dramatically lower toxicity levels compared to polydopamine alone. PMID:24323540

  7. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Maennistoe, P. T.

    1991-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 microg/kg or about 2 percent of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5 percent and 1.5 percent, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33 percent and 16 percent, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine, and 3,4-dihydroxyphenvlacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However, dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceedimg 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  8. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  9. Down-regulation by resveratrol of basic fibroblast growth factor-stimulated osteoprotegerin synthesis through suppression of Akt in osteoblasts.

    PubMed

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-10-06

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.

  10. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway.

    PubMed

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-02-16

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway.

  11. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    PubMed Central

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  12. Fancy bioisosteres: synthesis, SAR, and pharmacological investigations of novel nonaromatic dopamine D3 receptor ligands.

    PubMed

    Lenz, Carola; Boeckler, Frank; Hübner, Harald; Gmeiner, Peter

    2005-07-15

    Structural variations of the lead compound FAUC 88 led to dopaminergic enynes with an extended pi-system when Pd-catalyzed cross coupling reactions were employed for the key reaction steps. The dienyne 9b displayed substantial affinity for the dopamine receptor subtype D3 and remarkable selectivity over D4. Compared to FAUC 88, the novel fancy bioisostere 9b displayed reduced ligand efficacy. DFT-based conformational analysis of the test compound 9b, including the calculation of diagnostic magnetic shielding properties and their comparison with experimentally derived NMR data, indicated a clear energetic preference for the s-trans geometry of the diene substructure. PMID:15908220

  13. Synthesis and characterization of selective dopamine D2 receptor ligands using aripiprazole as the lead compound

    PubMed Central

    Vangveravong, Suwanna; Zhang, Zhanbin; Taylor, Michelle; Bearden, Melissa; Xu, Jinbin; Cui, Jinquan; Wang, Wei; Luedtke, Robert R.; Mach, Robert H.

    2011-01-01

    A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D2-like dopamine receptors. These compounds also share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D2 receptor subtype with high affinity (Ki values <0.3 nM), (b) exhibit >50-fold D2 versus D3 receptor binding selectivity and (c) be partial agonists at both the D2 and D3 receptor subtype. PMID:21536445

  14. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter

    PubMed Central

    Qiao, Hongwen; Zhu, Lin; Lieberman, Brian P.; Zha, Zhihao; Plössl, Karl; Kung, Hank F.

    2012-01-01

    A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (T1/2 = 109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (Ki < 10 nM). Biodistribution studies of [18F]6b and [18F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents. PMID:22658558

  15. Synthesis and radioiodination of ergoline derivatives: potential in-vivo dopamine receptor site mapping radiopharmaceuticals

    SciTech Connect

    Mikhail, E.A.

    1985-01-01

    The need of a dopamine-receptor based radiopharmaceutical for brain imaging is apparent. If such an agent is made available to physicians, it could provide means for detecting brain tumors, and diagnose such mental disorders as parkinsonism, schizophrenia and psychosis. Currently, such agents are yet to be discovered. Procedures were developed to synthesize and label four ergoline derivatives which could potentially exhibit affinity to dopamine receptors. Labelling with /sup 125/I was accomplished in some cases by displacing a suitably positioned leaving group with /sup 125/I-anion, while in other cases iodine exchange procedures were utilized. Formulations of the labeled derivatives were achieved via the formation of their water soluble tartarate salts. Biodistribution studies in mature Sprague-Dawley rats showed that of the four radioactive compounds injected, the highest uptake in the brain and adrenals was achieved with 8 ..beta..-(I-125)-iodomethyl-6-propylergoline. In addition, high target/nontarget ratios were obtained with the above mentioned compound. On the other hand, the least brain and adrenal uptake as well as the lowest target/nontarget ratios were exhibited by 8 ..beta..-(I-125)-(p-iodobenzenesulfonyl)-lysergol presumably due to its in-vivo instability. A comparative biodistribution study for ergoline derivatives and N-isopropyl-(I-123)-p-iodoamphetamine was conducted. The biodistribution studies showed that the brain to blood ratio for the ergoline derivative 8 ..beta..-(I-125)-iodomethyl-6-propylergoline to be very close to that for /sup 125/I-IMP at 1 minute after dose administration. However after 15 minutes the brain/blood ratio of compound XLVI was half the value of /sup 123/I-IMP. Different mechanisms of brain influx and efflux are known to occur with the amphetamine and ergoline derivatives.

  16. Facile synthesis of hexagonal-shaped polypyrrole self-assembled particles for the electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Yi; Hsu, Di-Yao; Prasannan, Adhimoorthy; Kalaivani, Raman; Hong, Po-Da

    2016-02-01

    Nanomaterials have been used as an electroactive medium to enhance the efficiency of bio/chemical sensors, primarily when synergy is reached upon mixing different materials. In this study, we report on the facile synthesis of hexagonal-shaped plate-like polypyrrole (PPY-IC) prepared through inclusion polymerization of the host-guest pyrrole monomeric inclusion complex of β-cyclodextrin (β-CD) to be used in the detection of the neurotransmitter dopamine (DA). The amount of the monomer complex plays a crucial role in the fabrication of well-defined hexagonal-shaped PPY-IC through intermolecular interactions such as π-π interactions and hydrogen bonding between the β-CD and PPY. The microstructure and morphology of the PPY-IC were examined by using various analytical techniques and a tentative mechanism for the growth process proposed which elucidates the formation of the hierarchical structure of the PPY-IC. Cyclo-voltammetry was performed with a PPY-IC modified glassy carbon electrode (GCE) for the electrochemical detection of DA. The concepts behind the novel architecture of the PPY-IC modified electrodes have potential for the production of materials to be used in electrochemical sensors and biosensors.

  17. Modulation of impulsivity and reward sensitivity in intertemporal choice by striatal and midbrain dopamine synthesis in healthy adults.

    PubMed

    Smith, Christopher T; Wallace, Deanna L; Dang, Linh C; Aarts, Esther; Jagust, William J; D'Esposito, Mark; Boettiger, Charlotte A

    2016-03-01

    Converging evidence links individual differences in mesolimbic and mesocortical dopamine (DA) to variation in the tendency to choose immediate rewards ("Now") over larger, delayed rewards ("Later"), or "Now bias." However, to date, no study of healthy young adults has evaluated the relationship between Now bias and DA with positron emission tomography (PET). Sixteen healthy adults (ages 24-34 yr; 50% women) completed a delay-discounting task that quantified aspects of intertemporal reward choice, including Now bias and reward magnitude sensitivity. Participants also underwent PET scanning with 6-[(18)F]fluoro-l-m-tyrosine (FMT), a radiotracer that measures DA synthesis capacity. Lower putamen FMT signal predicted elevated Now bias, a more rapidly declining discount rate with increasing delay time, and reduced willingness to accept low-interest-rate delayed rewards. In contrast, lower FMT signal in the midbrain predicted greater sensitivity to increasing magnitude of the Later reward. These data demonstrate that intertemporal reward choice in healthy humans varies with region-specific measures of DA processing, with regionally distinct associations with sensitivity to delay and to reward magnitude. PMID:26683066

  18. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine.

    PubMed

    Salamon, J; Sathishkumar, Y; Ramachandran, K; Lee, Yang Soo; Yoo, Dong Jin; Kim, Ae Rhan; Gnana Kumar, G

    2015-02-15

    Magnetite (Fe3O4) nanorods anchored over reduced graphene oxide (rGO) were synthesized through a one-pot synthesis method, where the reduction of GO and in-situ generation of Fe3O4 nanorods occurred concurrently. The average head and tail diameter of Fe3O4 nanorods anchored over the rGO matrix are found to be 32 and 11 nm, respectively, and morphology, structure and diameter of bare Fe3O4 nanorods were not altered even after the composite formation with rGO. The increased structural disorders and decrement in the sp(2) domains stimulated the high electrical conductivity and extended catalytic active sites for the prepared rGO/Fe3O4 nanocomposite. The constructed rGO/Fe3O4/GCE sensor exhibited excellent electrocatalytic activity toward the electrooxidation of dopamine (DA) with a quick response time of 6s, a wide linear range between 0.01 and 100.55 µM, high sensitivity of 3.15 µA µM(-1) cm(-2) and a lower detection limit of 7 nM. Furthermore, the fabricated sensor exhibited a practical applicability in the quantification of DA in urine samples with an excellent recovery rate. The excellent electroanalytical performances and straight-forward, surfactant and template free preparation method construct the rGO/Fe3O4 composite as an extremely promising material for the diagnosis of DA related diseases in biomedical applications.

  19. Dopamine-assisted synthesis of carbon-coated silica for PCR enhancement.

    PubMed

    Park, Ji Young; Back, Seung Hun; Chang, Sung-Jin; Lee, Seok Jae; Lee, Kyoung G; Park, Tae Jung

    2015-07-22

    Polymerase chain reaction (PCR) has become one of the most popular methods to identify genomic information on cells and tissues as well as to solve crimes and check genetic diseases. Recently, the nanomaterials including nanocomposite and nanoparticles have been considered as a next generation of solution to improve both quality and productivity of PCR. Herein, taking into these demands, carbon-coated silica was synthesized using silica particles via polymerization of biocompatible dopamine (PD) to form polydopamine (PDA) film and carbonization of PDA into graphitic structures. For further investigation of the effects of as-prepared silica, PDA-coated silica (PDA silica), and carbonized PDA silica (C-PDA silica), two different types of genes were adopted to investigate the influences of them in the PCR. Furthermore, the strong interaction between the nanocomposites and PCR reagents including polymerase and primers enables regulation of the PCR performance. The effectiveness of the nanocomposites was also confirmed through adopting the conventional PCR and real-time PCR with two different types of DNA as realistic models and different kinds of analytical methods. These findings could provide helpful insight for the potential application in biosensors and biomedical diagnosis. PMID:26112101

  20. A novel Schiff base bearing dopamine groups with tripodal structure. Synthesis and its salen/salophen-bridged Fe/Cr(III) capped complexes

    NASA Astrophysics Data System (ADS)

    Kocyigit, Ozcan

    2013-02-01

    This work presents the synthesis of a novel Schiff base and its complexation properties with Fe(III) and Cr(III). A Schiff base bearing dopamine (TRDPA) was synthesized using dopamine hydrochloride and 1,3,5-tris (formylphenoxymethyl)benzene in methanol media. The prepared TRDPA was then reacted with four new trinuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2). The structures of these compounds were characterized through 1H NMR, 13C NMR, FT-IR, thermal analysis (TG), elemental analysis, and magnetic susceptibility measurements. The complexes were also characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by a catechol group.

  1. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  2. Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Soderlund, Goran

    2007-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…

  3. Roles of dopamine 2 receptor isoforms and g proteins in ethanol regulated prolactin synthesis and lactotropic cell proliferation.

    PubMed

    Sengupta, Amitabha; Sarkar, Dipak K

    2012-01-01

    Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes.

  4. Roles of Dopamine 2 Receptor Isoforms and G Proteins in Ethanol Regulated Prolactin Synthesis and Lactotropic Cell Proliferation

    PubMed Central

    Sengupta, Amitabha; Sarkar, Dipak K.

    2012-01-01

    Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes. PMID:23029123

  5. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    SciTech Connect

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  6. Treadmill exercise and methylphenidate ameliorate symptoms of attention deficit/hyperactivity disorder through enhancing dopamine synthesis and brain-derived neurotrophic factor expression in spontaneous hypertensive rats.

    PubMed

    Kim, Hong; Heo, Hong-Im; Kim, Dong-Hyun; Ko, Il-Gyu; Lee, Su-Shin; Kim, Sung-Eun; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Kim, Jae-Deung; Shin, Mal-Soon; Choi, Young-Woong; Kim, Chang-Ju

    2011-10-17

    Attention deficit/hyperactivity disorder (ADHD) is a developmental disorder of cognition. Behavioral symptoms of ADHD are inattention, hyperactivity, and impulsivity. We investigated the effects of treadmill exercise and methylphenidate (MPH) on activity and spatial learning memory in relation to dopamine synthesis and brain-derived neurotrophic factor (BDNF) expression using spontaneously hypertensive adult male rats. The rats in the MPH-treated group received 1mg/kg MPH orally once a day for 28days. The rats in the treadmill exercise group were made to run on a treadmill for 30min once a day, five times a week, for 28days. Activity was determined by an open-field test and spatial learning memory was evaluated by an 8-arm maze test. Immunohistochemistry and Western blotting were conducted to examine the levels of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of dopamine, and BDNF. The rats in the ADHD group showed hyperactivity and spatial learning memory deficit. Reduction of TH in the striatum and substantia nigra and BDNF in the hippocampus was observed of the rats in the ADHD group. Treadmill exercise and MPH alleviated the ADHD-induced hyperactivity and spatial learning memory impairment. Expressions of TH and BDNF in the ADHD rats were also increased by both treadmill exercise and MPH. These findings provide a possibility that exercise may be used as an effective therapeutic intervention for ADHD patients as MPH treatment.

  7. Synthesis of diacylglycerol de novo is responsible for permanent activation and down-regulation of protein kinase C in transformed cells

    SciTech Connect

    Chiarugi, V.; Bruni, P.; Pasquali, F.; Magnelli, L.; Basi, G.; Ruggiero, M.; Farnararo, M. )

    1989-10-31

    We measured the synthesis of diacylglycerol de novo in normal NIH/3T3 fibroblasts and in cells transformed by ras, src, sis and abl oncogenes. Analysis of the incorporation of glucose-derived {sup 14}C into diacylglycerol indicated that neosynthesis of diacylglycerol was constitutively active in the transformed cell lines. Elevated levels of diacylglycerol and persistent activation/down-regulation of protein kinase C reduced the binding of phorbol dibutyrate to transformed cells. This phenomenon could be reversed by blocking the glycolytic pathway, thus indicating that neosynthesized diacylglycerol was responsible for persistent activation and down-regulation of protein kinase C. In transformed cells, protein kinase C activity could not be stimulated by the addition of diolein; however, inhibition of glycolysis restored the ability of transformed cells to respond to diolein. Taken together these data indicate that constitutive synthesis of diacylglycerol de novo is responsible for activation and down-regulation of protein kinase C in transformed cells, and it may play a role in altered mitogenic signalling.

  8. Activated phenoloxidase from Tenebrio molitor larvae enhances the synthesis of melanin by using a vitellogenin-like protein in the presence of dopamine.

    PubMed

    Lee, K M; Lee, K Y; Choi, H W; Cho, M Y; Kwon, T H; Kawabata, S; Lee, B L

    2000-06-01

    One of the biological functions of activated phenoloxidase in arthropods is the synthesis of melanin around invaded foreign materials. However, little is known about how activated phenoloxidase synthesizes melanin at the molecular level. Even though it has been suggested that the quinone derivatives generated by activated phenoloxidase might use endogenous protein components for melanin synthesis in arthropods, there is no report of protein components engaged in melanin synthesis induced by activated phenoloxidase. In this study, to isolate and characterize proteins involved in melanin synthesis, we prepared in vitro prophenoloxidase activating solution (designated G-100 solution), specifically showing phenoloxidase activity in the presence of Ca2+ and beta-1, 3-glucan, from the hemolymph of larvae of the coleopteran Tenebrio molitor by using a Sephadex G-100 column. When G-100 solution was incubated with dopamine to induce melanin synthesis in the presence of Ca2+ and beta-1,3-glucan, four types of protein (160 kDa, prophenoloxidase, phenoloxidase and 45 kDa) disappeared from SDS/PAGE under reducing conditions. Under identical conditions, but including phenylthiourea as a phenoloxidase inhibitor added to the G-100 solution, three of these proteins (160 kDa, phenoloxidase and 45 kDa) did not disappear. To characterize these melanization-engaging proteins, we first purified the 160-kDa melanization-engaging protein to homogeneity and raised a polyclonal antibody against it. Analysis of the cDNA revealed that it consisted of 1439 amino-acid residues and showed partial homology with Caenorhabditis elegans vitellogenin precursor-6 (19.7%). Western blot analysis showed that it disappeared when active phenoloxidase induced melanin synthesis. Furthermore, when the purified 160-kDa melanization-engaging protein was added to a G-100 solution deficient in it, melanin synthesis was enhanced compared with the same solution without the protein. These data support the conclusion

  9. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    PubMed

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  10. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  11. Synthesis and dopamine D2-like receptor binding affinity of substituted 5-phenyl-pyrrole-3-carboxamides.

    PubMed

    Pinna, G A; Curzu, M M; Sechi, M; Chelucci, G; Maciocco, E

    1999-08-30

    A series of 5-p-substituted phenyl-pyrrole-3-carboxamide derivatives was designed as hybrid analogs of the dopamine D2-like 5-phenyl-pyrrole and heterocyclic carboxamide antipsychotics. The title compounds were synthesized and evaluated for dopamine D2-like receptor by means of [3H]YM-09151-2 receptor binding assay. The compound bearing a 1-ethyl-2-methyl-pyrrolidine moiety as the basic part of 5-phenyl-pyrrole-3-carboxamide derivative 1a together with its 2-chloro analog 1f were found to possess affinity in the low micromolar range. Substituted phenyl-pyrrolecarboxamides containing groups such as F, Cl, NO2, CH3, at the 4-position of the phenyl ring, gave ligands with lower D2-like affinity.

  12. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions.

    PubMed

    Liu, Fakeng; Jin, Rui; Liu, Xiuju; Huang, Henry; Wilkinson, Scott C; Zhong, Diansheng; Khuri, Fadlo R; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-19

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.

  13. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating tyrosinase activity and downregulating melanosome transfer.

    PubMed

    Lee, Woo Jin; Rhee, Do Young; Bang, Seung Hyun; Kim, Su Yeon; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2015-01-01

    This study was conducted to examine the effects of EP-2, a natural yeast extract isolated by ethanol precipitation from Saccharomyces cerevisiae, on melanogenesis and to determine its underlying mechanism of action. Our results show that although EP-2 is not a direct tyrosinase inhibitor, when EP-2 was added to the culture media of B16F10 melanoma cells, intracellular tyrosinase activity was decreased. However, EP-2 had no effect on the expression of microphthalmia-associated transcription factor or tyrosinase. EP-2 was found to inhibit melanogenesis and melanosome transfer when it was added to melanocytes and keratinocytes in coculture. In addition, protease-activated receptor 2, a key protein associated with melanosome transfer from melanocytes to keratinocytes, was downregulated in the presence of EP-2. In conclusion, EP-2 is a potent inhibitor of melanogenesis and its hypomelanogenic effect is related to the inhibition of tyrosinase activity and transfer of melanosomes.

  14. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions

    PubMed Central

    Liu, Xiuju; Huang, Henry; Wilkinson, Scott C.; Zhong, Diansheng; Khuri, Fadlo R.; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-01

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells. PMID:26506235

  15. Effects of VMAT2 inhibitors lobeline and GZ-793A on methamphetamine-induced changes in dopamine release, metabolism and synthesis in vivo.

    PubMed

    Meyer, Andrew C; Neugebauer, Nichole M; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2013-10-01

    Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward. PMID:23875705

  16. Effects of VMAT2 inhibitors lobeline and GZ-793A on methamphetamine-induced changes in dopamine release, metabolism and synthesis in vivo.

    PubMed

    Meyer, Andrew C; Neugebauer, Nichole M; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2013-10-01

    Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward.

  17. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  18. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue.

    PubMed

    Lee, Taek Hwan; Seo, Jae Ok; Do, Moon Ho; Ji, Eunhee; Baek, So-Hyeon; Kim, Sun Yeou

    2014-09-01

    Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.

  19. The Role of De Novo Catecholamine Synthesis in Mediating Methylmercury-Induced Vesicular Dopamine Release From Rat Pheochromocytoma (PC12) Cells

    PubMed Central

    Atchison, William D.

    2013-01-01

    The purpose of this study was to characterize methylmercury (MeHg)–induced dopamine (DA) release from undifferentiated pheochromocytoma (PC12) cells and to examine the potential role for DA synthesis in this process. MeHg caused a significant increase in DA release that was both concentration- and time-dependent. DA release was significantly increased by 2µM MeHg at 60min and by 5µM MeHg at 30min; 1µM MeHg was without effect. Because DA release induced by 5µM MeHg was associated with a significant percentage of cell death at 60 and 120min, 2µM MeHg was chosen for further characterization of release mechanisms. MeHg-induced DA release was attenuated but not abolished in the absence of extracellular calcium, whereas the vesicular content depleting drug reserpine (50nM) abolished release. Thus, MeHg-induced DA release requires vesicular exocytosis but not extracellular calcium. MeHg also increased intracellular DA and the rate of DA storage utilization, suggesting a role for DA synthesis in MeHg-induced DA release. The tyrosine hydroxylase inhibitor α-methyltyrosine (300µM, 24h) completely abolished MeHg-induced DA release. MeHg significantly increased DA precursor accumulation in cells treated with 3-hydroxybenzylhydrazine (10µM), revealing that MeHg increases tyrosine hydroxylase activity. Overall, these data demonstrate that MeHg facilitates DA synthesis, increases intracellular DA, and augments vesicular exocytosis. PMID:23425605

  20. Downregulation of mPGES-1 Expression via EGR1 Plays an Important Role in Inhibition of Caffeine on PGE2 Synthesis of HBx(+) Hepatocytes.

    PubMed

    Ma, Yan; Wang, Xiaoqian; Tang, Nanhong

    2015-01-01

    We investigated the mechanism of caffeine in influencing HBx(+) hepatocytes to synthesize PGE2. The inhibitory effect of caffeine on hepatocyte proliferation increased with increasing caffeine concentrations (200-800 μM) and treatment times (1-7 days), which was first observed at the second test time point (caffeine treatment for 4 days). The inhibition of caffeine on the growth of HL7702-HBx and HepG2-HBx cells was most obvious at 800 μM caffeine and at caffeine treatment for 7 days. The PGE2 secretion and the expression of mPGES-1 and EGR1 were downregulated, whereas PPARγ expression was upregulated. The mPGES-1 promoter activity of HBx(+) hepatocytes decreased more significantly than that of HBx(-) hepatocytes. Moreover, the expression of EGR1 and PPARγ changed more significantly in HBx(+) hepatocytes cultured for 12 to 24 hours in the presence of 5 mM caffeine. This limited success may be attributed to caffeine releasing the binding of HBx and PPARγ and furthermore affecting the mPGES-1 expression by EGR1 in HBx(+) hepatocytes. The results indicate that caffeine could effectively reduce PGE2 synthesis in HBx(+) hepatocytes by specifically blocking the PPARγ-EGR1-mPGES-1 pathway, thereby providing a new evidence of molecular biology for the hypothesis that drinking coffee is beneficial to HBV-infected patients.

  1. Downregulation of mPGES-1 Expression via EGR1 Plays an Important Role in Inhibition of Caffeine on PGE2 Synthesis of HBx(+) Hepatocytes

    PubMed Central

    Ma, Yan; Wang, Xiaoqian; Tang, Nanhong

    2015-01-01

    We investigated the mechanism of caffeine in influencing HBx(+) hepatocytes to synthesize PGE2. The inhibitory effect of caffeine on hepatocyte proliferation increased with increasing caffeine concentrations (200–800 μM) and treatment times (1–7 days), which was first observed at the second test time point (caffeine treatment for 4 days). The inhibition of caffeine on the growth of HL7702-HBx and HepG2-HBx cells was most obvious at 800 μM caffeine and at caffeine treatment for 7 days. The PGE2 secretion and the expression of mPGES-1 and EGR1 were downregulated, whereas PPARγ expression was upregulated. The mPGES-1 promoter activity of HBx(+) hepatocytes decreased more significantly than that of HBx(−) hepatocytes. Moreover, the expression of EGR1 and PPARγ changed more significantly in HBx(+) hepatocytes cultured for 12 to 24 hours in the presence of 5 mM caffeine. This limited success may be attributed to caffeine releasing the binding of HBx and PPARγ and furthermore affecting the mPGES-1 expression by EGR1 in HBx(+) hepatocytes. The results indicate that caffeine could effectively reduce PGE2 synthesis in HBx(+) hepatocytes by specifically blocking the PPARγ-EGR1-mPGES-1 pathway, thereby providing a new evidence of molecular biology for the hypothesis that drinking coffee is beneficial to HBV-infected patients. PMID:26538827

  2. Ulinastatin suppresses lipopolysaccharide-induced prostaglandin E2 synthesis and nitric oxide production through the downregulation of nuclear factor‑κB in BV2 mouse microglial cells.

    PubMed

    Sung, Yun-Hee; Shin, Mal-Soon; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Chang-Ju; Ahn, Hyun-Jong; Yoon, Hye-Sun; Lee, Bong-Jae

    2013-05-01

    Ulinastatin is an intrinsic serine-protease urinary trypsin inhibitor that can be extracted and purified from human urine. Urinary trypsin inhibitors are widely used to treat patients with acute inflammatory disorders, such as shock and pancreatitis. However, although the anti-inflammatory activities of urinary trypsin inhibitors have been investigated, the mechanisms underlying their actions are not yet fully understood. In the present study, we evaluated the effect of ulinastatin on lipopolysaccharide (LPS)-induced inflammation in relation with nuclear factor-κB (NF-κB) activation using BV2 mouse microglial cells. To accomplish this, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis, electrophoretic mobility gel shift assay (EMSA), prostaglandin E(2) (PGE(2)) immunoassay and nitric oxide (NO) detection. The results demonstrated that ulinastatin suppressed PGE2 synthesis and NO production by inhibiting the LPS-induced mRNA and protein expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) in BV2 mouse microglial cells. Ulinastatin suppressed the activation of NF-κB in the nucleus. These findings demonstrate that ulinastatin exerts analgesic and anti-inflammatory effects that possibly occur via the suppression of COX-2 and iNOS expression through the downregulation of NF-κB activity.

  3. Downregulation of mPGES-1 Expression via EGR1 Plays an Important Role in Inhibition of Caffeine on PGE2 Synthesis of HBx(+) Hepatocytes.

    PubMed

    Ma, Yan; Wang, Xiaoqian; Tang, Nanhong

    2015-01-01

    We investigated the mechanism of caffeine in influencing HBx(+) hepatocytes to synthesize PGE2. The inhibitory effect of caffeine on hepatocyte proliferation increased with increasing caffeine concentrations (200-800 μM) and treatment times (1-7 days), which was first observed at the second test time point (caffeine treatment for 4 days). The inhibition of caffeine on the growth of HL7702-HBx and HepG2-HBx cells was most obvious at 800 μM caffeine and at caffeine treatment for 7 days. The PGE2 secretion and the expression of mPGES-1 and EGR1 were downregulated, whereas PPARγ expression was upregulated. The mPGES-1 promoter activity of HBx(+) hepatocytes decreased more significantly than that of HBx(-) hepatocytes. Moreover, the expression of EGR1 and PPARγ changed more significantly in HBx(+) hepatocytes cultured for 12 to 24 hours in the presence of 5 mM caffeine. This limited success may be attributed to caffeine releasing the binding of HBx and PPARγ and furthermore affecting the mPGES-1 expression by EGR1 in HBx(+) hepatocytes. The results indicate that caffeine could effectively reduce PGE2 synthesis in HBx(+) hepatocytes by specifically blocking the PPARγ-EGR1-mPGES-1 pathway, thereby providing a new evidence of molecular biology for the hypothesis that drinking coffee is beneficial to HBV-infected patients. PMID:26538827

  4. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    SciTech Connect

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu; Chang, Hwan-You

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.

  5. Tilmicosin-induced bovine neutrophil apoptosis is cell-specific and downregulates spontaneous LTB4 synthesis without increasing Fas expression.

    PubMed

    Lee, Wilson D; Flynn, Andrew N; LeBlanc, Justin M; Merrill, John K; Dick, Paul; Morck, Douglas W; Buret, Andre G

    2004-01-01

    The pathology of bacterial pneumonia, such as seen in the bovine lung infected with Mannheimia haemolytica, is due to pathogen virulence factors and to inflammation initiated by the host. Tilmicosin is a macrolide effective in treating bacterial pneumonia and recent findings suggest that this antibiotic may provide anti-inflammatory benefits by inducing polymorphonuclear neutrophilic leukocyte (PMN) apoptosis. Using an in vitro bovine system, we examined the cell-specificity of tilmicosin, characterized the changes in spontaneous leukotriene B4 (LTB4) synthesis by PMN exposed to the macrolide, and assessed its effects on PMN Fas expression. Previous findings demonstrated that tilmicosin is able to induce PMN apoptosis. These results were confirmed in this study by the Annexin-V staining of externalized phosphatidylserine and the analysis with flow cytometry. The cell-specificity of tilmicosin was assessed by quantification of apoptosis in bovine PMN, mononuclear leukocytes, monocyte-derived macrophages, endothelial cells, epithelial cells, and fibroblasts cultured with the macrolide. The effect of tilmicosin on spontaneous LTB4 production by PMN was evaluated via an enzyme-linked immunosorbent assay. Finally, the mechanisms of tilmicosin-induced PMN apoptosis were examined by assessing the effects of tilmicosin on surface Fas expression on PMN. Tilmicosin-induced apoptosis was found to be at least partially cell-specific, as PMN were the only cell type tested to die via apoptosis in response to incubation with tilmicosin. PMN incubated with tilmicosin under conditions that induce apoptosis spontaneously produced less LTB4, but did not exhibit altered Fas expression. In conclusion, tilmicosin-induced apoptosis is specific to PMN, inhibits spontaneous LTB4 production, and occurs through a pathway independent of Fas upregulation.

  6. Interfacial Polymerization of Dopamine in a Pickering Emulsion: Synthesis of Cross-Linkable Colloidosomes and Enzyme Immobilization at Oil/Water Interfaces.

    PubMed

    Qu, Yanning; Huang, Renliang; Qi, Wei; Su, Rongxin; He, Zhimin

    2015-07-15

    Colloidosomes are promising carriers for immobilizing enzyme for catalytic purposes in aqueous/organic media. However, they often suffer from one or more problems regarding catalytic performance, stability, and recyclability. Here, we report a novel approach for the synthesis of cross-linkable colloidosomes by the selective polymerization of dopamine at oil/water interfaces in a Pickering emulsion. An efficient enzyme immobilization method was further developed by covalently bonding enzymes to the polydopamine (PDA) layer along with the formation of such colloidosomes with lipase as a model enzyme. In this enzyme system, the PDA layer served as a cross-linking layer and enzyme support for simultaneously enhancing the colloidosomes' stability and improving surface availability of the enzymes for catalytic reaction. It was found that the specific activity of lipases immobilized on the colloidosome shells was 8 and 1.4 times higher than that of free lipase and encapsulated lipase positioned in the aqueous cores of colloidosomes, respectively. Moreover, the immobilized lipases demonstrated excellent operational stability and recyclability, retaining 86.6% of enzyme activity after 15 cycles. It is therefore reasonable to expect that this novel approach for enzyme immobilization has great potential to serve as an important technique for the construction of biocatalytic systems.

  7. Synthesis and evaluation of novel azetidine analogs as potent inhibitors of vesicular [3H]dopamine uptake

    PubMed Central

    Ding, Derong; Nickell, Justin R.; Deaciuc, Agripina G.; Penthala, Narsimha Reddy; Dwoskin, Linda P.; Crooks, Peter A.

    2013-01-01

    Lobelane analogs that incorporate a central piperidine or pyrrolidine moiety have previously been reported by our group as potent inhibitors of VMAT2 function. Further central ring size reduction of the piperidine moiety in lobelane to a four-membered heterocyclic ring has been carried out in the current study to afford novel cis- and trans-azetidine analogs. These azetidine analogs (15a–15c and 22a–22c) potently inhibited [3H]dopamine (DA) uptake into isolated synaptic vesicles (Ki≤66 nM). The cis-4-methoxy analog 22b was the most potent inhibitor (Ki=24 nM), and was 2-fold more potent that either lobelane (2a, Ki=45 nM) or norlobelane (2b, Ki=43 nM). The trans-methylenedioxy analog, 15c (Ki=31 nM), was equipotent with the cis-analog, 22b, in this assay. Thus, cis- and trans-azetidine analogs 22b and 15c represent potential leads in the discovery of new clinical candidates for the treatment of methamphetamine abuse. PMID:23993667

  8. Synthesis and evaluation of novel azetidine analogs as potent inhibitors of vesicular [3H]dopamine uptake.

    PubMed

    Ding, Derong; Nickell, Justin R; Deaciuc, Agripina G; Penthala, Narsimha Reddy; Dwoskin, Linda P; Crooks, Peter A

    2013-11-01

    Lobelane analogs that incorporate a central piperidine or pyrrolidine moiety have previously been reported by our group as potent inhibitors of VMAT2 function. Further central ring size reduction of the piperidine moiety in lobelane to a four-membered heterocyclic ring has been carried out in the current study to afford novel cis-and trans-azetidine analogs. These azetidine analogs (15a-15c and 22a-22c) potently inhibited [(3)H]dopamine (DA) uptake into isolated synaptic vesicles (Ki⩽66nM). The cis-4-methoxy analog 22b was the most potent inhibitor (Ki=24nM), and was twofold more potent that either lobelane (2a, Ki=45nM) or norlobelane (2b, Ki=43nM). The trans-methylenedioxy analog, 15c (Ki=31nM), was equipotent with the cis-analog, 22b, in this assay. Thus, cis- and trans-azetidine analogs 22b and 15c represent potential leads in the discovery of new clinical candidates for the treatment of methamphetamine abuse.

  9. Synthesis of 8-thiabicyclo[3.2.1]octanes and their binding affinity for the dopamine and serotonin transporters.

    PubMed

    Pham-Huu, Duy-Phong; Deschamps, Jeffrey R; Liu, Shanghao; Madras, Bertha K; Meltzer, Peter C

    2007-01-15

    Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers. PMID:17070057

  10. Synthesis of 8-thiabicyclo[3.2.1]octanes and their binding affinity for the dopamine and serotonin transporters.

    PubMed

    Pham-Huu, Duy-Phong; Deschamps, Jeffrey R; Liu, Shanghao; Madras, Bertha K; Meltzer, Peter C

    2007-01-15

    Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers.

  11. Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis.

    PubMed

    Chang, Ligong; Tian, Xiaoqiang; Lu, Yinghui; Jia, Min; Wu, Peng; Huang, Peilin

    2014-01-01

    AZGP1 is a multifaceted protein associated with lipid mobilization, a process that is regulated by FASN and other metabolic pathways such as mTOR signaling. The active mTOR signaling pathway has been found to be involved in a variety of tumors. However, it remains unclear whether it is involved in the regulation of AZGP1 and FASN. An AZGP1-expressing plasmid was transfected into a human colorectal cancer cell line (LoVo) with a low expression of AZGP1. The expression of AZGP1, FASN, eIF4E, p-mTOR, p-S6,and S6K1 were measured by Western blot analysis, and target genes were detected by RT-PCR. Cell proliferation was studied using the MTT and colony formation assays. The analysis of apoptosis and the cell cycle phase were assessed by flow cytometry. The capacity of cell migration was investigated using the transwell migration assay. We found that the expression of AZGP1 was up-regulated while the expression of FASN, eIF4E, p-mTOR, p-S6, and S6K1 were down-regulated in LoVo cells after AZGP1 was expressed. The proliferation of malignant cells was reduced in AZGP1-overexpression cells, which is consistent with an increased in the G2-arrest and apoptosis rate. Furthermore, the migration of AZGP1-overexpression cells was decreased. The overexpression of AZGP1 suppressed the activation of the mTOR pathway and endogenous FASN-regulated fatty acid synthesis, mitigating the malignant phenotype of LoVo cells. Herein, we provide evidence that AZGP1 may constitute a novel tumor suppressor for LoVo colorectal cancer cells.

  12. Levodopa-induced dyskinesias are associated with transient down-regulation of cAMP and cGMP in the caudate-putamen of hemiparkinsonian rats: reduced synthesis or increased catabolism?

    PubMed

    Sancesario, Giuseppe; Morrone, Luigi Antonio; D'Angelo, Vincenza; Castelli, Valentina; Ferrazzoli, Davide; Sica, Francesco; Martorana, Alessandro; Sorge, Roberto; Cavaliere, Federica; Bernardi, Giorgio; Giorgi, Mauro

    2014-12-01

    Second messenger cAMP and cGMP represent a key step in the action of dopamine that modulates directly or indirectly their synthesis. We aimed to verify whether levodopa-induced dyskinesias are associated with changes of the time course of levodopa/dopamine stimulated cAMP and cGMP levels, and/or with changes of their catabolism by phosphodiesterase activity in rats with experimental hemiparkinsonism. Microdialysis and tissue homogenates of the striatal tissues demonstrated that extracellular and intracellular cAMP/cGMP levels were lower in dyskinetic animals during the increasing phase of dyskinesias compared to eukinetic animals, but cAMP/cGMP levels increased in dyskinetic animals during the phase of decreasing and extinction of dyskinesias. Dyskinesias and the abnormal lowering of striatal cGMP and cAMP after levodopa were prevented by pretreatment with the multipotent drug amantadine, outlining the inverse relationship of cAMP/cGMP to dyskinesias. Moreover, dyskinetic animals showed higher striatal hydrolyzing cGMP-phosphodiesterase but not hydrolyzing cAMP-phosphodiesterase activity, suggesting that low cGMP but not cAMP levels could be due to increased catabolism. However, expressions of isozyme phosphodiesterase-1B and -10A highly and specifically located in the basal ganglia were not changed after levodopa in dyskinetic and eukinetic animals: accordingly, selective inhibitors of phosphodiesterase-1B and -10A were ineffective on levodopa dyskinesias. Therefore, the isozyme(s) expressing higher cGMP-phosphodiesterase activity in the striatum of dyskinetic animal should be determined. These observations suggest that dopamine-mediated processes of synthesis and/or degradation of cAMP/cGMP could be acutely impaired in levodopa dyskinesias, opening new ways to understanding physiopathology and treatment.

  13. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  14. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  15. A facile one-pot synthesis of carbon nitride dots-reduced graphene oxide nanocomposites for simultaneous enhanced detecting of dopamine and uric acid.

    PubMed

    Yang, Ziyin; Zheng, Xiaohui; Li, Zhi; Zheng, Jianbin

    2016-08-01

    In this study, we described the facile synthesis of carbon nitride dots-reduced graphene oxide nanocomposites (CNDs-rGO) and their application for the enhanced electrochemical determination of dopamine (DA) and uric acid (UA). CNDs-rGO were synthesized for the first time through a green and facile one-step approach, carried out by hydrothermal heat-treatment of an aqueous solution containing GO and chitosan without introduction of other reducing agents or surface modifier. Then, the morphology and composition of CNDs-rGO nanocomposites were characterized by transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. TEM observations revealed that CNDs with a size of about 5.0 nm were homogeneously and densely distributed on the surface of rGO. Electrochemical investigations indicated that CNDs-rGO nanocomposites exhibited an excellent performance toward DA and UA. The linear range for DA was estimated to be from 80 nM to 227 μM with a sensitivity of 154.3 μA mM(-1) cm(-2) and a low detection limit of 0.03 μM. Meanwhile, the linear range for UA was estimated to be from 80 nM to 328 μM with a high sensitivity of 178.1 μA mM(-1) cm(-2) and a low detection limit of 0.05 μM. Therefore, CNDs-rGO nanocomposites showed great application potential for constructing electrochemical sensors for the detection of DA and UA.

  16. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples.

    PubMed

    Meenakshi, S; Devi, S; Pandian, K; Devendiran, R; Selvaraj, M

    2016-12-01

    Sunlight assisted reduction of silver ions were accomplished for the synthesis of silver nanoparticles incorporated within the mesoporous silicate framework of zeolite Y. The zeolite-Y and AgNP/Zeo-Y were characterized by field emission scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption BET isotherm and X-ray diffraction techniques. The incorporation of silver nanoparticles within the porous framework was further confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. An enhanced electrocatalytic oxidation of biologically important molecules like dopamine and uric acid using AgNP/Zeo-Y modified glassy carbon electrode has been developed. A simultaneous oxidation of DA and UA peaks were obtained at +0.31V and +0.43V (vs. Ag/AgCl) using AgNP/Zeo-Y/GCE under the optimum experimental condition. A well-resolved peak potential window (~120mV) for the oxidation of both DA and UA were observed at AgNP/Zeo-Y/GCE system. The calibration curves for DA and UA were obtained within the dynamic linear range of 0.02×10(-6) to 0.18×10(-6)M (R(2)=0.9899) and 0.05×10(-6) to 0.7×10(-6)M (R(2)=0.9996) and the detection limits were found to be 1.6×10(-8)M and 2.51×10(-8)M by using differential pulse voltammetry (DPV) method. The proposed method was successfully applied for the determination of both DA and UA in human urine samples with a related standard deviation was <3%, and n=5 using the standard addition method. PMID:27612692

  17. The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DE-71 on dopamine in zebrafish larvae.

    PubMed

    Wang, Xianfeng; Yang, Lihua; Wu, Yuanyuan; Huang, Changjiang; Wang, Qiangwei; Han, Jian; Guo, Yongyong; Shi, Xiongjie; Zhou, Bingsheng

    2015-05-01

    The potential neurotoxicity of polybrominated diphenyl ethers (PBDEs) is still a great concern. In the present study, the authors investigated whether exposure to PBDEs could affect the neurotransmitter system and cause developmental neurotoxicity in zebrafish. Zebrafish embryos (2 h postfertilization) were exposed to different concentrations of the PBDE mixture DE-71 (0-100 μg/L). The larvae were harvested at 120 h postfertilization, and the impact on dopaminergic signaling was investigated. The results revealed significant reductions in content of whole-body dopamine and its metabolite, dihydroxyphenylacetic acid, in DE-71-exposed larvae. The transcription of genes involved in the development of dopaminergic neurons (e.g., manf, bdnf, and nr4a2b) was significantly downregulated upon exposure to DE-71. Also, DE-71 resulted in a significant decrease of tyrosine hydroxylase and dopamine transporter protein levels in dopaminergic neurons. The expression level of tyrosine hydroxylase in forebrain neurons was assessed by whole-mount immunofluorescence, and the results further demonstrated that the tyrosine hydroxylase protein expression level was reduced in dopaminergic neurons. In addition to these molecular changes, the authors observed reduced locomotor activity in DE-71-exposed larvae. Taken together, the results of the present study demonstrate that acute exposure to PBDEs can affect dopaminergic signaling by disrupting the synthesis and transportation of dopamine in zebrafish, thereby disrupting normal neurodevelopment. In accord with its experimental findings, the present study extends knowledge of the mechanisms governing PBDE-induced developmental neurotoxicity. PMID:25651517

  18. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder.

    PubMed

    Itoh, Kae; Washio, Youhei; Fujinami, Yuichiro; Shimizu, Daisuke; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2012-04-01

    In order to better understand the endocrine aberrations related to abnormal metamorphic pigmentation that appear in flounder larvae reared in tanks, this study examined the effects of continuous 24-h illumination (LL) through larval development on the expression of tyrosine hydroxylase-1 (th1), proopiomelanocortin (pomc), α-melanophore-stimulating hormone (α-MSH) and melanin concentrating hormone (MCH), which are known to participate in the control of background adaptation of body color. We observed two conspicuous deviations in the endocrine system under LL when compared with natural light conditions (LD). First, LL severely suppressed th1 expression in the dopaminergic neurons in the anterior diencephalon, including the suprachiasmatic nucleus (SCN). Second, pomc and α-MSH expression in the pars intermedia melanotrophs was enhanced by LL. Skin color was paler under LL than LD before metamorphic pigmentation, and abnormal metamorphic pigmentation occurred at a higher ratio in LL. We therefore hypothesize that continuous LL inhibited dopamine synthesis in the SCN, which resulted in up-regulation of pomc mRNA expression in the melanotrophs. In spite of the up-regulation of pomc in the melanotrophs, larval skin was adjusted to be pale by MCH which was not affected by LL. Accumulation of α-MSH in the melanotrophs is caused by uncoupling of α-MSH synthesis and secretion due to inhibitory role of MCH on α-MSH secretion, which results in abnormal metamorphic pigmentation by affecting differentiation of adult-type melanophores. Our data demonstrate that continuous illumination at the post-embryonic stage has negative effects on the neuroendocrine system and pituitary in flounder.

  19. Dopamine, by Acting through Its D2 Receptor, Inhibits Insulin-Like Growth Factor-I (IGF-I)-Induced Gastric Cancer Cell Proliferation via Up-Regulation of Krüppel-Like Factor 4 through Down-Regulation of IGF-IR and AKT Phosphorylation

    PubMed Central

    Ganguly, Subhalakshmi; Basu, Biswarup; Shome, Saurav; Jadhav, Tushar; Roy, Sudipta; Majumdar, Jahar; Dasgupta, Partha Sarathi; Basu, Sujit

    2010-01-01

    The overexpression of insulin-like growth factor receptor-I (IGF-IR) and the activation of its signaling pathways both play critical roles in the development and progression of gastric cancer. Dopamine (DA), a major enteric neurotransmitter, has been reported to have a wide variety of physiological functions in the gastrointestinal tract, including the stomach. We have previously reported that both DA and tyrosine hydroxylase, the rate-limiting enzyme required for the synthesis of DA, are lost in malignant gastric tissues. The effect of this loss of DA on IGF-IR-induced growth of gastric cancer has not yet been elucidated; we therefore investigated the role of DA, if any, on IGF-IR-induced proliferation of malignant gastric cells. There was a significant increase in the expression of phosphorylated IGF-IR and its downstream signaling molecule AKT in human malignant gastric tissues compared with normal nonmalignant tissues. Furthermore, to determine whether this loss of DA has any effect on the activation of IGF-IR signaling pathways in malignant gastric tumors, in vitro experiments were undertaken, using AGS gastric cancer cells. Our results demonstrated that DA acting through its D2 receptor, inhibits IGF-I-induced proliferation of AGS cells by up-regulating KLF4, a negative regulator of the cell cycle through down regulation of IGF-IR and AKT phosphorylation. Our results suggest that DA is an important regulator of IGF-IR function in malignant gastric cancer cells. PMID:21075859

  20. The role of dopamine in manganese-induced oxidative injury in rat pheochromocytoma cells.

    PubMed

    Seth, K; Agrawal, A K; Date, I; Seth, P K

    2002-03-01

    Reactive dopamine (DA) metabolites have been implicated in both Parkinson's disease and manganese (Mn) neurotoxicity. Rat PC12 and genetically modified PC12 (PC12M) cells capable of producing higher DA content, on exposure to MnCl2 (10(-6) M) for 72 hours, exhibited a significant decrease in glutathione content. Activity of antioxidant enzyme catalase was also inhibited following 24- and 72-hour MnCl2 exposure. MnCl2 caused a concentration-dependent (10(-7) to 10(-3) M) loss in mitochondrial activity after 24 and 72 hours and an impaired DNA synthesis after 72 hours with changes being more marked in PC12M cells. The results indicate that the free-radical-mediated toxicity of Mn at cellular level involves down-regulation of antioxidants in normal and DA-rich PC12 cells. PC12M cells appeared to be more sensitive than PC12 cells. PMID:12102543

  1. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide.

    PubMed

    Choi, Ju Yeon; Park, Seonghee

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. PMID:26820527

  2. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  3. Synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro- 1H-3- benzazepine (TISCH): A high affinity and selective iodinated ligand for CNS D1 dopamine receptor

    SciTech Connect

    Chumpradit, S.; Kung, M.P.; Billings, J.J.; Kung, H.F. )

    1991-03-01

    The synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3- benzazepine, (+/-)-TISCH (8) has been achieved by resolution of intermediate 4, the O-methoxyl, 3'-bromo derivative, as the diastereomeric camphor sulfonate salt. The final products, R-(+)-8 and S-(-)-8, were prepared by treatment of R-(+)- or S-(-)-7, the 3'-tributyltin intermediates, with iodine in chloroform, followed by O-demethylation. By using HPLC with a chiral column, the optical purity (greater than 99%) of the intermediates and the final compounds was determined. Radioiodination was achieved by an iodo-destannylation reaction with sodium (125I)iodide and hydrogen peroxide. As expected, the R-(+)-(125I)-8 (the active isomer) displayed high affinity and selectivity to the CNS D-1 receptor in rat striatum tissue preparation (Kd = 0.205 nM). The rank order of potency was as follows: SCH-23390 (1a) greater than (+/-)-8 greater than (+)-butaclamol greater than spiperone, WB4101 greater than dopamine, 5-HT. After an iv injection, the R-(+)-(125I)-8 penetrated the blood-brain barrier with ease and displayed specific regional distribution corresponding to the D-1 receptor density, while the S-(-)-(125I)-8 showed no specific uptake. The data suggest that the ligand may be useful as a pharmacological tool for characterizing the D-1 dopamine receptor. When labeled with I-123, this ligand is a potential agent for in vivo imaging of CNS D-1 dopamine receptor.

  4. Effect of retinoic acid on protein synthesis by foetal bovine chondrocytes in high-density culture: down-regulation of the glucose-regulated protein, GRP-78, and type II collagen.

    PubMed Central

    Freyria, A M; Ronzière, M C; Boutillon, M M; Herbage, D

    1995-01-01

    The effect of 0.1-10 microM retinoic acid (RA) on foetal bovine chondrocytes was investigated in high-density cultures (0.6 x 10(6) cells/cm2). After 5 days of culture in ascorbate-free medium, control chondrocytes presented a typical rounded shape and synthesized type II, IX, XI and III collagens. After RA treatment on days 2-5 of culture, the cells exhibited a fibroblast-like shape and decreased synthesis of total protein (48%) and pepsinresistant proteins (60%) as determined by [35S]methionine labelling. Addition of RA was not followed by the expression of type I collagen, but induced quantitative changes in the synthesis of cartilage-specific collagens (II, IX and XI) as measured by direct autoradiography of the corresponding bands after SDS/PAGE. The main change was in type II collagen synthesis, with a 80% decrease in the cell-layer fraction and a 89% decrease in culture-medium fraction; inhibition of type IX and XI collagen synthesis was limited to 25 and 31% respectively. Modifications to intracellular proteins induced by RA were determined by using two-dimensional electrophoresis associated with a computerized imaging system. Synthesis of one of the more abundant proteins (pI 4.8; 78 kDa) was decreased by 75% after RA treatment. This protein was characterized by micro-sequencing as the glucose-regulated protein 78 (GRP 78). It was reported previously to bind denatured collagen and mutated type I procollagen molecule and to function as a molecular chaperone for collagen molecules. It remains to demonstrate whether the parallel down-regulation of GRP 78 and type II collagen observed here corresponds to a co-ordinate regulation of these two proteins. Images Figure 1 Figure 2 Figure 3 PMID:7832751

  5. Dopamine, depression and antidepressants.

    PubMed

    Dailly, Eric; Chenu, Franck; Renard, Caroline E; Bourin, Michel

    2004-12-01

    Abstract The relationship between depression and dopamine deficiency in the mesolimbic pathway has been hypothesized for many years. The experimental studies with animal models of depression and the human studies implicate the role of the dopamine system in depression. Not only do dopaminergic receptor agonists, but also antagonists such as olanzapine exhibit antidepressant effects associated with standard antidepressants in patients with treatment-resistant depression. This paradoxical result suggests that further investigations are necessary to understand the role played by dopamine in depression.

  6. Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries.

    PubMed

    Yao, Xiayin; Zhao, Chenyang; Kong, Junhua; Wu, Huiqing; Zhou, Dan; Lu, Xuehong

    2014-12-01

    Polydopamine-derived carbon (C-PDA) nanospheres embedded with zinc ferrite (ZnFe2O4) are synthesized by in situ polymerization of dopamine with zinc and iron species followed by carbonization. The composite nanospheres contain ZnFe2O4 nanoparticles ∼8 nm in size well dispersed in porous C-PDA. The unique structure and morphology endow the nanospheres with excellent rate capability and cycling stability for use as anodes in lithium-ion batteries.

  7. Sustained N-methyl-D-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling

    PubMed Central

    Ferris, Mark J.; Milenkovic, Marija; Liu, Shuai; Mielnik, Catharine A.; Beerepoot, Pieter; John, Carrie E.; España, Rodrigo A.; Sotnikova, Tatyana D.; Gainetdinov, Raul R.; Borgland, Stephanie L.; Jones, Sara R.; Ramsey, Amy J.

    2014-01-01

    Chronic N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed as a contributing factor to symptoms of schizophrenia. However, it is unclear how sustained NMDAR hypofunction throughout development affects other neurotransmitter systems that have been implicated in the disease. Dopamine neuron biochemistry and activity were examined to determine whether sustained NMDAR hypofunction causes a state of hyperdopaminergia. We report that a global, genetic reduction in NMDARs led to a remodeling of dopamine neurons, substantially affecting two key regulators of dopamine homeostasis, i.e. tyrosine hydroxylase and the dopamine transporter. In NR1 knockdown mice, dopamine synthesis and release were attenuated, and dopamine clearance was increased. Although these changes would have the effect of reducing dopamine transmission, we demonstrated that a state of hyperdopaminergia existed in these mice because dopamine D2 autoreceptors were desensitized. In support of this conclusion, NR1 knockdown dopamine neurons have higher tonic firing rates. Although the tonic firing rates are higher, phasic signaling is impaired, and dopamine overflow cannot be achieved with exogenous high-frequency stimulation that models phasic firing. Through the examination of several parameters of dopamine neurotransmission, we provide evidence that chronic NMDAR hypofunction leads to a state of elevated synaptic dopamine. Compensatory mechanisms to attenuate hyperdopaminergia also impact the ability to generate dopamine surges through phasic firing. PMID:24754704

  8. Decoding dopamine signaling.

    PubMed

    Bibb, James A

    2005-07-29

    Dopamine is a key neurotransmitter that is important for many physiological functions including motor control, mood, and the reward pathway. In this issue of Cell, the laboratories of Marc Caron and Li-Huei Tsai identify two very different molecules--beta-arrestin 2 and Par-4, respectively--that unexpectedly are involved in dopamine signaling via the D2 receptor. These two new signaling pathways mediate the actions of dopamine on behavior and facilitate crosstalk between different signaling pathways that are activated by binding of dopamine to the D2 receptor.

  9. Somatostatin-14 and somatostatin-28 pretreatment down-regulate somatostatin-14 receptors and have biphasic effects on forskolin-stimulated cyclic adenosine, 3',5'-monophosphate synthesis and adrenocorticotropin secretion in mouse anterior pituitary tumor cells.

    PubMed

    Heisler, S; Srikant, C B

    1985-07-01

    Activation of somatostatin-14 (S-14) receptors on mouse AtT-20 pituitary tumor cells by S-14 or somatostatin-28 (S-28) inhibits forskolin-stimulated cAMP synthesis and ACTH secretion. In this study, the effects of prolonged exposure of cells to S-14 or S-28 was found to reduce, in a time- and concentration-dependent fashion, the density of S-14 receptors without affecting the affinity of these sites for [125I]Tyr11-S-14. This response was rapidly reversible after removal of peptide from incubation media. Additionally, S-14 and S-28 pretreatment also resulted in a time-dependent sensitizing effect on forskolin-stimulated cAMP formation and ACTH secretion which preceded S-14 receptor down-regulation. Enhancement of the forskolin response was concentration dependent, with maximal effects observed at 10(-8) M with either peptide. Higher pretreatment concentrations of S-14 resulted in an abolition of the enhanced biological response to forskolin; pretreatment with S-28 (10(-6) M) depressed forskolin- and (-)isoproterenol-induced cAMP formation below levels observed in nonpretreated cells. The enhancing effect of S-14 and S-28 required new protein synthesis, since it was partially blocked by cycloheximide; the depressor effect was independent of new protein synthesis. Both the enhanced and depressed forskolin responses after peptide pretreatment were reversible after withdrawal of S-14 or S-28; normalization of the forskolin response (cAMP formation and ACTH secretion) followed the return to control levels of S-14 receptor density. Pretreatment of cells with 10(-8) M or 10(-6) M S-28 increased and decreased, respectively, the ACTH secretory response to agonists which act in the absence of prior cAMP synthesis such as 8-bromo-cAMP, A-23187, and phorbol ester. The data suggest that S-14 receptor down-regulation is not causally associated with the sensitizing effects of S-14 and S-28 on adenylate cyclase and that the S-14 receptor may be also coupled to other effector

  10. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol.

  11. Impulsivity, Stimulant Abuse, and Dopamine Receptor Signaling.

    PubMed

    London, E D

    2016-01-01

    The nonmedical use of amphetamine-type stimulants is a worldwide problem, with substantial medical and social consequences. Nonetheless, the identification of a pharmacological treatment for amphetamine use disorder remains elusive. Stimulant users exhibit neurochemical evidence of dopamine-system dysfunction as well as impulsive behaviors that may interfere with the success of treatments for their addiction. This review focuses on the potential role of dopaminergic neurotransmission in impulsivity, both in healthy individuals and chronic stimulant users who meet criteria for methamphetamine dependence. Presented are findings related to the potential contributions of signaling through dopamine D1- and D2-type receptors to self-control impulsivity in methamphetamine- dependent users. The information available points to signaling through striatal D2-type dopamine receptors as a potential therapeutic target for stimulant use disorders, but medications that target D2-type dopamine receptors have not been successful in treating stimulant-use disorders, possibly because D2-type receptors are downregulated. Other means to augment D2-type receptor signaling are therefore under consideration, and one promising approach is the addition of exercise training as an adjunct to behavioral treatment for addiction. PMID:27288074

  12. Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Downregulates ELOVL1 Gene Expression and Fatty Acid Synthesis in Goat Fetal Fibroblasts

    PubMed Central

    Wang, Weipeng; He, Qiburi; Guo, Zhixin; Yang, Limin; Bao, Lili; Bao, Wenlei; Zheng, Xu; Wang, Yanfeng; Wang, Zhigang

    2015-01-01

    Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene that belongs to the ELOVL family and regulates the synthesis of very-long-chain fatty acids (VLCFAs) and sphingolipids, from yeast to mammals. Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell metabolism and is associated with fatty acids synthesis. In this study, we cloned the cDNA that encodes Cashmere goat (Capra hircus) ELOVL1 (GenBank Accession number KF549985) and investigated its expression in 10 tissues. ELOVL1 cDNA was 840 bp, encoding a deduced protein of 279 amino acids, and ELOVL1 mRNA was expressed in a wide range of tissues. Inhibition of mTORC1 by rapamycin decreased ELOVL1 expression and fatty acids synthesis in Cashmere goat fetal fibroblasts. These data show that ELOVL1 expression is regulated by mTORC1 and that mTORC1 has significant function in fatty acids synthesis in Cashmere goat. PMID:26204830

  13. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.

    PubMed

    Pan, Xiaoqi; Guo, Xiongxiong; Xiong, Fei; Cheng, Guihong; Lu, Qing; Yan, Hong

    2015-07-01

    Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.

  14. AMPHETAMINE AUGMENTS VESICULAR DOPAMINE RELEASE IN THE DORSAL AND VENTRAL STRIATUM THROUGH DIFFERENT MECHANISMS

    PubMed Central

    Avelar, Alicia J.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine has well-established actions on presynaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine-transporter reversal and non-exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. Here we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane-anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up-regulated vesicular release in both striatal sub-regions in controls, this psychostimulant elicited region-specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared to uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region-distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects. PMID:23406303

  15. Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms.

    PubMed

    Avelar, Alicia J; Juliano, Steven A; Garris, Paul A

    2013-05-01

    Amphetamine has well-established actions on pre-synaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine-transporter reversal and non-exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. In this study, we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane-anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up-regulated vesicular release in both striatal sub-regions in controls, this psychostimulant elicited region-specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared with uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region-distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects.

  16. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.

    PubMed

    Landers, J G; Esch, Tobias

    2015-12-01

    Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by

  17. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.

    PubMed

    Landers, J G; Esch, Tobias

    2015-12-01

    Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by

  18. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.

  19. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  20. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    SciTech Connect

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of

  1. Cytochrome P450 mediates dopamine formation in the brain in vivo.

    PubMed

    Bromek, Ewa; Haduch, Anna; Gołembiowska, Krystyna; Daniel, Władysława A

    2011-09-01

    The cytochrome P450-mediated synthesis of dopamine from tyramine has been shown in vitro. The aim of the present study was to demonstrate the ability of rat cytochrome P450 (CYP) 2D to synthesize dopamine from tyramine in the brain in vivo. We employed two experimental models using reserpinized rats with a blockade of the classical pathway of dopamine synthesis from tyrosine. Model A estimated dopamine production from endogenous tyramine in brain structures in vivo (ex vivo measurement of a tissue dopamine level), while Model B measured extracellular dopamine produced from exogenous tyramine (an in vivo microdialysis). In Model A, quinine (a CYP2D inhibitor) given intraperitoneally caused a significant decrease in dopamine level in the striatum and nucleus accumbens and tended to fall in the substantia nigra and frontal cortex. In Model B, an increase in extracellular dopamine level was observed after tyramine given intrastructurally (the striatum). After joint administration of tyramine and quinine, the amount of the dopamine formed was significantly lower compared to the group receiving tyramine only. The results of the two complementary experimental models indicate that the hydroxylation of tyramine to dopamine may take place in rat brain in vivo, and that CYP2D catalyzes this reaction.

  2. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells.

    PubMed

    Tang, Ruoping; Faussat, Anne-Marie; Majdak, Patricia; Marzac, Christophe; Dubrulle, Sabine; Marjanovic, Zora; Legrand, Ollivier; Marie, Jean-Pierre

    2006-03-01

    Semisynthetic homoharringtonine (ssHHT) is now being evaluated in phase II clinical trials for the treatment of chronic myelogenous leukemia and acute myelogenous leukemia patients. Here, we examined the mechanism of the apoptosis induced by ssHHT in myeloid leukemia cells. First, we have shown that ssHHT induces apoptosis in HL60 and HL60/MRP cell lines in a time- and dose-dependent manner, and independently of the expression of Bax. The decrease of mitochondrial membrane potential and the release of cytochrome c were observed in the apoptotic cells induced by ssHHT. To unveil the relationship between ssHHT and the mitochondrial disruption, we have shown that ssHHT decreased myeloid cell leukemia-1 (Mcl-1) expression and induced Bcl-2 cleavage in HL60 and HL60/MRP cell lines. The Bcl-2 cleavage could be inhibited by the Z-VAD.fmk caspase inhibitor. However, Mcl-1 turnover was very rapid and occurred before caspase activation. The Mcl-1 turnover was only induced by ssHHT and cycloheximide, but not by daunorubicin and cytosine arabinoside, and could be restored by proteasome inhibitors. Second, we confirmed that ssHHT rapidly induced massive apoptosis in acute myelogenous leukemia patient cells. We have also confirmed the release of cytochrome c and a rapid turnover of Mcl-1 in these patient cells, taking place only in apoptotic cells induced by ssHHT but not in cells undergoing spontaneous apoptosis. Finally, we have shown that ssHHT inhibits protein synthesis in both cell line and patient cells. We suggest that the inhibition of protein synthesis and resulting Mcl-1 turnover play a key role in the apoptosis induced by ssHHT. Our results encourage further clinical trials for the use of ssHHT in acute myelogenous leukemia.

  3. Azido-iodo-N-benzyl derivatives of threo-methylphenidate (Ritalin, Concerta): Rational design, synthesis, pharmacological evaluation, and dopamine transporter photoaffinity labeling.

    PubMed

    Lapinsky, David J; Velagaleti, Ranganadh; Yarravarapu, Nageswari; Liu, Yi; Huang, Yurong; Surratt, Christopher K; Lever, John R; Foster, James D; Acharya, Rejwi; Vaughan, Roxanne A; Deutsch, Howard M

    2011-01-01

    In contrast to tropane-based compounds such as benztropine and cocaine, non-tropane-based photoaffinity ligands for the dopamine transporter (DAT) are relatively unexplored. Towards addressing this knowledge gap, ligands were synthesized in which the piperidine nitrogen of 3- and 4-iodomethylphenidate was substituted with a benzyl group bearing a photoreactive azide. Analog (±)-3a demonstrated modest DAT affinity and a radioiodinated version was shown to bind covalently to rat striatal DAT and hDAT expressed in cultured cells. Co-incubation of (±)-3a with nonradioactive d-(+)-methylphenidate or (-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane (β-CFT, WIN-35,428, a cocaine analog) blocked DAT labeling. Compound (±)-3a represents the first successful example of a DAT photoaffinity ligand based on the methylphenidate scaffold. Such ligands are expected to assist in mapping non-tropane ligand-binding pockets within plasma membrane monoamine transporters.

  4. Dopamine triggers heterosynaptic plasticity.

    PubMed

    Ishikawa, Masago; Otaka, Mami; Huang, Yanhua H; Neumann, Peter A; Winters, Bradley D; Grace, Anthony A; Schlüter, Oliver M; Dong, Yan

    2013-04-17

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area to the nucleus accumbens core (NAcCo), action-potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action-potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the ventral tegmental area to NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal.

  5. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola.

    PubMed

    Oliveira-Garcia, Ely; Deising, Holger B

    2016-08-01

    In plants, pathogen defense is initiated by recognition of pathogen-associated molecular patterns (PAMPs) via plasma membrane-localized pattern-recognition receptors (PRRs). Fungal structural cell wall polymers such as branched β-glucans are essential for infection structure rigidity and pathogenicity, but at the same time represent PAMPs. Kre5 and Kre6 are key enzymes in β-1,6-glucan synthesis and formation of branch points of the β-glucan network. In spite of the importance of branched β-glucan for hyphal rigidity and plant-fungus interactions, neither the role of KRE5 and KRE6 in pathogenesis nor mechanisms allowing circumventing branched β-glucan-triggered immune responses are known. We functionally characterized KRE5 and KRE6 of the ascomycete Colletotrichum graminicola, a hemibiotroph that infects maize (Zea mays). After appressorial plant invasion, this fungus sequentially differentiates biotrophic and highly destructive necrotrophic hyphae. RNAi-mediated reduction of KRE5 and KRE6 transcript abundance caused appressoria to burst and swelling of necrotrophic hyphae, indicating that β-1,6-glucosidic bonds are essential in these cells. Live cell imaging employing KRE5:mCherry and KRE6:mCherry knock-in strains and probing of infection structures with a YFP-conjugated β-1,6-glucan-binding protein showed expression of these genes and exposure of β-1,6-glucan in conidia, appressoria and necrotrophic, but not in biotrophic hyphae. Overexpression of KRE5 and KRE6 in biotrophic hyphae led to activation of broad-spectrum plant defense responses, including papilla and H2 O2 formation, as well as transcriptional activation of several defense-related genes. Collectively, our results strongly suggest that down-regulation of synthesis and avoidance of exposure of branched β-1,3-β-1,6-glucan in biotrophic hyphae is required for attenuation of plant immune responses. PMID:27144995

  6. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons.

    PubMed

    Romero-Fernandez, W; Borroto-Escuela, D O; Vargas-Barroso, V; Narváez, M; Di Palma, M; Agnati, L F; Larriva Sahd, J; Fuxe, K

    2014-07-18

    modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.

  7. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. PMID:25308843

  8. Resistin disrupts glycogen synthesis under high insulin and high glucose levels by down-regulating the hepatic levels of GSK3β.

    PubMed

    Song, Rongjing; Wang, Xi; Mao, Yiqing; Li, Hui; Li, Zhixin; Xu, Wei; Wang, Rong; Guo, Tingting; Jin, Ling; Zhang, Xiaojing; Zhang, Yizhuang; Zhou, Na; Hu, Ruobi; Jia, Jianwei; Lei, Zhen; Irwin, David M; Niu, Gang; Tan, Huanran

    2013-10-15

    The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P<0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P<0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P<0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P<0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P<0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin. PMID:23860320

  9. De Novo Synthesis of Sphingolipids Is Required for Cell Survival by Down-Regulating c-Jun N-Terminal Kinase in Drosophila Imaginal Discs

    PubMed Central

    Adachi-Yamada, Takashi; Gotoh, Tomokazu; Sugimura, Isamu; Tateno, Minoru; Nishida, Yasuyoshi; Onuki, Tomoya; Date, Hideyuki

    1999-01-01

    Mitogen-activated protein kinase (MAPK) is a conserved eukaryotic signaling factor that mediates various signals, cumulating in the activation of transcription factors. Extracellular signal-regulated kinase (ERK), a MAPK, is activated through phosphorylation by the kinase MAPK/ERK kinase (MEK). To elucidate the extent of the involvement of ERK in various aspects of animal development, we searched for a Drosophila mutant which responds to elevated MEK activity and herein identified a lace mutant. Mutants with mild lace alleles grow to become adults with multiple aberrant morphologies in the appendages, compound eye, and bristles. These aberrations were suppressed by elevated MEK activity. Structural and transgenic analyses of the lace cDNA have revealed that the lace gene product is a membrane protein similar to the yeast protein LCB2, a subunit of serine palmitoyltransferase (SPT), which catalyzes the first step of sphingolipid biosynthesis. In fact, SPT activity in the fly expressing epitope-tagged Lace was absorbed by epitope-specific antibody. The number of dead cells in various imaginal discs of a lace hypomorph was considerably increased, thereby ectopically activating c-Jun N-terminal kinase (JNK), another MAPK. These results account for the adult phenotypes of the lace mutant and suppression of the phenotypes by elevated MEK activity: we hypothesize that mutation of lace causes decreased de novo synthesis of sphingolipid metabolites, some of which are signaling molecules, and one or more of these changes activates JNK to elicit apoptosis. The ERK pathway may be antagonistic to the JNK pathway in the control of cell survival. PMID:10490662

  10. Sickle erythrocytes and platelets augment lung leukotriene synthesis with downregulation of anti-inflammatory proteins: relevance in the pathology of the acute chest syndrome

    PubMed Central

    Opene, Michael; Kurantsin-Mills, Joseph; Husain, Sumair

    2014-01-01

    Abstract Initiation, progression, and resolution of vaso-occlusive pain episodes in sickle cell disease (SCD) have been recognized as reperfusion injury, which provokes an inflammatory response in the pulmonary circulation. Some 5-lipoxygenase (5-lox) metabolites are potent vasoconstrictors in the pulmonary circulation. We studied stimulation of production of the inflammatory eicosanoids leukotrienes (LTs) and prostaglandin E2 (PGE2) by isolated rat lungs perfused with sickle (HbSS) erythrocytes. Our hypothesis is that HbSS erythrocytes produce more LTs than normal (HbAA) erythrocytes, which can induce vaso-occlusive episodes in SCD patients. Lung perfusates were collected at specific time points and purified by high-pressure liquid chromatography, and LTC4 and PGE2 contents were measured by enzyme-linked immunosorbent assay (ELISA). Rat lung explants were also cultured with purified HbAA and HbSS peptides, and 5-lox, cyclooxygenase 1/2, and platelet-activating factor receptor (PAFR) proteins were measured by Western blotting, while prostacyclin and LTs produced by cultured lung explants were measured by ELISA. Lung weight gain and blood gas data were not different among the groups. HbSS-perfused lungs produced more LTC4 and PGE2 than HbAA-perfused lungs: 10.40 ± 0.62 versus 0.92 ± 0.2 ng/g dry lung weight (mean ± SEM; P = 0.0001) for LTC4. Inclusion of autologous platelets (platelet-rich plasma) elevated LTC4 production to 12.6 ± 0.96 and 7 ± 0.60 ng/g dry lung weight in HbSS and HbAA perfusates, respectively. HbSS lungs also expressed more 5-lox and PAFR. The data suggest that HbSS erythrocytes and activated platelets in patient’s pulmonary microcirculation will enhance the synthesis and release of the proinflammatory mediators LTC4 and PGE2, both of which may contribute to onset of the acute chest syndrome in SCD. PMID:25621162

  11. Acute restraint stress decreases dopamine synthesis and turnover in the median eminence: a model for the study of the inhibitory neuronal influences on tuberoinfundibular dopaminergic neurons.

    PubMed

    Demarest, K T; Moore, K E; Riegle, G D

    1985-11-01

    The effects of acute stress on serum prolactin concentrations and tuberoinfundibular dopaminergic (TIDA) neuronal activity were studied in female rats. TIDA neuronal activity was estimated by measuring the rate of dihydroxyphenylalanine (DOPA) accumulation after the administration of a decarboxylase inhibitor (NSD 1015) and the rate of decline of dopamine (DA) after the administration of a tyrosine hydroxylase inhibitor (alpha-methyltyrosine) in the median eminence. Serum prolactin concentrations were increased following 30 min of supine immobilization (restraint stress), but returned to control levels by 2, 8, and 16 h after the onset of this stress. The rate of DOPA accumulation was decreased during the 30 min of restraint; it was still further reduced 2 h later but had returned to control levels 8 and 16 h later. No change in the rate of DOPA accumulation was observed in the striatum or neurointermediate lobe of the pituitary at any time after the start of restraint. Restraint stress also decreased the rate of DA turnover in the median eminence, but was without effect on the rates of DA turnover in the striatum or neurointermediate lobe. These results suggest that restraint stress activates an inhibitory neuronal pathway which decreases the activity of TIDA neurons and may be responsible, at least in part, for the increase in serum prolactin concentrations. The responsiveness of TIDA neurons to the stress-induced decrease in activity was not influenced by the time of day or the stage of the estrous cycle. Not all stressful manipulations decreased TIDA neuronal activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid.

    PubMed

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-07-09

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.

  13. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    PubMed Central

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-01-01

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200

  14. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.

    PubMed

    Ezhil Vilian, A T; Rajkumar, Muniyandi; Chen, Shen-Ming

    2014-03-01

    Highly loaded zirconium oxide (ZrO2) nanoparticles were supported on graphene oxide (ERGO/ZrO2) via an in situ, simple and clean strategy on the basis of the electrochemical redox reaction between zirconyl chloride and graphene oxide (ZrOCl2 and GO). The electrochemical measurements and surface morphology of the as prepared nanocomposite were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). This ZrO2 decorated reduced graphene oxide nanocomposite modified GCE (ERGO/ZrO2) exhibits a prominent electrocatalytic activity toward the selective detection and determination of dopamine (DA) and paracetamol (PA) in presence of ascorbic acid (AA). The peaks of linear sweep voltammetry (LSV) for DA and PA oxidation at ERGO/ZrO2 modified electrode surface were clearly separated from each other when they co-existed in the physiological pH (pH 7.0) with a potential value of 140 mV (between AA and DA) and 330 mV (between AA and PA). It was, therefore, possible to simultaneously determine DA and PA in the samples at ERGO/ZrO2 nanocomposite modified GCE. Linear calibration curves were obtained for 9-237 μM of PA and DA. The ERGO/ZrO2 nanocomposite electrode has been satisfactorily used for the determination of DA and PA in the presence of AA at pharmaceutical formulations in human urine samples with a linear range of 3-174 μM. The proposed biosensor shows a wide linear range, low detection limit, good reproducibility and acceptable stability, providing a biocompatible platform for bio sensing and bio catalysis.

  15. Click Synthesis of Hydrophilic Maltose-Functionalized Iron Oxide Magnetic Nanoparticles Based on Dopamine Anchors for Highly Selective Enrichment of Glycopeptides.

    PubMed

    Bi, Changfen; Zhao, Yingran; Shen, Lijin; Zhang, Kai; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    The development of methods to isolate and enrich low-abundance glycopeptides from biological samples is crucial to glycoproteomics. Herein, we present an easy and one-step surface modification strategy to prepare hydrophilic maltose functionalized Fe3O4 nanoparticles (NPs). First, based on the chelation of the catechol ligand with iron atoms, azido-terminated dopamine (DA) derivative was assembled on the surface of magnetic Fe3O4 nanoparticles by sonication. Second, the hydrophilic maltose-functionalized Fe3O4 (Fe3O4-DA-Maltose) NPs were obtained via copper(I)-catalyzed azide-alkyne cycloaddition (click chemistry). The morphology, structure, and composition of Fe3O4-DA-Maltose NPs were investigated by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), and vibrating sample magnetometer (VSM). Meanwhile, hydrophilicity of the obtained NPs was evaluated by water contact angle measurement. The hydrophilic Fe3O4-DA-Maltose NPs were applied in isolation and enrichment of glycopeptides from horseradish peroxidase (HRP), immunoglobulin (IgG) digests. The MALDI-TOF mass spectrometric analysis indicated that the novel NPs exhibited high detection sensitivity in enrichment from HRP digests at concentration as low as 0.05 ng μL(-1), a large binding capacity up to 43 mg g(-1), and good recovery for glycopeptides enrichment (85-110%). Moreover, the Fe3O4-DA-Maltose NPs were applied to enrich glycopeptides from human renal mesangial cells (HRMC) for identification of N-glycosylation sites. Finally, we identified 115 different N-linked glycopeptides, representing 93 gene products and 124 glycosylation sites in HRMC.

  16. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression

    PubMed Central

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M.; Miller, Gary W.; Mateo, Yolanda; Lovinger, David M.; Cai, Huaibin

    2015-01-01

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release. PMID:26123485

  17. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  18. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals.

    PubMed

    Daberkow, D P; Brown, H D; Bunner, K D; Kraniotis, S A; Doellman, M A; Ragozzino, M E; Garris, P A; Roitman, M F

    2013-01-01

    Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  19. Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system.

    PubMed

    Barroso-Chinea, Pedro; Cruz-Muros, Ignacio; Afonso-Oramas, Domingo; Castro-Hernández, Javier; Salas-Hernández, Josmar; Chtarto, Abdelwahed; Luis-Ravelo, Diego; Humbert-Claude, Marie; Tenenbaum, Liliane; González-Hernández, Tomás

    2016-04-01

    The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. PMID:26777664

  20. Dopamine metabolism in characterised neurones of Planorbis corneus.

    PubMed

    Osborne, N N; Priggemeier, E; Neuhoff, V

    1975-06-13

    A sensitive chromatographic procedure was used to study the metabolism of [14C]tyrosine, [3H]DOPA and [3H]dopamine in 3 defined cell-types situated in the nervous system of Planorbis corneus. One of the cell-types contains dopamine (GDC), the other serotonin (GSC) and the other neither amine (GC). The GDCs metabolise [14C]tyrosine to form DOPA and dopamine while the other two cells lack this ability. In contrast, the GDCs and the GSC, but not the GCs, metabolise [3H]DOPA to form dopamine. In addition the GDCs incorporate radioactivity from [3H]DOPA into DOPAC, homovanillic acid and methoxytyramine. After incubation of cells in [3H]dopamine, only the GDCs metabolise it to form DOPAC, homovanillic acid and methoxytyramine. In no instance did the GDCs form significant amounts of noradrenaline from the incorporated radioactive substances. These results, together with data on the amine histochemistry of the individual cell-types following pretretment of animals with drugs known to affect specific enzymes in the synthesis of amine transmitter substances, clearly demonstrate that the GDCs alone have the enzymes requisite for the biosynthesis and catabolism of dopamine, but not noradrenaline.

  1. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  2. Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra.

    PubMed

    Mijatovic, Jelena; Airavaara, Mikko; Planken, Anu; Auvinen, Petri; Raasmaja, Atso; Piepponen, T Petteri; Costantini, Frank; Ahtee, Liisa; Saarma, Mart

    2007-05-01

    Ret is the common signaling receptor for glial cell line-derived neurotrophic factor (GDNF) and other ligands of the GDNF family that have potent effects on brain dopaminergic neurons. The Met918Thr mutation leads to constitutive activity of Ret receptor tyrosine kinase, causing the cancer syndrome called multiple endocrine neoplasia type B (MEN2B). We used knock-in MEN2B mice with the Ret-MEN2B mutation to study the effects of constitutive Ret activity on the brain dopaminergic system and found robustly increased concentrations of dopamine (DA) and its metabolites in the striatum, cortex, and hypothalamus. The concentrations of brain serotonin were not affected and those of noradrenaline were slightly increased only in the lower brainstem. Tyrosine hydroxylase (TH) protein levels were increased in the striatum and substantia nigra/ventral tegmental area (SN/VTA), and TH mRNA levels were increased in SN/VTA of MEN2B mice, suggesting that constitutive Ret activity increases DA levels by increasing its synthesis. Also, the striatal DA transporter protein levels in the MEN2B mice were increased, which agrees with increased sensitivity of these mice to the stimulatory effects of cocaine. In the SN pars compacta of homozygous MEN2B mice, we found a 26% increase in the number of TH-positive cells, but no differences were found in the VTA. Thus, we show here that the constitutive Ret activity in mice is sufficient to increase the number of dopaminergic neurons and leads to profound elevation of brain DA concentration. These data clearly suggest that Ret activity per se can have a direct biological function that actively changes and shapes the brain dopaminergic system. PMID:17475787

  3. Methamphetamine-induced locomotor activity and behavioral sensitization: are dopamine d3 receptors involved?

    PubMed

    Jones, C D; Bartee, J A; Leite-Browning, M L; Blackshear, M A

    2007-05-15

    Drug sensitization is a behavioral phenomenon that occurs following repeated administration of methamphetamine (METH) and similar CNS stimulants. The mechanism of drug sensitization is unknown, but is believed to be due to downregulation of dopamine D3 receptors. It is hypothesized that repeated administration of dopamine D3 agonists results in downregulation of D3 receptors in methamphetamine-induced (METH-IND) sensitization. Furthermore, repeated administration of dopamine D3 antagonists and METH cause upregulation of D3 receptors and block METH-IND sensitization. The objective of this study was to determine the role of D3 receptors in METH-IND sensitization. To test these hypotheses, male mice received chronic injections (i.p.) of 2 mg/kg of the dopamine D3 agonist, PD128907 plus 0.5 mg/kg of METH or 8 mg/kg of D3 antagonist, U99194A and 0.5 mg\\kg of METH daily for 7-days. Drugs were withdrawn on day 8, and METH-IND sensitization was determined on day 18. Locomotor activity was measured for 75 minutes immediately after METH administration in an activity monitor. Acute administration of PD128907 decreased METH-IND locomotion, p < 0. 01, and acute U99194A increased it. However, chronic administration of these drugs did not alter the locomotor effects of METH (p > 0.05). These findings support in-part the hypothesis that dopamine D3 receptors are downregulated in METH-IND sensitization.

  4. Updating dopamine reward signals.

    PubMed

    Schultz, Wolfram

    2013-04-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.

  5. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  6. Characterization of the phencyclidine-induced increase in prefrontal cortical dopamine metabolism in the rat

    PubMed Central

    Umino, Asami; Takahashi, Kiyohisa; Nishikawa, Toru

    1998-01-01

    We have investigated the effects of a schizophrenomimetic drug phencyclidine (PCP) and N-methyl-D-aspartate (NMDA)-related agents alone or in combination on dopamine metabolism in the medial prefrontal cortex and striatum of the rats by measuring the tissue concentrations of dopamine and its metabolite, 3,4-dihyroxyphenylacetic acid (DOPAC), and the rate of dopamine disappearance (dopamine utilization) after its synthesis inhibition.Systemic injection of PCP and selective, non-competitive, NMDA antagonists caused an increase of both tissue concentrations of DOPAC and dopamine utilization in the prefrontal cortex but not in the striatum. The PCP-induced augmentation of cortical dopamine metabolism was not influenced by selective lesion of ascending noradrenergic neurones.Intra-prefrontal cortical infusion of PCP or selective competitive or non-competitive antagonists of the NMDA receptor mimicked the ability of systemic PCP injection to enhance DOPAC levels and dopamine utilization in the prefrontal cortex. However, an NMDA antagonist injected into the cell body area of the mesocortical dopaminergic neurones failed to affect dopamine metabolism in the prefrontal cortex.The increasing effects of PCP and selective NMDA antagonists on cortical dopamine utilization were not additive, although a dopamine receptor antagonist, haloperidol, still accelerated the disappearance of dopamine, even in the presence of PCP.Intra-cortical or intra-ventricular infusion of NMDA or D-alanine but not L-alanine, attenuated the ability of systemic PCP administration to facilitate prefrontal dopamine utilization.These data suggest that PCP might activate prefrontal cortical dopaminergic neurones, at least in part, by blocking the NMDA receptor in the prefrontal cortex which participates in a tonic inhibitory control of the mesoprefrontal dopaminergic projections. PMID:9641556

  7. Immunomodulatory Effects Mediated by Dopamine

    PubMed Central

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  8. Morbillivirus Downregulation of CD46

    PubMed Central

    Galbraith, Sareen E.; Tiwari, Ashok; Baron, Michael D.; Lund, Brett T.; Barrett, Thomas; Cosby, S. Louise

    1998-01-01

    There is evidence that CD46 (membrane cofactor protein) is a cellular receptor for vaccine and laboratory-passaged strains of measles virus (MV). Following infection with these MV strains, CD46 is downregulated from the cell surface, and consequent complement-mediated lysis has been shown to occur upon infection of a human monocytic cell line. The MV hemagglutinin (H) protein alone is capable of inducing this downregulation. Some wild-type strains of MV fail to downregulate CD46, despite infection being prevented by anti-CD46 antibodies. In this study we show that CD46 is also downregulated to the same extent by wild-type, vaccine, and laboratory-passaged strains of rinderpest virus (RPV), although CD46 did not appear to be the receptor for RPV. Expression of the RPV H protein by a nonreplicating adenovirus vector was also found to cause this downregulation. A vaccine strain of peste des petits ruminants virus caused slight downregulation of CD46 in infected Vero cells, while wild-type and vaccine strains of canine distemper virus and a wild-type strain of dolphin morbillivirus failed to downregulate CD46. Downregulation of CD46 can, therefore, be a function independent of the use of this protein as a virus receptor. PMID:9811778

  9. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors.

    PubMed

    Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H; Jones, Sara R

    2016-11-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  10. A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes.

    PubMed

    Sase, Ajinkya; Aher, Yogesh D; Saroja, Sivaprakasam R; Ganesan, Minu Karthika; Sase, Sunetra; Holy, Marion; Höger, Harald; Bakulev, Vasiliy; Ecker, Gerhard F; Langer, Thierry; Sitte, Harald H; Leban, Johann; Lubec, Gert

    2016-03-01

    A series of compounds have been reported to enhance memory via the DA system and herein a heterocyclic compound was tested for working memory (WM) enhancement. 2-((benzhydrylsulfinyl)methyl)thiazole (CE-103) was synthesized in a six-step synthesis. Binding of CE-103 to the dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters and dopamine reuptake inhibition was tested as well as blood brain permeation and a screen for GPCR targets. 60 male Sprague Dawley rats were divided into six groups: CE-103 treated 1-10 mg/kg body weight, trained (TDI) and yoked (YDI) and vehicle treated, trained (TVI) and yoked (YVI) rats. Daily single intraperitoneal injections for a period of 10 days were administered and rats were tested in a radial arm maze (RAM). Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT) and complexes containing the D1-3 dopamine receptor subunits were determined. CE-103 was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 14.73 μM). From day eight the compound was decreasing WM errors in the RAM significantly at both doses tested as compared to the vehicle controls. In the trained CE-103-treated group levels of the complex containing the phosphorylated dopamine transporter (pDAT) as well as D1R were decreased while levels of complexes containing D2R and D3R were significantly increased. CE-103 was shown to enhance spatial WM and DA reuptake inhibition with subsequent modulation of D1-3 receptors is proposed as a possible mechanism of action. PMID:26407764

  11. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana.

    PubMed

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine's actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of "dopaminergic" neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation

  12. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells.

    PubMed

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-11-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997

  13. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells

    PubMed Central

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-01-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997

  14. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.

    PubMed

    Danjo, Teruko; Yoshimi, Kenji; Funabiki, Kazuo; Yawata, Satoshi; Nakanishi, Shigetada

    2014-04-29

    Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.

  15. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  16. Radiolabeled2{beta}-carbo-2{prime}(S)-fluoroisopropoxy-3{beta}-(4-iodophenyl)-tropane (FIPIT): Synthesis, characterization and primate imaging of a radioligand for mapping dopamine transporter sites by both PET and SPECT

    SciTech Connect

    Keil, R.; Shi, B.; Hoffman, J.M.

    1996-05-01

    Highly potent and selective dopamine transporter ligands containing both iodine and fluorine are versatile probes for in vivo mapping of dopamine transporter sites in the striatum by PET and SPECT when labeled with fluorine-18 and iodine-123, respectively. Dual labeled biochemical probes are attractive agents since only one set of toxicity and pharmacokinetic analysis may be required for ligand validation for both imaging modalities. Recently, we reported that replacement of the methyl ester of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)tropane with a 2{prime}(R,S)-[F-18]fluoroisopropyl ester affords a highly potent and selective dopamine transporter ligand, 2{beta}-carbo-2{prime}(R,S)- fluoroisopropoxy-3{beta}-(4-chlorophenyl)tropane (FIPCT). FIPCT showed high uptake and retention in the striatum (S) resulting in good S/cerebellum = 3.5 at 125 min post injection in a rhesus monkey. These findings prompted us to synthesize and evaluate the 4-iodo analog, 2{beta}-carbo-2{prime}-(S)-fluoroisopropoxy-3{beta}-(4-iodophenyl)tropane (1) with 1-fluoropropan-2-ol (2) and POC13. These results suggest that [F-18]S-FIPIT is an excellent candidate for mapping of dopamine transporter sites.

  17. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  18. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory

  19. Dopamine induces the accumulation of insoluble prion protein and affects autophagic flux

    PubMed Central

    da Luz, Marcio H. M.; Peres, Italo T.; Santos, Tiago G.; Martins, Vilma R.; Icimoto, Marcelo Y.; Lee, Kil S.

    2015-01-01

    Accumulation of protein aggregates is a histopathological hallmark of several neurodegenerative diseases, but in most cases the aggregation occurs without defined mutations or clinical histories, suggesting that certain endogenous metabolites can promote aggregation of specific proteins. One example that supports this hypothesis is dopamine and its metabolites. Dopamine metabolism generates several oxidative metabolites that induce aggregation of α-synuclein, and represents the main etiology of Parkinson's diseases. Because dopamine and its metabolites are unstable and can be highly reactive, we investigated whether these molecules can also affect other proteins that are prone to aggregate, such as cellular prion protein (PrPC). In this study, we showed that dopamine treatment of neuronal cells reduced the number of viable cells and increased the production of reactive oxygen species (ROS) as demonstrated in previous studies. Overall PrPC expression level was not altered by dopamine treatment, but its unglycosylated form was consistently reduced at 100 μM of dopamine. At the same concentration, the level of phosphorylated mTOR and 4EBP1 was also reduced. Moreover, dopamine treatment decreased the solubility of PrPC, and increased its accumulation in autophagosomal compartments with concomitant induction of LC3-II and p62/SQSTM1 levels. In vitro oxidation of dopamine promoted formation of high-order oligomers of recombinant prion protein. These results suggest that dopamine metabolites alter the conformation of PrPC, which in turn is sorted to degradation pathway, causing autophagosome overload and attenuation of protein synthesis. Accumulation of PrPC aggregates is an important feature of prion diseases. Thus, this study brings new insight into the dopamine metabolism as a source of endogenous metabolites capable of altering PrPC solubility and its subcellular localization. PMID:25698927

  20. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  1. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  2. Dopamine, affordance and active inference.

    PubMed

    Friston, Karl J; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M; Adams, Rick; Brown, Harriet; Dolan, Raymond J; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.

  3. Mesolimbic dopamine signals the value of work.

    PubMed

    Hamid, Arif A; Pettibone, Jeffrey R; Mabrouk, Omar S; Hetrick, Vaughn L; Schmidt, Robert; Vander Weele, Caitlin M; Kennedy, Robert T; Aragona, Brandon J; Berke, Joshua D

    2016-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (phasic) dopamine fluctuations support learning, whereas much slower (tonic) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We found that minute-by-minute dopamine levels covaried with reward rate and motivational vigor. Second-by-second dopamine release encoded an estimate of temporally discounted future reward (a value function). Changing dopamine immediately altered willingness to work and reinforced preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly evolving decision variable, the available reward for investment of effort, which is employed for both learning and motivational functions.

  4. Design, Synthesis, and Structure–Activity Relationship Studies of a Series of [4-(4-Carboxamidobutyl)]-1-arylpiperazines: Insights into Structural Features Contributing to Dopamine D3 versus D2 Receptor Subtype Selectivity

    PubMed Central

    2015-01-01

    Antagonist and partial agonist modulators of the dopamine D3 receptor (D3R) have emerged as promising therapeutics for the treatment of substance abuse and neuropsychiatric disorders. However, development of druglike lead compounds with selectivity for the D3 receptor has been challenging because of the high sequence homology between the D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized a series of acylaminobutylpiperazines incorporating aza-aromatic units and evaluated their binding and functional activities at the D3 and D2 receptors. Docking studies and results from evaluations against a set of chimeric and mutant receptors suggest that interactions at the extracellular end of TM7 contribute to the D3R versus D2R selectivity of these ligands. Molecular insights from this study could potentially enable rational design of potent and selective D3R ligands. PMID:25126833

  5. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity.

    PubMed

    Ananthan, Subramaniam; Saini, Surendra K; Zhou, Guangyan; Hobrath, Judith V; Padmalayam, Indira; Zhai, Ling; Bostwick, J Robert; Antonio, Tamara; Reith, Maarten E A; McDowell, Shea; Cho, Eunie; McAleer, Leah; Taylor, Michelle; Luedtke, Robert R

    2014-08-28

    Antagonist and partial agonist modulators of the dopamine D3 receptor (D3R) have emerged as promising therapeutics for the treatment of substance abuse and neuropsychiatric disorders. However, development of druglike lead compounds with selectivity for the D3 receptor has been challenging because of the high sequence homology between the D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized a series of acylaminobutylpiperazines incorporating aza-aromatic units and evaluated their binding and functional activities at the D3 and D2 receptors. Docking studies and results from evaluations against a set of chimeric and mutant receptors suggest that interactions at the extracellular end of TM7 contribute to the D3R versus D2R selectivity of these ligands. Molecular insights from this study could potentially enable rational design of potent and selective D3R ligands. PMID:25126833

  6. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  7. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm.

    PubMed

    Ye, Yizhou; Xi, Wang; Peng, Yueqing; Wang, Yizheng; Guo, Aike

    2004-08-01

    Dopamine is a major neuromodulator in both vertebrates and invertebrates and has profound effects on many physiological processes, including the regulation of attention. Most studies of the functions of dopamine use models with long-term blockade of dopamine release and few effects of transient blockade have yet been reported. The goal of the present study was to determine the role of dopamine in attention-like behavior in Drosophila by taking advantage of the fly's orientation behavior during flight. The examination of several different transgenic flies in a single-target visual attention paradigm showed that flies lost their orientation ability if dopamine release was blocked from the beginning of the development of dopaminergic neurons. This is similar to the attention loss in mammals. However, if the blockade of dopamine release was induced during the experimental procedure, flies performed normally. Statistical analysis of the behavioral assessment showed a significant difference between long-term and transient blockade. Using the RNA interference approach, we generated flies with down-regulated J-domain protein, which is a potential cochaperone in synaptic vesicle release, to make an alternative form of long-term dopamine-blockade mutant. Behavioral assays revealed that flies with permanent J-domain protein down-regulation specifically in dopaminergic neurons have an attention defect similar to that induced by long-term blockade of dopamine release. Furthermore, dopamine depletion beginning at eclosion also caused an attention deficit. Our results indicate that prolonged but not transient blockade of dopamine release impairs visual attention-like behavior in Drosophila.

  8. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth. PMID:26921458

  9. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  10. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  11. The use of [18F]4-fluorobenzyl iodide (FBI) in PET radiotracer synthesis: model alkylation studies and its application in the design of dopamine D1 and D2 receptor-based imaging agents.

    PubMed

    Mach, R H; Elder, S T; Morton, T E; Nowak, P A; Evora, P H; Scripko, J G; Luedtke, R R; Unsworth, C D; Filtz, T; Rao, A V

    1993-08-01

    [18F]4-Fluorobenzyl iodide ([18F]FBI) was prepared, and a series of model alkylation studies were conducted to determine its chemical reactivity toward nitrogen and sulfur nucleophiles of varying nucleophilicities. [18F]FBI was found to react rapidly with secondary amines and anilines to give the corresponding N-[18F]4-fluorobenzyl analogue in high yield. Amides and thiol groups required the use of a base catalyst. The utility of [18F]FBI was documented by investigation of dopamine D1 and D2 receptor-based radiotracers.

  12. Protein kinase C beta regulates the D₂-like dopamine autoreceptor.

    PubMed

    Luderman, Kathryn D; Chen, Rong; Ferris, Mark J; Jones, Sara R; Gnegy, Margaret E

    2015-02-01

    The focus of this study was the regulation of the D2-like dopamine autoreceptor (D2 autoreceptor) by protein kinase Cβ, a member of the protein kinase C (PKC) family. Together with the dopamine transporter, the D2 autoreceptor regulates the level of extracellular dopamine and thus dopaminergic signaling. PKC regulates neuronal signaling via several mechanisms, including desensitizing autoreceptors to increase the release of several different neurotransmitters. Here, using both PKCβ(-/-) mice and specific PKCβ inhibitors, we demonstrated that a lack of PKCβ activity enhanced the D2 autoreceptor-stimulated decrease in dopamine release following both chemical and electrical stimulations. Inhibition of PKCβ increased surface localization of D2R in mouse striatal synaptosomes, which could underlie the greater sensitivity to quinpirole following inhibition of PKCβ. PKCβ(-/-) mice displayed greater sensitivity to the quinpirole-induced suppression of locomotor activity, demonstrating that the regulation of the D2 autoreceptor by PKCβ is physiologically significant. Overall, we have found that PKCβ downregulates the D2 autoreceptor, providing an additional layer of regulation for dopaminergic signaling. We propose that in the absence of PKCβ activity, surface D2 autoreceptor localization and thus D2 autoreceptor signaling is increased, leading to less dopamine in the extracellular space and attenuated dopaminergic signaling. PMID:25446677

  13. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    ERIC Educational Resources Information Center

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  14. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  15. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  16. Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study.

    PubMed

    Schabram, Ina; Henkel, Karsten; Mohammadkhani Shali, Siamak; Dietrich, Claudia; Schmaljohann, Jörn; Winz, Oliver; Prinz, Susanne; Rademacher, Lena; Neumaier, Bernd; Felzen, Marc; Kumakura, Yoshitaka; Cumming, Paul; Mottaghy, Felix M; Gründer, Gerhard; Vernaleken, Ingo

    2014-10-29

    Methylphenidate (MPH) inhibits the reuptake of dopamine and noradrenaline. PET studies with MPH challenge show increased competition at postsynaptic D2/3-receptors, thus indirectly revealing presynaptic dopamine release. We used [(18)F]fluorodopamine ([(18)F]FDOPA)-PET in conjunction with the inlet-outlet model (IOM) of Kumakura et al. (2007) to investigate acute and long-term changes in dopamine synthesis capacity and turnover in nigrostriatal fibers of healthy subjects with MPH challenge. Twenty healthy human females underwent two dynamic [(18)F]FDOPA PET scans (124 min; slow bolus-injection; arterial blood sampling), with one scan in untreated baseline condition and the other after MPH administration (0.5 mg/kg, p.o.), in randomized order. Subjects underwent cognitive testing at each PET session. Time activity curves were obtained for ventral putamen and caudate and were analyzed according to the IOM to obtain the regional net-uptake of [(18)F]FDOPA (K; dopamine synthesis capacity) as well as the [(18)F]fluorodopamine washout rate (kloss, index of dopamine turnover). MPH substantially decreased kloss in putamen (-22%; p = 0.003). In the reversed treatment order group (MPH/no drug), K was increased by 18% at no drug follow-up. The magnitude of K at the no drug baseline correlated with cognitive parameters. Furthermore, individual kloss changes correlated with altered cognitive performance under MPH. [(18)F]FDOPA PET in combination with the IOM detects an MPH-evoked decrease in striatal dopamine turnover, in accordance with the known acute pharmacodynamics of MPH. Furthermore, the scan-ordering effect on K suggested that a single MPH challenge persistently increased striatal dopamine synthesis capacity. Attenuation of dopamine turnover by MPH is linked to enhanced cognitive performance in healthy females.

  17. Increased brain dopamine and dopamine receptors in schizophrenia

    SciTech Connect

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-09-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients.

  18. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine.

    PubMed

    Hu, Sherry Shu-Jung; Bradshaw, Heather B; Benton, Valery M; Chen, Jay Shih-Chieh; Huang, Susan M; Minassi, Alberto; Bisogno, Tiziana; Masuda, Kim; Tan, Bo; Roskoski, Robert; Cravatt, Benjamin F; Di Marzo, Vincenzo; Walker, J Michael

    2009-10-01

    N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.

  19. Dopamine and aging: intersecting facets.

    PubMed

    Rollo, C David

    2009-04-01

    Aging encompasses life itself so understanding requires frameworks that forge unity amidst complexity. The free radical theory of aging is one example. The original focus on damage was augmented recently by appreciation that reactive oxygen and nitrogen species are essential to normal signaling and cell function. This paradigm is currently undergoing an explosive expansion fueled by the discovery that regulatory organization is a merry-go-round of redox cycling seamlessly fused to endogenous clocks. This might best be described as an "Electroplasmic Cycle." This is certainly applicable to dopaminergic neurons with their exceptional metabolic, electrical and rhythmic properties. Here I review normal aging of dopamine systems to highlight them as a valuable model. I then examine the possible integration of free radical and ion channel theories of aging. Finally, I incorporate clocks and explore the multifaceted implications of electroplasmic cycles with special emphasis on dopamine.

  20. Dopamine, uncertainty and TD learning

    PubMed Central

    Niv, Yael; Duff, Michael O; Dayan, Peter

    2005-01-01

    Substantial evidence suggests that the phasic activities of dopaminergic neurons in the primate midbrain represent a temporal difference (TD) error in predictions of future reward, with increases above and decreases below baseline consequent on positive and negative prediction errors, respectively. However, dopamine cells have very low baseline activity, which implies that the representation of these two sorts of error is asymmetric. We explore the implications of this seemingly innocuous asymmetry for the interpretation of dopaminergic firing patterns in experiments with probabilistic rewards which bring about persistent prediction errors. In particular, we show that when averaging the non-stationary prediction errors across trials, a ramping in the activity of the dopamine neurons should be apparent, whose magnitude is dependent on the learning rate. This exact phenomenon was observed in a recent experiment, though being interpreted there in antipodal terms as a within-trial encoding of uncertainty. PMID:15953384

  1. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  2. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  3. Metabolism of /sup 3/H-dopamine by human chorioamnion in vitro

    SciTech Connect

    Phillippe, M.; Niloff, J.M.

    1982-08-01

    Previous investigation has demonstrated biologically significant concentrations of catecholamines in amniotic fluid, which increase with gestation. The half life, metabolic clearance rate, and metabolic fate of these hormones in the amniotic compartment are yet to be established. This study was undertaken to demonstrate the ability of human chorioamnion to metabolize dopamine in vitro. Incubation experiments demonstrated that /sup 3/H-dopamine is rapidly metabolized to dihydroxyphenylacetic acid, 3-methoxy, 4-hydroxyphenylacetic acid, and 3-methoxy, 4-hydroxyphenylethanol-all products of monoamine oxidase. No significant 3-methoxytyramine, a catechol-o-methyltransferase product, was observed. Incubation experiments with pargyline, a monoamine oxidase inhibitor, resulted in significant reduction in /sup 3/H-dopamine metabolism. Catecholamines and their interaction with prostaglandin synthesis have been theorized to be a fetal signal for the initiation of parturition. The ability of chorioamnion to metabolize catecholamine could, therefore, provide another control mechanism by which fetal catecholamines are modulated.

  4. [Immunohistochemical study of CART-peptide in striato-nigral projections at dopamine loss].

    PubMed

    Romanova, I V; Chesnokova, A Iu; Mikhrina, A L

    2012-08-01

    The increase of CART-peptide optical density was found immunohistochemically in nucleus accumbens neurons and in their terminals in substantia nigra in Wistar rats after 28% reduction of dopaminergic neurons in a substantia nigra (in the model of lactacystin induced proteo some disfunction). At the same time after in vitro incubation of nigro-accumbal brain slice with AMPT (alpha-methyl-paratirosine--dopamine inhibitor) for 4 h the reduction of tyrosine hydroxylase optical density (the enzyme limiting dopamine synthesis) in substantia nigr neurons was found and optical density of CART-peptide in nucleus accumbens and substantia nigra was also revealed. In both experiments data about activation of CARTergic neurons in stria to-nigral projections testifies on participation of CART-peptide in compensatory brain mechanisms at dopamine loss and its role as modulator of dopaminergic brain neurons functional activity.

  5. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  6. Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus.

    PubMed

    Menezes, Jefferson; Alves, Niége; Borges, Sidnei; Roehrs, Rafael; de Carvalho Myskiw, Jociane; Furini, Cristiane Regina Guerino; Izquierdo, Ivan; Mello-Carpes, Pâmela B

    2015-03-31

    Extinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors. Rats were trained first in IA and then in extinction of this task. The retention of extinction was measured 24 h later. A 5-min exposure to a novel environment 30 min before extinction training enhanced its retention. Right after exposure to the novelty, animals were given bilateral intrahippocampal infusions of vehicle (VEH), of the protein synthesis inhibitor anisomycin, of the D1/D5 dopaminergic antagonist SCH23390, of the PKA inhibitor Rp-cAMP or of the PKC inhibitor Gö6976, and of the PKA stimulator Sp-cAMP or of the PKC stimulator PMA. The novelty increased hippocampal dopamine levels and facilitated the extinction, which was inhibited by intrahippocampal protein synthesis inhibitor anisomysin, D1/D5 dopaminerdic antagonist SCH23390, or PKA inhibitor Rp-cAMP and unaffected by PKC inhibitor Gö6976; additionally, the hippocampal infusion of PKA stimulator Sp-cAMP reverts the effect of D1/D5 dopaminergic antagonist SCH 23390, but the infusion of PKC stimulator PMA does not. The results attest to the generality of the novelty effect on fear extinction, suggest that it relies on synaptic tagging and capture, and show that it depends on hippocampal dopamine D1 but not D5 receptors.

  7. l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes

    PubMed Central

    Takeshima, Mika; Miyazaki, Ikuko; Murakami, Shinki; Kita, Taizo; Asanuma, Masato

    2016-01-01

    l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes were pretreated with l-theanine for 72 h, and then treated with excess dopamine for further 24 h. The cell viability of dopamine neurons and levels of glutathione were evaluated. Excess dopamine-induced neurotoxicity was significantly attenuated by 72 h preincubation with l-theanine in neuron-astrocyte co-cultures but not in neuron-rich cultures. Exposure to l-theanine increased the levels of glutathione in both astrocytes and glial conditioned medium. The glial conditioned medium from l-theanine-pretreated striatal astrocytes attenuated dopamine-induced neurotoxicity and quinoprotein formation in mesencephalic neurons. In addition, replacement of l-glutamate with l-theanine in an in vitro cell-free glutathione-synthesis system produced glutathione-like thiol compounds. Furthermore, l-theanine administration (4 mg/kg, p.o.) for 14 days significantly increased glutathione levels in the striatum of mice. The results suggest that l-theanine provides neuroprotection against oxidative stress-induced neuronal damage by humoral molecules released from astrocytes, probably including glutathione. PMID:27698535

  8. l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes

    PubMed Central

    Takeshima, Mika; Miyazaki, Ikuko; Murakami, Shinki; Kita, Taizo; Asanuma, Masato

    2016-01-01

    l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes were pretreated with l-theanine for 72 h, and then treated with excess dopamine for further 24 h. The cell viability of dopamine neurons and levels of glutathione were evaluated. Excess dopamine-induced neurotoxicity was significantly attenuated by 72 h preincubation with l-theanine in neuron-astrocyte co-cultures but not in neuron-rich cultures. Exposure to l-theanine increased the levels of glutathione in both astrocytes and glial conditioned medium. The glial conditioned medium from l-theanine-pretreated striatal astrocytes attenuated dopamine-induced neurotoxicity and quinoprotein formation in mesencephalic neurons. In addition, replacement of l-glutamate with l-theanine in an in vitro cell-free glutathione-synthesis system produced glutathione-like thiol compounds. Furthermore, l-theanine administration (4 mg/kg, p.o.) for 14 days significantly increased glutathione levels in the striatum of mice. The results suggest that l-theanine provides neuroprotection against oxidative stress-induced neuronal damage by humoral molecules released from astrocytes, probably including glutathione.

  9. Dopamine responsiveness is regulated by targeted sorting of D2 receptors.

    PubMed

    Bartlett, Selena E; Enquist, Johan; Hopf, Frederic W; Lee, Josephine H; Gladher, Fredrik; Kharazia, Viktor; Waldhoer, Maria; Mailliard, William S; Armstrong, Randall; Bonci, Antonello; Whistler, Jennifer L

    2005-08-01

    Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.

  10. Dopamine: burning the candle at both ends.

    PubMed

    Pearson, John M; Platt, Michael L

    2013-09-01

    Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention. PMID:24011998

  11. Synapsins differentially control dopamine and serotonin release.

    PubMed

    Kile, Brian M; Guillot, Thomas S; Venton, B Jill; Wetsel, William C; Augustine, George J; Wightman, R Mark

    2010-07-21

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  12. Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter.

    PubMed

    Cheng, Mary Hongying; Bahar, Ivet

    2015-11-01

    Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.

  13. THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060

  14. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  15. Does the dopamine hypothesis explain schizophrenia?

    PubMed

    Lau, Chi-Ieong; Wang, Han-Cheng; Hsu, Jung-Lung; Liu, Mu-En

    2013-01-01

    The dopamine hypothesis has been the cornerstone in the research and clinical practice of schizophrenia. With the initial emphasis on the role of excessive dopamine, the hypothesis has evolved to a concept of combining prefrontal hypodopaminergia and striatal hyperdopaminergia, and subsequently to the present aberrant salience hypothesis. This article provides a brief overview of the development and evidence of the dopamine hypothesis. It will argue that the current model of aberrant salience explains psychosis in schizophrenia and provides a plausible linkage between the pharmacological and cognitive aspects of the disease. Despite the privileged role of dopamine hypothesis in psychosis, its pathophysiological rather than etiological basis, its limitations in defining symptoms other than psychosis, as well as the evidence of other neurotransmitters such as glutamate and adenosine, prompt us to a wider perspective of the disease. Finally, dopamine does explain the pathophysiology of schizophrenia, but not necessarily the cause per se. Rather, dopamine acts as the common final pathway of a wide variety of predisposing factors, either environmental, genetic, or both, that lead to the disease. Other neurotransmitters, such as glutamate and adenosine, may also collaborate with dopamine to give rise to the entire picture of schizophrenia. PMID:23843581

  16. Dopamine receptor partial agonists and addiction.

    PubMed

    Moreira, Fabricio A; Dalley, Jeffrey W

    2015-04-01

    Many drugs abused by humans acutely facilitate, either directly or indirectly, dopamine neurotransmission in the mesolimbic pathway. As a consequence dopamine receptor agonists and antagonists have been widely investigated as putative pharmacological therapies for addiction. This general strategy, however, has had only limited success due in part to poor treatment adherence and efficacy and the significant adverse effects of dopaminergic medications. In this perspective, we discuss the potential therapeutic use of dopamine receptor partial agonists in addiction, developed initially as antipsychotic agents. Recent research indicates that the dopamine D2 receptor partial agonists, such as aripiprazole, also shows useful ancillary efficacy in several animal models of psychostimulant and opioid addiction. Notably, these findings suggest that unlike full dopamine receptor agonists and antagonists these compounds have low abuse liability and are generally well tolerated. Indeed, partial dopamine agonists attenuate the rewarding properties of opioids without interfering with their analgesic effects. Herein we discuss the utility and potential of dopamine receptor partial agonists as treatments for both stimulant and non-stimulant drug addiction.

  17. Dopamine receptors in human gastrointestinal mucosa

    SciTech Connect

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-12-21

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using /sup 3/H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of /sup 3/H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures.

  18. Predictive reward signal of dopamine neurons.

    PubMed

    Schultz, W

    1998-07-01

    The effects of lesions, receptor blocking, electrical self-stimulation, and drugs of abuse suggest that midbrain dopamine systems are involved in processing reward information and learning approach behavior. Most dopamine neurons show phasic activations after primary liquid and food rewards and conditioned, reward-predicting visual and auditory stimuli. They show biphasic, activation-depression responses after stimuli that resemble reward-predicting stimuli or are novel or particularly salient. However, only few phasic activations follow aversive stimuli. Thus dopamine neurons label environmental stimuli with appetitive value, predict and detect rewards and signal alerting and motivating events. By failing to discriminate between different rewards, dopamine neurons appear to emit an alerting message about the surprising presence or absence of rewards. All responses to rewards and reward-predicting stimuli depend on event predictability. Dopamine neurons are activated by rewarding events that are better than predicted, remain uninfluenced by events that are as good as predicted, and are depressed by events that are worse than predicted. By signaling rewards according to a prediction error, dopamine responses have the formal characteristics of a teaching signal postulated by reinforcement learning theories. Dopamine responses transfer during learning from primary rewards to reward-predicting stimuli. This may contribute to neuronal mechanisms underlying the retrograde action of rewards, one of the main puzzles in reinforcement learning. The impulse response releases a short pulse of dopamine onto many dendrites, thus broadcasting a rather global reinforcement signal to postsynaptic neurons. This signal may improve approach behavior by providing advance reward information before the behavior occurs, and may contribute to learning by modifying synaptic transmission. The dopamine reward signal is supplemented by activity in neurons in striatum, frontal cortex, and

  19. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  20. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males.

    PubMed

    Schlüter, Thorben; Winz, Oliver; Henkel, Karsten; Eggermann, Thomas; Mohammadkhani-Shali, Siamak; Dietrich, Claudia; Heinzel, Alexander; Decker, Michel; Cumming, Paul; Zerres, Klaus; Piel, Markus; Mottaghy, Felix M; Vernaleken, Ingo

    2016-01-15

    A recent [(18)F]FDOPA-PET study reports negative correlations between dopamine synthesis rates and aggressive behavior. Since dopamine is among the substrates for monoamine oxidase A (MAOA), this investigation examines whether functional allelic variants of the MAOA tandem repeat (VNTR) promotor polymorphism, which is known to modulate aggressive behavior, influences dopamine release and aggression in response to violent visual stimuli. We selected from a genetic prescreening sample, strictly case-matched groups of 2×12 healthy male subjects with VNTRs predictive of high (MAOA-High) and low (MAOA-Low) MAOA expression. Subjects underwent pairs of PET sessions (dopamine D2/3 ligand [(18)F]DMFP) while viewing a movie of neutral content, versus violent content. Directly afterwards, aggressive behavior was assessed by the Point Subtraction Aggression Paradigm (PSAP). Finally, PET data of 23 participants and behavioral data of 22 participants were analyzed due to post hoc exclusion criteria. In the genetic prescreening sample MAOA-Low carriers had significantly increased scores on the Buss-Perry Aggression Questionnaire. In the PET-study-group, aggressive behavior under the emotional neutral condition was significantly higher in the MAOA-Low group. Interestingly, the two MAOA-groups showed inverse dopaminergic and behavioral reactions to the violent movie: The MAOA-High group showed higher dopamine release and increased aggression after the violent movie; MAOA-Low subjects showed decreases in aggressive behavior and no consistent dopamine release. These results indicate a possible impact of the MAOA-promotor polymorphism on the neurobiological modulation of aggressive behavior. However, the data do not support approaches stating that MAOA-Low fosters aggression by a simple pro-dopaminergic mechanism. PMID:26481676

  1. Autoradiographic localization of benzodiazepine receptor downregulation

    SciTech Connect

    Tietz, E.I.; Rosenberg, H.C.; Chiu, T.H.

    1986-01-01

    Regional differences in downregulation of brain benzodiazepine receptors were studied using a quantitative autoradiographic method. Rats were given a 4-week flurazepam treatment known to cause tolerance and receptor downregulation. A second group of rats was given a similar treatment, but for only 1 week. A third group was given a single acute dose of diazepam to produce a brain benzodiazepine-like activity equivalent to that found after the chronic treatment. Areas studied included hippocampal formation, cerebral cortex, superior colliculus, substantia nigra, dorsal geniculate nucleus, lateral amygdala and lateral hypothalamus. There was a regional variation in the degree of downregulation after 1 week of flurazepam treatment, ranging from 12% to 25%. Extending the flurazepam treatment to 4 weeks caused little further downregulation in those areas studied, except for the pars reticulata of the substantia nigra, which showed a 13% reduction in (/sup 3/H)flunitrazepam binding after 1 week and a 40% reduction after 4 weeks of treatment. In a few areas, such as the lateral hypothalamus, no significant change in binding was found after 4 weeks. Acute diazepam treatment caused no change in binding. This latter finding as well as results obtained during the development of the methodology show that downregulation was not an artifact due to residual drug content of brain slices. The regional variations in degree and rate of downregulation suggest areas that may be most important for benzodiazepine tolerance and dependence and may be related to the varying time courses for tolerance to different benzodiazepine actions.

  2. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.

    PubMed

    Aumann, Tim D

    2016-04-01

    The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2

  3. Glutamate neurons within the midbrain dopamine regions.

    PubMed

    Morales, M; Root, D H

    2014-12-12

    Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular

  4. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  5. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile.

    PubMed

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-03-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the 'dopamine-first' mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  6. Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile

    PubMed Central

    Lichman, Benjamin R; Gershater, Markus C; Lamming, Eleanor D; Pesnot, Thomas; Sula, Altin; Keep, Nicholas H; Hailes, Helen C; Ward, John M

    2015-01-01

    Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet–Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the ‘dopamine-first’ mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity. PMID:25620686

  7. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN.

  8. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  9. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  10. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    PubMed

    Saigusa, Tadashi; Aono, Yuri; Sekino, Reiko; Uchida, Takuya; Takada, Koji; Oi, Yoshiyuki; Koshikawa, Noriaki; Cools, Alexander R

    2009-12-10

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular dopamine pool and the alpha-methyl-para-tyrosine-sensitive cytosolic dopamine pool. Given the similarities between dexamphetamine and SKF38393, we hypothesized that both types of pool also contribute to the striatally applied SKF38393-induced dopamine efflux. Using in vivo microdialysis technique, we analysed the contribution of these pools to the SKF38393-induced striatal dopamine efflux in freely moving rats. The increase of dopamine efflux induced by 1.5 microg SKF38393 was largely prevented by either reserpine (5mg/kg i.p., given 24h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2h earlier), showing that both the vesicular dopamine pool and the cytosolic dopamine pool contribute to the SKF38393-induced increase in striatal dopamine efflux. The sum of the amounts of dopamine that was sensitive to either reserpine or alpha-methyl-para-tyrosine, was greater than 100%, namely 137.6% of the basal dopamine level and 143.9% of the SKF38393-induced dopamine level, suggesting that striatally applied SKF38393 promotes the redistribution of dopamine from vesicles to the cytosol, and vice versa. The finding that the combined treatment of reserpine and alpha-methyl-para-tyrosine only inhibited the SKF38393-induced striatal dopamine efflux till 86.0% of the control, is ascribed to the notion that SKF38393 can also inhibit the re-uptake of dopamine. The latter conclusion has far-reaching consequences for studies in which the effects of SKF38393 are simply ascribed to its dopamine D1 receptor stimulation capacity.

  11. A new dopamine-β-hydroxylase inhibitor

    PubMed Central

    Andén, N. -E.; Fuxe, K.

    1971-01-01

    1. The dopamine-β-hydroxylase inhibitor bis(4-methyl-1-homopiperazinyl-thiocarbonyl) disulphide (FLA-63; 25 mg/kg i.p.) caused within 4 h a 65% loss of noradrenaline throughout the intact rat spinal cord and also cranial to a transection of the cut spinal cord. Caudal to the lesion, there was only an insignificant depletion of 17% indicating the importance of nerve impulses for the disappearance of noradrenaline. 2. Dopamine accumulated in the spinal cord after treatment with FLA-63 although the amounts were not sufficient to replace the missing noradrenaline. Even after treatment with L-3,4-dihydroxyphenylalanine (L-DOPA), the catecholamine store was incompletely replenished by dopamine. 3. After a large depletion of the noradrenaline stores, induced by repeated doses of FLA-63 or by reserpine plus FLA-63, the L-DOPA-induced increase in flexor reflex activity of the hind limbs of spinal rats was inhibited much more than after pretreatment with α-methyl-tyrosine or reserpine. FLA-63 blocked the formation of noradrenaline but not of dopamine from L-DOPA. 4. The increase in flexor reflex activity induced by the noradrenaline receptor stimulating agent clonidine was not changed by FLA-63, indicating that the noradrenaline receptor sensitivity was not influenced. 5. After depletion of the noradrenaline stores, the small formation of noradrenaline from L-DOPA may be of greater functional significance for the noradrenaline receptor stimulation than the greater formation of dopamine, but the dopamine formed also has a slight action. With intact noradrenaline stores, displacement of endogenous noradrenaline by newly formed dopamine contributes, at least after monoamine oxidase inhibition, to the increase in the flexor reflex activity caused by L-DOPA. PMID:4339882

  12. Downregulation of Reactive Oxygen Species in Apoptosis

    PubMed Central

    Jeong, Chul-Ho; Joo, Sang Hoon

    2016-01-01

    Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells. PMID:27051644

  13. Dopamine, Behavioral Economics, and Effort

    PubMed Central

    Salamone, John D.; Correa, Merce; Farrar, Andrew M.; Nunes, Eric J.; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  14. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders. PMID:19826615

  15. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  16. Dopamine, behavioral economics, and effort.

    PubMed

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  17. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  18. Cytokine-mediated down-regulation of CYP1A1 in Hepa1 cells.

    PubMed

    Paton, T E; Renton, K W

    1998-06-01

    The activation of host defense mechanisms down-regulates microsomal cytochrome P450 in cell culture, humans, and animals. Investigation into various aspects of this effect using in vivo models has yet to define clearly the role that cytokines play in this phenomenon. The mechanism of down-regulation by immunostimulants, such as lipopolysaccharide (LPS), is explored with an in vitro model, utilizing a murine hepatoma (Hepa1) and a murine macrophage (IC-21) cell line. It is hypothesized that down-regulation of P450 activity by immunostimulants involves the activation of immune cells and the subsequent release of cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). The effects of immunostimulation on P450 activity are assessed by ethoxyresorufin O-dealkylase, an assay that measures CYP1A activity in Hepa1 cells. Initial studies demonstrated that LPS added directly to hepatoma cells had no effect on the levels of CYP1A1 activity. In contrast, a significant down-regulation in CYP1A1 activity occurred when hepatoma cells were incubated with monocyte conditioned medium obtained by incubating LPS with IC-21 cells. When pentoxifylline, a TNF-alpha synthesis inhibitor, was co-administered with LPS to macrophages, the down-regulation of CYP1A1 activity was prevented. The direct administration of murine recombinant TNF-alpha to hepatoma cells resulted in a down-regulation of CYP1A1 activity. These results implicated the release of TNF-alpha from macrophages as an important step in the down-regulation of CYP1A1 by LPS. PMID:9714297

  19. Intrarenal dopamine inhibits progression of diabetic nephropathy.

    PubMed

    Zhang, Ming-Zhi; Yao, Bing; Yang, Shilin; Yang, Haichun; Wang, Suwan; Fan, Xiaofeng; Yin, Huiyong; Fogo, Agnes B; Moeckel, Gilbert W; Harris, Raymond C

    2012-10-01

    The kidney has a local intrarenal dopaminergic system, and in the kidney, dopamine modulates renal hemodynamics, inhibits salt and fluid reabsorption, antagonizes the renin-angiotensin system, and inhibits oxidative stress. The current study examined the effects of alterations in the intrarenal dopaminergic system on kidney structure and function in models of type 1 diabetes. We studied catechol-O-methyl-transferase (COMT)(-/-) mice, which have increased renal dopamine production due to decreased dopamine metabolism, and renal transplantation was used to determine whether the effects seen with COMT deficiency were kidney-specific. To determine the effects of selective inhibition of intrarenal dopamine production, we used mice with proximal tubule deletion of aromatic amino acid decarboxylase (ptAADC(-/-)). Compared with wild-type diabetic mice, COMT(-/-) mice had decreased hyperfiltration, decreased macula densa cyclooxygenase-2 expression, decreased albuminuria, decreased glomerulopathy, and inhibition of expression of markers of inflammation, oxidative stress, and fibrosis. These differences were also seen in diabetic mice with a transplanted kidney from COMT(-/-) mice. In contrast, diabetic ptAADC(-/-) mice had increased nephropathy. Our study demonstrates an important role of the intrarenal dopaminergic system to modulate the development and progression of diabetic kidney injury and indicate that the decreased renal dopamine production may have important consequences in the underlying pathogenesis of diabetic nephropathy. PMID:22688335

  20. Neuroeconomics: a formal test of dopamine's role in reinforcement learning.

    PubMed

    DeWitt, Eric E J

    2014-04-14

    Over the last two decades, dopamine and reinforcement learning have been increasingly linked. Using a novel, axiomatic approach, a recent study shows that dopamine meets the necessary and sufficient conditions required by the theory to encode a reward prediction error.

  1. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... CONGENITAL Sources for This Page Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: ... GeneReview: Dopamine Beta-Hydroxylase Deficiency Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson ...

  2. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    MedlinePlus

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  3. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists. PMID:26942320

  4. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease

    SciTech Connect

    Lindvall, O.; Brundin, P.; Widner, H.; Rehncrona, S.; Gustavii, B.; Frackowiak, R.; Leenders, K.L.; Sawle, G.; Rothwell, J.C.; Marsden, C.D. )

    1990-02-02

    Neural transplantation can restore striatal dopaminergic neurotransmission in animal models of Parkinson's disease. It has now been shown that mesencephalic dopamine neurons, obtained from human fetuses of 8 to 9 weeks gestational age, can survive in the human brain and produce marked and sustained symptomatic relief in a patient severely affected with idiopathic Parkinson's disease. The grafts, which were implanted unilaterally into the putamen by stereotactic surgery, restored dopamine synthesis and storage in the grafted area, as assessed by positron emission tomography with 6-L-({sup 18}F)fluorodopa. This neurochemical change was accompanied by a therapeutically significant reduction in the patient's severe rigidity and bradykinesia and a marked diminuation of the fluctuations in the patient's condition during optimum medication (the on-off phenomenon). The clinical improvement was most marked on the side contralateral to the transplant.

  5. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine.

    PubMed

    Malvindi, Maria Ada; Di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release. PMID:22037807

  6. Bromocryptine prevents the decline in tuberoinfundibular neuronal release of dopamine after removal of chronic estrogen treatment

    SciTech Connect

    Gottschall, P.E.; Meites, J.

    1987-11-01

    Prolonged exposure to estradiol 17-..beta.. (E/sub 2/) in rats has been shown to decrease dopamine (DA) synthesis in and release from tuberoinfundibular dopaminergic (TIDA) neurons in Fischer 344 rats. The objective of the present study was to determine whether inhibition of the E/sub 2/-induced increase in anterior pituitary (AP) weight and prolactin (PRL) secretion by concomitant administration of the dopaminergic agonist, bromocryptine, could prevent the decrease in TIDA neuronal function produced by chronic E/sub 2/ administration. TIDA neuronal function was evaluated by in vitro superfusion and electrical stimulation of median eminence (ME) tissue after allowing for accumulation of (/sup 3/H) dopamine (DA). The effect of chronic E/sub 2/ and/or bromocryptine treatment on catecholamine content in tuberohypophyseal neurons in the neurointermediate lobe was also measured to determine whether increased pituitary size possibly damaged the tuberohypophyseal neurons.

  7. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.

    PubMed

    Su, Gaoxing; Yang, Chi; Zhu, Jun-Jie

    2015-01-20

    Hydroxyphenol compounds are often used as reductants in controlling the growth of nanoparticles. Herein, dopamine was used as an effective reductant in seed-mediated synthesis of gold nanorods (GNRs). The as-prepared GNRs (83 × 16 nm) were monodisperse and had a high degree of purity. The conversion ratio from gold ions to GNRs was around 80%. In addition, dopamine worked as an additive. At a very low concentration of hexadecyltrimethylammonium bromide (CTAB; 0.025 M), thinner and shorter GNRs (60 × 9 nm) were successfully prepared. By regulating the concentration of silver ions, CTAB, seeds, and reductant, GNRs with longitudinal surface plasmon resonance (LSPR) peaks ranging from 680 to 1030 nm were synthesized. The growth process was tracked using UV-vis-NIR spectroscopy, and it was found that a slow growth rate was beneficial to the formation of GNRs. PMID:25521416

  8. Interaction between Oc-1 and Lmx1a promotes ventral midbrain dopamine neural stem cells differentiation into dopamine neurons.

    PubMed

    Yuan, Jian; Lei, Zhi-nian; Wang, Xi; Deng, Yong-Jian; Chen, Dong-Bo

    2015-05-22

    Recent studies have shown that Onecut (Oc) transcription factors may be involved in the early development of midbrain dopaminergic neurons (mdDA). The expression profile of Oc factors matches that of Lmx1a, an important intrinsic transcription factor in the development of mDA neuron. Moreover, the Wnt1-Lmx1a pathway controls the mdDA differentiation. However, their expression dynamics and molecular mechanisms remain to be determined. To address these issues, we hypothesize that cross-talk between Oc-1 and Lmx1a regulates the mdDA specification and differentiation through the canonical Wnt-β-catenin pathway. We found that Oc-1 and Lmx1a displayed a very similar expression profile from embryonic to adult ventral midbrain (VM) tissues. Oc-1 regulated the proliferation and differentiation of ventral midbrain neural stem cells (vmNSCs). Downregulation of Oc-1 decreased both transcript and protein level of Lmx1a. Oc-1 interacted with lmx1a in vmNSCs in vitro and in VM tissues in vivo. Knockdown of Lmx1a reduced the expression of Oc-1 and Wnt1 in vmNSCs. Inhibiting Wnt1 signaling in vmNSCs provoked similar responses. Our data suggested that Oc-1 interacts with Lmx1a to promote vmNSCs differentiation into dopamine neuron through Wnt1-Lmx1a pathway.

  9. Differential dopamine function in fibromyalgia.

    PubMed

    Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K

    2016-09-01

    Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain.

  10. Plasma dopamine: regulation and significance.

    PubMed

    Van Loon, G R

    1983-10-01

    Dopamine (DA) normally circulates in plasma. The plasma concentration of the free form of DA is approximately equivalent to that of epinephrine (E) and 20% that of norepinephrine (NE). The free form constitutes less than 2% of total plasma DA, and the remainder exists predominantly as sulfate or glucuronide conjugates. DA is found in adrenal medulla and cortex, peripheral nerves, sympathetic ganglia, carotid body, and kidney, but quantitatively the origin of circulating DA remains poorly understood. Plasma concentrations of free DA increase in association with events that increase sympathetic tone, although to a much lesser degree than seen for NE or E. Thus, upright posture, bicycle exercise, a variety of emotional and physical stresses, and hypoglycemia may be associated with increases in plasma free DA. Plasma DA decreases during the course of dietary sodium depletion in humans, in contrast to the plasma NE response, and consistent with a physiological role for DA in the regulation of aldosterone secretion. Plasma DA increases after administration of its precursor L-dihydroxyphenylalanine, together with the decarboxylase inhibitor carbidopa. Plasma NE and (in some studies) plasma DA decrease after administration of the DA receptor agonist bromocriptine. In contrast, plasma DA and one of its major metabolites, homovanillic acid, increase after administration of the DA receptor antagonist haloperidol. Administration of the endogenous opioid peptide beta-endorphin into the brain increases central sympathetic outflow, thus increasing plasma DA concentration, although to a lesser extent than for NE or E. Disordered basal concentrations of DA in plasma or disordered responses of plasma DA have been reported in a number of disease states. Clear understanding of physiological roles of DA in plasma and of its pathophysiology awaits definition. PMID:6413258

  11. Dopamine, vesicular transporters, and dopamine receptor expression in rat major salivary glands.

    PubMed

    Tomassoni, Daniele; Traini, Enea; Mancini, Manuele; Bramanti, Vincenzo; Mahdi, Syed Sarosh; Amenta, Francesco

    2015-09-01

    The localization of dopamine stores and the expression and localization of dopamine (DAT) and vesicular monoamine transporters (VMAT) type-1 and -2 and of dopamine D1-like and D2-like receptor subtypes were investigated in rat submandibular, sublingual, and parotid salivary glands by HPLC with electrochemical detection, as well as immunochemical and immunohistochemical techniques. Male Wistar rats of 2 mo of age were used. The highest dopamine levels were measured in the parotid gland, followed by the submandibular and sublingual glands. Western blot analysis revealed DAT, VMAT-1, VMAT-2, and dopamine receptors immunoreactivity in membrane preparations obtained from the three glands investigated. Immunostaining for dopamine and transporters was developed within striated ducts. Salivary glands processed for dopamine receptors immunohistochemistry developed an immunoreaction primarily in striated and excretory ducts. In the submandibular gland, acinar cells displayed strong immunoreactivity for the D2 receptor, while cells of the convoluted granular tubules were negative for both D1-like and D2-like receptors. Parotid glands acinar cells displayed the highest immunoreactivity for both D1 and D2 receptors compared with other salivary glands. The above localization of dopamine and dopaminergic markers investigated did not correspond closely with neuron-specific enolase (NSE) localization. This indicates that at least in part, catecholamine stores and dopaminergic markers are independent from glandular innervation. These findings suggest that rat major salivary glands express a dopaminergic system probably involved in salivary secretion. The stronger immunoreactivity for dopamine transporters and receptors in striated duct cells suggests that the dopaminergic system could regulate not only quality, but also volume and ionic concentration of saliva.

  12. Theoretical determinations of ionization potentials of dopamine

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Yu, Z. Y.

    2013-04-01

    Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green's function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.

  13. How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission

    PubMed Central

    Sulzer, David

    2011-01-01

    The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce non-exocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions on the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging. PMID:21338876

  14. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  15. Chromatographic analysis of dopamine metabolism in a Parkinsonian model.

    PubMed

    Baranyi, Mária; Milusheva, Elisaveta; Vizi, E Sylvester; Sperlágh, Beáta

    2006-07-01

    The present study examined the metabolism of released dopamine from rat striatum upon chronic rotenone exposure. The sample separation was carried out by two-dimensional, reversed-phase and ion pair reversed-phase chromatography using on-line solid phase extraction enrichment. Reduced dopamine content and decreased extracellular level of [(3)H] and endogenous dopamine evoked by electrical stimulation indicated the injury of dopaminergic pathway. Sensitivity of dopaminergic neurons were increased to oxidative stress with enhanced release of dopamine and formation of oxidized metabolite dopamine quinone (DAQ). Utilizing multidimensional detection, EC at -100 mV reduction potential, the method has been applied for identification of DAQ and aminochrome (DAC).

  16. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  17. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  18. Dopamine-melanin nanofilms for biomimetic structural coloration.

    PubMed

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-01

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials.

  19. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects. PMID:27635280

  20. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney.

    PubMed

    Rukavina Mikusic, N L; Kouyoumdzian, N M; Rouvier, E; Gironacci, M M; Toblli, J E; Fernández, B E; Choi, M R

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na(+), K(+)-ATPase inhibition. Present results show that CNP did not affect either (3)H-dopamine uptake in renal tissue or Na(+), K(+)-ATPase activity; meanwhile, Ang-(1-7) was able to increase (3)H-dopamine uptake and decreased Na(+), K(+)-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na(+), K(+)-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on (3)H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on (3)H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on (3)H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na(+), K(+)-ATPase activity inhibition, contributing to its natriuretic and diuretic effects. PMID:27635280

  1. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice.

  2. How does angiotensin II increase cardiac dopamine-beta-hydroxylation?

    PubMed

    Chevillard, C; Duchene, N; Alexandre, J M

    1975-03-01

    The potent accelerating effect of angiotensin II (Ang II) on caridac dopamine beta-hydroxylation was studied on slices of rat heart. Ang II did not affect the kinetics of beta-hydroxylation but it increased the axonal uptake of dopamine, and, concomitant with the acceleration of biosynthesis, it enhanced the accumulation of dopamine into tissue. Puromycin, in contrast to actinomycin D, antagonized the stimulation of dopamine beta-hydroxylation by Ang II, but did not suppress the rise in cardiac dopamine. Therefore, to promote the acceleration of dopamine beta-hydroxylation, (i) the rise in tissue dopamine available for conversion appeared to be insufficient, (ii) the formation of new proteins by activation of traduction seemed to constitute the basic mechanism of Ang II action.

  3. The enduring centrality of dopamine in the pathophysiology of schizophrenia: in vivo evidence from the prodrome to the first psychotic episode.

    PubMed

    Bonoldi, Ilaria; Howes, O D

    2013-01-01

    Dopamine has been thought to be central to the pathophysiology of schizophrenia for the last four decades. However, the last decade or so has seen a considerable advance in understanding of dopamine's role in the neurobiology of schizophrenia. This has been informed by advances in neuroimaging, preclinical models, and the study of the prodrome to schizophrenia. Studies using these approaches have identified that the major locus of dopaminergic dysfunction is presynaptic, characterized by elevated dopamine synthesis and release capacity. Moreover, this is seen in the prodrome to the illness, is linked to the symptoms, and increases with the onset of frank symptoms. It has also become clear that there is no marked alteration in dopamine transporter or D2/3 receptor availability in schizophrenia in general, and, similarly, there do not seem to be D2/3 receptor alterations in people at high clinical risk of psychosis. These findings highlight the enduring role of dopamine in the onset of schizophrenia. They suggest that presynaptic dopamine dysregulation underlies the onset of psychosis and are in line with an integrative model accounting for many of the genetic and environmental risk factors for schizophrenia. PMID:24054146

  4. Experimental Investigations on Dopamine Transmission Can Provide Clues on the Mechanism of the Therapeutic Effect of Amphetamine and Methylphenidate in ADHD

    PubMed Central

    Carboni, Ezio; Silvagni, Alessandra

    2004-01-01

    The aim of this review is to compare the experimental evidence obtained from in vitro studies on the effect of amphetamine and methylphenidate on dopamine transmission with the results obtained in animal models of attention deficit hyperactivity disorder (ADHD). This comparison can extend the knowledge on the mechanism of action of the drugs used in the therapy of ADHD and provide insight into the etiology of ADHD. In particular, we considered the results obtained from in vitro methods, such as synaptosomes, cells in culture, and slices and from in vivo animal models of ADHD, such as spontaneous hypertensive rats (SHR) and the Naples high-excitability (NHE) rat lines. The different experimental approaches produce consonant results and suggest that in SHR rats, in contrast to Wistar Kyoto rats (WKY), amphetamine and depolarization by high K+ might release different pools of dopamine-containing vesicles. The pool depleted by amphetamine might represent dopamine that is stored in large dense core vesicles, whereas dopamine released by high K+ might be contained in small synaptic vesicles (SSV). The sustained dopamine transmission observed in the nucleus accumbens of SHR but not WKY rats can be supported by an elevated synthesis and release, which also might explain the stronger effect of methylphenidate on dopamine release in SHR but not in WKY rats. This hypothesis might enlighten the common therapeutic effect of these drugs, although their action takes place at different levels in catecholaminergic transmission. PMID:15303307

  5. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  6. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    PubMed Central

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  7. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    PubMed

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  8. Downregulation of gap junctions in cancer cells.

    PubMed

    Leithe, Edward; Sirnes, Solveig; Omori, Yasufumi; Rivedal, Edgar

    2006-12-01

    Gap junctions are intercellular plasma membrane domains enriched in channels that allow direct exchange of ions and small molecules between adjacent cells. Gap junction channels are composed of a family of transmembrane proteins called connexin. Connexins play important roles in the regulation of cell growth and differentiation. Cancer cells usually have downregulated levels of gap junctions, and several lines of evidence suggest that loss of gap junctional intercellular communication is an important step in carcinogenesis. In support of this hypothesis are studies showing that reexpression of connexins in cancer cells causes normalization of cell growth control and reduced tumor growth. To gain a more detailed understanding of the role of connexins as tumor suppressors, a clearer picture of the mechanisms involved in loss of gap junctions in cancer cells is needed. Furthermore, defining the mechanisms involved in downregulation of connexins in carcinogenesis will be an important step toward utilizing the potential of connexins as targets in cancer prevention and therapy. Various mechanisms are involved in the loss of gap junctions in cancer cells, ranging from loss of connexin gene transcription to aberrant trafficking of connexin proteins. This review will discuss our current knowledge on the molecular mechanisms involved in the downregulation of gap junctions in cancer cells. PMID:17425504

  9. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells.

    PubMed

    Goldstein, David S; Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J; Sharabi, Yehonatan

    2016-02-01

    According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson's disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The "cheese effect"-paroxysmal hypertension evoked by tyramine-containing foodstuffs-limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production is unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All three drugs also increased dopamine and norepinephrine, decreased 3,4-dihydroxyphenylalanine, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine spontaneous oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations, the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in Parkinson

  10. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells

    PubMed Central

    Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan

    2016-01-01

    According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson’s disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The “cheese effect”—paroxysmal hypertension evoked by tyramine-containing foodstuffs—limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production is unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All three drugs also increased dopamine and norepinephrine, decreased 3,4-dihydroxyphenylalanine, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine spontaneous oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations, the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in

  11. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  12. Effects of ketamine exposure on dopamine concentrations and dopamine type 2 receptor mRNA expression in rat brain tissue

    PubMed Central

    Li, Bing; Liu, Mei-Li; Wu, Xiu-Ping; Jia, Juan; Cao, Jie; Wei, Zhi-Wen; Wang, Yu-Jin

    2015-01-01

    Objective: To explore the effects of ketamine abuse on the concentration of dopamine (DA), a monoamine neurotransmitter, and the mRNA expression of dopamine type 2 (D2) receptors in brain tissue, we used male Wistar rats to model ketamine abuse through chronic intraperitoneal infusion of ketamine across different doses. Methods: The rats were sacrificed 45 minutes and 1, 2, and 3 weeks after initiating the administration of ketamine or normal saline, as well as 3 days following discontinuation. Brain tissue was harvested to examine the concentration of 2,5-dihydroxyphenylacetic acid and homovanillic acid, the primary metabolites of DA, as well as the expression of D2 receptor mRNA. In addition, behavioral changes were observed within 30 minutes of administration, and withdrawal symptoms were also documented. A factorial experimental design was used to investigate variations and correlations in the primary outcome measures across the four doses and five time points. Brain DA concentrations were significantly higher in the ketamine-treated groups compared with the saline-treated group, with 30 mg/kg > 10 mg/kg > 60 mg/kg > saline (P < 0.05). The D2 receptor mRNA expression exhibited an inverse downregulation pattern, with 30 mg/kg < 10 mg/kg < 60 mg/kg < saline (P < 0.05). In the 10 mg/kg and 30 mg/kg ketamine-treated groups, the DA concentration and D2 receptor mRNA level in the brain tissue correlated with the dose of ketamine (r = 0.752, r = -0.806), but no significant correlation was found in the 60 mg/kg group. Result: These findings indicated that chronic dosing with ketamine increased the concentration of DA in rat brain tissue by increasing DA release or interrupting DA degradation. D2 receptor mRNA expression likely decreased because of stimulation with excessive DA. Conclusion: High-dose (60 mg/kg) ketamine had potent paralyzing effects on the central nervous system of rats and weakened the excitatory effects of the limbic system. Brain DA and D2 receptor m

  13. Dopamine D1 receptors: efficacy of full (dihydrexidine) vs. partial (SKF38393) agonists in primates vs. rodents.

    PubMed

    Watts, V J; Lawler, C P; Gilmore, J H; Southerland, S B; Nichols, D E; Mailman, R B

    1993-09-28

    Although partial efficacy dopamine D1 receptor agonists have little therapeutic benefit in parkinsonism, the first high potency, full efficacy dopamine D1 receptor agonist dihydrexidine recently has been shown to have profound antiparkinsonian effects. One reason for the greater antiparkinsonian effects of dihydrexidine vs. SKF38393 might be that SKF38393, while a partial dopamine D1 receptor agonist in rodent striatal preparations, has virtually no agonist activity in monkey striatum (Pifl et al., 1991, Eur. J. Pharmacol. 202, 273). To explore this hypothesis, we compared the dopamine D1 receptor affinity and efficacy of dihydrexidine and SKF38393 in striatum from rat and monkey. In vitro binding studies using membranes from putamen of adult rhesus monkeys demonstrated that dihydrexidine competed for dopamine D1 receptors (labeled with [3H]SCH23390) with high potency (IC50 = 20 nM vs. ca. 10 nM in rat brain). SKF38393 was about 4-fold less potent than dihydrexidine in both monkey and rat brain. The in vitro functional activity of these drugs was assessed by their ability to stimulate adenylate cyclase activity in tissue homogenates. Dihydrexidine was of full efficacy (relative to dopamine) in stimulating cAMP synthesis in both monkey and rat. SKF38393 was only a partial efficacy agonist in both rat striatum and monkey putamen, but contrary to the original hypothesis, it had the same efficacy (ca. 40% relative to dihydrexidine) in membranes from both species. Interestingly, greater between-subject variation was found in the stimulation produced by SKF38393 in primate compared to rat brain, although the basis for this variation is unclear.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer.

    PubMed

    Kim, Bora; Hwang, Jae Sung; Kim, Hyun-Soo

    2015-12-15

    We investigated the inhibitory effects of a niacinamide derivative, N-Nicotinoyl dopamine (NND) on melanogenesis. NND inhibits melanosome transfer in a normal human melanocyte-keratinocyte co-culture system and through phagocytic ability without affecting viability of cells while it did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. In addition, safety of NND was verified through performing neural stem cell morphology assay. Our findings indicate that NND may potentially be used for cosmetic industry for improvement of skin whitening and therapies related with several skin disorders, and the effect of NND may be acquired via reduction of melanosome transfer.

  15. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer.

    PubMed

    Kim, Bora; Hwang, Jae Sung; Kim, Hyun-Soo

    2015-12-15

    We investigated the inhibitory effects of a niacinamide derivative, N-Nicotinoyl dopamine (NND) on melanogenesis. NND inhibits melanosome transfer in a normal human melanocyte-keratinocyte co-culture system and through phagocytic ability without affecting viability of cells while it did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. In addition, safety of NND was verified through performing neural stem cell morphology assay. Our findings indicate that NND may potentially be used for cosmetic industry for improvement of skin whitening and therapies related with several skin disorders, and the effect of NND may be acquired via reduction of melanosome transfer. PMID:26597116

  16. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  17. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.

    PubMed

    Pothos, E N; Davila, V; Sulzer, D

    1998-06-01

    The observation of quantal release from central catecholamine neurons has proven elusive because of the absence of evoked rapid postsynaptic currents. We adapted amperometric methods to observe quantal release directly from axonal varicosities of midbrain dopamine neurons that predominantly contain small synaptic vesicles. Quantal events were elicited by high K+ or alpha-latrotoxin, required extracellular Ca2+, and were abolished by reserpine. The events indicated the release of 3000 molecules over 200 microsec, much smaller and faster events than quanta associated with large dense-core vesicles previously recorded in vertebrate preparations. The number of dopamine molecules per quantum increased as a population to 380% of controls after glial-derived neurotrophic factor (GDNF) exposure and to 350% of controls after exposure to the dopamine precursor L-dihydroxyphenylalanine (L-DOPA). These results introduce a means to measure directly the number of transmitter molecules released from small synaptic vesicles of CNS neurons. Moreover, quantal size was not an invariant parameter in CNS neurons but could be modulated by neurotrophic factors and altered neurotransmitter synthesis.

  18. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    PubMed Central

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  19. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    PubMed

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice.

  20. Heterogeneity of dopamine neuron activity across traits and states

    PubMed Central

    Marinelli, Michela; McCutcheon, James E.

    2014-01-01

    Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called ‘bursts’. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in ‘basal’ conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression. PMID:25084048

  1. Optical suppression of drug-evoked phasic dopamine release.

    PubMed

    McCutcheon, James E; Cone, Jackson J; Sinon, Christopher G; Fortin, Samantha M; Kantak, Pranish A; Witten, Ilana B; Deisseroth, Karl; Stuber, Garret D; Roitman, Mitchell F

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre(+) rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  2. Regulation of dopamine transporter trafficking by intracellular amphetamine.

    PubMed

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang; Loland, Claus J; Gether, Ulrik; Javitch, Jonathan A; Galli, Aurelio

    2006-08-01

    The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A-hDAT. Furthermore, direct intracellular application of AMPH, via a whole-cell patch pipette, stimulated the trafficking of Y335A-hDAT. Taken together, these data suggest that the DAT transport cycle is not required for AMPH-induced down-regulation and that an increase of intracellular AMPH is an essential component of DAT redistribution.

  3. Loss of Dopamine Phenotype Among Midbrain Neurons in Lesch–Nyhan Disease

    PubMed Central

    Göttle, Martin; Prudente, Cecilia N.; Fu, Rong; Sutcliffe, Diane; Pang, Hong; Cooper, Deborah; Veledar, Emir; Glass, Jonathan D.; Gearing, Marla; Visser, Jasper E.; Jinnah, H. A.

    2016-01-01

    Objective Lesch–Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. Methods Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). Results Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. Interpretation These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype. PMID:24891139

  4. Axiomatic methods, dopamine and reward prediction error.

    PubMed

    Caplin, Andrew; Dean, Mark

    2008-04-01

    The phasic firing rate of midbrain dopamine neurons has been shown to respond both to the receipt of rewarding stimuli, and the degree to which such stimuli are anticipated by the recipient. This has led to the hypothesis that these neurons encode reward prediction error (RPE)-the difference between how rewarding an event is, and how rewarding it was expected to be. However, the RPE model is one of a number of competing explanations for dopamine activity that have proved hard to disentangle, mainly because they are couched in terms of latent, or unobservable, variables. This article describes techniques for dealing with latent variables common in economics and decision theory, and reviews work that uses these techniques to provide simple, non-parametric tests of the RPE hypothesis, allowing clear differentiation between competing explanations.

  5. Dopamine neurons share common response function for reward prediction error

    PubMed Central

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-01-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  6. Dopamine in motivational control: rewarding, aversive, and alerting

    PubMed Central

    Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-01-01

    SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997

  7. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803

  8. Redox reactivity of cerium oxide nanoparticles against dopamine.

    PubMed

    Hayat, Akhtar; Andreescu, Daniel; Bulbul, Gonca; Andreescu, Silvana

    2014-03-15

    The interaction between dopamine and the redox active cerium oxide nanoparticles, or nanoceria was studied using a suite of spectroscopic and surface characterization methods. Changes in the chemical reactivity and concentration of dopamine upon exposure to nanoceria was assessed in aqueous solutions and a human physiological fluid--human serum. The results indicate strong attachment of dopamine to the nanoparticle surface through oxidation followed by chemisorption of the oxidative product with formation of a charge transfer complex. Such oxidation/surface adsorption processes between nanoceria and dopamine lead to a reduction of the concentration of free dopamine in aqueous environments. These findings suggest that the redox reactivity of nanoceria may alter dopamine levels in biological systems exposed to these particles and indicate the need for a comprehensive assessment of the potential neurological consequences that might result from intended or unintended exposure to these particles. PMID:24461841

  9. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  10. Dopamine neurons share common response function for reward prediction error.

    PubMed

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  11. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons.

    PubMed

    Chen, Chunhai; Ma, Qinglong; Chen, Xiaowei; Zhong, Min; Deng, Ping; Zhu, Gang; Zhang, Yanwen; Zhang, Lei; Yang, Zhiqi; Zhang, Kuan; Guo, Lu; Wang, Liting; Yu, Zhengping; Zhou, Zhou

    2015-08-01

    Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs.

  12. Structural studies of dopamine. beta. -hydroxylase

    SciTech Connect

    Papadopoulos, N.J.

    1985-01-01

    Dopamine ..beta..-hydroxylase catalyzes the conversion of dopamine to norepinephrine, a ..beta..-hydroxylation reaction, utilizing ascorbic acid as reducing agent and molecular oxygen as cosubstrate. Modifications of the previously published purification procedure for D..beta..H have produced findings which show that (1) enzyme is inactivated by ascorbate autooxidation during the isolation procedure, (2) active as well as inactive D..beta..H co-purify throughout the entire purification procedure and (3) beef liver catalase totally protects against this time dependent inactivation. The stoichiometry of copper binding to the active sites of D..beta..H has been investigated using /sup 19/F-NMR and radioactive binding experiments. The data unequivocally show that homogeneous D..beta..H (isolated in the presence of catalase) specifically binds up to approx.8 copper atoms per enzyme tetramer. Distance determinations done using NMR relaxation rate theory show that anion activators of the catalytic reaction are bound at a fairly far distance from the Cu/sup 2 +/ centers. Spin-echo electron paramagnetic resonance spectroscopy indicates that at least one, possibly two, histidines are bound as equatorial ligands to each Cu/sup 2 +/ ion. The combined data indicate that highly purified dopamine ..beta..-hydroxylase contains a 2 copper atom active site, composed of magnetically non-interacting metal centers. Active site components are distant from the Cu/sup 2 +/ centers, suggesting a possible movement of active site residues or components after reduction of enzyme bound copper in order to achieve the insertion of 1 atom of oxygen into the benzylic C-H bond of dopamine.

  13. DOPAMINE AND FOOD ADDICTION: LEXICON BADLY NEEDED

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Over the last few years, the concept of food addiction has become a common feature in the scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to describe pathological aspects of food intake in humans remains controversial, and even among those who affirm the validity of the concept, there is considerable disagreement about its utility for explaining the increasing prevalence of obesity throughout much of the world. An examination of the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often are cited as mechanisms that contribute to the establishment of food addiction. However, in reviewing this literature, it is important to have a detailed consideration of the complex nature of dopaminergic involvement in motivational processes. For example, although it is often stated that mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or hedonia, as opposed to other aspects of motivation or learning. The present paper provides a critical discussion of some aspects of the food addiction literature, viewed through the lens of recent findings and current theoretical views of dopaminergic involvement in food motivation. Furthermore, compulsive food intake and binge eating will be considered from an evolutionary perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food consumption and seeking behaviors, and a consideration of how these could be altered in pathological conditions. PMID:23177385

  14. Linking unfounded beliefs to genetic dopamine availability

    PubMed Central

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  15. Action Initiation Shapes Mesolimbic Dopamine Encoding of Future Rewards

    PubMed Central

    Syed, Emilie C.J.; Grima, Laura L.; Magill, Peter J.; Bogacz, Rafal; Brown, Peter; Walton, Mark E.

    2015-01-01

    It is widely held that dopamine signaling encodes predictions of future rewards and such predictions are regularly used to drive behavior, but the relationship between these two is poorly defined. Here, we demonstrate in rats that nucleus accumbens dopamine following a reward-predicting cue is attenuated unless movement is correctly initiated. These results demonstrate that dopamine release in this region is contingent upon correct action initiation and not just reward prediction. PMID:26642087

  16. Dopamine Does Double Duty in Motivating Cognitive Effort.

    PubMed

    Westbrook, Andrew; Braver, Todd S

    2016-02-17

    Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: (1) modulating the functional parameters of working memory circuits subserving effortful cognition, and (2) mediating value-learning and decision-making about effortful cognitive action. Here, we tie together these two lines of research, proposing how dopamine serves "double duty", translating incentive information into cognitive motivation. PMID:26889810

  17. The dopamine transporter: role in neurotoxicity and human disease

    SciTech Connect

    Bannon, Michael J. . E-mail: mbannon@med.wayne.edu

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  18. Pleiotrophin is downregulated in human keloids.

    PubMed

    Lee, Dong Hun; Jin, Cheng Long; Kim, Yeji; Shin, Mi Hee; Kim, Ji Eun; Kim, Minji; Lee, Min Jung; Cho, Soyun

    2016-10-01

    Keloid is an abnormal hyperproliferative scarring process with involvement of complex genetic and triggering environmental factors. Previously published dysregulated gene expression profile of keloids includes genes involved in tumor formation. Pleiotrophin (PTN) is a secreted, heparin-binding growth factor which is involved in various biological functions such as cell growth, differentiation, and tumor progression. Although PTN expression was reported to be increased in hypertrophic scars, there is no study on PTN expression in keloids, and previous microarray results are controversial. To clarify differential expression of PTN in keloids, we investigated the expression of PTN and its interacting molecules in keloid and control fibroblasts, and performed immunohistochemical staining of PTN using tissue arrays. The expressions of PTN, its upstream regulator platelet-derived growth factor subunit B (PDGF-B) and corresponding PDGF receptors were significantly downregulated in keloid fibroblasts compared to normal human fibroblasts, and the decreased PTN protein expression was confirmed by immunohistochemistry as well as Western blot. Moreover, functional downstream receptor protein tyrosine phosphatase β/ζ was significantly upregulated in keloid fibroblasts, supporting overall downregulation of PTN signaling pathway. The lowered PTN expression in keloids suggests a different pathomechanism from that of hypertrophic scars. PMID:27465069

  19. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  20. Dopamine regulates termite soldier differentiation through trophallactic behaviours

    PubMed Central

    Yaguchi, Hajime; Inoue, Takaya; Sasaki, Ken; Maekawa, Kiyoto

    2016-01-01

    Caste polyphenism in social insects is regulated by social interactions among colony members. Trophallaxis is one of the most frequently observed interactions, but no studies have been conducted identifying the intrinsic factors involved in this behaviour and caste differentiation. Dopamine (DA) has multiple roles in the modulation of behaviours and physiology, and it produces species-specific behaviours in animals. Here, to verify the role of DA in termite soldier differentiation, we focused on the first soldier in an incipient colony of Zootermopsis nevadensis, which always differentiates from the oldest 3rd instar (No. 1 larva) via a presoldier. First, brain DA levels of the No. 1 larva at day 3 after its appearance were significantly higher than day 0. Second, DA synthesis gene expression levels were extraordinarily high in the No. 1 larva at day 0–1 after appearance. Finally, injection of a DA receptor antagonist into the No. 1 larva resulted in the inhibition of presoldier differentiation. Behavioural observations of the antagonist or control-injected larvae suggested that brain DA and signalling activity regulate the frequencies of trophallaxis from reproductives and presoldier differentiation. Because trophallaxis is a social behaviour frequently observed in natural conditions, the role of DA should be investigated in other social insects with frequent trophallactic and allogrooming behaviour. PMID:26998327

  1. Developing brain as an endocrine organ: secretion of dopamine.

    PubMed

    Ugrumov, Michael V; Saifetyarova, Julia Y; Lavrentieva, Antonina V; Sapronova, Anna Y

    2012-01-01

    This study was aimed to test our hypothesis that the developing brain operates as an endocrine organ before the establishment of the blood-brain barrier (BBB), in rats up to the first postnatal week. Dopamine (DA) was selected as a marker of the brain endocrine activity. The hypothesis was supported by the observations in rats of: (i) the physiological concentration of DA in peripheral blood of fetuses and neonates, before the BBB establishment, and its drop by prepubertal period, after the BBB development; (ii) a drop of the DA concentration in the brain for 54% and in blood for 74% on the 3rd postnatal day after the intraventricular administration of 50 μg of α-methyl-p-tyrosine, an inhibitor of DA synthesis, with no changes in the DA metabolism in peripheral DA-producing organs. Thus, the developing brain is a principal source of circulating DA which is capable of providing an endocrine regulation of peripheral organs and the brain.

  2. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  3. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  4. Reinforcement signalling in Drosophila; dopamine does it all after all.

    PubMed

    Waddell, Scott

    2013-06-01

    Reinforcement systems are believed to drive synaptic plasticity within neural circuits that store memories. Recent evidence from the fruit fly suggests that anatomically distinct dopaminergic neurons ultimately provide the key instructive signals for both appetitive and aversive learning. This dual role for dopamine overturns the previous model that octopamine signalled reward and dopamine punishment. More importantly, this anatomically segregated double role for dopamine in reward and aversion mirrors that emerging in mammals. Therefore, an antagonistic organization of distinct reinforcing dopaminegic neurons is a conserved feature of brains. It now seems crucial to understand how the dopaminergic neurons are controlled and what the released dopamine does to the underlying circuits to convey opposite valence.

  5. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats.

    PubMed

    Thomas, Roshni Baby; Joy, Shilpa; Ajayan, M S; Paulose, C S

    2013-11-01

    Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p < 0.001) in dopamine D1 receptor number in the hypoglycaemic condition, suggesting cognitive dysfunction. cAMP content was significantly (p < 0.001) downregulated in hypoglycaemic neonatal rats indicating the reduction in cell signalling of the dopamine D1 receptors. It is attributed to the deficits in spatial learning and memory. Hypoglycaemic neonatal rats treated with Bacopa extract alone and Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.

  6. Characterization of the striatal dopaminergic neurotransmission in MEN2B mice with elevated cerebral tissue dopamine.

    PubMed

    Mijatovic, Jelena; Patrikainen, Outi; Yavich, Leonid; Airavaara, Mikko; Ahtee, Liisa; Saarma, Mart; Piepponen, T Petteri

    2008-06-01

    The Ret receptor tyrosine kinase is the common signaling receptor for the glial cell line-derived neurotrophic factor (GDNF) family ligands. The Met918Thr mutation leads to constitutive activation of Ret and is responsible for dominantly inherited cancer syndrome MEN2B. Previously, we found that the mice carrying the mutation (MEN2B mice) have profoundly increased tissue dopamine (DA) concentrations in the striatum as well as increased striatal levels of tyrosine hydroxylase (TH) and dopamine transporter. The aim of this study was to characterize the striatal dopaminergic neurotransmission in MEN2B mice and to clarify the mechanisms by which they compensate their over-production of DA. We found that tyrosine hydroxylase activity and DA synthesis are increased in MEN2B mice. Augmented effects of alpha-methyl-para-tyrosine (alphaMT, an inhibitor of TH) and tetrabenazine (VMAT2 blocker) on DA levels suggest that also storage of DA is increased in MEN2B mice. There was no difference in the basal extracellular DA concentrations or potassium-evoked DA release between the genotypes. The effects of cocaine and haloperidol were also similar between the genotypes as assessed by in vivo microdialysis. However, with in vivo voltammetry we found increase in stimulated DA release in MEN2B mice and detailed analysis of DA overflow showed that uptake of DA was also enhanced in MEN2B mice. Thus, our data show that enhanced synthesis of DA leading to increased storage and releasable pools in pre-synaptic terminals in MEN2B mice apparently also leads to increased DA release, which in turn is compensated by higher dopamine transporter activity. PMID:18248620

  7. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.

    PubMed

    Parker, Jones G; Zweifel, Larry S; Clark, Jeremy J; Evans, Scott B; Phillips, Paul E M; Palmiter, Richard D

    2010-07-27

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue-reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm.

  8. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  9. Fulvestrant-3 Boronic Acid (ZB716): An Orally Bioavailable Selective Estrogen Receptor Downregulator (SERD).

    PubMed

    Liu, Jiawang; Zheng, Shilong; Akerstrom, Victoria L; Yuan, Chester; Ma, Youning; Zhong, Qiu; Zhang, Changde; Zhang, Qiang; Guo, Shanchun; Ma, Peng; Skripnikova, Elena V; Bratton, Melyssa R; Pannuti, Antonio; Miele, Lucio; Wiese, Thomas E; Wang, Guangdi

    2016-09-01

    Orally bioavailable SERDs may offer greater systemic drug exposure, improved clinical efficacy, and more durable treatment outcome for patients with ER-positive endocrine-resistant breast cancer. We report the design and synthesis of a boronic acid modified fulvestrant (5, ZB716), which binds to ERα competitively (IC50 = 4.1 nM) and effectively downregulates ERα in both tamoxifen-sensitive and tamoxifen-resistant breast cancer cells. Furthermore, It has superior oral bioavailability (AUC = 2547.1 ng·h/mL) in mice, indicating its promising clinical utility as an oral SERD. PMID:27529700

  10. Amygdala Dopamine Receptors Are Required for the Destabilization of a Reconsolidating Appetitive Memory(1,2).

    PubMed

    Merlo, Emiliano; Ratano, Patrizia; Ilioi, Elena C; Robbins, Miranda A L S; Everitt, Barry J; Milton, Amy L

    2015-01-01

    Disrupting maladaptive memories may provide a novel form of treatment for neuropsychiatric disorders, but little is known about the neurochemical mechanisms underlying the induction of lability, or destabilization, of a retrieved consolidated memory. Destabilization has been theoretically linked to the violation of expectations during memory retrieval, which, in turn, has been suggested to correlate with prediction error (PE). It is well-established that PE correlates with dopaminergic signaling in limbic forebrain structures that are critical for emotional learning. The basolateral amygdala is a key neural substrate for the reconsolidation of pavlovian reward-related memories, but the involvement of dopaminergic mechanisms in inducing lability of amygdala-dependent memories has not been investigated. Therefore, we tested the hypothesis that dopaminergic signaling within the basolateral amygdala is required for the destabilization of appetitive pavlovian memories by investigating the effects dopaminergic and protein synthesis manipulations on appetitive memory reconsolidation in rats. Intra-amygdala administration of either the D1-selective dopamine receptor antagonist SCH23390 or the D2-selective dopamine receptor antagonist raclopride prevented memory destabilization at retrieval, thereby protecting the memory from the effects of an amnestic agent, the protein synthesis inhibitor anisomycin. These data show that dopaminergic transmission within the basolateral amygdala is required for memory labilization during appetitive memory reconsolidation.

  11. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3380807

  12. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3357895

  13. Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters

    PubMed Central

    Yano, Shoji; Moseley, Kathryn; Fu, Xiaowei; Azen, Colleen

    2016-01-01

    Background Phenylketonuria (PKU) is due to a defective hepatic enzyme, phenylalanine (Phe) hydroxylase. Transport of the precursor amino acids from blood into the brain for serotonin and dopamine synthesis is reported to be inhibited by high blood Phe concentrations. Deficiencies of serotonin and dopamine are involved in neurocognitive dysfunction in PKU. Objective (1) To evaluate the effects of sapropterin (BH4) and concurrent use of large neutral amino acids (LNAA) on the peripheral biomarkers, melatonin and dopamine with the hypothesis they reflect brain serotonin and dopamine metabolism. (2) To evaluate synergistic effects with BH4 and LNAA. (3) To determine the effects of blood Phe concentrations on the peripheral biomarkers concentrations. Methods Nine adults with PKU completed our study consisting of four 4-week phases: (1) LNAA supplementation, (2) Washout, (3) BH4 therapy, and (4) LNAA with BH4 therapy. An overnight protocol measured plasma amino acids, serum melatonin, and 6-sulfatoxymelatonin and dopamine in first void urine after each phase. Results (1) Three out of nine subjects responded to BH4. A significant increase of serum melatonin levels was observed in BH4 responders with decreased blood Phe concentration. No significant change in melatonin, dopamine or Phe levels was observed with BH4 in the subjects as a whole. (2) Synergistic effects with BH4 and LNAA were observed in serum melatonin in BH4 responders. (3) The relationship between serum melatonin and Phe showed a significant negative slope (p = 0.0005) with a trend toward differing slopes among individual subjects (p = 0.066). There was also a negative association overall between blood Phe and urine 6-sulfatoxymelatonin and dopamine (P = 0.040 and 0.047). Conclusion Blood Phe concentrations affected peripheral monoamine neurotransmitter biomarker concentrations differently in each individual with PKU. Melatonin levels increased with BH4 therapy only when blood Phe decreased. Monitoring

  14. Central actions of a novel and selective dopamine antagonist

    SciTech Connect

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D/sub 1/ class, which is linked to the stimulation of adenylate cyclase-activity, and the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ class which is not. There is much evidence suggesting that it is the D/sub 2/ dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D/sub 1/ class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of (/sup 3/H)-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D/sub 1/ receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for (/sup 3/H)-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D/sub 1/ receptors and (/sup 3/H)-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D/sub 1/ dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated.

  15. Responses of in vivo renal microvessels to dopamine.

    PubMed

    Steinhausen, M; Weis, S; Fleming, J; Dussel, R; Parekh, N

    1986-09-01

    The split hydronephrotic kidney preparation was used to directly observe the effects of locally applied dopamine on the in vivo diameters of renal vessels. Dopamine (1 X 10(-6) to 3 X 10(-5) M) produced a concentration-dependent dilation of the arcuate and interlobular arteries and afferent arterioles. Efferent arterioles near the glomeruli also dilated to dopamine but the dilation was less than that of the preglomerular vessels. Higher dopamine concentrations (3 X 10(-4) and 1 X 10(-3) M) produced more variable effects, with a tendency for the arcuate and interlobular arteries and the afferent and efferent arterioles away from the glomeruli to decrease in diameter. After pretreatment with haloperidol, dopamine (1 X 10(-6) to 1 X 10(-4) M) did not dilate any pre- or postglomerular vascular segment, but the tendency for pre- and postglomerular constrictions with higher dopamine concentrations were not abolished. Pretreatment with phentolamine and propranolol enhanced the dilator response of the pre- and postglomerular vessels (except the afferent arterioles near glomeruli and efferent arterioles near welling points) to dopamine (3 X 10(-5) and 1 X 10(-4) M), and abolished the reductions in diameter produced by the high dopamine levels. These data indicate that the dilator effect of dopamine is mediated by interactions with specific dopaminergic receptors, while alpha and beta adrenergic receptors appear to mediate a constrictor influence observed with high dopamine concentrations. The overall effect of dopamine on the renal vessel diameters thus appears to depend on the balance of dilator and constrictor stimuli mediated by multiple receptors.

  16. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-01

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors.

  17. A proposed resolution to the paradox of drug reward: Dopamine's evolution from an aversive signal to a facilitator of drug reward via negative reinforcement.

    PubMed

    Ting-A-Kee, Ryan; Heinmiller, Andrew; van der Kooy, Derek

    2015-09-01

    The mystery surrounding how plant neurotoxins came to possess reinforcing properties is termed the paradox of drug reward. Here we propose a resolution to this paradox whereby dopamine - which has traditionally been viewed as a signal of reward - initially signaled aversion and encouraged escape. We suggest that after being consumed, plant neurotoxins such as nicotine activated an aversive dopaminergic pathway, thereby deterring predatory herbivores. Later evolutionary events - including the development of a GABAergic system capable of modulating dopaminergic activity - led to the ability to down-regulate and 'control' this dopamine-based aversion. We speculate that this negative reinforcement system evolved so that animals could suppress aversive states such as hunger in order to attend to other internal drives (such as mating and shelter) that would result in improved organismal fitness.

  18. Influence of lead on repetitive behavior and dopamine metabolism in a mouse model of iron overload.

    PubMed

    Chang, JuOae; Kueon, Chojin; Kim, Jonghan

    2014-12-01

    Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that

  19. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  20. The arylalkylamine-N-acetyltransferase (AANAT) acetylates dopamine in the digestive tract of goldfish: a role in intestinal motility.

    PubMed

    Nisembaum, Laura Gabriela; Tinoco, A B; Moure, A L; Alonso Gómez, A L; Delgado, M J; Valenciano, A I

    2013-05-01

    Melatonin has been found in the digestive tract of many vertebrates. However, the enzymatic activity of the arylalkylamine-N-acetyltransferase (AANAT) and the hydroxindole-O-methyltransferase (HIOMT), the last two enzymes of melatonin biosynthesis, have been only measured in rat liver. Therefore, the first objective of the present study is to investigate the functionality of these enzymes in the liver and gut of goldfish, analyzing its possible daily changes and comparing its catalytic properties with those from the retina isoforms. The daily rhythms with nocturnal acrophases in retinal AANAT and HIOMT activities support their role in melatonin biosynthesis. In foregut AANAT activity also show a daily rhythm while in liver and hindgut significant but not rhythmic levels of AANAT activity are found. HIOMT activity is not detected in any of these peripheral tissues suggesting an alternative role for AANAT besides melatonin synthesis. The failure to detect functional HIOMT activity in both, liver and gut, led us to investigate other physiological substrates for the AANAT, as dopamine, searching alternative roles for this enzyme in the goldfish gut. Dopamine competes with tryptamine and inhibits retinal, intestinal and hepatic N-acetyltryptamine production, suggesting that the active isoform in gut is AANAT1. Besides, gut and liver produces N-acetyldopamine in presence of acetyl coenzyme-A and dopamine. This production is not abolished by the presence of folic acid (arylamine N-acetyltransferase inhibitor) in any studied tissue, but a total inhibition occurs in the presence of CoA-S-N-acetyltryptamine (AANAT inhibitor) in liver. Therefore, AANAT1 seems to be an important enzyme in the regulation of dopamine and N-acetyldopamine content in liver. Finally, for the first time in fish we found that dopamine, but not N-acetyldopamine, regulates the gut motility, underlying the broad physiological role of AANAT in the gut.

  1. Opening the black box: dopamine, predictions, and learning

    PubMed Central

    Eshel, Neir; Tian, Ju; Uchida, Naoshige

    2013-01-01

    Dopamine neurons are thought to promote learning by signaling prediction errors, that is, the difference between actual and expected outcomes. Whether these signals are sufficient for associative learning, however, remains untested. A recent study used optogenetics in a classic behavioral paradigm to confirm the role of dopamine prediction errors in learning. PMID:23830895

  2. Time, Not Size, Matters for Striatal Reward Predictions to Dopamine.

    PubMed

    Burke, Christopher J; Tobler, Philippe N

    2016-07-01

    Midbrain dopamine neurons encode reward prediction errors. In this issue of Neuron, Takahashi et al. (2016) show that the ventral striatum provides dopamine neurons with prediction information specific to the timing, but not the quantity, of reward, suggesting a surprisingly nuanced neural implementation of reward prediction errors. PMID:27387646

  3. Decreased brain dopamine cell numbers in human cocaine users.

    PubMed

    Little, Karley Y; Ramssen, Eric; Welchko, Ryan; Volberg, Vitaly; Roland, Courtney J; Cassin, Bader

    2009-08-15

    Cocaine use diminishes striatal and midbrain dopamine neuronal components in both post-mortem and in vivo human experiments. The diffuse nature of these declines suggests the possibility that cocaine use might cause a loss of dopamine neurons in humans. Previous rodent studies have not detected cocaine-induced dopamine cell damage. The present experiment involved counting midbrain dopamine neurons utilizing both melanin and tyrosine hydroxylase immunoreactivity. Well-preserved blocks ranging from +38 mm obex to +45 mm obex were examined in 10 cocaine users and 9 controls. Sections were also examined for signs of acute pathological injury by counting activated macrophages and microglia. Melanized cells at six midbrain levels were significantly reduced in cocaine users by both drug exposures. The estimated total number of melanized dopamine cells in the anterior midbrain was significantly reduced in cocaine users by 16%. Results with tyrosine hydroxylase immunoreactivity were less conclusive because of variability in staining. Both activated macrophages and activated microglia were significantly increased among cocaine users. Cocaine exposure may have neurotoxic effects on dopamine neurons in humans. The infiltration of phagocytic cells suggests that the lower number of dopamine cells found in cocaine users was a relatively recent effect. The loss of dopamine cells could contribute to and intensify cocaine dependence, as well as anhedonic and depressive symptoms, in some cocaine users. Further efforts at clarifying the pathophysiological mechanisms involved may help explain treatment refractoriness, and identify targets for therapeutic intervention. PMID:19233481

  4. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  5. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  6. Opening the black box: dopamine, predictions, and learning.

    PubMed

    Eshel, Neir; Tian, Ju; Uchida, Naoshige

    2013-09-01

    Dopamine neurons are thought to promote learning by signaling prediction errors, that is, the difference between actual and expected outcomes. Whether these signals are sufficient for associative learning, however, remains untested. A recent study used optogenetics in a classic behavioral paradigm to confirm the role of dopamine prediction errors in learning.

  7. Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

    PubMed

    Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie L

    2015-12-01

    Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.

  8. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease.

  9. Dopamine modulates egalitarian behavior in humans.

    PubMed

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-03-30

    Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (1) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (2) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148

  10. Interleukin-6 downregulates factor XII production by human hepatoma cell line (HepG2).

    PubMed

    Citarella, F; Felici, A; Brouwer, M; Wagstaff, J; Fantoni, A; Hack, C E

    1997-08-15

    Involvement of the contact system of coagulation in the pathogenesis of various inflammatory diseases is suggested by reduced plasma levels of factor XII (Hageman factor) and prekallikrein generally considered to result from activation of the contact system. However, in many of these diseases patients develop an acute-phase response and, therefore, an alternative explanation for the decreased levels of factor XII could be the downregulation of factor XII gene expression in the liver as described for negative acute-phase proteins. We report here that interleukin-6 (IL-6), the principal cytokine mediating the synthesis of most acute-phase proteins in the liver, downregulates the production of factor XII by the human hepatoma cell line HepG2 by up to 75%. The decrease in protein secretion correlated with an equivalent decrease of factor XII mRNA likely indicating a pretranslational control of factor XII gene expression by IL-6. Downregulation of factor XII production by IL-6 in vitro parallelled that of transthyretin, a known negative acute-phase protein. Moreover, we show that, in patients developing an acute-phase response after immunotherapy with IL-2, plasma levels of factor XII correlate (r = .76, P < .0001) with those of transthyretin. Taken together, these results suggest that factor XII behaves as a negative acute-phase protein.

  11. Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation

    PubMed Central

    Dehnes, Yvette; Shan, Jufang; Beuming, Thijs; Shi, Lei; Weinstein, Harel; Javitch, Jonathan A.

    2014-01-01

    The dopamine transporter (DAT), a member of the neurotransmitter:sodium symporter family, mediates the reuptake of dopamine at the synaptic cleft. DAT is the primary target for psychostimulants such as cocaine and amphetamine. We previously demonstrated that cocaine binding and dopamine transport alter the accessibility of Cys342 in the third intracellular loop (IL3). To study the conformational changes associated with the functional mechanism of the transporter, we made cysteine substitution mutants, one at a time, from Phe332 to Ser351 in IL3 of the background DAT construct, X7C, in which 7 endogenous cysteines were mutated. The accessibility of the 20 engineered cysteines to polar charged sulfhydryl reagents was studied in the absence and presence of cocaine or dopamine. Of the 11 positions that reacted with methanethiosulfonate ethyl ammonium, as evidenced by inhibition of ligand binding, 5 were protected against this inhibition by cocaine and dopamine (S333C, S334C, N336C, M342C and T349C), indicating that reagent accessibility is affected by conformational changes associated with inhibitor and substrate binding. In some of the cysteine mutants, transport activity is disrupted, but can be rescued by the presence of zinc, most likely because the distribution between inward- and outward-facing conformations is restored by zinc binding. The experimental data were interpreted in the context of molecular models of DAT in both the inward- and outward-facing conformations. Differences in the solvent accessible surface area for individual IL3 residues calculated for these states correlate well with the experimental accessibility data, and suggest that protection by ligand binding results from the stabilization of the outward-facing configuration. Changes in the residue interaction networks observed from the molecular dynamics simulations also revealed the critical roles of several positions during the conformational transitions. We conclude that the IL3 region of DAT

  12. Dopamine and epistemic curiosity in music listening.

    PubMed

    Omigie, Diana

    2015-01-01

    Elucidating the cognitive, affective, and reward processes that take place during music listening is the aim of a growing number of researchers. Several authors have used the Bayesian brain framework and existing models of reward to interpret neural activity observed during musical listening. The claims from Friston and colleagues regarding the role of dopamine, as well as the demonstration that salience-seeking behavior naturally emerges from minimizing free energy, will be of potential interest to those seeking to understand the general principles underlying our motivation to hear music. PMID:26073880

  13. A descending dopamine pathway conserved from basal vertebrates to mammals

    PubMed Central

    Ryczko, Dimitri; Cone, Jackson J.; Alpert, Michael H.; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F.; Alford, Simon; Dubuc, Réjean

    2016-01-01

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. PMID:27071118

  14. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    PubMed

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli. PMID:23426680

  15. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  16. Label-free dopamine imaging in live rat brain slices.

    PubMed

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue.

  17. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  18. Arithmetic and local circuitry underlying dopamine prediction errors.

    PubMed

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-09-10

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

  19. A causal link between prediction errors, dopamine neurons and learning.

    PubMed

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  20. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    PubMed Central

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of antipsychotic drugs. In this review we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis. PMID:20089137

  1. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    NASA Astrophysics Data System (ADS)

    Malvindi, Maria Ada; di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed

  2. Dopamine and lipophilic derivates protect cardiomyocytes against cold preservation injury.

    PubMed

    Vettel, Christiane; Hottenrott, Maximilia C; Spindler, Rahel; Benck, Urs; Schnuelle, Peter; Tsagogiorgas, Charalambos; Krämer, Bernhard K; Hoeger, Simone; El-Armouche, Ali; Wieland, Thomas; Yard, Benito A

    2014-01-01

    Donor heart allografts are extremely susceptible to prolonged static cold storage. Because donor treatment with low-dose dopamine improves clinical outcome after heart transplantation, we tested the hypothesis that dopamine and its lipophilic derivate, N-octanoyl dopamine (NOD), protect cardiomyocytes from cold storage injury. Neonatal rat cardiomyocytes were treated with dopamine or NOD or left untreated and subsequently subjected to static cold storage (8-12 hours). Dopamine- and NOD-treated cardiomyocytes displayed a better viability compared with untreated cells after hypothermia. In untreated cardiomyocytes, cell damage was reflected by lactate dehydrogenase (LDH) release and a decrease in intracellular ATP. NOD was approximately 20-fold more potent than dopamine. Similarly to cardiomyocytes in vitro, rat hearts perfused with NOD before explantation showed significantly lower LDH release after static cold storage. ATP regeneration and spontaneous contractions after cold storage and rewarming only occurred in treated cardiomyocytes. Hypothermia severely attenuated isoprenaline-induced cAMP formation in control but not in dopamine- or NOD-treated cells. Esterified derivates of NOD with redox potential and lipophilic side chains reduced cell damage during cold storage similarly to NOD. In contrast to dopamine, neither NOD nor its derivates induced a significant β-adrenoceptor-mediated elevation of cellular cAMP levels. The β1-adrenoceptor antagonist atenolol and D1/D2 receptor antagonist fluphenazine had no impact on the protective effect of NOD or dopamine. We conclude that dopamine as well as NOD treatment mitigates cold preservation injury to cardiomyocytes. The beneficial effects are independent of β-adrenoceptor or dopaminergic receptor stimulation but correlate with redox potential and lipophilic properties.

  3. Reduced Presynaptic Dopamine Activity in Adolescent Dorsal Striatum

    PubMed Central

    Matthews, Marguerite; Bondi, Corina; Torres, Gonzalo; Moghaddam, Bita

    2013-01-01

    Adolescence coincides with symptomatic onset of several psychiatric illnesses including schizophrenia and addiction. Excess limbic dopamine activity has been implicated in these vulnerabilities. We combined molecular and dynamic indices of dopamine neurotransmission to assess dopamine function in adolescent rats in two functionally distinct striatal subregions: nucleus accumbens (NAc) and dorsal striatum (DS). In adolescents, we find an overall reduction in dopamine availability selective to the DS. Dopamine release in the DS, but not in the NAc, was less responsive to amphetamine in adolescents compared to adults. The dopamine transporter (DAT) inhibitor, nomifensine, similarly inhibited basal and amphetamine-induced dopamine release in either regions of both the age groups, suggesting that the reduced effectiveness of amphetamine is not due to differences in DAT function. Furthermore, DAT and vesicular monoamine transporter-2 expressions were similar in the DS and NAc of adolescent rats. In contrast, expression of tyrosine hydroxylase (TH) was reduced in the DS, but not in the NAc, of adolescents compared to adults. Behaviorally, adolescents were less sensitive to amphetamine but more sensitive to a TH inhibitor. These data indicate that, in contrast to the general notion that dopamine is hyperactive in adolescents, there is diminished presynaptic dopamine activity in adolescents that is selective to the DS and may result from attenuated TH activity. Given recent reports of altered dopamine activity in associative/dorsal striatum of individuals at a clinically high risk of psychosis, our data further support the idea that dorsal, as opposed to ventral, regions of the striatum are a locus of vulnerability for psychosis. PMID:23358239

  4. Reduced presynaptic dopamine activity in adolescent dorsal striatum.

    PubMed

    Matthews, Marguerite; Bondi, Corina; Torres, Gonzalo; Moghaddam, Bita

    2013-06-01

    Adolescence coincides with symptomatic onset of several psychiatric illnesses including schizophrenia and addiction. Excess limbic dopamine activity has been implicated in these vulnerabilities. We combined molecular and dynamic indices of dopamine neurotransmission to assess dopamine function in adolescent rats in two functionally distinct striatal subregions: nucleus accumbens (NAc) and dorsal striatum (DS). In adolescents, we find an overall reduction in dopamine availability selective to the DS. Dopamine release in the DS, but not in the NAc, was less responsive to amphetamine in adolescents compared to adults. The dopamine transporter (DAT) inhibitor, nomifensine, similarly inhibited basal and amphetamine-induced dopamine release in either regions of both the age groups, suggesting that the reduced effectiveness of amphetamine is not due to differences in DAT function. Furthermore, DAT and vesicular monoamine transporter-2 expressions were similar in the DS and NAc of adolescent rats. In contrast, expression of tyrosine hydroxylase (TH) was reduced in the DS, but not in the NAc, of adolescents compared to adults. Behaviorally, adolescents were less sensitive to amphetamine but more sensitive to a TH inhibitor. These data indicate that, in contrast to the general notion that dopamine is hyperactive in adolescents, there is diminished presynaptic dopamine activity in adolescents that is selective to the DS and may result from attenuated TH activity. Given recent reports of altered dopamine activity in associative/dorsal striatum of individuals at a clinically high risk of psychosis, our data further support the idea that dorsal, as opposed to ventral, regions of the striatum are a locus of vulnerability for psychosis.

  5. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia.

    PubMed

    Hnasko, Thomas S; Perez, Francisco A; Scouras, Alex D; Stoll, Elizabeth A; Gale, Samuel D; Luquet, Serge; Phillips, Paul E M; Kremer, Eric J; Palmiter, Richard D

    2006-06-01

    A line of dopamine-deficient (DD) mice was generated to allow selective restoration of normal dopamine signaling to specific brain regions. These DD floxed stop (DDfs) mice have a nonfunctional Tyrosine hydroxylase (Th) gene because of insertion of a NeoR gene flanked by lox P sites targeted to the first intron of the Th gene. DDfs mice have trace brain dopamine content, severe hypoactivity, and aphagia, and they die without intervention. However, they can be maintained by daily treatment with l-3,4-dihydroxyphenylalanine (L-dopa). Injection of a canine adenovirus (CAV-2) engineered to express Cre recombinase into the central caudate putamen restores normal Th gene expression to the midbrain dopamine neurons that project there because CAV-2 efficiently transduces axon terminals and is retrogradely transported to neuronal cell bodies. Bilateral injection of Cre recombinase into the central caudate putamen restores feeding and normalizes locomotion in DDfs mice. Analysis of feeding behavior by using lickometer cages revealed that virally rescued DDfs mice are hyperphagic and have modified meal structures compared with control mice. The virally rescued DDfs mice are also hyperactive at night, have reduced motor coordination, and are thigmotactic compared with controls. These results highlight the critical role for dopamine signaling in the dorsal striatum for most dopamine-dependent behaviors but suggest that dopamine signaling in other brain regions is important to fine-tune these behaviors. This approach offers numerous advantages compared with previous models aimed at examining dopamine signaling in discrete dopaminergic circuits.

  6. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize.

    PubMed

    Fornalé, Silvia; Rencoret, Jorge; Garcia-Calvo, Laura; Capellades, Montserrat; Encina, Antonio; Santiago, Rogelio; Rigau, Joan; Gutiérrez, Ana; Del Río, José-Carlos; Caparros-Ruiz, David

    2015-07-01

    Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves.

  7. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize.

    PubMed

    Fornalé, Silvia; Rencoret, Jorge; Garcia-Calvo, Laura; Capellades, Montserrat; Encina, Antonio; Santiago, Rogelio; Rigau, Joan; Gutiérrez, Ana; Del Río, José-Carlos; Caparros-Ruiz, David

    2015-07-01

    Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves. PMID:26025540

  8. Neurotransmission in Parkinson's disease: beyond dopamine.

    PubMed

    Barone, P

    2010-03-01

    Parkinson's disease (PD) is most frequently associated with characteristic motor symptoms that are known to arise with degeneration of dopaminergic neurons. However, patients with this disease also experience a multitude of non-motor symptoms, such as sleep disturbances, fatigue, apathy, anxiety, depression, cognitive impairment, dementia, olfactory dysfunction, pain, sweating and constipation, some of which can be at least as debilitating as the movement disorders and have a major impact on patients' quality of life. Many of these non-motor symptoms may be evident prior to the onset of motor dysfunction. The neuropathology of PD has shown that complex, interconnected neuronal systems, regulated by a number of different neurotransmitters in addition to dopamine, are involved in the aetiology of motor and non-motor symptoms. This review focuses on the non-dopaminergic neurotransmission systems associated with PD with particular reference to the effect that their modulation and interaction with dopamine has on the non-motor symptoms of the disease. PD treatments that focus on the dopaminergic system alone are unable to alleviate both motor and non-motor symptoms, particularly those that develop at early stages of the disease. The development of agents that interact with several of the affected neurotransmission systems could prove invaluable for the treatment of this disease.

  9. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    PubMed

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis. PMID:26764301

  10. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels. PMID:21367744

  11. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  12. Organocatalytic, Enantioselective Synthesis of 1- and 3-Substituted Isochromans via Intramolecular Oxa-Michael Reaction of Alkoxyboronate: Synthesis of (+)-Sonepiprazole.

    PubMed

    Ravindra, Barnala; Maity, Sanjay; Das, Braja Gopal; Ghorai, Prasanta

    2015-07-17

    The enantioselective oxa-Michael reaction of alkoxyboronate strategy was demonstrated to provide a new and practical route to enantioriched 1- and 3-substituted isochromans using a chiral bifunctional organocatalyst. Furthermore, this methodology was extended to the enantioselective synthesis of (+)-sonepiprazole, a dopamine receptor antagonist.

  13. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    PubMed Central

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  14. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    PubMed

    Ueno, Taro; Tomita, Jun; Kume, Shoen; Kume, Kazuhiko

    2012-01-01

    Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts) induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  15. Dopamine receptor signaling and current and future antipsychotic drugs

    PubMed Central

    Boyd, Kevin N.; Mailman, Richard B.

    2015-01-01

    All currently efficacious antipsychotic drugs have as part of their mechanism the ability to attenuate some or all of their signaling through the dopamine D2 receptor. More recently, the dopamine D1 receptor has been hypothesized to be a promising target for the treatment of negative and/or cognitive aspects of schizophrenia that are not improved by current antipsychotics. Although cAMP has been presumed to be the primary messenger for signaling through the dopamine receptors, the last decade has unveiled a complexity that has provided exciting avenues for the future discovery of antipsychotic drugs (APDs). We review the signaling mechanisms of currently approved APDs at dopamine D2 receptors, and note that aripiprazole is a compound that is clearly differentiated from other approved drugs. Although aripiprazole has been postulated to cause dopamine stabilization due to its partial D2 agonist properties, a body of literature suggests that an alternate mechanism, functional selectivity, is of primary importance. Finally, we review the signaling at dopamine D1 receptors, and the idea that drugs that activate D1 receptors may have use as APDs for improving negative and cognitive symptoms. We address the current state of drug discovery in the D1 area, and its relationship to novel signaling mechanisms. Our conclusion is that although the first APD targeting dopamine receptors was discovered more than a half-century ago, recent research advances offer the possibility that novel and/or improved drugs will emerge in the next decade. PMID:23129328

  16. Dopamine modulates novelty seeking behavior during decision making.

    PubMed

    Costa, Vincent D; Tran, Valery L; Turchi, Janita; Averbeck, Bruno B

    2014-10-01

    Novelty seeking refers to the tendency of humans and animals to explore novel and unfamiliar stimuli and environments. The idea that dopamine modulates novelty seeking is supported by evidence that novel stimuli excite dopamine neurons and activate brain regions receiving dopaminergic input. In addition, dopamine is shown to drive exploratory behavior in novel environments. It is not clear whether dopamine promotes novelty seeking when it is framed as the decision to explore novel options versus the exploitation of familiar options. To test this hypothesis, we administered systemic injections of saline or GBR-12909, a selective dopamine transporter (DAT) inhibitor, to monkeys and assessed their novelty seeking behavior during a probabilistic decision making task. The task involved pseudorandom introductions of novel choice options. This allowed monkeys the opportunity to explore novel options or to exploit familiar options that they had already sampled. We found that DAT blockade increased the monkeys' preference for novel options. A reinforcement learning (RL) model fit to the monkeys' choice data showed that increased novelty seeking after DAT blockade was driven by an increase in the initial value the monkeys assigned to novel options. However, blocking DAT did not modulate the rate at which the monkeys learned which cues were most predictive of reward or their tendency to exploit that knowledge. These data demonstrate that dopamine enhances novelty-driven value and imply that excessive novelty seeking-characteristic of impulsivity and behavioral addictions-might be caused by increases in dopamine, stemming from less reuptake.

  17. Prefrontal cortical dopamine transmission is decreased in alcoholism

    PubMed Central

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L.; Douaihy, Antoine B.; Frankle, W. Gordon

    2014-01-01

    Objective Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such working memory, attention, inhibitory control and risk/reward decisions--all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies in alcoholics that have demonstrated less dopamine in the striatum, we hypothesized decreased dopamine transmission in the prefrontal cortex in alcoholism. To test this hypothesis, we used amphetamine and [11C]FLB 457 positron emission tomography (PET) to measure cortical dopamine transmission in a group of 21 recently abstinent alcoholics and matched healthy controls. Methods [11C]FLB 457 binding potential (BPND) was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg−1 of d-amphetamine. Results Amphetamine-induced displacement of [11C]FLB 457 binding potential (Δ BPND) was significantly smaller in the cortical regions in alcoholics compared to healthy controls. Cortical regions that demonstrated lower dopamine transmission in alcoholics included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex and medial temporal lobe. Conclusions The results of this study for the first time unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism. PMID:24874293

  18. Dopamine uptake dynamics are preserved under isoflurane anesthesia.

    PubMed

    Brodnik, Zachary D; España, Rodrigo A

    2015-10-01

    Fast scan cyclic voltammetry is commonly used for measuring the kinetics of dopamine release and uptake. For experiments using an anesthetized preparation, urethane is preferentially used because it does not alter dopamine uptake kinetics compared to freely moving animals. Unfortunately, urethane is highly toxic, can induce premature death during experiments, and cannot be used for recovery surgeries. Isoflurane is an alternative anesthetic that is less toxic than urethane, produces a stable level of anesthesia over extended periods, and is often used for recovery surgeries. Despite these benefits, the effects of isoflurane on dopamine release and uptake have not been directly characterized. In the present studies, we assessed the utility of isoflurane for voltammetry experiments by testing dopamine signaling parameters under baseline conditions, after treatment with the dopamine uptake inhibitor cocaine, and after exposure to increasing concentrations of isoflurane. Our results indicate that surgical levels of isoflurane do not significantly alter terminal mechanisms of dopamine release and uptake over prolonged periods of time. Consequently, we propose that isoflurane is an acceptable anesthetic for voltammetry experiments, which in turn permits the design of studies in which dopamine signaling is examined under anesthesia prior to recovery and subsequent experimentation in the same animals. PMID:26321152

  19. Dopamine alleviates salt-induced stress in Malus hupehensis.

    PubMed

    Li, Chao; Sun, Xiangkai; Chang, Cong; Jia, Dongfeng; Wei, Zhiwei; Li, Cuiying; Ma, Fengwang

    2015-04-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, ion homeostasis and the response to salinity in Malus hupehensis Rehd. Both hydroponics and field-pot experiments were conducted under saline conditions. Salt-stressed plants had reduced growth and a marked decline in their net photosynthetic rates, values for Fv /Fm and chlorophyll contents. However, pretreatment with 100 or 200 μM dopamine significantly alleviated this inhibition and enabled plants to maintain their photosynthetic capacity. In addition to changing stomatal behavior, supplementation with dopamine positively influenced the uptake of K, N, P, S, Cu and Mn ions but had an inhibitory effect on Na and Cl uptake, the balance of which is responsible for managing the response to salinity by Malus plants. Dopamine pretreatment also controlled the burst of hydrogen peroxide, possibly through direct scavenging and by enhancing the activities of antioxidative enzymes and the capacity of the ascorbate-glutathione cycle. We also investigated whether dopamine might regulate salt overly sensitive pathway genes under salinity. Here, MdHKT1, MdNHX1 and MdSOS1 were greatly upregulated in roots and leaves, which possibly contributed to the maintenance of ion homeostasis and, thus, improved salinity resistance in plants exposed earlier to exogenous dopamine. These results support our conclusion that dopamine alleviates salt-induced stress not only at the level of antioxidant defense but also by regulating other mechanisms of ion homeostasis.

  20. Effect of dopamine on viability of BHK-21 cells.

    PubMed

    Moshkov, D A; Abramova, M B; Shubina, V S; Lavrovskaya, V P; Pavlik, L L; Lezhnev, E I

    2010-09-01

    We studied the effects of dopamine added to culture medium on survival of floating or adherent BHK-21 cells differing by organization of actin cytoskeleton. The viability of floating cells more drastically decreased with increasing dopamine concentration and duration of exposure than that of adherent cells. The cells worse adhered to the substrate and formed a monolayer. The formed monolayer degrades, cell borders become blurred, cells, polygonal in the control, are rounded. Preliminary blockade of dopamine receptors with haloperidol, inessential for cell survival and morphology, does not prevent the destructive effect of dopamine on the cells. Ultrastructural study revealed increased density of filamentous actin threads in deep compartments of cell cytoplasm after dopamine treatment, this increase being more pronounced in cells grown in suspension. Bearing in mind the polymerizing effect of dopamine on globular actin in vitro and the fact that the content of this protein in floating cells is higher than in adherent cells, we can conclude that the decrease in viability of BHK-21 cells is caused by interaction of dopamine with cytoplasmic globular actin. PMID:21246101

  1. The primate thalamus is a key target for brain dopamine.

    PubMed

    Sánchez-González, Miguel Angel; García-Cabezas, Miguel Angel; Rico, Beatriz; Cavada, Carmen

    2005-06-29

    The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this "thalamic dopaminergic system" should further our understanding of higher brain functions and conditions such as Parkinson's disease, schizophrenia, and drug addiction.

  2. The nature of interactions involving prefrontal and striatal dopamine systems.

    PubMed

    Wilkinson, L S

    1997-01-01

    A number of converging lines of evidence from work in rodents suggest that dopamine (DA) function in the prefrontal cortex (PFC) and striatal terminal fields may be linked, possibly in an 'inverse' manner, whereby a change in prefrontal dopamine transmission in one direction occasions an opposite change in dopamine function in striatal territories. The present article considers the possible functional importance of this concept in the light of recent neuroanatomical data and new data from our own laboratory indicating that, at the neurochemical level, the basic finding of an inverse relationship between dopamine function in prefrontal and striatal regions also holds good in the non-human primate. The main conclusion is that the simple idea of an inverse relationship between prefrontal and striatal dopamine systems emphasizing presynaptic release mechanisms is unlikely to underlie, solely, the full repertoire of functional interactions. Whilst there is evidence consistent with dynamic interactions between prefrontal and striatal dopamine release under some circumstances, specifically, during the early phases of aversive learning, a complete account of possible interactions between prefrontal and striatal dopamine systems requires consideration of additional factors. Such factors include: (1) the precise nature of the psychological function investigated, (2) the possibility of acute, localized changes in striatal postsynaptic function secondary to changes in presynaptic function and (3) the possibility of manipulations of prefrontal cortex leading to adaptive changes in striatal function, at a diffuse, neural systems level.

  3. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells

    PubMed Central

    Martin, H.L.; Alsaady, I.; Howell, G.; Prandovszky, E.; Peers, C.; Robinson, P.; McConkey, G.A.

    2015-01-01

    Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals. PMID:26297895

  4. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release.

    PubMed

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-05-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2. PMID:24345819

  5. Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Santos, Vanessa V.; Deo, Minh; Davies, Jeffrey S.; Kemp, Bruce E.; Elsworth, John D.

    2016-01-01

    Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD. PMID:27467571

  6. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

    PubMed Central

    Yuan, Yaxia; Quizon, Pamela M.; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-01-01

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND. PMID:27250920

  7. Dopamine function in Lesch-Nyhan disease.

    PubMed

    Nyhan, W L

    2000-06-01

    Lesch-Nyhan disease is a disorder of purine metabolism resulting from mutations in the gene for hypoxanthine guanine phosphoribosyl transferase on the X chromosome. It is characterized by hyperuricemia and all of its consequences, as in gout; but in addition, patients have impressive disease of the central nervous system. This includes spasticity, involuntary movements, and retardation of motor development. The behavioral phenotype is best remembered by self-injurious biting behavior with attendant destruction of tissue. The connection between aberrant metabolism of purines and these neurologic and behavioral features of the disease is not clear. Increasing evidence points to imbalance of neurotransmitters. There is increased excretion of the serotonin metabolite 5-hydroxyindoleacetic acid in the urine. There are decreased quantities and activities of a number of dopaminergic functions. Positron emission tomography scanning has indicated deficiency in the dopamine transporter.

  8. Prefrontal cortical dopamine from an evolutionary perspective.

    PubMed

    Lee, Young-A; Goto, Yukiori

    2015-04-01

    In this article, we propose the hypothesis that the prefrontal cortex (PFC) acquired neotenic development as a consequence of mesocortical dopamine (DA) innervation, which in turn drove evolution of the PFC into becoming a complex functional system. Accordingly, from the evolutionary perspective, decreased DA signaling in the PFC associated with such adverse conditions as chronic stress may be considered as an environmental adaptation strategy. Psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder may also be understood as environmental adaptation or a by-product of such a process that has emerged through evolution in humans. To investigate the evolutionary perspective of DA signaling in the PFC, domestic animals such as dogs may be a useful model. PMID:25617024

  9. Dopamine signaling in reward-related behaviors.

    PubMed

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  10. Dissecting the diversity of midbrain dopamine neurons.

    PubMed

    Roeper, Jochen

    2013-06-01

    Midbrain dopamine (DA) neurons are essential for controlling key functions of the brain, such as voluntary movement, reward processing, and working memory. The largest populations of midbrain DA neurons are localized in two neighboring nuclei, the substantia nigra (SN) and the ventral tegmental area (VTA). Regardless of their different axonal projections to subcortical and cortical targets, midbrain DA neurons have traditionally been regarded as a relatively homogeneous group of neurons, with a stereotypical set of intrinsic electrophysiological properties and in vivo pattern of activity. In this review, I highlight recent data supporting an unexpected degree of diversity among these midbrain DA neurons in the mammalian brain, ranging from their developmental lineages and different synaptic connectivity to their electrophysiological properties and behavioral functions.

  11. Two dopamine receptors: biochemistry, physiology and pharmacology.

    PubMed

    Stoof, J C; Kebabian, J W

    1984-12-01

    In 1979, two categories of dopamine (DA) receptors (designated as D-1 and D-2) were identified on the basis of the ability of a limited number of agonists and antagonists to discriminate between these two entities. In the past 5 years agonists and antagonists selective for each category of receptor have been identified. Using these selective drugs it has been possible to attribute the effects of DA upon physiological and biochemical processes to the stimulation of either a D-1 or a D-2 receptor. Thus, DA-induced enhancement of both hormone release from bovine parathyroid gland and firing of neurosecretory cells in the CNS of Lymnaea stagnalis has been attributed to stimulation of a D-1 receptor. Likewise, the DA-induced inhibition of the release of prolactin and alpha-MSH from the pituitary gland, as well as of acetylcholine, DA and beta-endorphin from brain, the DA-induced inhibition of chemo-sensory discharge in rabbit carotid body and the DA-induced hyperpolarization of neurosecretory cells in the CNS of Lymnaea stagnalis have been attributed to stimulation of a D-2 receptor. Independently two categories of DA receptors (designated as DA-1 and DA-2) were identified in the cardiovascular system. Stimulation of a DA-1 receptor increases the vascular cyclic AMP content and causes a relaxation of vascular smooth muscle in renal blood vessels, whereas stimulation of a DA-2 receptor inhibits the release of norepinephrine from certain postganglionic sympathetic neurons. Recent studies with the newly developed drugs discriminating between D-1 and D-2 receptors suggest however that the independently developed schemata for classification of dopamine receptors in either the central nervous and endocrine systems or the cardiovascular system are similar although maybe not completely identical. PMID:6390056

  12. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  13. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  14. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter.

    PubMed

    McGinnis, Molly M; Siciliano, Cody A; Jones, Sara R

    2016-09-01

    Cocaine is a commonly abused central nervous system stimulant that enhances dopamine (DA) neurotransmission through its ability to block dopamine transporters (DATs). Recent evidence suggests there may be an interaction between DATs and D2/D3 autoreceptors that modulates cocaine's effects. The purpose of this study was to explore how D2/D3 autoreceptors modulate the ability of cocaine to inhibit DA uptake through DATs on pre-synaptic DA terminals. Using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from male and female C57BL/6J mice, we first sought to examine the effects of global autoreceptor blockade using the non-selective D2/D3 autoreceptor antagonist, raclopride. We found that the ability of cocaine to inhibit DA uptake was increased by raclopride and that this effect was consistent across sexes. Furthermore, using D2 (L-741,626) or D3 (SB-277011-A) autoreceptor selective antagonists, we discovered that blockade of D3, but not D2, autoreceptors was responsible for the increased cocaine potency. Alterations in cocaine potency were attributable to alterations in uptake inhibition, rather than cocaine effects on vesicular DA release, suggesting that these results may be a product of a functional D3/DAT interaction apart from the canonical inhibitory actions of D3 autoreceptors on DA release. In addition, application of D2 (sumanirole) and D3 (PD 128907) autoreceptor-specific agonists had inverse effects, whereby D2 autoreceptor activation decreased cocaine potency and D3 autoreceptor activation had no effect. Together, these data show that DA autoreceptors dynamically regulate cocaine potency at the DAT, which is important for understanding cocaine's rewarding and addictive properties. We propose a model whereby presynaptic dopamine autoreceptors dynamically modulate cocaine potency through two separate mechanisms. We demonstrate that D2 agonists decrease cocaine potency, whereas D3 antagonists increase cocaine potency

  15. Dopamine Increases a Value-Independent Gambling Propensity.

    PubMed

    Rigoli, Francesco; Rutledge, Robb B; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J

    2016-10-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options-a finding with implications for understanding a range of reward-related psychopathologies including addiction.

  16. Formation and occurrence of dopamine-derived betacyanins.

    PubMed

    Kobayashi, N; Schmidt, J; Wray, V; Schliemann, W

    2001-03-01

    In light of the fact that the main betaxanthin (miraxanthin V) and the major betacyanin (2-descarboxy-betanidin) in hairy root cultures of yellow beet (Beta vulgaris L.) are both dopamine-derived, the occurrence of similar structures for the minor betacyanins was also suggested. By HPLC comparison with the betacyanins obtained by dopamine administration to beet seedlings, enzymatic hydrolysis, LCMS and 1H NMR analyses, the minor betacyanins from hairy roots were identified as 2-descarboxy-betanin and its 6'-O-malonyl derivative. A short-term dopamine administration experiment with fodder beet seedlings revealed that the condensation step between 2-descarboxy-cyclo-Dopa and betalamic acid is the decisive reaction, followed by glucosylation and acylation. From these data a pathway for the biosynthesis of dopamine-derived betalains is proposed. Furthermore, the occurrence of these compounds in various cell and hairy root cultures as well as beet plants (Fodder and Garden Beet Group) is shown.

  17. The Role of Dopamine in Reinforcement: Changes in Reinforcement Sensitivity Induced by D[subscript 1]-Type, D[subscript 2]-Type, and Nonselective Dopamine Receptor Agonists

    ERIC Educational Resources Information Center

    Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.

    2005-01-01

    Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…

  18. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    PubMed Central

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  19. Separate enrichment analysis of pathways for up- and downregulated genes.

    PubMed

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-01

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  20. N-Nicotinoyl dopamine, a novel niacinamide derivative, retains high antioxidant activity and inhibits skin pigmentation.

    PubMed

    Kim, Bora; Kim, Jin Eun; Lee, Su Min; Lee, Soung-Hoon; Lee, Jin Won; Kim, Myung Kyoo; Lee, Kye Jong; Kim, Hyuk; Lee, Joo Dong; Choi, Kang-Yell

    2011-11-01

    We synthesized a novel derivative of a well-known skin-lightening compound niacinamide, N-nicotinoyl dopamine (NND). NND did not show inhibitory effects of tyrosinase and melanin synthesis in B16F10 mouse melanoma cells. However, NND retains high antioxidant activity without affecting viability of cells. In a reconstructed skin model, topical applications of 0.05% and 0.1% NND induced skin lightening and decreased melanin production without affecting the viability and morphology of melanocytes and overall tissue histology. Moreover, no evidence for skin irritation or sensitization was observed when 0.1% NND emulsion was applied onto the skin of 52 volunteers. The effect of NND on skin lightening was further revealed by pigmented spot analyses of human clinical trial. Overall, NND treatment may be a useful trial for skin lightening and treating pigmentary disorders.

  1. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors

    NASA Astrophysics Data System (ADS)

    Mazur, Mykola; Barras, Alexandre; Kuncser, Victor; Galatanu, Andrei; Zaitzev, Vladimir; Turcheniuk, Kostiantyn V.; Woisel, Patrice; Lyskawa, Joel; Laure, William; Siriwardena, Aloysius; Boukherroub, Rabah; Szunerits, Sabine

    2013-03-01

    The synthesis of multifunctional magnetic nanoparticles (MF-MPs) is one of the most active research areas in advanced materials as their multifunctional surfaces allow conjugation of biological and chemical molecules, thus making it possible to achieve target-specific diagnostic in parallel to therapeutics. We report here a simple strategy to integrate in a one-step reaction several reactive sites onto the particles. The preparation of MF-MPs is based on their simultaneous modification with differently functionalized dopamine derivatives using simple solution chemistry. The formed MF-MPs show comparable magnetic properties to those of naked nanoparticles with almost unaltered particle size of around 25 nm. The different termini, amine, azide and maleimide functions, enable further functionalization of MF-MPs by the grafting-on approach. Michael addition, Cu(i) catalyzed « click » chemistry and amidation reactions are performed on the MF-MPs integrating subsequently 6-(ferrocenyl)-hexanethiol, horseradish peroxidase (HRP) and mannose.

  2. Deletion of GAD67 in dopamine receptor-containing cells causes specific motor deficits

    PubMed Central

    Heusner, Carrie L.; Beutler, Lisa R.; Houser, Carolyn R.; Palmiter, Richard D.

    2009-01-01

    The medium spiny neurons (MSNs), which comprise the direct and indirect output pathways from the striatum, use γ-aminobutyric acid (GABA) as their major fact-acting neurotransmitter. We generated mice carrying a conditional allele of the Gad1 gene, which encodes GAD67, one of two enzymes responsible for GABA biosynthesis, and bred them to mice expressing Cre recombinase at the dopamine D1 receptor locus (Drd1a) to selectively reduce GABA synthesis in the direct output pathway from the striatum. We show that these mice are deficient in some types of motor skills, but normal for others, suggesting a differential role for GABA release from D1 receptor-containing neurons. PMID:18615733

  3. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  4. Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms

    PubMed Central

    Yamamoto, Shinya; Seto, Elaine S.

    2014-01-01

    Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans. PMID:24770636

  5. Selective modulation of excitatory and inhibitory microcircuits by dopamine

    NASA Astrophysics Data System (ADS)

    Gao, Wen-Jun; Goldman-Rakic, Patricia S.

    2003-03-01

    Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons to fast-spiking (FS) interneurons. In contrast to its effect on recurrent excitation, dopamine was without effect on excitatory transmission to FS interneurons. However, dopamine has directly enhanced the excitability of the FS interneurons to the extent that even a single excitatory postsynaptic potential could initiate spiking with great temporal precision in some of them. These results indicate that dopamine's effects on excitatory transmission are target-specific and that the axon terminals of pyramidal neurons can be selectively regulated at the level of individual synapses. Thus, dopamine's net inhibitory effect on cortical function is remarkably constrained by the nature of the microcircuit elements on which it acts.

  6. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons

    PubMed Central

    Hirasawa, Hajime; Contini, Massimo; Raviola, Elio

    2015-01-01

    In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways. PMID:26009765

  7. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum.

    PubMed

    Bossong, Matthijs G; van Berckel, Bart N M; Boellaard, Ronald; Zuurman, Lineke; Schuit, Robert C; Windhorst, Albert D; van Gerven, Joop M A; Ramsey, Nick F; Lammertsma, Adriaan A; Kahn, René S

    2009-02-01

    The influence of cannabis on mental health receives growing scientific and political attention. An increasing demand for treatment of cannabis dependence has refueled the discussion about the addictive potential of cannabis. A key feature of all addictive drugs is the ability to increase synaptic dopamine levels in the striatum, a mechanism involved in their rewarding and motivating effects. However, it is currently unknown if cannabis can stimulate striatal dopamine neurotransmission in humans. Here we show that Delta 9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, induces dopamine release in the human striatum. Using the dopamine D(2)/D(3) receptor tracer [(11)C]raclopride and positron emission tomography in seven healthy subjects, we demonstrate that THC inhalation reduces [(11)C]raclopride binding in the ventral striatum and the precommissural dorsal putamen but not in other striatal subregions. This is consistent with an increase in dopamine levels in these regions. These results suggest that THC shares a potentially addictive property with other drugs of abuse. Further, it implies that the endogenous cannabinoid system is involved in regulating striatal dopamine release. This allows new directions in research on the effects of THC in neuropsychiatric disorders, such as schizophrenia. PMID:18754005

  8. Subsecond regulation of striatal dopamine release by presynaptic KATP channels

    PubMed Central

    Patel, Jyoti C.; Witkovsky, Paul; Coetzee, William A.; Rice, Margaret E.

    2011-01-01

    ATP-sensitive K+ (KATP) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H2O2 produced from glutamatergic AMPA-receptor activation inhibits dopamine release via KATP channels. Sources of modulatory H2O2 include medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H2O2/KATP-channel-mediated inhibition and assessed whether modulatory KATP channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a KATP-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H2O2 levels, revealed a time window for inhibition of 500 to 1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 KATP-channel subunits on dopaminergic axons. Consistent with the presence of functional KATP channels on dopaminergic axons, KATP-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express KATP channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H2O2 acting at KATP channels on dopaminergic axons, including a role in paired-pulse suppression. PMID:21689107

  9. Catalytic enantioselective aziridoarylation of aryl cinnamyl ethers toward synthesis of trans-3-amino-4-arylchromans.

    PubMed

    Hajra, Saumen; Sinha, Debarshi

    2011-09-16

    Catalytic enantioselective one-pot aziridoarylation reaction of aryl cinnamyl ethers has been demonstrated in detail. Combination of suitable copper catalyst and chiral bis-oxazoline ligand was found to be very efficient for asymmetric aziridination followed by intramolecular arylation (Friedel-Crafts) reaction to provide a general and direct method for the synthesis of trans-3-amino-4-arylchromans with high regio-, diastereo- (dr > 99:1), and enantioselectivity (up to 95% ee) with moderate yield. trans-3-Amino-4-arylchroman is an advanced intermediate for the synthesis of chromenoisoquinoline compounds such as doxanthrine, a potent and selective full agonist for the dopamine-D(1) receptor. PMID:21797274

  10. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release.

    PubMed

    Lecourtier, Lucas; Defrancesco, Alicia; Moghaddam, Bita

    2008-04-01

    Conditions of increased cognitive or emotional demand activate dopamine release in a regionally selective manner. Whereas the brief millisecond response of dopamine neurons to salient stimuli suggests that dopamine's influence on behaviour may be limited to signalling certain cues, the prolonged availability of dopamine in regions such as the prefrontal cortex and nucleus accumbens is consistent with the well described role of dopamine in maintaining motivation states, associative learning and working memory. The behaviourally elicited terminal release of dopamine is generally attributed to increased excitatory drive on dopamine neurons. Our findings here, however, indicate that this increase may involve active removal of a tonic inhibitory control on dopamine neurons exerted by the lateral habenula (LHb). Inhibition of LHb in behaving animals transiently increased dopamine release in the prefrontal cortex, nucleus accumbens and dorsolateral striatum. The inhibitory influence was more pronounced in the nucleus accumbens and striatum than in the prefrontal cortex. This pattern of regional dopamine activation after LHb inhibition mimicked conditions of reward availability but not increased cognitive demand. Electrical or chemical stimulation of LHb produced minimal reduction of extracellular dopamine, suggesting that in an awake brain the inhibition associated with tonic LHb activity represents a near-maximal influence on dopamine neurotransmission. These data indicate that LHb may be critical for functional differences in dopamine neurons by preferentially modulating dopamine neurons that project to the nucleus accumbens over those neurons that primarily project to the prefrontal cortex.

  11. Not only dopamine D2 receptors involved in Peony-Glycyrrhiza Decoction, an herbal preparation against antipsychotic-associated hyperprolactinemia.

    PubMed

    Wang, Di; Wong, Hei Kiu; Zhang, Li; McAlonan, Grainne M; Wang, Xiao-Min; Sze, Stephen Cho Wing; Feng, Yi-Bin; Zhang, Zhang-Jin

    2012-12-01

    Clinical studies have demonstrated the effectiveness of an herbal preparation called Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL). In the present study, we further examined the pharmacological action of PGD on prolactin (PRL) secretion using in vitro and in vivo models, with specific attention to the role of dopaminergic mediators and other sex hormones. Treatment with PGD at 1-5mg/ml significantly suppressed PRL secretion and synthesis in MMQ cells, a model of hyperPRL derived from pituitary adenoma cells. The suppressive effects were completely abolished by pretreatment with 10μM haloperidol, a dopamine D(2) receptor antagonist. Consistent with a D(2)-action, PGD did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D(2) receptor expression but significantly increased the expression of D(2) receptors and dopamine transporters (DAT) in PC12 cells. In a rat model of hyperPRL, produced by repeated injection of the dopamine blocker metoclopramide (MCP), chronic PGD (2.5-10g/kg daily) significantly reduced elevated serum PRL. The reduction in magnitude was similar to that elicited by bromocriptine (BMT), a dopamine D(2) receptor agonist currently used for treatment of hyperPRL. Neither PGD nor BMT altered serum estradiol, but PGD reversed decreased serum progesterone to control level, whereas BMT did not. These results indicate that the anti-hyperPRL effects of PGD are associated not only with D(2) receptor and DAT modulation, but also with a normalization of other sex hormone dysfunction. This experimental evidence supports clinical use of PGD as an effective treatment of antipsychotic-induced hyperPRL.

  12. BH4 treatment in BH4-responsive PKU patients: preliminary data on blood prolactin concentrations suggest increased cerebral dopamine concentrations.

    PubMed

    van Vliet, Danique; Anjema, Karen; Jahja, Rianne; de Groot, Martijn J; Liemburg, Geertje B; Heiner-Fokkema, M Rebecca; van der Zee, Eddy A; Derks, Terry G J; Kema, Ido P; van Spronsen, Francjan J

    2015-01-01

    In phenylketonuria (PKU), cerebral neurotransmitter deficiencies have been suggested to contribute to brain dysfunction. Present treatment aims to reduce blood phenylalanine concentrations by a phenylalanine-restricted diet, while in some patients blood phenylalanine concentrations also respond to cofactor treatment with tetrahydrobiopterin (BH4). Recently, a repurposing approach of BH4 was suggested to increase cerebral neurotransmitter synthesis. To investigate whether BH4 may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, we investigated blood prolactin concentrations-as a parameter of brain dopamine availability. We retrospectively compared blood prolactin in relation to blood phenylalanine concentrations of nine (male) BH4-responsive PKU patients, when being treated without and with BH4. Blood prolactin concentrations positively correlated to blood phenylalanine concentrations (p=0.002), being significantly lower with than without BH4 treatment (p=0.047). In addition, even in this small number of male patients, blood prolactin concentrations tended to be lower at increasing BH4 dose (p=0.054), while taking blood phenylalanine concentrations into account (p=0.002). In individual BH4-responsive patients, median blood prolactin concentrations were significantly lower while using BH4 than before using BH4 treatment (p=0.024), whereas median blood phenylalanine concentrations tended to be lower, but this did not reach statistical significance (p=0.107). Therefore, these data show that high blood phenylalanine in BH4-responsive PKU male patients seems to be associated with increased blood prolactin concentrations, suggesting reduced cerebral dopamine availability. Moreover, these data suggest that BH4 treatment in itself could decrease blood prolactin concentrations in a dose-responsive way, independent of blood phenylalanine concentrations. We conclude that these preliminary data

  13. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior

    PubMed Central

    Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John

    2007-01-01

    Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497

  14. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.

    PubMed

    Levite, M

    2016-01-01

    Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs

  15. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence. PMID:15009640

  16. Expression of dopamine D2 receptor in PC-12 cells and regulation of membrane conductances by dopamine.

    PubMed

    Zhu, W H; Conforti, L; Millhorn, D E

    1997-10-01

    PC-12 cells depolarize during hypoxia and release dopamine. The hypoxia-induced depolarization is due to inhibition of an O2-sensitive K+ current. The role of dopamine released during hypoxia is uncertain, but it could act as an autocrine to modulate membrane conductance during hypoxia. The current study was undertaken to investigate this possibility. Reverse transcription-polymerase chain reaction and sequence analysis revealed that the D2 isoform of the dopamine receptor is expressed in rat PC-12 cells. Exogenously applied dopamine and the D2 agonist quinpirole elicited inhibition of a voltage-dependent K+ current (I(K)) that was prevented by sulpiride, a D2 receptor antagonist. Dopamine and quinpirole applied during hypoxia potentiated the inhibitory effect of hypoxia on I(K). We also found that quinpirole caused reversible inhibition of a voltage-dependent Ca2+ current (I(Ca)) and attenuation of the increase in intracellular free Ca2+ during hypoxia. Our results indicate that dopamine released from PC-12 cells during hypoxia acts via a D2 receptor to "autoregulate" I(K) and I(Ca). PMID:9357757

  17. Striatal dopamine D2/3 receptor binding following dopamine depletion in subjects at Ultra High Risk for psychosis.

    PubMed

    Bloemen, Oswald J N; de Koning, Mariken B; Gleich, Tobias; Meijer, Julia; de Haan, Lieuwe; Linszen, Don H; Booij, Jan; van Amelsvoort, Thérèse A M J

    2013-02-01

    Altered striatal dopaminergic neurotransmission is thought to be fundamental to schizophrenia. Increased presynaptic dopaminergic activity ([18F]-DOPA PET) may predate the onset of psychotic symptoms and correlates to clinical symptoms in subjects at Ultra High Risk (UHR) for developing psychosis. Postsynaptic dopaminergic neurotransmission has not been investigated yet in UHR patients. We hypothesized that synaptic dopamine concentration would be increased in UHR patients, and that synaptic dopamine concentration would be related to symptom severity. 14 UHR patients and 15 age and IQ matched controls completed an [123I]-IBZM SPECT scan at baseline and again after dopamine depletion with alpha-methyl-para-tyrosine (AMPT). We measured changes in radiotracer binding potential, compared these between UHR patients and controls, and correlated these to symptom severity. The UHR group as a whole did not differ significantly from controls. AMPT significantly reduced symptom severity in the UHR group (p=0.014). Higher synaptic dopamine concentration predicted larger reduction of positive symptoms following depletion in the UHR group (p=0.01). In UHR patients, positive symptoms responded to dopamine depletion, comparable to observations in schizophrenia, suggesting a similar mechanism. Higher synaptic dopamine concentration was associated with more severe positive symptoms and a greater reduction of these symptoms following depletion.

  18. Visualizing dopamine released from living cells using a nanoplasmonic probe

    NASA Astrophysics Data System (ADS)

    Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D.

    2015-09-01

    We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC).We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC). Electronic supplementary information (ESI) available: Fig. S1-S4 and Table S1. See DOI: 10.1039/c5nr04433b

  19. The binding sites for benztropines and dopamine in the dopamine transporter overlap.

    PubMed

    Bisgaard, Heidi; Larsen, M Andreas B; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J; Gether, Ulrik

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homolog LeuT supported a BZT binding site that overlaps with the substrate-binding pocket. In agreement, mutations of residues within the pocket, including(2) Val152(3.46) to Ala or Ile, Ser422(8.60) to Ala and Asn157(3.51) to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [(3)H]dopamine uptake inhibition assays and/or [(3)H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn157(3.51) was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine-substituted phenyl ring of JHW007 in close proximity to Ala479(10.51)/Ala480(10.52) in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala479(10.51)/Ala480(10.52). Mutation of Ala479(10.51) and Ala480(10.52) to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine.

  20. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  1. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  2. Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

    PubMed

    Molinas, Sara M; Soria, Leandro R; Marrone, Julieta; Danielli, Mauro; Trumper, Laura; Marinelli, Raúl A

    2015-08-01

    It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p < 0.05). Ureagenesis from ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p < 0.05). In vivo studies in rats subjected to 7 days acidosis also showed decreased protein expression of hepatic mtAQP8 (-50%, p < 0.05) and reduced liver urea content (-35%; p < 0.05). In conclusion, our in vitro and in vivo data suggest that hepatic mtAQP8 expression is downregulated in acidosis, a mechanism that may contribute to decreased ureagenesis from ammonia in response to acidosis.

  3. Dopamine Function and the Efficiency of Human Movement

    PubMed Central

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2016-01-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit “motor motivational” signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine. PMID:24144250

  4. Increased dopamine tone during meditation-induced change of consciousness.

    PubMed

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola; Brooks, David; Alving, Jørgen; Lou, Hans C

    2002-04-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a depressed level of desire for action, associated with decreased blood flow in prefrontal, cerebellar and subcortical regions, structures thought to be organized in open loops subserving executive control. In the striatum, dopamine modulates excitatory glutamatergic synapses of the projections from the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7.9%. This corresponds to a 65% increase in endogenous dopamine release. The reduced raclopride binding correlated significantly with a concomitant increase in EEG theta activity, a characteristic feature of meditation. All participants reported a decreased desire for action during meditation, along with heightened sensory imagery. The level of gratification and the depth of relaxation did not differ between the attention and meditation conditions. Here we show increased striatal dopamine release during meditation associated with the experience of reduced readiness for action. It is suggested that being in the conscious state of meditation causes a suppression of cortico-striatal glutamatergic transmission. To our knowledge this is the first time in vivo evidence has been provided for

  5. Dopamine and Effort-Based Decision Making

    PubMed Central

    Kurniawan, Irma Triasih; Guitart-Masip, Marc; Dolan, Ray J.

    2011-01-01

    Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA) toward overcoming response costs and in enhancing an animal's motivation toward effortful actions. We also consider the contribution of brain structures, including the basal ganglia and anterior cingulate cortex, in the internal generation of action involving a translation of reward expectation into effortful action. PMID:21734862

  6. Biophysically realistic minimal model of dopamine neuron

    NASA Astrophysics Data System (ADS)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  7. Prefrontal dopamine in associative learning and memory.

    PubMed

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. PMID:25241063

  8. "Is dopamine involved in Alzheimer's disease?".

    PubMed

    Martorana, Alessandro; Koch, Giacomo

    2014-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and dementia. Recent advances indicate that AD pathogenesis appears more complex than its mere neuropathology. Changes in synaptic plasticity, neuronal disarray and cell death are pathways commonly recognized as pathogenic mechanisms of AD. It is thought that the altered metabolism of certain membrane proteins may lead to the production of amyloid (Aβ) oligomers that are characterized by an highly toxic effect on neurotransmission pathways, such as those mediated by Acetylcholine. The interaction of Aβ oligomers with these neurotansmitters systems would in turn induce cell dysfunction, neurotransmitters signaling imbalance and finally lead to the appearance of neurological signs. In this perspective, it is still debated how and if these mechanisms may also engage the dopaminergic system in AD. Recent experimental work revealed that the dopaminergic system may well be involved in the occurrence of cognitive decline, often being predictive of rapidly progressive forms of AD. However, a clear idea on the role of the dopamine system in AD is still missing. Here we review the more recent evidences supporting the notion that the dopaminergic dysfunction has a pathogenic role in cognitive decline symptoms of AD. PMID:25309431

  9. Somatodendritic dopamine release: recent mechanistic insights

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.

    2015-01-01

    Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764

  10. Synthesis, Fluorine-18 Radiolabeling, and Biological Evaluation of N-((E)-4-Fluorobut-2-en-1-yl)-2β-carbomethoxy-3β-(4′-halophenyl)nortropanes: Candidate Radioligands for In Vivo Imaging of the Brain Dopamine Transporter with Positron Emission Tomography

    PubMed Central

    Stehouwer, Jeffrey S.; Daniel, Lauryn M.; Chen, Ping; Voll, Ronald J.; Williams, Larry; Plott, Susan J.; Votaw, John R.; Owens, Michael J.; Howell, Leonard; Goodman, Mark M.

    2013-01-01

    The N-(E)-fluorobutenyl-3β-(para-halo-phenyl)nortropanes 9-12 were synthesized as ligands of the dopamine transporter (DAT) for use as 18F-labeled positron emission tomography (PET) imaging agents. In vitro competition binding assays demonstrated that compounds 9-12 have a high affinity for the DAT and are selective for the DAT compared to the serotonin and norepinephrine transporters. MicroPET imaging with [18F]9-[18F]11 in anesthetized cynomolgus monkeys showed high uptake in the putamen with lesser uptake in the caudate, but significant washout of the radiotracer was only observed for [18F]9. PET imaging with [18F]9 in an awake rhesus monkey showed high and nearly equal uptake in both the putamen and caudate with peak uptake achieved after 20 min followed by a leveling-off for about 10 min and then a steady washout and attainment of a quasi-equilibrium. During the time period 40-80 min post-injection of [18F]9 the ratio of uptake in the putamen and caudate vs. cerebellum uptake was ≥ 4. PMID:20597489

  11. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    PubMed Central

    Hamilton, Peter J.; Campbell, Nicholas G.; Sharma, Shruti; Erreger, Kevin; Hansen, Freja Herborg; Saunders, Christine; Belovich, Andrea N.; Sahai, Michelle A.; Cook, Edwin H.; Gether, Ulrik; Mchaourab, Hassane S.; Matthies, Heinrich J.G.; Sutcliffe, James S.; Galli, Aurelio

    2014-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity re-uptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural, and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is a required for substrate efflux. In Drosophila melanogaster, expression of hDAT T356M in DA neurons lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions. PMID:23979605

  12. Cocaine downregulates beta-adrenergic receptors in pregnant sheep myometrium.

    PubMed

    Wang, F L; Gauvin, J M; Dombrowski, M P; Smith, Y R; Christopher, K A; Hurd, W W

    1996-01-01

    Cocaine abuse is associated with premature labor. Although cocaine is known to competitively inhibit beta-adrenergic receptor binding, cocaine's effect on receptor downregulation is uncertain. This study was designed to determine the in vitro effect of cocaine on downregulation of beta-adrenergic receptors in pregnant myometrium. Pregnant sheep myometrium was incubated with either cocaine, isoproterenol, or a cocaine metabolite, benzoylecgonine. Membrane fractions were assayed for beta-adrenergic receptors using (125I)-cyanopindolol and the beta 2-adrenergic antagonist ICI 118,551. We found that cocaine (10(-6) to 10(-4) mol/L), but not benzoylecgonine, downregulated both beta 1- and beta 2-adrenergic receptors, but did not further augment receptor downregulation by isoproterenol. The 46% decrease in beta-adrenergic receptors seen after exposure to cocaine was similar to the 53% decrease seen after isoproterenol. We hypothesize downregulation of beta-adrenergic receptors by cocaine may play a role in the association of cocaine abuse with premature labor.

  13. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.

    PubMed

    Castro-Hernández, Javier; Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; Moratalla, Rosario; Millan, Mark J; González-Hernández, Tomás

    2015-02-01

    The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists. PMID:25511804

  14. Ambient illuminance, retinal dopamine release and refractive development in chicks.

    PubMed

    Cohen, Yuval; Peleg, Edna; Belkin, Michael; Polat, Uri; Solomon, Arieh S

    2012-10-01

    Form deprivation and low illuminance of ambient light are known to induce myopia in chicks. Low concentrations of retinal dopamine, a light-driven neurohormone, was previously shown to be associated with form deprivation myopia. In the present study we examined the dependence of retinal dopamine release in chicks on illuminance during light-dark cycles and in continuous light, and the role of retinal dopamine release in illuminance dependent refractive development. Newly hatched chicks (n = 166) were divided into two experimental groups, a dopamine (n = 88) and a refraction group (n = 78). Both groups were further divided into six illumination groups for exposure of chicks to illuminances of 50, 500 or 10,000 lux of incandescent illumination (referred to throughout as low, medium, and high illuminance, respectively), either under a light-dark cycle with lights on between 7 AM and 7 PM or under continuous illumination. For the dopamine experiment, chicks were euthanized and vitreous was extracted on day 14 post-hatching at 7, 8 AM and 1 PM. Vitreal dihydroxyphenylacetic acid (DOPAC) and dopamine concentrations were quantified by high-performance liquid chromatography coupled to electrochemical detection. For the refraction experiment, chicks underwent refraction, keratometry and A-scan ultrasonography on days 30, 60 and 90 post-hatching, and each of those measurements was correlated with vitreal DOPAC concentration measured at 1 PM (representing the index of retinal dopamine release). The results showed that under light-dark cycles, vitreal DOPAC concentration was strongly correlated with log illuminance, and was significantly correlated with the developing refraction, corneal radius of curvature, and axial length values. On day 90, low vitreal DOPAC concentrations were associated with myopia (-2.41 ± 1.23 D), flat cornea, deep anterior and vitreous chambers, and thin lens. Under continuous light, vitreal DOPAC concentrations measured at 1 PM in the low, medium

  15. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons.

  16. Loss of D2 Dopamine Receptor Function Modulates Cocaine-Induced Glutamatergic Synaptic Potentiation in the Ventral Tegmental Area

    PubMed Central

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello

    2013-01-01

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  17. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  18. Role of dimerization in dopamine D(4) receptor biogenesis.

    PubMed

    Van Craenenbroeck, Kathleen; Borroto-Escuela, Dasiel O; Skieterska, Kamila; Duchou, Jolien; Romero-Fernandez, Wilber; Fuxe, Kjell

    2014-01-01

    Dopamine receptors are G protein-coupled receptors critically involved in locomotion, reward, and cognitive processes. Export of dopamine receptors to the plasma membrane is thought to follow the default secretory pathway, whereby proteins travel from the endoplasmatic reticulum (ER), through the Golgi apparatus, to arrive at the cell surface. Several observations indicate that trafficking from the ER to the plasma membrane is tightly regulated, and that correct folding in the ER acts as a bottle neck to the maturation of the dopamine D4 receptors. The dopamine D(4) receptor is an interesting receptor since it has a polymorphic region in its third intracellular loop, resulting in receptor isoforms of varying length and amino acid composition. Correct folding is enhanced by: (1) interaction with specific proteins, such as ER resident chaperones, (2) interaction with pharmacological chaperones, for example, ligands that are membrane permeable and can bind to the receptor in the ER, and (3) receptor dimerization; the assembly of multisubunit proteins into a quaternary structure is started in the ER before cell surface delivery, which helps in correct folding and subsequent expression. These interactions help the process of GPCR folding, but more importantly they ensure that only properly folded proteins proceed from the ER to the trans-Golgi network. In this review we will mainly focus on the role of receptor dimerization in dopamine D(4) receptor maturation. PMID:25175456

  19. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  20. Conformation and interactions of dopamine hydrochloride in solution

    SciTech Connect

    Callear, Samantha K.; Imberti, Silvia; Johnston, Andrew; McLain, Sylvia E.

    2015-01-07

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, and chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.

  1. Differential effects of dopamine-directed treatments on cognition

    PubMed Central

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. PMID:26251602

  2. Real-time dopamine measurement in awake monkeys.

    PubMed

    Schluter, Erik W; Mitz, Andrew R; Cheer, Joseph F; Averbeck, Bruno B

    2014-01-01

    Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc). We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation. PMID:24921937

  3. Real-Time Dopamine Measurement in Awake Monkeys

    PubMed Central

    Schluter, Erik W.; Mitz, Andrew R.; Cheer, Joseph F.; Averbeck, Bruno B.

    2014-01-01

    Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of techniques adapted from rodent, primate and brain slice work. We developed a long carbon fiber electrode to operate in the larger primate brain. This electrode was lowered into the striatum each day using a recording chamber and a detachable micromanipulator system. A manipulator also moved one or more tungsten stimulating electrodes into either the nearby striatum or the ventral tegmental area/substantia nigra pars compacta (VTA/SNc). We developed an electrical stimulation controller to reduce artifacts during electrical stimulation. We also introduce a stimulation-based methodology for estimating distances between electrodes in the brain. Dopamine responses within the striatum were evoked by either stimulation of the striatum near the FSCV electrode, or stimulation within the VTA/SNc. Unexpected juice rewards also evoked dopamine responses in the ventral striatum. Thus, we demonstrate that robust dopamine responses can be recorded from awake, behaving primates with FSCV. In addition, we describe how a stimulation technique borrowed from the neuroprosthetics field can activate the distributed monkey midbrain dopamine system in a way that mimics rodent VTA stimulation. PMID:24921937

  4. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network

    PubMed Central

    Stagkourakis, Stefanos; Kim, Hoseok; Lyons, David J.; Broberger, Christian

    2016-01-01

    Summary How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects. PMID:27149844

  5. Does human presynaptic striatal dopamine function predict social conformity?

    PubMed

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  6. Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer.

    PubMed

    Liu, Ting; Li, Meixian; Li, Qianyuan

    2004-07-01

    Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of 1.0x10 (-6)to 2.0x10 (-4)moll(-1). The detection limit is 8.0x10(-7)moll(-1). This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.

  7. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  8. Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources

    PubMed Central

    Beeler, Jeff A.; Frazier, Cristianne R. M.; Zhuang, Xiaoxi

    2012-01-01

    Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the “reward deficiency hypothesis” as a perceived energy deficit

  9. Lapatinib, a Dual EGFR and HER2 Tyrosine Kinase Inhibitor, Downregulates Thymidylate Synthase by Inhibiting the Nuclear Translocation of EGFR and HER2

    PubMed Central

    Kim, Hwang-Phill; Yoon, Young-Kwang; Kim, Jin-Won; Han, Sae-Won; Hur, Hyung-Seok; Park, Jinah; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2009-01-01

    Background Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) has been shown to exert a synergistic antitumor effect when combined with fluoropyrimidine. This synergy may be attributable to the downregulation of thymidylate synthase (TS), which is frequently overexpressed in fluoropyrimidine-resistant cancer cells. However, the molecular mechanism underlying the downregulation of TS has yet to be clearly elucidated. Methodology and Principal Findings In this study, we demonstrate that lapatinib, a dual TKI of EGFR and HER2 downregulates TS via inhibition of the nuclear translocation of EGFR and HER2. From our cDNA microarray experiments, we determined that a variety of nucleotide synthesis-related genes, including TS, were downregulated with lapatinib, and this was apparent in HER2-amplified cells. Targeted and pharmacologic inhibition assays confirmed that the dual inhibition of EGFR and HER2 is required for the more effective reduction of TS as compared to what was observed with gefitinib or trasutuzumab alone. Additionally, we determined that co-transfected EGFR and HER2 activate the TS gene promoter more profoundly than do either EGFR or HER2 alone. The translocation of EGFR and HER2 into the nucleus and the subsequent activation of the TS promoter were inhibited by lapatinib. Conclusions and Significance These results demonstrate that lapatinib inhibits the nuclear translocation of EGFR and HER2 and downregulates TS, thus sensitizing cancer cells to fluoropyrimidine. PMID:19529774

  10. The Evolution of Dopamine Systems in Chordates

    PubMed Central

    Yamamoto, Kei; Vernier, Philippe

    2011-01-01

    Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates. PMID:21483723

  11. Feeding behavior in dopamine-deficient mice

    PubMed Central

    Szczypka, Mark S.; Rainey, Mark A.; Kim, Douglas S.; Alaynick, William A.; Marck, Brett T.; Matsumoto, Alvin M.; Palmiter, Richard D.

    1999-01-01

    Mice that cannot make dopamine (DA), a condition caused by the selective inactivation of tyrosine hydroxylase in dopaminergic neurons, are born normal but gradually become hypoactive and hypophagic, and die at 3 weeks of age. We characterized the feeding and locomotor responses of these DA-deficient (DA−/−) mice to 3,4-dihyroxy-l-phenylalanine (l-DOPA) to investigate the relationship between brain DA levels and these complex behaviors. Daily administration of l-DOPA to DA−/− mice stimulated locomotor activity that lasted 6 to 9 hr; during that time the mice consumed most of their daily food and water. The minimal dose of l-DOPA that was sufficient to elicit normal feeding behavior in the DA−/− mice also restored their striatal DA to 9.1% of that in the wild-type (WT) mice at 3 hr; then DA content declined to <1% of WT levels by 24 hr. This dose of l-DOPA induced locomotor activity that exceeded that of treated WT mice by 5- to 7-fold, suggesting that DA−/− mice are supersensitive to DA. Unexpectedly, DA−/− mice manifested a second wave of activity 24 to 48 hr after l-DOPA treatment that was equivalent in magnitude to that of WT mice and independent of DA receptor activation. The DA−/− mice approached, sniffed, and chewed food during this second period of activity, but they ate <10% of that required for sustenance. Therefore, DA−/− mice can execute behaviors necessary to seek and ingest food, but they do not eat enough to survive. PMID:10518589

  12. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    PubMed

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  13. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques.

    PubMed

    Stauffer, William R; Lak, Armin; Yang, Aimei; Borel, Melodie; Paulsen, Ole; Boyden, Edward S; Schultz, Wolfram

    2016-09-01

    Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain. PMID:27610576

  14. Striatal dopamine, reward, and decision making in schizophrenia.

    PubMed

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.

  15. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  16. Striatal dopamine, reward, and decision making in schizophrenia.

    PubMed

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies. PMID:27069382

  17. Components and characteristics of the dopamine reward utility signal.

    PubMed

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions. PMID:26272220

  18. Striatal dopamine, reward, and decision making in schizophrenia

    PubMed Central

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-01-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies. PMID:27069382

  19. Components and characteristics of the dopamine reward utility signal.

    PubMed

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions.

  20. Increased dopamine level enhances male-male courtship in Drosophila.

    PubMed

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2008-05-21

    Sexual behavior between males is observed in many species, but the biological factors involved are poorly known. In mammals, manipulation of dopamine has revealed the role of this neuromodulator on male sexual behavior. We used genetic and pharmacological approaches to manipulate the dopamine level in dopaminergic cells in Drosophila and investigated the consequence of this manipulation on male-male courtship behavior. Males with increased dopamine level showed enhanced propensity to court other males but did not change their courtship toward virgin females, general olfactory response, general gustatory response, or locomotor activity. Our results indicate that the high intensity of male-male interaction shown by these manipulated males was related to their altered sensory perception of other males.

  1. Increased dopamine level enhances male-male courtship in Drosophila.

    PubMed

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2008-05-21

    Sexual behavior between males is observed in many species, but the biological factors involved are poorly known. In mammals, manipulation of dopamine has revealed the role of this neuromodulator on male sexual behavior. We used genetic and pharmacological approaches to manipulate the dopamine level in dopaminergic cells in Drosophila and investigated the consequence of this manipulation on male-male courtship behavior. Males with increased dopamine level showed enhanced propensity to court other males but did not change their courtship toward virgin females, general olfactory response, general gustatory response, or locomotor activity. Our results indicate that the high intensity of male-male interaction shown by these manipulated males was related to their altered sensory perception of other males. PMID:18495888

  2. Readministration of adenoviral gene delivery to dopamine neurons.

    PubMed

    Gonzalez, Sarah C; McMenamin, Margaret M; Charlton, Harry M; Goodman, James; Lantos, Tibor; Simpson, Christine; Wood, Matthew J A

    2007-10-01

    An approach currently being explored as treatment for Parkinson's disease is gene therapy. An important question concerns the duration of transgene expression in dopamine neurons and the issues of vector persistence, neuronal damage and the feasibility of readministering vector to the same neuronal population. We show, using an adenoviral vector expressing the LacZ reporter gene, that transgene expression declined over time but with minimal loss of dopamine neurons or vector DNA. Readministration of vector resulted in low levels of transgene delivery to the neurons. Moreover, the neurons to which vector had already been delivered were unable to transport the retrograde tracer fluorogold. Our findings indicate that transgene expression declined in dopamine neurons despite the persistence of virus, and the capacity to readminister vector to these neurons was limited. PMID:17885611

  3. A Novel Restricted Diffusion Model of Evoked Dopamine

    PubMed Central

    2015-01-01

    In vivo fast-scan cyclic voltammetry provides high-fidelity recordings of electrically evoked dopamine release in the rat striatum. The evoked responses are suitable targets for numerical modeling because the frequency and duration of the stimulus are exactly known. Responses recorded in the dorsal and ventral striatum of the rat do not bear out the predictions of a numerical model that assumes the presence of a diffusion gap interposed between the recording electrode and nearby dopamine terminals. Recent findings, however, suggest that dopamine may be subject to restricted diffusion processes in brain extracellular space. A numerical model cast to account for restricted diffusion produces excellent agreement between simulated and observed responses recorded under a broad range of anatomical, stimulus, and pharmacological conditions. The numerical model requires four, and in some cases only three, adjustable parameters and produces meaningful kinetic parameter values. PMID:24983330

  4. Taste pathways that mediate accumbens dopamine release by sapid sucrose.

    PubMed

    Hajnal, Andras; Norgren, Ralph

    2005-03-16

    Although it has been associated with the release of dopamine in the forebrain, reward remains a conundrum in neuroscience. Sucrose is inherently rewarding and its sensory message reaches the brain via the gustatory system. In rodents, the central gustatory system bifurcates in the pontine parabrachial nuclei, one arm forming a standard thalamocortical axis, the other distributing widely in the limbic forebrain. We report here that lesions of the gustatory thalamus fail to affect dopamine overflow during sucrose licking (149+/-5% vs. 149+/-4% for controls). Similar damage to the parabrachial nuclei, which severs the limbic taste projection, substantially reduces dopamine release from the nucleus accumbens (121+/-4% vs. 168+/-9% for sham operated controls; p<0.02). This represents the first demonstration that the affective character of a sensory stimulus might separate from the thalamocortical system as early as the second central synapse. PMID:15763573

  5. Dopamine D1 signaling organizes network dynamics underlying working memory

    PubMed Central

    Roffman, Joshua L.; Tanner, Alexandra S.; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J.; Ho, New Fei; Nitenson, Adam Z.; Chonde, Daniel B.; Greve, Douglas N.; Abi-Dargham, Anissa; Buckner, Randy L.; Manoach, Dara S.; Rosen, Bruce R.; Hooker, Jacob M.; Catana, Ciprian

    2016-01-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory–emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits. PMID:27386561

  6. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    PubMed

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  7. Fast Phasic Release Properties of Dopamine Studied with a Channel Biosensor

    PubMed Central

    Kress, Geraldine J.; Shu, Hong-Jin; Yu, Andrew; Taylor, Amanda; Benz, Ann; Harmon, Steve

    2014-01-01

    Few other neurotransmitters are of as intense interest to neuropsychiatry and neurology as dopamine, yet existing techniques to monitor dopamine release leave an important spatiotemporal gap in our understanding. Electrochemistry and fluorescence imaging tools have been developed to fill the gap, but these methods have important limitations. We circumvent these limitations by introducing a dopamine-gated chloride channel into rat dorsal striatal medium spiny neurons, targets of strong dopamine innervation, thereby transforming dopamine from a slow transmitter into a fast transmitter and revealing new opportunities for studying moment-to-moment regulation of dopamine release. We demonstrate pharmacological and biophysical properties of the channel that make it suitable for fast, local dopamine measurements, and we demonstrate for the first time spontaneous and evoked responses to vesicular dopamine release in the dorsal striatum. Evoked dopamine currents were separated into a fast, monosynaptic component and a slower-rising and decaying disynaptic component mediated by nicotinic receptor activation. In summary, LGC-53 represents a dopamine biosensor with properties suitable for temporal separation of distinct dopamine signals in targets of dopamine innervation. PMID:25164674

  8. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    ERIC Educational Resources Information Center

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  9. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    -Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  10. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  11. Inhibitory and excitatory effects of dopamine on Aplysia neurones

    PubMed Central

    Ascher, P.

    1972-01-01

    1. Electrophoretic application of dopamine (DA) on Aplysia neurones elicits both excitatory and inhibitory effects, which in many cases are observed in the same neurone, and often result in a biphasic response. 2. The DA receptors are localized predominantly on the axons. Desensitization, which occurs after repeated injections or with bath application of DA, is more marked for excitatory responses. 3. Tubocurarine and strychnine block the DA excitatory responses without affecting the inhibitory ones, which can be selectively blocked by ergot derivatives. It is concluded that the excitatory and inhibitory effects are mediated by two distinct receptors. 4. The two DA receptors can be pharmacologically separated from the three ACh receptors described in the same nervous system. 5. In some neurones the dopamine inhibitory responses can be inverted by artificial hyperpolarization of the membrane at the potassium equilibrium potential, EK, indicating that dopamine causes a selective increase in potassium permeability. 6. In other neurones the reversal potential of dopamine inhibitory responses is at a more depolarized level than EK, but can be brought to EK by pharmacological agents known to block the receptors mediating the excitatory effects of DA. 7. In still other neurones, the hyperpolarization induced by DA cannot be inverted in normal conditions, but a reversal can be induced by ouabain or by the substitution of external sodium by lithium. These results are discussed in terms of an hypothesis in which dopamine increases the potassium permeability of a limited region of the axonal membrane. 8. It is concluded that a selective increase in potassium permeability probably accounts for all dopamine inhibitory effects in the neurones studied. PMID:4679683

  12. The ventral tegmentum and dopamine: A new wave of diversity.

    PubMed

    Barrot, M

    2014-12-12

    Projection systems arising from the ventral tegmental area (VTA) and the substantia nigra (SN) have a critical role in a broad range of functions, as well as in the etiology, symptoms and treatment of neurological and psychiatric diseases. Mostly studied for its dopamine neurons, the ventral tegmentum is in fact heterogeneous at cellular and functional levels. This special issue of Neuroscience gathered some experts in the field to review the connectivity of the ventral mesencephalic dopaminergic complex, its cellular heterogeneity with attention given to glutamate neurons, the D2 autoreceptor and the cholinergic controls of dopamine activity, the influence of neurotrophins, the controls of bursting activity and the heterogeneity of neuronal activity across traits and states, the pedunculopontine tegmental and the sensory controls of dopamine activity, the sex-dependent diversity, the links between circadian and dopamine systems, the functional antero-posterior heterogeneity of the VTA and the role of its GABA tail (tVTA/rostromedial tegmental nucleus (RMTg)), the functional heterogeneity of the VTA outputs, the place of dopamine in cortico-basal ganglia circuitry, the different roles of the D1 and D2 striatal pathways and the role of dopamine in associative learning and memory. Recent progress also highlights the need for molecular markers of functional subpopulations within the ventral tegmentum, for deeper developmental knowledge of this region, and for a single cell level of connectomic. It also raises the question of inter-individual, sex, strain and species heterogeneity, and conversely the question of data generalization in a context of human pathology models, which warrant comparative studies and translational effort. PMID:25453764

  13. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  14. Dopamine-dependent responses to morphine depend on glucocorticoid receptors

    PubMed Central

    Marinelli, Michela; Aouizerate, Bruno; Barrot, Michel; Le Moal, Michel; Piazza, Pier Vincenzo

    1998-01-01

    Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction. PMID:9636221

  15. Encoding of aversion by dopamine and the nucleus accumbens.

    PubMed

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward. PMID:23055953

  16. Glutamate-dopamine-GABA interactions in the aging basal ganglia.

    PubMed

    Mora, Francisco; Segovia, Gregorio; Del Arco, Alberto

    2008-08-01

    The study of neurotransmitter interactions gives a better understanding of the physiology of specific circuits in the brain. In this review we focus mostly on our own results on the interaction of the neurotransmitters glutamate, dopamine and GABA in the basal ganglia during the normal process of aging. We review first the studies on the action of endogenous glutamate on the extracellular concentrations of dopamine and GABA in the neostriatum and nucleus accumbens during aging. It was found that there exists an age-related change in the interaction of glutamate, dopamine and GABA and that these effects of aging exhibit a dorsal-to-ventral pattern of effects with no changes in the dorsal parts (dorsal striatum) and changes in the most ventral parts (nucleus accumbens). Second we reviewed the data on the effects of different ionotropic and metabotropic glutamate receptor agonists on the extracellular concentrations of dopamine and GABA in the nucleus accumbens. The results obtained clearly show the different contribution of each glutamate receptor subtype in the age-related changes produced on the interaction of glutamate, dopamine and GABA in this area of the brain. Third the effects of an enriched environment on the action of AMPA and NMDA-receptor agonists in the nucleus accumbens of rats during aging are also evaluated. Finally, and since the nucleus accumbens has been suggested to play a role in emotion and motivation and also motor behaviour, we speculated on the possibility of a specific contribution for the different glutamatergic pathways terminating in the nucleus accumbens and their interaction with a decreased dopamine playing a relevant role in motor behaviour during aging.

  17. Downregulating viral gene expression: codon usage bias manipulation for the generation of novel influenza A virus vaccines

    PubMed Central

    Baker, Steven F; Nogales, Aitor; Martínez-Sobrido, Luis

    2015-01-01

    Vaccination represents the best option to protect humans against influenza virus. However, improving the effectiveness of current vaccines could better stifle the health burden caused by viral infection. Protein synthesis from individual genes can be downregulated by synthetically deoptimizing a gene’s codon usage. With more rapid and affordable nucleotide synthesis, generating viruses that contain genes with deoptimized codons is now feasible. Attenuated, vaccine-candidate viruses can thus be engineered with hitherto uncharacterized properties. With eight gene segments, influenza A viruses with variably recoded genomes can produce a spectrum of attenuation that is contingent on the gene segment targeted and the number of codon changes. This review summarizes different targets and approaches to deoptimize influenza A virus codons for novel vaccine generation. PMID:26213563

  18. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors

    PubMed Central

    Bello, Estefanía P; Mateo, Yolanda; Gelman, Diego M; Noaín, Daniela; Shin, Jung H; Low, Malcolm J; Alvarez, Verónica A; Lovinger, David M; Rubinstein, Marcelo

    2011-01-01

    Dopamine (DA) D2 receptors expressed in DA neurons (D2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2loxP/loxP; Dat+/IRES-cre, referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine. PMID:21743470

  19. Diet-induced obesity: dopamine transporter function, impulsivity and motivation

    PubMed Central

    Narayanaswami, V; Thompson, AC; Cassis, LA; Bardo, MT; Dwoskin, LP

    2013-01-01

    OBJECTIVE A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. DESIGN To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. METHODS Striatal D2-receptor density was determined by in vitro kinetic analysis of [3H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [3H]dopamine uptake, methamphetamine-evoked [3H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. RESULTS Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [3H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. CONCLUSION Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The

  20. Effects of chronic cocaine abuse on postsynaptic dopamine receptors

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Wolf, A.P.; Schlyer, D.; Shiue, C.Y.; Alpert, R.; Dewey, S.L.; Logan, J.; Bendriem, B.; Christman, D. )

    1990-06-01

    To assess the effects of chronic cocaine intoxication on dopamine receptors in human subjects, the authors evaluated ({sup 18}F)N-methylspiroperidol binding using positron emission tomography in 10 cocaine abusers and 10 normal control subjects. Cocaine abusers who had been detoxified for 1 week or less showed significantly lower values for uptake of ({sup 18}F)N-methylspiroperidol in striatum than the normal subjects, whereas the cocaine abusers who had been detoxified for 1 month showed values comparable to those obtained from normal subjects. The authors conclude that postsynaptic dopamine receptor availability decreases with chronic cocaine abuse but may recover after a drug-free interval.

  1. Biotrophy-specific downregulation of siderophore biosynthesis in C olletotrichum graminicola is required for modulation of immune responses of maize

    PubMed Central

    Albarouki, Emad; Schafferer, Lukas; Ye, Fanghua; von Wirén, Nicolaus; Haas, Hubertus; Deising, Holger B

    2014-01-01

    The hemibiotrophic maize pathogen C olletotrichum graminicola synthesizes one intracellular and three secreted siderophores. eGFP fusions with the key siderophore biosynthesis gene, SID1, encoding l-ornithine-N 5-monooxygenase, suggested that siderophore biosynthesis is rigorously downregulated specifically during biotrophic development. In order to investigate the role of siderophores during vegetative development and pathogenesis, SID1, which is required for synthesis of all siderophores, and the non-ribosomal peptide synthetase gene NPS6, synthesizing secreted siderophores, were deleted. Mutant analyses revealed that siderophores are required for vegetative growth under iron-limiting conditions, conidiation, ROS tolerance, and cell wall integrity. Δsid1 and Δnps6 mutants were hampered in formation of melanized appressoria and impaired in virulence. In agreement with biotrophy-specific downregulation of siderophore biosynthesis, Δsid1 and Δnps6 strains were not affected in biotrophic development, but spread of necrotrophic hyphae was reduced. To address the question why siderophore biosynthesis is specifically downregulated in biotrophic hyphae, maize leaves were infiltrated with siderophores. Siderophore infiltration alone did not induce defence responses, but formation of biotrophic hyphae in siderophore-infiltrated leaves caused dramatically increased ROS formation and transcriptional activation of genes encoding defence-related peroxidases and PR proteins. These data suggest that fungal siderophores modulate the plant immune system. PMID:24674132

  2. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  3. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis

    PubMed Central

    Glimcher, Paul W.

    2011-01-01

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  4. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    PubMed

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn. PMID:21389268

  5. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression.

    PubMed

    Jiang, Mingjin; Chen, Yifei; Li, Chan; Peng, Qiuxian; Fang, Miao; Liu, Wei; Kang, Qunzhao; Lin, Yingbo; Yung, Ken Kin Lam; Mo, Zhixian

    2016-07-01

    Others and we have reported that rhynchophylline reverses amphetamine-induced conditioned place preference (CPP) effect which may be partly mediated by amelioration of central neurotransmitters and N-methyl-d-aspartate receptor 2B (NR2B) levels in the rat brains. The current study investigated the inhibiting effects of rhynchophylline on methamphetamine-induced (METH-induced) CPP in adult zebrafish and METH-induced locomotor activity in tyrosine hydroxylase-green fluorescent protein (TH-GFP) transgenic zebrafish larvae and attempted to confirm the hypothesis that these effects were mediated via regulation of neurotransmitters and dopaminergic and glutamatergic systems. After baseline preference test (on days 1-3), zebrafish were injected intraperitoneally METH (on days 4, 6 and 8) or the same volume of fish physiological saline (on days 5 and 7) and were immediately conditioned. Rhynchophylline was administered at 12h after injection of METH. On day 9, zebrafish were tested for METH-induced CPP. Results revealed that rhynchophylline (100mg/kg) significantly inhibited the acquisition of METH-induced CPP, reduced the content of dopamine and glutamate and down-regulated the expression of TH and NR2B in the CPP zebrafish brains. Furthermore, the influence of rhynchophylline on METH-induced locomotor activity was also observed in TH-GFP transgenic zebrafish larvae. Results showed that rhynchophylline (50mg/L) treatment led to a significant reduction on the locomotor activity and TH expression in TH-GFP transgenic zebrafish larvae. Taken together, these data indicate that the inhibition of the formation of METH dependence by rhynchophylline in zebrafish is associated with amelioration of the neurotransmitters dopamine and glutamate content and down-regulation of TH and NR2B expression. PMID:27009763

  6. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila

    PubMed Central

    van der Voet, M; Harich, B; Franke, B; Schenck, A

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options. PMID:25962619

  7. Down-regulation of interleukin 1 production by macrophages of sarcoma-bearing mice.

    PubMed

    Moldawer, L L; Lonnroth, C; Mizel, S B; Lundholm, K G

    1987-06-15

    Peritoneal macrophages from mice bearing a transplantable methylcholanthrene-induced sarcoma produced progressively less IL 1 as tumor burden increased. The loss of activity was not explained by the production of any inhibitor of the mouse thymocyte comitogen bioassay. Immune precipitation with a polyclonal antibody confirmed the decline in IL 1 appearance. Although tumor-bearing animals lost approximately 17% of their carcass mass, the reduced production of IL 1 was not satisfactorily explained by coexistent malnutrition, since similarly depleted non-tumor-bearing mice were capable of producing IL 1. In addition to an altered IL 1 production by macrophages of tumor-bearing mice, SDS-polyacrylamide gel electrophoresis and autoradiography revealed that the pattern of secretory protein synthesis from LPS-stimulated and unstimulated peritoneal macrophages differed between tumor-bearing and control animals. Administration of LPS to tumor-bearing mice early after tumor transplantation resulted in reduced tumor growth and prevented the down-regulation of in vitro IL 1 production by peritoneal macrophages. These findings demonstrate a specific defect in IL 1 production associated with increasing tumor burden. Further studies are required to determine whether this defect in IL 1 synthesis contributes to the increased tumor growth.

  8. Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule.

    PubMed

    Kumbhat, Sunita; Shankaran, Dhesingh Ravi; Kim, Sook Jin; Gobi, K Vengatajalabathy; Joshi, Vinod; Miura, Norio

    2007-10-31

    In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.

  9. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor.

    PubMed

    Ng, G Y; Mouillac, B; George, S R; Caron, M; Dennis, M; Bouvier, M; O'Dowd, B F

    1994-03-15

    The regulation and post-translational modifications of the human dopamine D1 receptor were studied in the baculovirus-eukaryotic cell expression system. Baculovirus constructs containing either the DNA encoding the dopamine D1 receptor or a DNA encoding a c-myc epitope tagged dopamine D1 receptor (c-myc-dopamine D1 receptor) were used to infect Spodoptera frugiperda (Sf9) insect cells. Expressed dopamine D1 and c-myc-dopamine D1 receptors bound agonists and antagonists with affinities and a rank order of potency characteristic of a classical dopamine D1 receptor pharmacological profile. In membrane preparations from cells expressing c-myc-dopamine D1 receptor, the photoaffinity label [125I](3-methyl-2-[4'-azidophenyl]-2,3,5-tetrahydro-2H-3-benzazepine) ([125I]MAB) bound specifically upon photolysis. A major broad band of approximately 48 kDa was detected. This species was identified in immunoblots by the monoclonal antibody raised against the c-myc epitope of c-myc-dopamine D1 receptor was isolated by immunoprecipitation from whole cells and was shown to be post-translationally modified by phosphorylation and palmitoylation. Exposure of cells expressing c-myc-dopamine D1 receptor to dopamine for 15 min resulted in a reduction in the maximal dopamine stimulated adenylyl cyclase activity, which was accompanied by an increased phosphorylation of the receptor and a rapid redistribution of surface c-myc-dopamine D1 receptor as detected by in situ immunofluorescence. Dopamine exposure also resulted in an increased level of incorporation of [3H]palmitic acid into the receptor. Thus, we provide the first evidence that the human dopamine D1 receptor undergoes agonist-dependent desensitization, phosphorylation and palmitoylation.

  10. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    PubMed

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  11. Dopamine system: manager of neural pathways.

    PubMed

    Hong, Simon

    2013-01-01

    There are a growing number of roles that midbrain dopamine (DA) neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1) the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs). The DA system can be viewed as the "manager" of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2) there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to provide the needed level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb), the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations. PMID:24367324

  12. Tuberoinfundibular transport of intrahypothalamic-administered dopamine in normo- and hypertensive rats

    SciTech Connect

    Sim, M.K.

    1988-01-01

    The dopamine transport system in the tuberoinfundibular tract of the spontaneously hypertensive (SHR), Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats was investigated. The results show that the rate of dopamine transport in this tract is strain-specific. SD rats transported twice as much dopamine (in 30 minutes) as WKY and SHR. The dopamine transport system in the SHR, being at par with that of the WKY, remained intact. These findings suggest that hypertension and the alleged reduced central dopaminergic activity in the SHR is not related to the transport of dopamine in the tuberoinfundibular tract.

  13. Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography

    SciTech Connect

    Shen, Y. . Dept. of Veterinary Physiology and Pharmacology); Ye, M.Y. . Dept. of Biology and Chemistry ManTech Environmental Technology, Inc., Ada, OK )

    1994-01-01

    Methods for the analysis of dopamine and its degradation products in aqueous solutions are described. The technique of reverse phase chromatography with electrochemical detection is used to investigate the stability of dopamine in various aqueous solutions. In neutral and basic solutions, dopamine is rapidly oxidized by dissolved oxygen to form degradation products. The results demonstrate that dopamine is stable in 0.1 N HCl solution, pH < 1. The study indicates that EDTA can slow down the oxidation process. The detection limit for the analysis of dopamine is 0.1 [mu]M with 100 [mu]l injection.

  14. Dopamine agonist-induced substance addiction: the next piece of the puzzle.

    PubMed

    Evans, Andrew

    2011-02-01

    Traditional antiparkinson treatment strategies strive to balance the antiparkinson effects of dopaminergic drugs with the avoidance of motor response complications. Dopamine agonists have an established role in delaying the emergence of motor response complications or reducing motor "off" periods. The recent recognition of a range of "behavioural addictions" that are linked to dopamine agonist use has highlighted the role of dopamine in brain reward function and addiction disorders in general. Dopamine agonists have now even been linked occasionally to new substance addictions. The challenge now for the Parkinsonologist is to also balance the net benefits of using dopamine agonists for their motor effects with avoiding the harm from behavioural compulsions. PMID:20980151

  15. Choline Transporter Hemizygosity Results in Diminished Basal Extracellular Dopamine Levels in Nucleus Accumbens and Blunts Dopamine Elevations Following Cocaine or Nicotine

    PubMed Central

    Dong, Yu; Dani, John A.; Blakely, Randy D.

    2015-01-01

    Dopamine (DA) signaling in the central nervous system mediates the addictive capacities of multiple commonly abused substances, including cocaine, amphetamine, heroin and nicotine. The firing of DA neurons residing in the ventral tegmental area (VTA), and the release of DA by the projections of these neurons in the nucleus accumbens (NAc), is under tight control by cholinergic signaling mediated by nicotinic acetylcholine (ACh) receptors (nAChRs). The capacity for cholinergic signaling is dictated by the availability and activity of the presynaptic, high-affinity, choline transporter (CHT, SLC5A7) that acquires choline in an activity-dependent matter to sustain ACh synthesis. Here, we present evidence that a constitutive loss of CHT expression, mediated by genetic elimination of one copy of the Slc5a7 gene in mice (CHT+/−), leads to a significant reduction in basal extracellular DA levels in the NAc, as measured by in vivo microdialysis. Moreover, CHT heterozygosity results in blunted DA elevations following systemic nicotine or cocaine administration. These findings reinforce a critical role of ACh signaling capacity in both tonic and drug-modulated DA signaling and argue that genetically-imposed reductions in CHT that lead to diminished DA signaling may lead to poor responses to reinforcing stimuli, possibly contributing to disorders linked to perturbed cholinergic signaling including depression and attention-deficit hyperactivity disorder (ADHD). PMID:23939187

  16. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    PubMed

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  17. Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder

    PubMed Central

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434

  18. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

    PubMed Central

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis. PMID:27246266

  19. Nicotinic receptors regulate the dynamic range of dopamine release in vivo.

    PubMed

    Koranda, Jessica L; Cone, Jackson J; McGehee, Daniel S; Roitman, Mitchell F; Beeler, Jeff A; Zhuang, Xiaoxi

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.

  20. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    SciTech Connect

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  1. Dopamine transporters are involved in the onset of hypoxia-induced dopamine efflux in striatum as revealed by in vivo microdialysis.

    PubMed

    Orset, Cyrille; Parrot, Sandrine; Sauvinet, Valérie; Cottet-Emard, Jean-Marie; Bérod, Anne; Pequignot, Jean-Marc; Denoroy, Luc

    2005-06-01

    Although many studies have revealed alterations in neurotransmission during ischaemia, few works have been devoted to the neurochemical effects of mild hypoxia, a situation encountered during life in altitude or in several pathologies. In that context, the present work was undertaken to determine the in vivo mechanisms underlying the striatal dopamine efflux induced by mild hypoxaemic hypoxia. For that purpose, the extracellular concentrations of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid were simultaneously measured using brain microdialysis during acute hypoxic exposure (10% O(2), 1h) in awake rats. Hypoxia induced a +80% increase in dopamine. Application of the dopamine transporters inhibitor, nomifensine (10 microM), just before the hypoxia prevented the rise in dopamine during the early part of hypoxia; in contrast the application of nomifensine after the beginning of hypoxia, failed to alter the increase in dopamine. Application of the voltage-dependent Na(+) channel blocker tetrodotoxin abolished the increase in dopamine, whether administered just before or after the beginning of hypoxia. These data show that the neurochemical mechanisms of the dopamine efflux may change over the course of the hypoxic exposure, dopamine transporters being involved only at the beginning of hypoxia.

  2. FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis

    PubMed Central

    Li, Qing; Xie, Jing; He, Lin; Wang, Yuanli; Yang, Hongdan; Duan, Zelin; Wang, Qun

    2015-01-01

    Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis. PMID:26430246

  3. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia

    PubMed Central

    Abi-Dargham, Anissa; Rodenhiser, Janine; Printz, David; Zea-Ponce, Yolanda; Gil, Roberto; Kegeles, Lawrence S.; Weiss, Richard; Cooper, Thomas B.; Mann, J. John; Van Heertum, Ronald L.; Gorman, Jack M.; Laruelle, Marc

    2000-01-01

    The classical dopamine hypothesis of schizophrenia postulates a hyperactivity of dopaminergic transmission at the D2 receptor. We measured in vivo occupancy of striatal D2 receptors by dopamine in 18 untreated patients with schizophrenia and 18 matched controls, by comparing D2 receptor availability before and during pharmacologically induced acute dopamine depletion. Acute depletion of intrasynaptic dopamine resulted in a larger increase in D2 receptor availability in patients with schizophrenia (19% ± 11%) compared with control subjects (9% ± 7%, P = 0.003). The increased occupancy of D2 receptors by dopamine occurred both in first-episode neuroleptic-naive patients and in previously treated chronic patients experiencing an episode of illness exacerbation. In addition, elevated synaptic dopamine was predictive of good treatment response of positive symptoms to antipsychotic drugs. This finding provides direct evidence of increased stimulation of D2 receptors by dopamine in schizophrenia, consistent with increased phasic activity of dopaminergic neurons. PMID:10884434

  4. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  5. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    PubMed

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  6. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions. PMID:25873042

  7. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    PubMed Central

    Willuhn, Ingo; Burgeno, Lauren M.; Groblewski, Peter A.; Phillips, Paul E. M.

    2014-01-01

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum (DLS) is thought to assume control over drug seeking. We measured striatal dopamine release during a cocaine self-administration regimen that produced escalation of drug taking in rats. Surprisingly, we found that phasic dopamine decreased in both regions as the rate of cocaine intake increased; with the decrement in dopamine in the VMS significantly correlated with the rate of escalation. Administration of the dopamine precursor L-DOPA at a dose that replenished dopamine signaling in the VMS reversed escalation, thereby demonstrating the causal relationship between diminished dopamine transmission and excessive drug use. Thus, together these data provide mechanistic and therapeutic insight into the excessive drug intake that emerges following protracted use. PMID:24705184

  8. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  9. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    PubMed

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.

  10. Trafficking properties of the D5 dopamine receptor.

    PubMed

    Thompson, Dawn; Whistler, Jennifer L

    2011-05-01

    Dopamine receptors are important for diverse biological functions and are important pharmacological targets in human medicine. Signal transduction from the dopamine receptors is controlled at many levels, including by the process of receptor trafficking. Little is known regarding the endocytic and postendocytic trafficking properties of the D5 dopamine receptor. Here, we show that endocytosis of the D5 receptor can be achieved both homologously, through direct receptor activation by agonist, and also heterologously, due to independent activation of protein kinase C (PKC). In contrast, the D1 receptor is endocytosed only in response to agonist but not PKC activation. We have identified the residue in the third intracellular loop of the D5 receptor that is both necessary for PKC-mediated endocytosis of the D5 receptor and sufficient to induce PKC-mediated endocytosis when introduced to the D1 receptor. In addition, we show that endocytosis of D5 through both pathways is dependent on clathrin and dynamin but that only agonist-induced endocytosis engages β-arrestin 2. Together, these data show that the D5 receptor shows a trafficking profile distinct from that of any of the other dopamine receptors.

  11. Dopamine-induced silica-polydopamine hybrids with controllable morphology.

    PubMed

    Ho, Chia-Che; Ding, Shinn-Jyh

    2014-04-01

    Novel silica-polydopamine hybrids, with controllable morphology, are facilely fabricated in an emulsion system consisting of tetraethyl orthosilicate, dopamine, water, and NaOH under weakly basic conditions (pH 8.5-10). An increase in initial pH favors the formation of nano-structured spherical silica-PDA hybrids from a flocculated structure.

  12. Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation

    PubMed Central

    Meyer, Michael F.; Krasnianski, Michael

    2010-01-01

    The article presents the hypothesis that nigrostriatal dopamine may regulate movement by modulation of tone and contraction in skeletal muscles through a concentration-dependent influence on the postsynaptic D1 and D2 receptors on the follow manner: nigrostriatal axons innervate both receptor types within the striatal locus somatotopically responsible for motor control in agonist/antagonist muscle pair around a given joint. D1 receptors interact with lower and D2 receptors with higher dopamine concentrations. Synaptic dopamine concentration increases immediately before movement starts. We hypothesize that increasing dopamine concentrations stimulate first the D1 receptors and reduce muscle tone in the antagonist muscle and than stimulate D2 receptors and induce contraction in the agonist muscle. The preceded muscle tone reduction in the antagonist muscle eases the efficient contraction of the agonist. Our hypothesis is applicable for an explanation of physiological movement regulation, different forms of movement pathology and therapeutic drug effects. Further, this hypothesis provides a theoretical basis for experimental investigation of dopaminergic motor control and development of new strategies for treatment of movement disorders. PMID:21076988

  13. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    PubMed

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase.

  14. Reward contexts extend dopamine signals to unrewarded stimuli.

    PubMed

    Kobayashi, Shunsuke; Schultz, Wolfram

    2014-01-01

    Basic tenets of sensory processing emphasize the importance of accurate identification and discrimination of environmental objects [1]. Although this principle holds also for reward, the crucial acquisition of reward for survival would be aided by the capacity to detect objects whose rewarding properties may not be immediately apparent. Animal learning theory conceptualizes how unrewarded stimuli induce behavioral reactions in rewarded contexts due to pseudoconditioning and higher-order context conditioning [2-6]. We hypothesized that the underlying mechanisms may involve context-sensitive reward neurons. We studied short-latency activations of dopamine neurons to unrewarded, physically salient stimuli while systematically changing reward context. Dopamine neurons showed substantial activations to unrewarded stimuli and their conditioned stimuli in highly rewarded contexts. The activations decreased and often disappeared entirely with stepwise separation from rewarded contexts. The influence of reward context suggests that dopamine neurons respond to real and potential reward. The influence of reward context is compatible with the reward nature of phasic dopamine responses. The responses may facilitate rapid, default initiation of behavioral reactions in environments usually containing reward. Agents would encounter more and miss less reward, resulting in survival advantage and enhanced evolutionary fitness.

  15. Dopamine and reward: the anhedonia hypothesis 30 years on.

    PubMed

    Wise, Roy A

    2008-10-01

    The anhedonia hypothesis--that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards--was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation.

  16. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning

    PubMed Central

    Phillips, Paul E. M.

    2014-01-01

    Cue- and reward-evo