Science.gov

Sample records for downregulates glucocorticoid receptor

  1. AMPK Mediates Glucocorticoids Stress-Induced Downregulation of the Glucocorticoid Receptor in Cultured Rat Prefrontal Cortical Astrocytes

    PubMed Central

    Lu, Wei; Zhou, Hai-Yun; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Yi; Chen, Jian-Guo; Wang, Fang

    2016-01-01

    Chronic stress induces altered energy metabolism and plays important roles in the etiology of depression, in which the glucocorticoid negative feedback is disrupted due to imbalanced glucocorticoid receptor (GR) functions. The mechanism underlying the dysregulation of GR by chronic stress remains elusive. In this study, we investigated the role of AMP-activated protein kinase (AMPK), the key enzyme regulating cellular energy metabolism, and related signaling pathways in chronic stress-induced GR dysregulation. In cultured rat cortical astrocytes, glucocorticoid treatment decreased the level, which was accompanied by the decreased expression of liver kinase B1 (LKB1) and reduced phosphorylation of AMPK. Glucocorticoid-induced effects were attenuated by glucocorticoid-inducible kinase 1 (SGK1) inhibitor GSK650394, which also inhibited glucocorticoid induced phosphorylation of Forkhead box O3a (FOXO3a). Furthermore, glucocorticoid-induced down-regulation of GR was mimicked by the inhibition of AMPK and abolished by the AMPK activators or the histone deacetylase 5 (HDAC5) inhibitors. In line with the role of AMPK in GR expression, AMPK activator metformin reversed glucocorticoid-induced reduction of AMPK phosphorylation and GR expression as well as behavioral alteration of rats. Taken together, these results suggest that chronic stress activates SGK1 and suppresses the expression of LKB1 via inhibitory phosphorylation of FOXO3a. Downregulated LKB1 contributes to reduced activation of AMPK, leading to the dephosphorylation of HDAC5 and the suppression of transcription of GR. PMID:27513844

  2. Downregulation of brain mineralocorticoid and glucocorticoid receptor by antisense oligodeoxynucleotide treatment fails to alter spatial navigation in rats.

    PubMed

    Engelmann, M; Landgraf, R; Lörscher, P; Conzelmann, C; Probst, J C; Holsboer, F; Reul, J M

    1998-11-13

    Adult male Brown Norway rats were long-term intracerebroventricularly (i.c.v.) infused with antisense oligodeoxynucleotides (18-mer, double endcapped phosphorothioate protected) targeting either mineralocorticoid or glucocorticoid receptor mRNA, or received the respective mixed bases sequence or vehicle. Mineralocorticoid receptor-mixed bases and glucocorticoid receptor-mixed bases oligodeoxynucleotide infusion (1 microg/0.5 microl/h) over a time period of seven days did not alter hippocampal mineralocorticoid receptor and glucocorticoid receptor binding when compared to vehicle treatment. In contrast, i.c.v. administration of mineralocorticoid receptor, as well as glucocorticoid receptor-antisense over the same time period resulted in a significantly reduced binding of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus [mineralocorticoid receptor-antisense group approx. 72% of mineralocorticoid receptor-mixed bases and vehicle groups (100%); glucocorticoid receptor antisense group approx. 77% of glucocorticoid receptor-mixed bases and vehicle]. The specificity of these antisense effects is indicated by the finding that rats treated with mineralocorticoid receptor-antisense did not show any changes in glucocorticoid receptor and vice versa. Animals treated according to this infusion protocol and tested in the Morris water maze for their spatial navigation abilities failed to show significant differences among the groups. These data indicate that a reduction of hippocampal mineralocorticoid receptor or glucocorticoid receptor binding capacity by 20-30% does not interfere with spatial navigation.

  3. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    SciTech Connect

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-02-06

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPAR{gamma}) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPAR{gamma}-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPAR{gamma} activation in an AD mouse model.

  4. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity.

  5. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review.

  6. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    USGS Publications Warehouse

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  7. Regulation of triglyceride metabolism by glucocorticoid receptor

    PubMed Central

    2012-01-01

    Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG) homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR). GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis. PMID:22640645

  8. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  9. [Glucocorticoid receptors: basis for the diverse clinical actions of glucocorticoids].

    PubMed

    Gehring, Ulrich

    2004-05-15

    Domain structure of the receptor polypeptide and association with accessory proteins: This review summarizes our present knowledge on the different forms of the glucocorticoid receptor emphasizing structure and functional significance. The nonactivated receptor resides in the cytoplasm. It contains the human receptor polypeptide of 777 amino acids as heteromeric complex in association with two molecules of the heat-shock protein hsp90 and one immunophilin. After binding the hormonal ligand, the receptor becomes activated by dissociation of these accessory proteins. The receptor functions as transcriptional regulator: The receptor polypeptide itself, complexed with hormone, moves on into the cell nucleus to there interact with chromatin and to affect transcriptional processes. By binding as homodimer to specific response elements on the DNA, the receptor functions as positive transcription factor causing increased expression of tissue-specific genes. Alternatively, the receptor interacts with transcription factors like AP-1 or NF-kappaB and inhibits their effects on actively transcribed genes. Pharmacological considerations: The pharmacological possibilities of influencing the diverse medical actions of glucocorticoids are discussed on the level of receptors.

  10. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  11. Distinct Glucocorticoid Receptor Transcriptional Regulatory Surfaces Mediate the Cytotoxic and Cytostatic Effects of Glucocorticoids

    PubMed Central

    Rogatsky, Inez; Hittelman, Adam B.; Pearce, David; Garabedian, Michael J.

    1999-01-01

    Glucocorticoids act through the glucocorticoid receptor (GR), which can function as a transcriptional activator or repressor, to elicit cytostatic and cytotoxic effects in a variety of cells. The molecular mechanisms regulating these events and the target genes affected by the activated receptor remain largely undefined. Using cultured human osteosarcoma cells as a model for the GR antiproliferative effect, we demonstrate that in U20S cells, GR activation leads to irreversible growth inhibition, apoptosis, and repression of Bcl2. This cytotoxic effect is mediated by GR’s transcriptional repression function, since transactivation-deficient mutants and ligands still bring about apoptosis and Bcl2 down-regulation. In contrast, the antiproliferative effect of GR in SAOS2 cells is reversible, does not result in apoptosis or repression of Bcl2, and is a function of the receptor’s ability to stimulate transcription. Thus, the cytotoxic versus cytostatic outcome of glucocorticoid treatment is cell context dependent. Interestingly, the cytostatic effect of glucocorticoids in SAOS2 cells involves multiple GR activation surfaces. GR mutants and ligands that disrupt individual transcriptional activation functions (activation function 1 [AF-1] and AF-2) or receptor dimerization fail to fully inhibit cellular proliferation and, remarkably, discriminate between the targets of GR’s cytostatic action, the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Induction of p21Cip1 is agonist dependent and requires AF-2 but not AF-1 or GR dimerization. In contrast, induction of p27Kip1 is agonist independent, does not require AF-2 or AF-1, but depends on GR dimerization. Our findings indicate that multiple GR transcriptional regulatory mechanisms that employ distinct receptor surfaces are used to evoke either the cytostatic or cytotoxic response to glucocorticoids. PMID:10373553

  12. Molecular mechanisms of glucocorticoid receptor signaling.

    PubMed

    Labeur, Marta; Holsboer, Florian

    2010-01-01

    This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR). Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glu-cocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  13. Tumor Necrosis Factor Inhibits Glucocorticoid Receptor Function in Mice

    PubMed Central

    Van Bogaert, Tom; Vandevyver, Sofie; Dejager, Lien; Van Hauwermeiren, Filip; Pinheiro, Iris; Petta, Ioanna; Engblom, David; Kleyman, Anna; Schütz, Günther; Tuckermann, Jan; Libert, Claude

    2011-01-01

    As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved. PMID:21646349

  14. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  15. Glucocorticoid regulation of the vitamin D receptor.

    PubMed

    Hidalgo, Alejandro A; Trump, Donald L; Johnson, Candace S

    2010-07-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immuno-precipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter.

  16. Cell cycle regulation of glucocorticoid receptor function.

    PubMed Central

    Hsu, S C; Qi, M; DeFranco, D B

    1992-01-01

    Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR. Images PMID:1505524

  17. In vitro glucocorticoid receptor binding and transcriptional activation by topically active glucocorticoids.

    PubMed

    Smith, C L; Kreutner, W

    1998-09-01

    Mometasone furoate (MF, CAS 83919-23-7, Sch 32088), budesonide (BUD, CAS 51372-29-3), fluticasone propionate (FP, CAS 80474-14-2), and triamcinolone acetonide (TA, CAS-76-25-5) are corticosteroids that are either currently available or under development for allergic rhinitis and asthma. The relative affinity of these drugs for the glucocorticoid receptor and their ability to stimulate glucocorticoid receptor-mediated transactivation of gene expression were analyzed. All of the test compounds had a higher affinity for the recombinant glucocorticoid receptor than the reference glucocorticoid receptor ligand, dexamethasone (DEX, CAS 50-02-2). In addition, all compounds showed greater potency than dexamethasone in stimulating transcription of a synthetic target gene regulated by a glucocorticoid response element. Of the compounds tested, mometasone furoate had the highest relative binding affinity for the glucocorticoid receptor, followed by fluticasone propionate, budesonide, and triamcinolone acetonide. Similarly, mometasone furoate was the most potent stimulator of glucocorticoid receptor-mediated transactivation of gene expression, followed by fluticasone propionate, tri-amcinolone acetonide, and budesonide. These in vitro studies provide a sensitive means to compare the potency of glucocorticoids and may reliably predict the in vivo topical potency of these drugs.

  18. Glucocorticoid receptors in murine erythroleukaemic cells

    SciTech Connect

    Hammond, K.D.; Torrance, J.M.; DiDomenico, M.

    1987-01-01

    Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +/- 8.2 pmol/g protein) than in untreated controls (87.9 +/- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.

  19. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

    PubMed

    Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi

    2012-10-01

    Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors.

  20. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors

    PubMed Central

    Deng, Qiong; Riquelme, Denise; Trinh, Loc; Low, Malcolm J.; Tomić, Melanija; Stojilkovic, Stanko

    2015-01-01

    The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation. PMID:26121342

  1. A transgenic zebrafish model for monitoring glucocorticoid receptor activity

    PubMed Central

    Krug, Randall G.; Poshusta, Tanya L.; Skuster, Kimberly J.; Berg, MaKayla R.; Gardner, Samantha L.; Clark, Karl J.

    2014-01-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socio-economically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder. PMID:24679220

  2. Decreased glucocorticoid receptor activity following glucocorticoid receptor antisense RNA gene fragment transfection.

    PubMed Central

    Pepin, M C; Barden, N

    1991-01-01

    Depression is often characterized by increased cortisol secretion caused by hyperactivity of the hypothalamic-pituitary-adrenal axis and by nonsuppression of cortisol secretion following dexamethasone administration. This hyperactivity of the hypothalamic-pituitary-adrenal axis could result from a reduced glucocorticoid receptor (GR) activity in neurons involved in its control. To investigate the effect of reduced neuronal GR levels, we have blocked cellular GR mRNA processing and/or translation by introduction of a complementary GR antisense RNA strand. Two cell lines were transfected with a reporter plasmid carrying the chloramphenicol acetyltransferase (CAT) gene under control of the mouse mammary tumor virus long terminal repeat (a glucocorticoid-inducible promoter). This gene construction permitted assay of the sensitivity of the cells to glucocorticoid hormones. Cells were also cotransfected with a plasmid containing 1,815 bp of GR cDNA inserted in the reverse orientation downstream from either a neurofilament gene promoter element or the Rous sarcoma virus promoter element. Northern (RNA) blot analysis demonstrated formation of GR antisense RNA strands. Measurement of the sensitivity of CAT activity to exogeneous dexamethasone showed that although dexamethasone increased CAT activity by as much as 13-fold in control incubations, expression of GR antisense RNA caused a 2- to 4-fold decrease in the CAT response to dexamethasone. Stable transfectants bearing the GR antisense gene fragment construction demonstrated a 50 to 70% decrease of functional GR levels compared with normal cells, as evidenced by a ligand-binding assay with the type II glucocorticoid receptor-specific ligand [3H]RU 28362. These results validate the use of antisense RNA to GR to decrease cellular response to glucocorticoids. Images PMID:1996114

  3. Expression of glucocorticoid receptors in the regenerating human skeletal muscle.

    PubMed

    Filipović, D; Pirkmajer, S; Mis, K; Mars, T; Grubic, Z

    2011-01-01

    Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.

  4. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer.

    PubMed

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.

  5. Glucocorticoid receptors on and in a unicellular organism, Cryptobia salmositica.

    PubMed

    Li, Mao; Woo, Patrick T K

    2014-03-01

    This is the first report to our knowledge that demonstrates a functional steroid hormone receptor in a protozoon. The study used Cryptobia salmositica, a pathogenic haemoflagellate found in salmonid fishes. It has been previously shown that cortisol and dexamethasone (a synthetic glucocorticoid) enhanced the multiplication of C. salmositica under in vitro conditions indicating the presence of glucocorticoid receptors on/in the parasite. Also, the glucocorticoid receptor antagonist, mifepristone (RU486), inhibited the stimulatory effect of the two glucocorticoids on parasite multiplication. In the present study, we used an antibody (produced in a rabbit against glucocorticoid receptor protein) agglutination test and confocal microscopy with immunohistofluorescence staining to demonstrate cortisol-glucocorticoid receptor-like protein receptors on the plasma membrane and in the cytoplasm of the parasite. In two in vitro studies, the addition of 50ngml(-1) of RU486 was more effective in inhibiting parasite replication in cultures with 7,000parasitesml(-1) than in cultures with 14,000parasitesml(-1). Also, 100ngml(-1) of RU486/ml was more effective than 50ngml(-1) in inhibiting parasite multiplication in the 14,000 parasitesml(-1) cultures. These in vitro studies indicate that the number of binding sites on/in the parasite is finite. The findings may be important in future studies especially on steroid receptor signalling pathways and dissection of ligand-receptor interactions, and for evaluating the adaptations that develop in pathogens as part of the host-parasite interaction.

  6. Glucocorticoids and the non-steroidal selective glucocorticoid receptor modulator, compound A, differentially affect colon cancer-derived myofibroblasts.

    PubMed

    Drebert, Zuzanna; Bracke, Marc; Beck, Ilse M

    2015-05-01

    The glucocorticoid receptor functions as a ligand-dependent transcription factor that positively or negatively regulates the transcription of various specific target genes. Not only steroidal glucocorticoids can bind and activate the glucocorticoid receptor, but also the intensively examined non-steroidal selective glucocorticoid receptor modulators can do so, albeit with a select effector profile skewed to glucocorticoid receptor transrepression. Glucocorticoids are widely used to treat inflammatory afflictions, but also as anti-cancer therapies or adjuvants thereof. As the impact of glucocorticoids and selective glucocorticoid receptor modulators has scarcely been researched in this setting, we focused on colon cancer and its stromal environment, in particular the stromal myofibroblasts, which are known to influence cancer cells via paracrine signaling. In these myofibroblasts, the glucocorticoid dexamethasone is able to drive the glucocorticoid receptor into the nucleus and thus negatively regulates the expression of particular pro-inflammatory genes in TNFα-stimulated cells. The selective glucocorticoid receptor modulator compound A has an impaired ability to translocate GR, presumably underpinning its modest anti-inflammatory properties in these cells. Only dexamethasone, and not compound A, can upregulate the glucocorticoid receptor transactivation-dependent GILZ expression. Neither dexamethasone, nor compound A affects myofibroblast cell viability. However, compound A retards the growth of this myofibroblast cell line. Additionally, dexamethasone can inhibit the expression of Tenascin C, hepatocyte growth factor, and TGFβ, which are all factors known for their impact on colon cancer cell invasion, in a glucocorticoid receptor-dependent manner. In contrast, compound A can only slightly diminish the expression of just hepatocyte growth factor, and not tenascin C or TGFβ. Combined, our results expose new tumor microenvironment-modulating effects of

  7. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells.

    PubMed

    Paugh, Steven W; Bonten, Erik J; Savic, Daniel; Ramsey, Laura B; Thierfelder, William E; Gurung, Prajwal; Malireddi, R K Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R; Laudermilk, Lucas T; Panetta, John C; McCorkle, J Robert; Fan, Yiping; Crews, Kristine R; Stocco, Gabriele; Wilkinson, Mark R; Ferreira, Antonio M; Cheng, Cheng; Yang, Wenjian; Karol, Seth E; Fernandez, Christian A; Diouf, Barthelemy; Smith, Colton; Hicks, J Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J; Holmfeldt, Linda; Mullighan, Charles G; den Boer, Monique L; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L; Latif, Farida; Bhojwani, Deepa; Carroll, William L; Pui, Ching-Hon; Myers, Richard M; Guy, R Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V; Evans, William E

    2015-06-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.

  8. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    PubMed Central

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  9. [Modulation of glucocorticoid receptor interaction with non-steroidal drugs].

    PubMed

    Golikov, P P; Nikolaeva, N Iu

    1993-01-01

    The Scatchard analysis of the specific binding of triamcinolone 3H-acetonide (TA-3HA) to Type II glucocorticoid receptors of cytosol from the liver of female Wistar rats weighing 180-200 g has shown that emoxipin at concentrations of 1 and 2 mM and analgin at concentrations of 5 and 10 mM reduce the density of glucocorticoid receptors and the association constant of a hormone-receptor complex. Analgin, 5 mM, increases the dissociation velocity constant of TA-3HA 5 times the effect of unlabeled triamcinolone acetonide. Emoxipin, 1 mM, produces the same effect on the receptor dissociation velocity constant of TA-3HA as the unlabeled triamcinolone acetonide. The Berke analysis has established that emoxipin and analgin reduce glucocorticoid receptor interactions by uncompetitive inhibition.

  10. Effects of suspension on tissue levels of glucocorticoid receptors

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.

    1984-01-01

    Differential muscle responses can be simulated by hypokinetic/hypodynamic (H/H) suspension of rats with complete unloading of the hindlimb muscles. Since mechanism(s) underlying these atrophic effects were not clearly elucidated, experiments were initiated to investigate a possible role for glucocorticoids in the physiological and biochemical responses to H/H. The principal objective was to assess the potential for alterations in peripheral responsiveness to glucocorticoids in response to H/H. Studies have initially focused on the determination of tissue levels of glucocorticoid receptors as one index of hormonal sensitivity at the cellular level. Four hindlimb muscles (soleus, gastrocnemius, plantaris and EDL), previously demonstrated to exhibit differential responses to H/H, were investigated. Receptor levels in other glucocorticoid sensitive tissues (heart, liver, and kidney) were determined. Male rats (180-200g) were suspended for 7 or 14 days, sacrificed by cervical dislocation, and the tissues excised.

  11. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids

    PubMed Central

    2014-01-01

    Background Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. Methods Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student’s t-test was employed for statistical evaluation. Results We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk

  12. Negative glucocorticoid receptor response elements and their role in glucocorticoid action.

    PubMed

    Dostert, A; Heinzel, T

    2004-01-01

    The glucocorticoid receptor (GR) belongs to the steroid hormone receptor subclass of nuclear receptors and controls physiological processes through activation and repression of specific target genes. The ligand-activated receptor dimer activates gene expression by binding to specific DNA sequences (glucocorticoid response element, GRE) in the promoter regions of glucocorticoid-regulated genes. In contrast to the regulation of these classical GREs, the repression of negatively regulated target genes is mediated by negative GREs (nGRE), composite GREs or by transrepression. Due to their broad therapeutic spectrum and superior therapeutic effects glucocorticoids (GCs) are the most effective drugs used for the treatment of acute and chronic inflammatory diseases. Unfortunately, long term systemic therapy with GCs is restricted due to their metabolic side effects. It is assumed that transrepression of transcription factors such as AP-1 and NF-kappa B is the main mechanism by which glucocorticoids mediate their anti-inflammatory activity, whereas the side effects of GCs are mainly mediated by GR-DNA-interaction either by activation or by negative regulation of gene expression. While trans-repression has been characterized in detail, the molecular mechanisms of DNA-dependent cis-repression remain unclear. In this review, we focus on current knowledge about nGRE-mediated target gene repression and the relevance and function of these genes for glucocorticoid action. Negative GREs contribute to the regulation of the hypothalamic-pituitary-adrenal (HPA) axis (POMC and CRH), bone (osteocalcin) and skin (keratins) function, inflammation (IL-1beta), angiogenesis (proliferin) and lactation (prolactin). The discovery of the underlying mechanisms, especially the comparison to positive GREs and trans-repression may help in the future to discover and analyze novel selective GR agonists.

  13. Glucocorticoid receptor activation and inactivation in cultured human lymphocytes.

    PubMed

    Wheeler, R H; Leach, K L; La Forest, A C; O'Toole, T E; Wagner, R; Pratt, W B

    1981-01-10

    Although glucocorticoids are not cytolytic for and do not inhibit the growth of the IM-9 line of cultured human lymphoblasts, these cells have a high steroid-binding capacity. We have used IM-9 cells in order to examine whether unoccupied glucocorticoid receptors are inactivated and activated in intact cells. when IM-9 cells are incubated in glucose-free medium in a nitrogen atmosphere, both their ability to bind triamcinolone acetonide and their ATP levels decline and, when glucose and oxygen are reintroduced, ATP levels and receptor activity return. The specific glucocorticoid-binding activity of cytosol prepared from cells exposed to various degrees of energy limitation is directly correlated with the ATP content. Receptor activation in intact cells is rapid and independent of protein synthesis. Cytosol prepared from inactivated cells cannot be activated by addition of ATP. The inactivation of glucocorticoid receptors that occurs when cytosol from normal IM-9 cells is incubated at 25 degrees C is inhibited by molybdate, vanadate, fluoride, ATP, and several other nucleotides. The experiments with intact human lymphoblasts suggest that assays of specific glucocorticoid-binding capacity do not necessarily reflect the cellular content of receptor protein.

  14. Autoradiographic localization of benzodiazepine receptor downregulation

    SciTech Connect

    Tietz, E.I.; Rosenberg, H.C.; Chiu, T.H.

    1986-01-01

    Regional differences in downregulation of brain benzodiazepine receptors were studied using a quantitative autoradiographic method. Rats were given a 4-week flurazepam treatment known to cause tolerance and receptor downregulation. A second group of rats was given a similar treatment, but for only 1 week. A third group was given a single acute dose of diazepam to produce a brain benzodiazepine-like activity equivalent to that found after the chronic treatment. Areas studied included hippocampal formation, cerebral cortex, superior colliculus, substantia nigra, dorsal geniculate nucleus, lateral amygdala and lateral hypothalamus. There was a regional variation in the degree of downregulation after 1 week of flurazepam treatment, ranging from 12% to 25%. Extending the flurazepam treatment to 4 weeks caused little further downregulation in those areas studied, except for the pars reticulata of the substantia nigra, which showed a 13% reduction in (/sup 3/H)flunitrazepam binding after 1 week and a 40% reduction after 4 weeks of treatment. In a few areas, such as the lateral hypothalamus, no significant change in binding was found after 4 weeks. Acute diazepam treatment caused no change in binding. This latter finding as well as results obtained during the development of the methodology show that downregulation was not an artifact due to residual drug content of brain slices. The regional variations in degree and rate of downregulation suggest areas that may be most important for benzodiazepine tolerance and dependence and may be related to the varying time courses for tolerance to different benzodiazepine actions.

  15. Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition.

    PubMed

    Ryabtsova, Oksana; Joossens, Jurgen; Van Der Veken, Pieter; Vanden Berghe, Wim; Augustyns, Koen; De Winter, Hans

    2016-10-15

    The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.

  16. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome.

    PubMed Central

    Perlmann, T; Wrange, O

    1988-01-01

    We have reconstituted a nucleosome with core histones from rat liver using a restriction fragment containing a sequence from the mouse mammary tumour virus (MTV) long terminal repeat (LTR). This sequence harbours glucocorticoid responsive elements (GREs) which mediate glucocorticoid hormone induction of transcription from the MTV promoter via glucocorticoid receptor (GR) binding. Exonuclease III and DNase I footprinting demonstrated that the reconstituted nucleosome was specifically located between positions -219 and -76. A nucleosome was previously shown to be located at a similar or identical position in the MTV promoter in situ and to be structurally altered upon glucocorticoid hormone induction. We demonstrated, by DNase I footprinting, that GR is able to bind sequence specifically to the DNA in the in vitro assembled nucleosome. No evidence for unfolding of the nucleosome was obtained, but the DNase I footprinting pattern demonstrated GR induced local alterations in the DNA. Images PMID:2846275

  17. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid.

  18. Interaction of rat liver glucocorticoid receptor with sodium tungstate.

    PubMed

    Murakami, N; Healy, S P; Moudgil, V K

    1982-06-15

    Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.

  19. Glucocorticoid receptors in Epstein-Barr virus-transformed lymphocytes from patients with glucocorticoid resistance and a glucocorticoid-resistant New World primate species.

    PubMed

    Tomita, M; Brandon, D D; Chrousos, G P; Vingerhoeds, A C; Foster, C M; Fowler, D; Loriaux, D L; Lipsett, M B

    1986-06-01

    Members of a previously reported family with glucocorticoid resistance and several New World primates have high plasma cortisol concentrations without any signs of glucocorticoid excess. The glucocorticoid receptor in circulating leukocytes and cultured skin fibroblasts from these patients and the animals is characterized by a decreased affinity for dexamethasone. On the other hand, the cell content of receptor is similar to that of corresponding tissues of normal humans. Detailed biochemical-biophysical studies of the glucocorticoid receptor in this familial syndrome and animal model became possible with the use of Epstein-Barr virus-transformed lymphocyte lines. Cell lines from patients with this syndrome and from the marmoset (Saguinus oedipus) contained decreased amounts of glucocorticoid receptors with concomitant decreases in nuclear receptor content compared to cultured Epstein-Barr virus-transformed lymphocytes from normal human subjects. This may reflect diminished induction of glucocorticoid receptor during viral transformation of cells from the patients and the animal model. Receptors from a severely affected glucocorticoid-resistant patient and the marmoset had decreased affinity for dexamethasone. Evidence for a mild affinity defect of the glucocorticoid receptor in a patient with asymptomatic glucocorticoid resistance was obtained by increased hormone-receptor dissociation at an elevated temperature. Thermal stability, mero-receptor formation, thermal activation of cytosolic receptor, and mol wt of receptors from all cell lines were normal. Only the receptors of the severely affected patient had a discernible defect in temperature-induced activation of intact cells. We conclude that the major detectable change in the receptor in both the patients and the animal model is the decreased affinity for glucocorticoid. Viral receptor induction is decreased in both patient and marmoset cells. The physiological relevance of this phenomenon is not known. Gross

  20. The glucocorticoid receptor: pivot of depression and of antidepressant treatment?

    PubMed

    Anacker, Christoph; Zunszain, Patricia A; Carvalho, Livia A; Pariante, Carmine M

    2011-04-01

    Hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis and increased levels of glucocorticoid hormones in patients with depression have mostly been ascribed to impaired feedback regulation of the HPA axis, possibly caused by altered function of the receptor for glucocorticoid hormones, the glucocorticoid receptor (GR). Antidepressants, in turn, ameliorate many of the neurobiological disturbances in depression, including HPA axis hyperactivity, and thereby alleviate depressive symptoms. There is strong evidence for the notion that antidepressants exert these effects by modulating the GR. Such modulations, however, can be manifold and range from regulation of receptor expression to post-translational modifications, which may result in differences in GR nuclear translocation and GR-dependent gene transcription. The idea that the therapeutic action of antidepressants is mediated, at least in part, by restoring GR function, is consistent with studies showing that decreased GR function contributes to HPA axis hyperactivity and to the development of depressive symptoms. Conversely, excessive glucocorticoid signalling, which requires an active GR, is associated with functional impairments in the depressed brain, especially in the hippocampus, where it results in reduced neurogenesis and impaired neuroplasticity. In this review, we will focus on the GR as a key player in the precipitation, development and resolution of depression. We will discuss potential explanations for the apparent controversy between glucocorticoid resistance and the detrimental effects of excessive glucocorticoid signalling. We will review some of the evidence for modulation of the GR by antidepressants and we will provide further insight into how antidepressants may regulate the GR to overcome depressive symptoms.

  1. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    PubMed

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  2. Glucocorticoid activity detected by in vivo zebrafish assay and in vitro glucocorticoid receptor bioassay at environmental relevant concentrations.

    PubMed

    Chen, Qiyu; Jia, Ai; Snyder, Shane A; Gong, Zhiyuan; Lam, Siew Hong

    2016-02-01

    Glucocorticoids are pharmaceutical contaminants of emerging concern due to their incomplete removal during wastewater treatment, increased presence in aquatic environment and their biological potency. The zebrafish is a popular model for aquatic toxicology and environmental risk assessment. This study aimed to determine if glucocorticoids at environmental concentrations would perturb expression of selected glucocorticoid-responsive genes in zebrafish and to investigate their potentials as an in vivo zebrafish assay in complementing in vitro glucocorticoid receptor bioassay. The relative expression of eleven glucocorticoid-responsive genes in zebrafish larvae and liver of adult male zebrafish exposed to three representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) was determined. The expression of pepck, baiap2 and pxr was up-regulated in zebrafish larvae and the expression of baiap2, pxr and mmp-2 was up-regulated in adult zebrafish exposed to glucocorticoids at concentrations equivalent to total glucocorticoids reported in environmental samples. The responsiveness of the specific genes were sufficiently robust in zebrafish larvae exposed to a complex environmental sample detected with in vitro glucocorticoid activity equivalent to 478 pM dexamethasone (DEX-EQ) and confirmed to contain low concentration (0.2 ng/L or less) of the targeted glucocorticoids, and possibly other glucocorticoid-active compounds. The findings provided in vivo relevance to the in vitro glucocorticoid activity and suggested that the environmental sample can perturb glucocorticoid-responsive genes in its original, or half the diluted, concentration as may be found in the environment. The study demonstrated the important complementary roles of in vivo zebrafish and in vitro bioassays coupled with analytical chemistry in monitoring environmental glucocorticoid contaminants.

  3. Properties of binding of partially purified glucocorticoid receptor from rat liver with glucocorticoids of different biopotencies.

    PubMed

    Izawa, M; Satoh, Y; Yoshida, A; Ichii, S

    1985-06-01

    To elucidate the relationship between binding parameters and biopotencies of glucocorticoids, we partially purified the receptor from the liver cytosol of rats in a dexamethasone-bound and unactivated form by precipitation with protamine sulfate, gel filtration and DEAE-cellulose chromatography (approximately 100-fold) and examined the interaction of the preparation with 3 glucocorticoids of different biopotencies (dexamethasone; Dex, corticosterone; Cort and prednisolone; Pred). The partially purified receptor (PPR) was stable at -20 degrees C for at least 2 months in the presence of bovine serum albumin, glycerol, molybdate and dithiothreitol. Treatment of the PPR with p-hydroxymercuribenzoate liberated the ligands and the treated PPR reassociated 3H-glucocorticoids efficiently following the addition of dithiothreitol. The reassociated PPR was bound to the DNA-cellulose after a brief heating. Metabolic activity on ligands and inactivation of the binding sites in the PPR were insignificant under the conditions used. Kd's were approximately 0.9, approximately 3 and approximately 6 nM for Dex, Cort and Pred, respectively (at 0 degree C). Relative binding affinity of ligands to the PPR which was estimated by competitions was higher in the order of triamcinolone acetonide greater than Dex greater than Cort greater than Pred greater than progesterone greater than cortexolone. Association of Dex and Cort was relatively rapid and significantly accelerated by raising the incubation temperature, while the association of Pred was slower and effects of the temperature was moderate. The rate of dissociations was also varied with ligands. The rate of dissociation of Dex was the lowest among the 3 ligands and was elevated by raising the temperature. Because the effect of temperature was more pronounced in the dissociation than in the association, apparent Ka's decreased at higher temperature. Thermodynamic examinations of glucocorticoid binding in the PPR revealed that the

  4. Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments

    PubMed Central

    Sundahl, Nora; Clarisse, Dorien; Bracke, Marc; Offner, Fritz; Berghe, Wim Vanden; Beck, Ilse M.

    2016-01-01

    Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting. PMID:27713909

  5. The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis.

    PubMed

    Varricchio, Lilian; Migliaccio, Anna Rita

    2014-01-01

    Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis.

  6. The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis

    PubMed Central

    Varricchio, Lilian; Migliaccio, Anna Rita

    2014-01-01

    Glucocorticoids are endogenous steroid hormones that regulate several biological functions including proliferation, differentiation and apoptosis in numerous cell types in response to stress. Synthetic glucocorticoids, such as dexamethasone (Dex) are used to treat a variety of diseases ranging from allergy to depression. Glucocorticoids exert their effects by passively entering into cells and binding to a specific Glucocorticoid Receptor (GR) present in the cytoplasm. Once activated by its ligand, GR may elicit cytoplasmic (mainly suppression of p53), and nuclear (regulation of transcription of GR responsive genes), responses. Human GR is highly polymorphic and may encode > 260 different isoforms. This polymorphism is emerging as the leading cause for the variability of phenotype and response to glucocorticoid therapy observed in human populations. Studies in mice and clinical observations indicate that GR controls also the response to erythroid stress. This knowledge has been exploited in-vivo by using synthetic GR agonists for treatment of the erythropoietin-refractory congenic Diamond Blackfan Anemia and in-vitro to develop culture conditions that may theoretically generate red cells in numbers sufficient for transfusion. However, the effect exerted by GR polymorphism on the variability of the phenotype of genetic and acquired erythroid disorders observed in the human population is still poorly appreciated. This review will summarize current knowledge on the biological activity of GR and of its polymorphism in non-hematopoietic diseases and discuss the implications of these observations for erythropoiesis. PMID:25755906

  7. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    PubMed Central

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  8. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma.

    PubMed

    Thomas, Alexandra L; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J; Rajapakshe, Kimal; Krett, Nancy L; Gunaratne, Preethi H; Rosen, Steven T

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3'-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death.

  9. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  10. Glucocorticoid-induced hypertension and cardiac injury: effects of mineralocorticoid and glucocorticoid receptor antagonism.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Iwase, Erika; Takahashi, Keiji; Ohtake, Masafumi; Tsuboi, Koji; Ohtake, Mayuko; Miyachi, Masaaki; Murohara, Toyoaki; Nagata, Kohzo

    2013-02-01

    Glucocorticoids are widely administered for the treatment of various disorders, although their long-term use results in adverse effects associated with glucocorticoid excess. We investigated the pathophysiological roles of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the cardiac changes induced by exogenous corticosterone in rats. Corticosterone or vehicle was injected twice daily in rats from 8 to 12 weeks of age. The effects of the GR antagonist RU486, the MR antagonist spironolactone, or both agents on corticosterone action were also determined. Corticosterone induced hypertension, left ventricular (LV) fibrosis, and LV diastolic dysfunction. Neither RU486 nor spironolactone affected corticosterone-induced hypertension, whereas spironolactone, but not RU486, attenuated the effects of corticosterone on LV fibrosis and diastolic function. Corticosterone also increased cardiac oxidative stress and inflammation in a manner sensitive to spironolactone but not to RU486. The corticosterone-induced LV atrophy was not affected by either RU486 or spironolactone. Our results implicate MRs in the cardiac fibrosis and diastolic dysfunction, but not MRs or GRs in the cardiac atrophy, induced by corticosterone. Neither MRs nor GRs appear to contribute to corticosterone-induced hypertension.

  11. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    SciTech Connect

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. Erasmus Univ. of Rotterdam )

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  12. Glucocorticoids.

    PubMed

    Barnes, Peter J

    2014-01-01

    Glucocorticoids are the most effective anti-inflammatory treatment for allergic diseases, and inhaled glucocorticoids have now become the first-line treatment for asthma. Glucocorticoids were discovered in the 1940s as extracts of the adrenal cortex and this was followed by the isolation of adrenocorticotropic hormone (ACTH) from pituitary gland extracts. Cortisone and ACTH were found to be very beneficial in the treatment of rheumatoid arthritis and Kendall, Reichstein and Hench received the Nobel Prize in Physiology and Medicine for this work in 1950. Bordley and colleagues first showed that ACTH was very beneficial in the treatment of allergic diseases in 1949, but the use of systemic glucocorticoids was limited by side effects. Inhaled glucocorticoids were discovered from topical steroids developed for skin inflammation and beclomethasone dipropionate was introduced in 1972, initially in low doses but later in higher doses, and became the standard treatment for persistent asthma. Subsequently, inhaled glucocorticoids were combined with long-acting β2-agonists in combination inhalers for even greater therapeutic benefit. There is now a good understanding of the molecular basis for the anti-inflammatory effects of glucocorticoids in allergic diseases. The search for even safer glucocorticoids based on the dissociation of anti-inflammatory and side effect mechanisms is currently ongoing.

  13. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  14. The human glucocorticoid receptor: molecular basis of biologic function.

    PubMed

    Nicolaides, Nicolas C; Galata, Zoi; Kino, Tomoshige; Chrousos, George P; Charmandari, Evangelia

    2010-01-01

    The characterization of the subfamily of steroid hormone receptors has enhanced our understanding of how a set of hormonally derived lipophilic ligands controls cellular and molecular functions to influence development and help achieve homeostasis. The glucocorticoid receptor (GR), the first member of this subfamily, is a ubiquitously expressed intracellular protein, which functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes. The effector domains of the GR mediate transcriptional activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation sites, and stabilize the RNA-polymerase II machinery for repeated rounds of transcription of target genes. This review summarizes the basic aspects of the structure and actions of the human (h) GR, and the molecular basis of its biologic functions.

  15. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors.

    PubMed

    Baker, Michael E; Funder, John W; Kattoula, Stephanie R

    2013-09-01

    Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to

  16. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms.

    PubMed

    Chrousos, G P; Renquist, D; Brandon, D; Eil, C; Pugeat, M; Vigersky, R; Cutler, G B; Loriaux, D L; Lipsett, M B

    1982-03-01

    The concentrations of total and protein-unbound plasma cortisol of New World monkeys are higher than those of Old World primates and prosimians. The urinary free-cortisol excretion also is increased markedly. However, there is no physiologic evidence of increased cortisol effect. These findings suggest end-organ resistance to glucocorticoids. This was confirmed by showing that the hypothalamic-pituitary adrenal axis is resistant to suppression by dexamethasone. To study this phenomenon, glucocorticoid receptors were examined in circulating mononuclear leukocytes and cultured skin fibroblasts from both New and Old World species. The receptor content is the same in all species, but the New World monkeys have a markedly decreased binding affinity for dexamethasone. Thus, the resistance of these species to the action of cortisol is due to the decreased binding affinity of the glucocorticoid receptor. This presumed mutation must have occurred after the bifurcation of Old and New World primates (approximately 60 x 10(6) yr ago) and before the diversion of the New World primates from each other (approximately 15 x 10(6) yr ago).

  17. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    SciTech Connect

    Tully, D.B.; Cidlowski, J.A. )

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.

  18. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  19. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL.

    PubMed

    Tissing, Wim J E; Meijerink, Jules P P; Brinkhof, Bas; Broekhuis, Mathilde J C; Menezes, Renee X; den Boer, Monique L; Pieters, Rob

    2006-08-01

    Glucocorticoid (GC) resistance is an adverse prognostic factor in childhood acute lymphoblastic leukemia (ALL), but little is known about causes of GC resistance. Up-regulation of the glucocorticoid receptor (GR) has been suggested as an essential step to the induction of apoptosis in leukemic cells. In this study we investigated whether baseline mRNA expression levels of the 5 different GR promoter transcripts (1A1, 1A2, 1A3, 1B, and 1C) or differences in the degree of regulation of the GR or GR promoter transcripts upon GC exposure are related to GC resistance. Therefore, mRNA levels of the 5 GR promoter transcripts and of the GR were measured by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR; Taqman) technology in primary ALL cells prior to and after 3, 8, and 24 hours of prednisolone exposure. GR expression is induced upon GC exposure in primary ALL patient samples, which is opposite to what is found in tissues in which GCs do not induce apoptosis. GC resistance in childhood ALL cannot be attributed to an inability of resistant cells to up-regulate the expression of the GR upon GC exposure, nor to differences in GR promoter usage (at baseline and upon GC exposure).

  20. Epigenetic regulation of glucocorticoid receptor and infantile spasms.

    PubMed

    Yang, Guang; Zou, Li-Ping; Wang, Jing; Ding, Ying-Xue

    2011-02-01

    IS is one of the few seizure syndromes that can be alleviated by adrenocorticotropic hormone (ACTH) or glucocorticoids (GCs) that are considered effective drugs of choice. This indicates that, indeed, IS may be fundamentally different from most other seizure disorders owing to the dysregulation of the hypothalamic-hypophysial-adrenal axis. GCs have multiple critical effects on fetal development, especially in normal brain development. Most glucocorticoid effects are mediated by the glucocorticoid receptor (GR), a steroid-activated nuclear receptor that translocates to the nucleus upon binding to cortisol. In the nucleus, GR targets genes related to neuronal metabolism and plasticity. The GR has also been characterized as a critical checkpoint in the delicate hormonal control of energy homeostasis. Recent studies suggest a possible correlation between prenatal stress and the onset of infantile spasms. In this paper, we propose a hypothesis that connects the adverse events in early life with the onset of IS through methylation of the GR gene, which is an epigenetic mechanism.

  1. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation.

    PubMed

    Lambert, W Marcus; Xu, Chong-Feng; Neubert, Thomas A; Chao, Moses V; Garabedian, Michael J; Jeanneteau, Freddy D

    2013-09-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.

  2. Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver.

    PubMed

    He, Bo; Cruz-Topete, Diana; Oakley, Robert H; Xiao, Xiao; Cidlowski, John A

    2015-12-28

    While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms.

  3. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds.

    PubMed

    Prima, V; Depoix, C; Masselot, B; Formstecher, P; Lefebvre, P

    2000-01-01

    The glucocorticoid receptor (GR) engages transient or stable interactions with chaperones (hsp90, hsp70), co-chaperones (p60/hop, hsp40) and several other polypeptides such as immunophilins (Cyp40, FKBP59) and p23 to achieve a high affinity ligand binding state. This complex dissociates in response to hormonal stimuli and holo-GR translocates into the nucleus, where it regulates the activity of glucocorticoid-sensitive genes. GR activity is controlled through its ligand binding domain by steroids displaying either agonistic or antagonistic activity. An alternative approach to modulate GR activity is to target receptor-associated proteins (RAPs), and several non steroidal compounds binding to RAPs affect GR transcriptional activity. We have studied the effect of such drugs on the intracellular localization of a EGFP-GR fusion protein, which has wild type GR pharmacological properties. Agonist and antagonist binding induced nuclear translocation of GR, whereas rifampicin was found to be inactive in our system. Immunosuppressants FK506 and cyclosporin A were able to induce partial nuclear translocation of GR, suggesting that potentiation of glucocorticoid action by these compounds may also proceed through enhanced GR nuclear transfer. Short treatment of cells with the hsp90 inhibitor geldanamycin (GA) did not prevent nuclear translocation of GR. However, longer treatments, in parrallel to the inhibition of GR transcriptional activity, strongly perturbed GR subcellular localization concomitantly to the disruption of the actin network, and caused GR aggregation and down-regulation. The GA-induced transcriptional shutdown was also observed for other nuclear receptors which do not interact stably with hsp90. Thus RAP-binding compounds may exert their effects at least in part through perturbation of the GR cytosol to nucleus partitioning, and identify these proteins as valuable therapeutic targets to control nuclear receptor activity.

  4. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  5. Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro.

    PubMed

    Kiilerich, Pia; Triqueneaux, Gérard; Christensen, Nynne Meyn; Trayer, Vincent; Terrien, Xavier; Lombès, Marc; Prunet, Patrick

    2015-08-01

    The salmonid corticosteroid receptors (CRs), glucocorticoid receptors 1 and 2 (GR1 and GR2) and the mineralocorticoid receptor (MR) share a high degree of homology with regard to structure, ligand- and DNA response element-binding, and cellular co-localization. Typically, these nuclear hormone receptors homodimerize to confer transcriptional activation of target genes, but a few studies using mammalian receptors suggest some degree of heterodimerization. We observed that the trout MR confers a several fold lower transcriptional activity compared to the trout GRs. This made us question the functional relevance of the MR when this receptor is located in the same cells as the GRs and activated by cortisol. A series of co-transfection experiments using different glucocorticoid response elements (GREs) containing promoter-reporter constructs were carried out to investigate any possible interaction between the piscine CRs. Co-transfection of the GRs with the MR significantly reduced the total transcriptional activity even at low MR levels, suggesting interaction between these receptors. Co-transfection of GR1 or GR2 with the MR did not affect the subcellular localization of the GRs, and the MR-mediated inhibition seemed to be independent of specific activation or inhibition of the MR. Site-directed mutagenesis of the DNA-binding domain and dimerization interface of the MR showed that the inhibition was dependent on DNA binding but not necessarily on dimerization ability. Thus, we suggest that the interaction between MR and the GRs may regulate the cortisol response in cell types where the receptors co-localize and propose a dominant-negative role for the MR in cortisol-mediated transcriptional activity.

  6. Metabolic functions of glucocorticoid receptor in skeletal muscle.

    PubMed

    Kuo, Taiyi; Harris, Charles A; Wang, Jen-Chywan

    2013-11-05

    Glucocorticoids (GCs) exert key metabolic influences on skeletal muscle. GCs increase protein degradation and decrease protein synthesis. The released amino acids are mobilized from skeletal muscle to liver, where they serve as substrates for hepatic gluconeogenesis. This metabolic response is critical for mammals' survival under stressful conditions, such as fasting and starvation. GCs suppress insulin-stimulated glucose uptake and utilization and glycogen synthesis, and play a permissive role for catecholamine-induced glycogenolysis, thus preserving the level of circulating glucose, the major energy source for the brain. However, chronic or excess exposure of GCs can induce muscle atrophy and insulin resistance. GCs convey their signal mainly through the intracellular glucocorticoid receptor (GR). While GR can act through different mechanisms, one of its major actions is to regulate the transcription of its primary target genes through genomic glucocorticoid response elements (GREs) by directly binding to DNA or tethering onto other DNA-binding transcription factors. These GR primary targets trigger physiological and pathological responses of GCs. Much progress has been made to understand how GCs regulate protein and glucose metabolism. In this review, we will discuss how GR primary target genes confer metabolic functions of GCs, and the mechanisms governing the transcriptional regulation of these targets. Comprehending these processes not only contributes to the fundamental understanding of mammalian physiology, but also will provide invaluable insight for improved GC therapeutics.

  7. Glucocorticoids and their receptors: insights into specific roles in mitochondria.

    PubMed

    Lee, Sung-Ryul; Kim, Hyoung-Kyu; Song, In-Sung; Youm, Jaeboum; Dizon, Louise Anne; Jeong, Seung-Hun; Ko, Tae-Hee; Heo, Hye-Jin; Ko, Kyoung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2013-05-01

    Glucocorticoids (GCs) affect most physiological systems and are the most frequently used drugs for multiple disorders and organ transplantation. GC functions depend on a balance between circulating GC and cytoplasmic glucocorticoid receptor II (GR). Mitochondria individually enclose circular, double-stranded DNA that is expressed and replicated in response to nuclear-encoded factors imported from the cytoplasm. Fine-tuning and response to cellular demands should be coordinately regulated by the nucleus and mitochondria; thus mitochondrial-nuclear interaction is vital to optimal mitochondrial function. Elucidation of the direct and indirect effects of steroids, including GCs, on mitochondria is an important and emerging field of research. Mitochondria may also be under GC control because GRs are present in mitochondria, and glucocorticoid response elements (GREs) reside in the mitochondrial genome. Therefore, mitochondrial gene expression can be regulated by GCs via at least two different mechanisms: direct action on mitochondrial DNA and oxidative phosphorylation (OXPHOS) genes, or by an indirect effect through interaction with nuclear genes. In this review, we outline possible mechanisms of regulation of mitochondrial genes in response to GCs in view of translocation of the GR into mitochondria and the possible regulation of OXPHOS genes by GREs in the mitochondrial genome.

  8. Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor

    PubMed Central

    2014-01-01

    Glucocorticoids are pleiotropic hormones, which are involved in almost every cellular, molecular and physiologic network of the organism, and regulate a broad spectrum of physiologic functions essential for life. The cellular response to glucocorticoids displays profound variability both in magnitude and in specificity of action. Tissue sensitivity to glucocorticoids differs among individuals, within tissues of the same individual and within the same cell. The actions of glucocorticoids are mediated by the glucocorticoid receptor, a ubiquitously expressed intracellular, ligand-dependent transcription factor. Multiple mechanisms, such as pre-receptor ligand metabolism, receptor isoform expression, and receptor-, tissue-, and cell type-specific factors, exist to generate diversity as well as specificity in the response to glucocorticoids. Alterations in the molecular mechanisms of glucocorticoid receptor action impair glucocorticoid signal transduction and alter tissue sensitivity to glucocorticoids. This review summarizes the recent advances in our understanding of the molecular mechanisms determining tissue sensitivity to glucocorticoids with particular emphasis on novel mutations and new information on the circadian rhythm and ligand-induced repression of the glucocorticoid receptor. PMID:25155432

  9. Proopiomelanocortin, glucocorticoid, and CRH receptor expression in human ACTH-secreting pituitary adenomas.

    PubMed

    Cassarino, Maria Francesca; Sesta, Antonella; Pagliardini, Luca; Losa, Marco; Lasio, Giovanni; Cavagnini, Francesco; Pecori Giraldi, Francesca

    2017-03-01

    ACTH-secreting pituitary tumors are by definition partially autonomous, i.e., secrete ACTH independent of physiological control. However, only few, small-sized studies on proopiomelanocortin (POMC) and its regulation by corticotropin-releasing hormone (CRH) or glucocorticoids are available. Objective of the present study was to report on constitutive and CRH- and dexamethasone-regulated POMC, CRH (CRH-R1), and glucocorticoid receptor (NR3C1) gene expression in a large series of human corticotrope adenomas. Fifty-three ACTH-secreting adenomas were incubated with 10 nM CRH or 10 nM dexamethasone for 24 h. POMC, CRH-R1, NR3C1, and its alpha and beta isoforms were quantified and medium ACTH measured. Constitutive POMC expression proved extremely variable, with macroadenomas exhibiting higher levels than microadenomas. POMC increased during CRH in most specimens; conversely, changes induced by dexamethasone were varied, ranging from decrease to paradoxical increase. No correlation between POMC and ACTH was detected in any experimental condition. CRH-R1 expression was not linked to the response to CRH while NR3C1 was expressed at greater levels in specimens who failed to inhibit during dexamethasone; glucocorticoid receptor α was the more abundant isoform and subject to down-regulation by dexamethasone. Our results demonstrate a considerable variability in POMC expression among tumors and no correlation between POMC and ACTH, suggesting that POMC peptide processing/transport plays a major role in modulating ACTH secretion. Further, CRH-R1 and NR3C1 expression were not linked to the expected ligand-induced outcome, indicating that receptor signaling rather than abundance determines corticotrope responses. Our findings pave the way to new avenues of research into Cushing's disease pathophysiology.

  10. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

    PubMed Central

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-won

    2016-01-01

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7–8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  11. Involvement of the Androgen and Glucocorticoid Receptors in Bladder Cancer

    PubMed Central

    McBeth, Lucien; Grabnar, Maria; Selman, Steven; Hinds, Terry D.

    2015-01-01

    Bladder cancer is encountered worldwide having been associated with a host of environmental and lifestyle risk factors. The disease has a male to female prevalence of 3 : 1. This disparity has raised the possibility of the androgen receptor (AR) pathway being involved in the genesis of the disease; indeed, research has shown that AR is involved in and is likely a driver of bladder cancer. Similarly, an inflammatory response has been implicated as a major player in bladder carcinogenesis. Consistent with this concept, recent work on anti-inflammatory glucocorticoid signaling points to a pathway that may impact bladder cancer. The glucocorticoid receptor- (GR-) α isoform has an important role in suppressing inflammatory processes, which may be attenuated by AR in the development of bladder cancer. In addition, a GR isoform that is inhibitory to GRα, GRβ, is proinflammatory and has been shown to induce cancer growth. In this paper, we review the evidence of inflammatory mediators and the relationship of AR and GR isoforms as they relate to the propensity for bladder cancer. PMID:26347776

  12. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution

    SciTech Connect

    Bridgham, Jamie T.; Ortlund, Eric A.; Thornton, Joseph W.

    2010-10-28

    The extent to which evolution is reversible has long fascinated biologists. Most previous work on the reversibility of morphological and life-history evolution has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters. Further, despite theoretical work on the factors that could contribute to irreversibility, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent 'restrictive' mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.

  13. Overexpression of mineralocorticoid and transdominant glucocorticoid receptor blocks the impairing effects of glucocorticoids on memory.

    PubMed

    Ferguson, Deveroux; Sapolsky, Robert

    2008-01-01

    It is well established that mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) influence hippocampal-dependent spatial memory. MRs are saturated in the presence of low corticosterone (CORT) levels; consequently receptor protein levels play a rate-limiting role in regulating the positive effects of MR-mediated gene transcription. In this study, viral vector-mediated transgene expression was used to simultaneously manipulate both MR and GR signaling. This approach allowed us to investigate the effects of spatially restricted overexpression of MR and a negative transdominant GR (TD) in the dentate gyrus (DG) subfield of the hippocampus, on short term and long term spatial memory in animals overexpressing one copy of MR or TD, two copies of MR ("MR/MR"), or one copy of each ("MR/TD"). Expression of transgenes did not influence the acquisition (learning) phase of the Morris water maze task. However, we found an overall enhancing effect of MR/MR expression on short term memory performance. In addition, rats expressing TD and MR/TD blocked the high CORT-induced impairments on long term spatial memory retrieval. These findings illustrate the potential beneficial effects of increasing MR signaling or decreasing GR signaling to enhance specific aspects of cognitive function.

  14. The Human Glucocorticoid Receptor: Molecular Basis of Biologic Function

    PubMed Central

    Nicolaides, Nicolas C.; Galata, Zoi; Kino, Tomoshige; Chrousos, George P.; Charmandari, Evangelia

    2009-01-01

    The characterization of the subfamily of steroid hormone receptors has enhanced our understanding of how a set of hormonally derived lipophilic ligands controls cellular and molecular functions to influence development and help achieve homeostasis. The glucocorticopid receptor (GR), the first member of this subfamily, is a ubiquitously expressed intracellular protein, which functions as a ligand-dependent transcription factor that regulates the expression of glucocorticoid-responsive genes. The effector domains of the GR mediate transcriptional activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation sites, and stabilize the RNA polymerase II machinery for repeated rounds of transcription of target genes. This review summarizes the basic aspects of the structure and of the human (h) GR, and the molecular basis of its biologic function. PMID:19818358

  15. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  16. HES1 Is a Master Regulator of Glucocorticoid Receptor-Dependent Gene Expression

    PubMed Central

    Revollo, Javier R.; Oakley, Robert H.; Lu, Nick Z.; Kadmiel, Mahita; Gandhavadi, Maheer; Cidlowski, John A.

    2014-01-01

    Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor-dependent regulation of nearly 25% of the genome. We now establish a genome wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling. PMID:24300895

  17. Glucocorticoid receptor signalling activates YAP in breast cancer

    PubMed Central

    Sorrentino, Giovanni; Ruggeri, Naomi; Zannini, Alessandro; Ingallina, Eleonora; Bertolio, Rebecca; Marotta, Carolina; Neri, Carmelo; Cappuzzello, Elisa; Forcato, Mattia; Rosato, Antonio; Mano, Miguel; Bicciato, Silvio; Del Sal, Giannino

    2017-01-01

    The Hippo pathway is an oncosuppressor signalling cascade that plays a major role in the control of cell growth, tissue homoeostasis and organ size. Dysregulation of the Hippo pathway leads to aberrant activation of the transcription co-activator YAP (Yes-associated protein) that contributes to tumorigenesis in several tissues. Here we identify glucocorticoids (GCs) as hormonal activators of YAP. Stimulation of glucocorticoid receptor (GR) leads to increase of YAP protein levels, nuclear accumulation and transcriptional activity in vitro and in vivo. Mechanistically, we find that GCs increase expression and deposition of fibronectin leading to the focal adhesion-Src pathway stimulation, cytoskeleton-dependent YAP activation and expansion of chemoresistant cancer stem cells. GR activation correlates with YAP activity in human breast cancer and predicts bad prognosis in the basal-like subtype. Our results unveil a novel mechanism of YAP activation in cancer and open the possibility to target GR to prevent cancer stem cells self-renewal and chemoresistance. PMID:28102225

  18. NFκB and glucocorticoid receptor activity in steroid resistance.

    PubMed

    Dawson, Charlotte; Dhanda, Ashwin; Conway-Campbell, Becky; Dimambro, Alexandra; Lightman, Stafford; Dayan, Colin

    2012-02-01

    Resistance to the anti-inflammatory and immunosuppressive effects of steroids is an important clinical problem that complicates the treatment of approximately 30% of patients with conditions for which steroids are normally first-line therapy. Previous studies have shown that steroid-resistant (SR) patients have more severe disease and higher levels of inflammatory cytokine production than steroid-sensitive (SS) patients, but the molecular mechanisms for this remain poorly understood. Peripheral blood mononuclear cells from healthy volunteers were tested for steroid resistance by their in vitro response to the anti-proliferative effects of dexamethasone. The SR cohort had high baseline levels of NFκB DNA binding activity, equivalent to that in phytohemagglutinin (PHA)-stimulated SS cells. In SR cells, dexamethasone exposure, but not PHA, increased binding of the p65 NFκB subunit to the κB promoter element. Glucocorticoid receptor (GR) was not detected at either the κB promoter element or the glucocorticoid response element (GRE), suggesting that it does not translocate to the nucleus in these cells. Conversely, in SS cells, baseline p65 DNA binding activity was low and significantly increased by PHA, but not by dexamethasone. Unlike in SR cells, GR was detected at the κB element and at the GRE. These findings suggest that in SR patients, steroids may be harmful by increasing NFκB activity which would exacerbate disease by increasing transcription of inflammatory cytokines.

  19. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    SciTech Connect

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  20. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  1. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A.

    PubMed

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein-protein interactions with GR.

  2. A naturally hypersensitive glucocorticoid receptor elicits a compensatory reduction of hypothalamus–pituitary–adrenal axis activity early in ontogeny

    PubMed Central

    Muráni, Eduard; Ponsuksili, Siriluck; Jaeger, Alexandra; Görres, Andreas; Tuchscherer, Armin; Wimmers, Klaus

    2016-01-01

    We comprehensively characterized the effects of a unique natural gain-of-function mutation in the glucocorticoid receptor (GR), GRAla610Val, in domestic pigs to expand current knowledge of the phenotypic consequences of GR hypersensitivity. Cortisol levels were consistently reduced in one-week-old piglets, at weaning and in peripubertal age, probably due to a reduced adrenal capacity to produce glucocorticoids (GC), which was indicated by an adrenocortical thinning in GRAla610Val carriers. Adrenocorticotrophic hormone (ACTH) levels were significantly reduced in one-week-old piglets only. Expression analyses in peripubertal age revealed significant downregulation of hypothalamic expression of CRH and AVP, the latter only in females, and upregulation of hepatic expression of SERPINA6, by GRAla610Val. Transcriptional repression of proinflammatory genes in peripheral blood mononuclear cells (PBMCs) from GRAla610Val carriers was more sensitive to dexamethasone treatment ex vivo. However, no significant effects on growth, body composition, blood chemistry or cell counts were observed under baseline conditions. These results suggest that GRAla610Val-induced GR hypersensitivity elicits a compensatory reduction in endogenous, bioactive glucocorticoid levels via readjustment of the hypothalamus–pituitary–adrenal (HPA) axis early in ontogeny to maintain an adequate response, but carriers are more sensitive to exogenous GC. Therefore, GRAla610Val pigs represent a valuable animal model to explore GR-mediated mechanisms of HPA axis regulation and responses to glucocorticoid-based drugs. PMID:27440422

  3. Conservation analysis predicts in vivo occupancy of glucocorticoid receptor-binding sequences at glucocorticoid-induced genes.

    PubMed

    So, Alex Yick-Lun; Cooper, Samantha B; Feldman, Brian J; Manuchehri, Mitra; Yamamoto, Keith R

    2008-04-15

    The glucocorticoid receptor (GR) interacts with specific GR-binding sequences (GBSs) at glucocorticoid response elements (GREs) to orchestrate transcriptional networks. Although the sequences of the GBSs are highly variable among different GREs, the precise sequence within an individual GRE is highly conserved. In this study, we examined whether sequence conservation of sites resembling GBSs is sufficient to predict GR occupancy of GREs at genes responsive to glucocorticoids. Indeed, we found that the level of conservation of these sites at genes up-regulated by glucocorticoids in mouse C3H10T1/2 mesenchymal stem-like cells correlated directly with the extent of occupancy by GR. In striking contrast, we failed to observe GR occupancy of GBSs at genes repressed by glucocorticoids, despite the occurrence of these sites at a frequency similar to that of the induced genes. Thus, GR occupancy of the GBS motif correlates with induction but not repression, and GBS conservation alone is sufficient to predict GR occupancy and GRE function at induced genes.

  4. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation.

    PubMed

    Vandevyver, Sofie; Dejager, Lien; Tuckermann, Jan; Libert, Claude

    2013-03-01

    Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.

  5. Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors.

    PubMed

    Oakley, Robert H; Revollo, Javier; Cidlowski, John A

    2012-10-23

    G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensitization) and stimulate β-arrestin-dependent signaling pathways. Alterations in the cellular complement of β-arrestin-1 and β-arrestin-2 occur in many human diseases, and their genetic ablation in mice has severe consequences. Surprisingly, however, the factors that control β-arrestin gene expression are poorly understood. We demonstrate that glucocorticoids differentially regulate β-arrestin-1 and β-arrestin-2 gene expression in multiple cell types. Glucocorticoids act via the glucocorticoid receptor (GR) to induce the synthesis of β-arrestin-1 and repress the expression of β-arrestin-2. Glucocorticoid-dependent regulation involves the recruitment of ligand-activated glucocorticoid receptors to conserved and functional glucocorticoid response elements in intron-1 of the β-arrestin-1 gene and intron-11 of the β-arrestin-2 gene. In human lung adenocarcinoma cells, the increased expression of β-arrestin-1 after glucocorticoid treatment impairs G protein-dependent activation of inositol phosphate signaling while enhancing β-arrestin-1-dependent stimulation of the MAPK pathway by protease activated receptor 1. These studies demonstrate that glucocorticoids redirect the signaling profile of GPCRs via alterations in β-arrestin gene expression, revealing a paradigm for cross-talk between nuclear and cell surface receptors and a mechanism by which glucocorticoids alter the clinical efficacy of GPCR-based drugs.

  6. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  7. Historical contingency and its biophysical basis in glucocorticoid receptor evolution.

    PubMed

    Harms, Michael J; Thornton, Joseph W

    2014-08-14

    Understanding how chance historical events shape evolutionary processes is a central goal of evolutionary biology. Direct insights into the extent and causes of evolutionary contingency have been limited to experimental systems, because it is difficult to know what happened in the deep past and to characterize other paths that evolution could have followed. Here we combine ancestral protein reconstruction, directed evolution and biophysical analysis to explore alternative 'might-have-been' trajectories during the ancient evolution of a novel protein function. We previously found that the evolution of cortisol specificity in the ancestral glucocorticoid receptor (GR) was contingent on permissive substitutions, which had no apparent effect on receptor function but were necessary for GR to tolerate the large-effect mutations that caused the shift in specificity. Here we show that alternative mutations that could have permitted the historical function-switching substitutions are extremely rare in the ensemble of genotypes accessible to the ancestral GR. In a library of thousands of variants of the ancestral protein, we recovered historical permissive substitutions but no alternative permissive genotypes. Using biophysical analysis, we found that permissive mutations must satisfy at least three physical requirements--they must stabilize specific local elements of the protein structure, maintain the correct energetic balance between functional conformations, and be compatible with the ancestral and derived structures--thus revealing why permissive mutations are rare. These findings demonstrate that GR evolution depended strongly on improbable, non-deterministic events, and this contingency arose from intrinsic biophysical properties of the protein.

  8. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP

    SciTech Connect

    Osman, Waffa; Laine, Sanna; Zilliacus, Johanna . E-mail: johanna.zilliacus@mednut.ki.se

    2006-10-06

    Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation.

  9. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    SciTech Connect

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D. )

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using (3H)dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor.

  10. Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology

    PubMed Central

    Arango-Lievano, Margarita; Peguet, Camille; Catteau, Matthias; Parmentier, Marie-Laure; Wu, Synphen; Chao, Moses V; Ginsberg, Stephen D.; Jeanneteau, Freddy

    2016-01-01

    Glucocorticoid resistance is a risk factor for Alzheimer’s disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. The goal of this study is to test the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance. We report that deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via the MAPK-phosphatase DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. These findings provide evidence for a causal role of BDNF-dependent GR signaling in tau neuropathology and indicate that DUSP1 is a potential target for therapeutic interventions. PMID:27849045

  11. RSUME Enhances Glucocorticoid Receptor SUMOylation and Transcriptional Activity

    PubMed Central

    Druker, Jimena; Liberman, Ana C.; Antunica-Noguerol, María; Gerez, Juan; Paez-Pereda, Marcelo; Rein, Theo; Iñiguez-Lluhí, Jorge A.; Holsboer, Florian

    2013-01-01

    Glucocorticoid receptor (GR) activity is modulated by posttranslational modifications, including phosphorylation, ubiquitination, and SUMOylation. The GR has three SUMOylation sites: lysine 297 (K297) and K313 in the N-terminal domain (NTD) and K721 within the ligand-binding domain. SUMOylation of the NTD sites mediates the negative effect of the synergy control motifs of GR on promoters with closely spaced GR binding sites. There is scarce evidence on the role of SUMO conjugation to K721 and its impact on GR transcriptional activity. We have previously shown that RSUME (RWD-containing SUMOylation enhancer) increases protein SUMOylation. We now demonstrate that RSUME interacts with the GR and increases its SUMOylation. RSUME regulates GR transcriptional activity and the expression of its endogenous target genes, FKBP51 and S100P. RSUME uncovers a positive role for the third SUMOylation site, K721, on GR-mediated transcription, demonstrating that GR SUMOylation acts positively in the presence of a SUMOylation enhancer. Both mutation of K721 and small interfering RNA-mediated RSUME knockdown diminish GRIP1 coactivator activity. RSUME, whose expression is induced under stress conditions, is a key factor in heat shock-induced GR SUMOylation. These results show that inhibitory and stimulatory SUMO sites are present in the GR and at higher SUMOylation levels the stimulatory one becomes dominant. PMID:23508108

  12. Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis

    PubMed Central

    Richardson, Rachel V; Batchen, Emma J; Thomson, Adrian J W; Darroch, Rowan; Pan, Xinlu; Rog-Zielinska, Eva A; Wyrzykowska, Wiktoria; Scullion, Kathleen; Al-Dujaili, Emad A S; Diaz, Mary E; Moran, Carmel M; Kenyon, Christopher J; Gray, Gillian A

    2017-01-01

    Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types. PMID:28057868

  13. Historical contingency and its biophysical basis in glucocorticoid receptor evolution

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2015-01-01

    Understanding how chance historical events shape evolutionary processes is a central goal of evolutionary biology1–7. Direct insights into the extent and causes of evolutionary contingency have been limited to experimental systems,7–9 because it is difficult to know what happened in the deep past and to characterize other paths that evolution could have followed. Here we combine ancestral protein reconstruction, directed evolution, and biophysical analysis to explore alternate “might-have-been” trajectories during the ancient evolution of a novel protein function. We previously found that the evolution of cortisol specificity in the ancestral glucocorticoid receptor (GR) was contingent on permissive substitutions, which had no apparent effect on receptor function but were necessary for GR to tolerate the large-effect mutations that caused the shift in specificity.6 Here we show that alternative mutations that could have permitted the historical function-switching substitutions are extremely rare in the ensemble of genotypes accessible to the ancestral GR. In a library of thousands of variants of the ancestral protein, we recovered historical permissive substitutions, but no alternate permissive genotypes. Using biophysical analysis, we found that permissive mutations must satisfy at least three physical requirements—they must stabilize specific local elements of the protein structure, maintain the correct energetic balance between functional conformations, and be compatible with the ancestral and derived structures—thus revealing why permissive mutations are rare. These findings demonstrate that GR evolution depended strongly on improbable, nondeterministic events, and this contingency arose from intrinsic biophysical properties of the protein. PMID:24930765

  14. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo.

    PubMed

    Payvar, F; Wrange, O; Carlstedt-Duke, J; Okret, S; Gustafsson, J A; Yamamoto, K R

    1981-11-01

    Activated glucocorticoid receptor protein, purified to 40-60% homogeneity from rat liver extracts, binds selectively in vitro to a cloned fragment of murine mammary tumor virus (MTV) DNA. The DNA fragment tested contains about half of the sequences present in intact MTV DNA, and its rate of transcription, like that of the intact viral element, is strongly stimulated by glucocorticoids when it is introduced into the genome of a receptor-containing cell. In contrast, the receptor fails to bind selectively to DNA restriction fragments from E. coli plasmids pBR322 and RSF2124 or from bacteriophages lambda and T4. Preliminary experiments to localize regions within MTV DNA responsible for selective binding have revealed thus far one subfragment that fails to bind the receptor and one selectively bound subfragment that maps far downstream from the 5' terminus of the normal RNA transcript. These studies are consistent with the notion that steroid receptors may modulate rates of transcription by recognizing specific DNA sequences within or near the regulated genes.

  15. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  16. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  17. Extraction of DNA-cellulose-bound glucocorticoid-receptor complexes with sodium tungstate.

    PubMed

    Murakami, N; Moudgil, V K

    1981-09-04

    Glucocorticoid-receptor complex from rat liver cytosol, activated by warming at 23 degrees C or fractionation with (NH4)2SO4, was adsorbed over DNA-cellulose. This DNA-cellulose-bound [3H]triamcinolone acetonide-receptor complex was extracted in a dose-dependent manner by incubation with different concentrations of sodium tungstate. A 50% recovery of receptor was achieved with 5 mM sodium tungstate. Almost the entire glucocorticoid-receptor complex bound to DNA-cellulose could be extracted with 20 mM sodium tungstate. The [3H]triamcinolone acetonide released from DNA-cellulose following tungstate and molybdate treatment was found to be associated with a macromolecule, as seen by analysis on a Sephadex G-75 column. The glucocorticoid-receptor complex extracted by both the compounds sedimented as a 4 S entity of 5-20% sucrose gradients under low- and high-salt conditions. Addition of tungstate or molybdate to the preparations containing activated receptor had no effect on the sedimentation rate of receptor. However, addition of tungstate to non-activated receptor preparation caused aggregates of larger size. The tungstate-extracted glucocorticoid-receptor complex failed to rebind to DNA-cellulose even after extensive dialysis, whereas receptor in molybdate-extract retained its DNA-cellulose binding capacity.

  18. Glucocorticoid receptor signaling contributes to constitutive activation of the noncanonical NF-κB pathway in term human placenta.

    PubMed

    Wang, Bingbing; Palomares, Kristy; Parobchak, Nataliya; Cece, John; Rosen, Max; Nguyen, Anh; Rosen, Todd

    2013-02-01

    Our recent study demonstrated that constitutively activated RelB/NF-κB2 positively regulates the CRH in the human placenta. In the current study, we explored the role of the glucocorticoid receptor (GR) signaling in constitutive activation of the noncanonical NF-κB pathway. A glucocorticoid response element (GRE) motif search suggests that both NF-κB inducing kinase (NIK) and RelB genes, which are key regulators of the noncanonical NF-κB pathway, have a putative GRE within their promoter, approximately 1 kb upstream from the transcription start site. By using chromatin immunoprecipitation assay we identified that the GR and phosphorylated GR at Ser211 were associated with the GREs of both NIK and RelB. Dexamethasone stimulated expression of NIK, RelB, NF-κB2 as well as CRH and cyclooxygenase-2 (COX-2). Repression of GR by short interfering RNA resulted in inhibition of NIK, RelB, NF-κB2, CRH, and COX-2. In addition, depletion of GR attenuated glucocorticoid-mediated up-regulation of NIK, RelB, NF-κB2, CRH, and COX-2. Furthermore, siRNA specifically targeting NIK down-regulated CRH and COX-2. Taken together, these results suggest that constitutive activation of the noncanonical NF-κB pathway in term human placenta is driven by the GR signaling, which in turn up-regulates placental CRH and other NF-κB-responsive genes.

  19. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor

    PubMed Central

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-01-01

    Background and Purpose Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). Experimental Approach The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. Key Results DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. Conclusions and Implications These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. PMID:25626076

  20. Selective Androgen Receptor Downregulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2006-10-01

    used to down-regulate the AR include antisense oligonucleotides (9, 10), ribozyme treatments (11, 12), AR dominant negatives (13) and small...findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or dominant...of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol, 12: 1558

  1. Structure and specific DNA binding of the rat liver glucocorticoid receptor.

    PubMed

    Gustafsson, J A; Carlstedt-Duke, J; Okret, S; Wikström, A C; Wrange, O; Payvar, F; Yamamoto, K

    1984-01-01

    During recent years major advances have been made in our understanding of glucocorticoid mechanism of action. This progress has been made possible by access to purified glucocorticoid receptor in significant amounts as well as by application of hybrid DNA technology within the field of glucocorticoid control of gene expression. Especially the mammary tumour virus genome has turned out to be a convenient experimental system suitable for such investigations. This paper summarizes some of the work carried out in our own laboratory, partially in collaboration with Dr Keith Yamamoto and his associates at the Department of Biochemistry and Biophysics, University of California, San Francisco, U.S.A.

  2. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice

    PubMed Central

    Huynh, Tony; Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Heier, Christopher R; Van Der Meulen, Jack H; Yu, Qing; Harris, Mark; Nolan, Christopher J; Haegeman, Guy; Grounds, Miranda D; Nagaraju, Kanneboyina

    2014-01-01

    The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2Kb-tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective

  3. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice.

    PubMed

    Huynh, Tony; Uaesoontrachoon, Kitipong; Quinn, James L; Tatem, Kathleen S; Heier, Christopher R; Van Der Meulen, Jack H; Yu, Qing; Harris, Mark; Nolan, Christopher J; Haegeman, Guy; Grounds, Miranda D; Nagaraju, Kanneboyina

    2013-10-01

    The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective

  4. MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression.

    PubMed

    Smith, Spenser S; Dole, Neha S; Franceschetti, Tiziana; Hrdlicka, Henry C; Delany, Anne M

    2016-10-07

    Serum glucocorticoids play a critical role in synchronizing circadian rhythm in peripheral tissues, and multiple mechanisms regulate tissue sensitivity to glucocorticoids. In the skeleton, circadian rhythm helps coordinate bone formation and resorption. Circadian rhythm is regulated through transcriptional and post-transcriptional feedback loops that include microRNAs. How microRNAs regulate circadian rhythm in bone is unexplored. We show that in mouse calvaria, miR-433 displays robust circadian rhythm, peaking just after dark. In C3H/10T1/2 cells synchronized with a pulse of dexamethasone, inhibition of miR-433 using a tough decoy altered the period and amplitude of Per2 gene expression, suggesting that miR-433 regulates rhythm. Although miR-433 does not directly target the Per2 3'-UTR, it does target two rhythmically expressed genes in calvaria, Igf1 and Hif1α. miR-433 can target the glucocorticoid receptor; however, glucocorticoid receptor protein abundance was unaffected in miR-433 decoy cells. Rather, miR-433 inhibition dramatically enhanced glucocorticoid signaling due to increased nuclear receptor translocation, activating glucocorticoid receptor transcriptional targets. Last, in calvaria of transgenic mice expressing a miR-433 decoy in osteoblastic cells (Col3.6 promoter), the amplitude of Per2 and Bmal1 mRNA rhythm was increased, confirming that miR-433 regulates circadian rhythm. miR-433 was previously shown to target Runx2, and mRNA for Runx2 and its downstream target, osteocalcin, were also increased in miR-433 decoy mouse calvaria. We hypothesize that miR-433 helps maintain circadian rhythm in osteoblasts by regulating sensitivity to glucocorticoid receptor signaling.

  5. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    PubMed Central

    Hinds, Terry D.; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S.

    2016-01-01

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids. PMID:26875982

  6. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  7. New Insights in Glucocorticoid Receptor Signaling—More Than Just a Ligand-Binding Receptor

    PubMed Central

    Scheschowitsch, Karin; Leite, Jacqueline Alves; Assreuy, Jamil

    2017-01-01

    The clinical use of classical glucocorticoids (GC) is narrowed by the many side effects it causes and the resistance to GC observed in some diseases. Since the great majority of GC effects depend on the activation of a glucocorticoid receptor (GR), many research groups had focused to better understand the signaling pathways involving those receptors. Transgenic animal models and genetic modifications of the receptor brought a huge insight into GR mechanisms of action. This in turn opened a new window for the search of selective GR modulators that ideally may have agonistic and antagonistic combined effects and activate one specific signaling pathway, inducing mostly transrepression or transactivation mechanisms. Another important research field concerns to posttranslational modifications that affect the GR and consequently also affect its signaling and function. In this mini review, we discuss many of those aspects of GR signaling, as well as findings like the ligand-independent activation of GR, which add another layer of complexity in GR signaling pathways. Although several recent data have been added to the GR field, much work has yet to be done, especially to find out the biological relevance of those alternative GR signaling pathways. Improving the knowledge about alternative GR signaling pathways and understanding how these pathways intercommunicate and in which situations they are relevant might help to develop new strategies to take benefit of it and to improve GC or other compounds efficacy causing minimal side effects. PMID:28220107

  8. Down-regulated Peroxisome Proliferator-activated Receptor γ (PPARγ) in Lung Epithelial Cells Promotes a PPARγ Agonist-reversible Proinflammatory Phenotype in Chronic Obstructive Pulmonary Disease (COPD)*

    PubMed Central

    Lakshmi, Sowmya P.; Reddy, Aravind T.; Zhang, Yingze; Sciurba, Frank C.; Mallampalli, Rama K.; Duncan, Steven R.; Reddy, Raju C.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment. PMID:24368768

  9. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C

    2014-03-07

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.

  10. Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation

    PubMed Central

    Carrillo-de Sauvage, M Á; Maatouk, L; Arnoux, I; Pasco, M; Sanz Diez, A; Delahaye, M; Herrero, M T; Newman, T A; Calvo, C F; Audinat, E; Tronche, F; Vyas, S

    2013-01-01

    In CNS, glucocorticoids (GCs) activate both GC receptor (GR) and mineralocorticoid receptor (MR), whereas GR is widely expressed, the expression of MR is restricted. However, both are present in the microglia, the resident macrophages of the brain and their activation can lead to pro- or anti-inflammatory effects. We have therefore addressed the specific functions of GR in microglia. In mice lacking GR in macrophages/microglia and in the absence of modifications in MR expression, intraparenchymal injection of lipopolysaccharide (LPS) activating Toll-like receptor 4 signaling pathway resulted in exacerbated cellular lesion, neuronal and axonal damage. Global inhibition of GR by RU486 pre-treatment revealed that microglial GR is the principal mediator preventing neuronal degeneration triggered by lipopolysaccharide (LPS) and contributes with GRs of other cell types to the protection of non-neuronal cells. In vivo and in vitro data show GR functions in microglial differentiation, proliferation and motility. Interestingly, microglial GR also abolishes the LPS-induced delayed outward rectifier currents by downregulating Kv1.3 expression known to control microglia proliferation and oxygen radical production. Analysis of GR transcriptional function revealed its powerful negative control of pro-inflammatory effectors as well as upstream inflammatory activators. Finally, we analyzed the role of GR in chronic unpredictable mild stress and aging, both known to prime or sensitize microglia in vivo. We found that microglial GR suppresses rather than mediates the deleterious effects of stress or aging on neuronal survival. Overall, the results show that microglial GR acts on several key processes limiting pro-inflammatory actions of activated microglia. PMID:24013726

  11. nti glucocorticoid receptor transcripts lack sequences encoding the amino-terminal transcriptional modulatory domain.

    PubMed Central

    Dieken, E S; Meese, E U; Miesfeld, R L

    1990-01-01

    Glucocorticoid induction of cell death (apoptosis) in mouse lymphoma S49 cells has long been studied as a molecular genetic model of steroid hormone action. To better understand the transcriptional control of glucocorticoid-induced S49 cell death, we isolated and characterized glucocorticoid receptor (GR) cDNA from two steroid-resistant nti S49 mutant cell lines (S49.55R and S49.143R) and the wild-type parental line (S49.A2). Our data reveal that nti GR transcripts encode intact steroid- and DNA-binding domains but lack 404 amino-terminal residues as a result of aberrant RNA splicing between exons 1 and 3. Results from transient cotransfection experiments into CV1 cells using nti receptor expression plasmids and a glucocorticoid-responsive reporter gene demonstrated that the truncated nti receptor exhibits a reduced transcriptional regulatory activity. Gene fusions containing portions of both the wild-type and the nti GR-coding sequences were constructed and used to functionally map the nti receptor mutation. We found that the loss of the modulatory domain alone is sufficient to cause the observed defect in nti transcriptional transactivation. These results support the proposal that glucocorticoid-induced S49 cell death requires GR sequences which have previously been shown to be required for transcriptional regulation, suggesting that steroid-regulated apoptosis is controlled at the level of gene expression. Images PMID:2388618

  12. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA.

    PubMed

    Payvar, F; Firestone, G L; Ross, S R; Chandler, V L; Wrange, O; Carlstedt-Duke, J; Gustafsson, J A; Yamamoto, K R

    1982-01-01

    Glucocorticoid hormones selectively stimulate the rate of transcription of integrated mammary tumor virus (MTV) sequences in infected rat hepatoma cells. Using two independent assays, we find that purified rat liver glucocorticoid receptor protein binds specifically to at least four widely separated regions on pure MTV proviral DNA. One of these specific binding domains, which itself contains at least two distinct receptor binding sites, resides within a fragment of viral DNA that maps 110-449 bp upstream of the promoter for MTV RNA synthesis. Three other binding domains lie downstream of the promoter and within the MTV primary transcription unit. Restriction fragments bearing separate binding domains have been introduced into cultured cells; transformants have been recovered in which the introduced fragments are expressed under glucocorticoid control. Thus, it appears that this assay will be useful for assessing the biological significance of the receptor binding sites detected in vitro.

  13. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor.

    PubMed

    Miranda, Tina B; Morris, Stephanie A; Hager, Gordon L

    2013-11-05

    The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.

  14. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering.

    PubMed

    Ratman, Dariusz; Vanden Berghe, Wim; Dejager, Lien; Libert, Claude; Tavernier, Jan; Beck, Ilse M; De Bosscher, Karolien

    2013-11-05

    The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow.

  15. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells

    PubMed Central

    Dong, Hongli; Carlton, Michael E.; Lerner, Adam; Epstein, Paul M.

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad. PMID:26528184

  16. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    PubMed

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  17. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment that mediates a delayed secondary response to glucocorticoids in vivo.

    PubMed

    Hess, P; Meenakshi, T; Chan, G C; Carlstedt-Duke, J; Gustafsson, J A; Payvar, F

    1990-04-01

    We have identified and characterized a 206-base-pair region downstream from rat alpha 2u-globulin promoter that specifically mediates a delayed secondary response to glucocorticoids. Unlike positive primary glucocorticoid response elements (GREs), this regulatory element, termed delayed sGRE, dictates an inductive process preceded by a time lag of several hours and blocked by the protein synthesis inhibitor cycloheximide. Reminiscent of GREs and negative GREs (nGREs), a delayed sGRE confers hormonal regulation upon a linked heterologous promoter from a downstream position with respect to transcription start site and, remarkably, also interacts selectively with purified glucocorticoid receptor. These results imply that receptor binding to a delayed sGRE in vivo may mediate certain secondary responses to glucocorticoid hormones.

  18. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment that mediates a delayed secondary response to glucocorticoids in vivo.

    PubMed Central

    Hess, P; Meenakshi, T; Chan, G C; Carlstedt-Duke, J; Gustafsson, J A; Payvar, F

    1990-01-01

    We have identified and characterized a 206-base-pair region downstream from rat alpha 2u-globulin promoter that specifically mediates a delayed secondary response to glucocorticoids. Unlike positive primary glucocorticoid response elements (GREs), this regulatory element, termed delayed sGRE, dictates an inductive process preceded by a time lag of several hours and blocked by the protein synthesis inhibitor cycloheximide. Reminiscent of GREs and negative GREs (nGREs), a delayed sGRE confers hormonal regulation upon a linked heterologous promoter from a downstream position with respect to transcription start site and, remarkably, also interacts selectively with purified glucocorticoid receptor. These results imply that receptor binding to a delayed sGRE in vivo may mediate certain secondary responses to glucocorticoid hormones. Images PMID:1690888

  19. Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice

    PubMed Central

    Wosiski-Kuhn, Marlena; Erion, Joanna R.; Gomez-Sanchez, Elise P.; Gomez-Sanchez, Celso E.; Stranahan, Alexis M.

    2015-01-01

    Diabetes and obesity are associated with perturbation of adrenal steroid hormones and impairment of hippocampal plasticity, but the question of whether these conditions recruit glucocorticoid-mediated molecular cascades that are comparable to other stressors has yet to be fully addressed. We have used a genetic mouse model of obesity and diabetes with chronically elevated glucocorticoids to determine the mechanism for glucocorticoid-induced deficits in hippocampal synaptic function. Pharmacological inhibition of adrenal steroidogenesis attenuates structural and functional impairments by regulating plasticity among dendritic spines in the hippocampus of leptin receptor deficient (db/db) mice. Synaptic deficits evoked by exposure to elevated corticosterone levels in db/db mice are attributable to glucocorticoid receptor-mediated transrepression of AP-1 actions at BDNF promoters I and IV. db/db mice exhibit corticosterone-mediated reductions in brain-derived neurotrophic factor (BDNF), and a change in the ratio of TrkB to P75NTR that silences the functional response to BDNF stimulation. Lentiviral suppression of glucocorticoid receptor expression rescues behavioral and synaptic function in db/db mice, and also reinstates BDNF expression, underscoring the relevance of molecular mechanisms previously demonstrated after psychological stress to the functional alterations observed in obesity and diabetes. PMID:24636513

  20. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    SciTech Connect

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. /sup 3/H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse.

  1. Ligand-independent activation of the glucocorticoid receptor by ursodeoxycholic acid: Repression of IFN-{gamma}-induced MHC class II gene expression via a glucocorticoid receptor-dependent pathway

    SciTech Connect

    Tanaka, Hirotoshi; Makino, Yuichi; Miura, Takanori

    1996-02-15

    The therapeutic effectiveness of ursodeoxycholic acid (UDCA) for various autoimmune liver diseases strongly indicates that UDCA possesses immunomodulatory activities. Experimental evidence also supports this notion, since, for example, UDCA has been shown to suppress secretion of IL-2, IL-4, and IFN-{gamma} from activated T lymphocytes, and Ig production from B lymphocytes. To investigate the mechanical background of UDCA-mediated immunomodulation, we asked whether UDCA interacts with the intracellular signal transduction pathway, especially whether it is involved in immunosuppressive glucocorticoid hormone action. For this purpose, we used a cloned Chinese hamster ovary cell line, CHOpMTGR, in which glucocorticoid receptor cDNA was stably integrated. In immunocytochemical analysis, we found that treatment with UDCA promoted the nuclear translocation of the glucocorticoid receptor in a ligand-independent fashion, which was further confirmed by immunoprecipitation assays. Moreover, the translocated glucocorticoid receptor demonstrated sequence-specific DNA binding activity. Transient transfection experiments revealed that treatment of the cells with UDCA marginally enhanced glucocorticoid-responsive gene expression. We also showed that UDCA suppressed IFN-{gamma}-mediated induction of MHC class II gene expression via the glucocorticoid receptor-mediated pathway. Together, UDCA-dependent promotion of translocation of the glucocorticoid receptor may be associated with, at least in part, its immunomodulatory action through glucocorticoid receptor-mediated gene regulation. 68 refs., 8 figs.

  2. A Natural Mutation in Helix 5 of the Ligand Binding Domain of Glucocorticoid Receptor Enhances Receptor-Ligand Interaction

    PubMed Central

    Reyer, Henry; Ponsuksili, Siriluck; Kanitz, Ellen; Pöhland, Ralf; Wimmers, Klaus; Murani, Eduard

    2016-01-01

    The glucocorticoid receptor (GR) is a central player in the neuroendocrine stress response; it mediates feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis and physiological actions of glucocorticoids in the periphery. Despite intensive investigations of GR in the context of receptor-ligand interaction, only recently the first naturally occurring gain-of-function substitution, Ala610Val, of the ligand binding domain was identified in mammals. We showed that this mutation underlies a major quantitative trait locus for HPA axis activity in pigs, reducing cortisol production by about 40–50 percent. To unravel the molecular mechanisms behind this gain of function, receptor-ligand interactions were evaluated in silico, in vitro and in vivo. In accordance with previously observed phenotypic effects, the mutant Val610 GR showed significantly increased activation in response to glucocorticoid and non-glucocorticoid steroids, and, as revealed by GR-binding studies in vitro and in pituitary glands, enhanced ligand binding. Concordantly, the protein structure prediction depicted reduced binding distances between the receptor and ligand, and altered interactions in the ligand binding pocket. Consequently, the Ala610Val substitution opens up new structural information for the design of potent GR ligands and to examine effects of the enhanced GR responsiveness to glucocorticoids on the entire organism. PMID:27736993

  3. The Effect of Mineralocorticoid and Glucocorticoid Receptor Antagonism on Autobiographical Memory Recall and Amygdala Response to Implicit Emotional Stimuli

    PubMed Central

    Preskorn, Sheldon H.; Victor, Teresa; Misaki, Masaya; Bodurka, Jerzy; Drevets, Wayne C.

    2016-01-01

    Background: Acutely elevated cortisol levels in healthy humans impair autobiographical memory recall and alter hemodynamic responses of the amygdala to emotionally valenced stimuli. It is hypothesized that the effects of the cortisol on cognition are influenced by the ratio of mineralocorticoid receptor to glucocorticoid receptor occupation. The current study examined the effects of acutely blocking mineralocorticoid receptors and glucocorticoid receptors separately on 2 processes known to be affected by altering levels of cortisol: the specificity of autobiographical memory recall, and the amygdala hemodynamic response to sad and happy faces. Methods: We employed a within-subjects design in which 10 healthy male participants received placebo, the mineralocorticoid receptor antagonist spironolactone (600mg) alone, and the glucocorticoid receptor antagonist mifepristone (600mg) alone in a randomized, counter-balanced order separated by 1-week drug-free periods. Results: On autobiographical memory testing, mineralocorticoid receptor antagonism impaired, while glucocorticoid receptor antagonism improved, recall relative to placebo, as evinced by changes in the percent of specific memories recalled. During fMRI, the amygdala hemodynamic response to masked sad faces was greater under both mineralocorticoid receptor and glucocorticoid receptor antagonism relative to placebo, while the response to masked happy faces was attenuated only during mineralocorticoid receptor antagonism relative to placebo. Conclusions: These data suggest both mineralocorticoid receptor and glucocorticoid receptor antagonism (and potentially any deviation from the normal physiological mineralocorticoid receptor/glucocorticoid receptor ratio achieved under the circadian pattern) enhances amygdala-based processing of sad stimuli and may shift the emotional processing bias away from the normative processing bias and towards the negative valence. In contrast, autobiographical memory was enhanced by

  4. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    PubMed

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-03-25

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS.

  5. Human receptor kinetics and lung tissue retention of the enhanced-affinity glucocorticoid fluticasone furoate

    PubMed Central

    Valotis, Anagnostis; Högger, Petra

    2007-01-01

    Fluticasone furoate (FF) – USAN approved name, a new topically active glucocorticoid has been recently identified. The aim of this study was to characterise the binding affinity of this compound to the human lung glucocorticoid receptor in relation to other glucocorticoids. Additionally, we sought to determine the binding behaviour of fluticasone furoate to human lung tissue. The glucocorticoid receptor binding kinetics of fluticasone furoate revealed a remarkably fast association and a slow dissociation resulting in a relative receptor affinity (RRA) of 2989 ± 135 with reference to dexamethasone (RRA: 100 ± 5). Thus, the RRA of FF exceeds the RRAs of all currently clinically used corticosteroids such as mometasone furoate (MF; RRA 2244), fluticasone propionate (FP; RRA 1775), ciclesonide's active metabolite (RRA 1212 – rat receptor data) or budesonide (RRA 855). FP and FF displayed pronounced retention in human lung tissue in vitro. Lowest tissue binding was found for MF. There was no indication of instability or chemical modification of FF in human lung tissue. These advantageous binding attributes may contribute to a highly efficacious profile for FF as a topical treatment for inflammatory disorders of the respiratory tract. PMID:17650349

  6. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor?

    PubMed Central

    Hager, Gordon L.

    2017-01-01

    ABSTRACT It is widely accepted that the glucocorticoid receptor (GR), a ligand-regulated transcription factor that triggers anti-inflammatory responses, binds specific response elements as a homodimer. Here, we will discuss the original primary data that established this model and contrast it with a recent report characterizing the GR–DNA complex as a tetramer. PMID:27764575

  7. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  8. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  9. Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism.

    PubMed

    Koliwad, Suneil K; Kuo, Taiyi; Shipp, Lauren E; Gray, Nora E; Backhed, Fredrik; So, Alex Yick-Lun; Farese, Robert V; Wang, Jen-Chywan

    2009-09-18

    Glucocorticoids are important regulators of lipid homeostasis, and chronically elevated glucocorticoid levels induce hypertriglyceridemia, hepatic steatosis, and visceral obesity. The occupied glucocorticoid receptor (GR) is a transcription factor. However, those genes regulating lipid metabolism under GR control are not fully known. Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor), a protein inhibitor of lipoprotein lipase, is synthesized and secreted during fasting, when circulating glucocorticoid levels are physiologically increased. We therefore tested whether the ANGPTL4 gene (Angptl4) is transcriptionally controlled by GR. We show that treatment with the synthetic glucocorticoid dexamethasone increased Angptl4 mRNA levels in primary hepatocytes and adipocytes (2-3-fold) and in the livers and white adipose tissue of mice (approximately 4-fold). We tested the mechanism of this increase in H4IIE hepatoma cells and found that dexamethasone treatment increased the transcriptional rate of Angptl4. Using bioinformatics and chromatin immunoprecipitation, we identified a GR binding site within the rat Angptl4 sequence. A reporter plasmid containing this site was markedly activated by dexamethasone, indicative of a functional glucocorticoid response element. Dexamethasone treatment also increased histone H4 acetylation and DNase I accessibility in genomic regions near this site, further supporting that it is a glucocorticoid response element. Glucocorticoids promote the flux of triglycerides from white adipose tissue to liver. We found that mice lacking ANGPTL4 (Angptl4(-/-)) had reductions in dexamethasone-induced hypertriglyceridemia and hepatic steatosis, suggesting that ANGPTL4 is required for this flux. Overall, we establish that ANGPTL4 is a direct GR target that participates in glucocorticoid-regulated triglyceride metabolism.

  10. Covalent affinity labeling, radioautography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular Leydig cells

    SciTech Connect

    Stalker, A.; Hermo, L.; Antakly, T. )

    1989-12-01

    The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor.

  11. Receptor mutation is not a common mechanism of naturally occurring glucocorticoid resistance in leukaemia cell lines.

    PubMed

    Beesley, Alex H; Weller, Renae E; Senanayake, Saranga; Welch, Mathew; Kees, Ursula R

    2009-02-01

    Glucocorticoids (GCs) are among the most important drugs for the treatment of acute lymphoblastic leukaemia (ALL). Cell lines cultured in high GC concentrations typically contain mutated glucocorticoid receptor (GR), something that is rarely found in primary ALL specimens. We studied naturally occurring mechanisms of GC resistance and examined sensitivity to GC in 15 T-ALL cell lines grown without prior exposure to drugs. Resistance could not be attributed to mutations in GR or variations in levels of its expression. We conclude that this panel of cell lines provides a suitable in vitro model since it reflects GC resistance in primary ALL.

  12. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling.

    PubMed

    Kuo, Taiyi; Lew, Michelle J; Mayba, Oleg; Harris, Charles A; Speed, Terence P; Wang, Jen-Chywan

    2012-07-10

    Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.

  13. Transformation of glucocorticoid receptors bound to the antagonist RU 486: Effects of alkaline phosphatase

    SciTech Connect

    Gruol, D.J.; Wolfe, K.A. )

    1990-08-28

    RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition was significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.

  14. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  15. Effects of Maternal Dexamethasone Treatment Early in Pregnancy on Glucocorticoid Receptors in the Ovine Placenta

    PubMed Central

    Shang, H.; Meng, W.; Sloboda, D. M.; Li, S.; Ehrlich, L.; Plagemann, A.; Dudenhausen, J. W.; Henrich, W.; Newnham, J. P.; Challis, J. R. G.

    2015-01-01

    The effects of endogenous cortisol on binucleate cells (BNCs), which promote fetal growth, may be mediated by glucocorticoid receptors (GRs), and exposure to dexamethasone (DEX) in early pregnancy stages of placental development might modify this response. In this article, we have investigated the expression of GR as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 119) were randomized to control (2 mL saline/ewe) or DEX-treated groups (intramuscular injections of 0.14 mg/kg ewe weight per 12 hours) at 40 to 41 days of gestation (dG). Placental tissue was collected at 50, 100, 125, and 140 dG. Total glucocorticoid receptor protein (GRt) was increased significantly by DEX at 50 and 125 dG in females only, but decreased in males at 125 dG as compared to controls. Glucocorticoid receptor α (GRα) protein was not changed after DEX treatment. Three BNC phenotypes were detected regarding GRα expression (++, +−, −−), DEX increased the proportion of (++) and decreased (−−) BNC at 140 dG. Effects were sex- and cell type dependent, modifying the responsiveness of the placenta to endogenous cortisol. We speculate that 3 maturational stages of BNCs exist and that the overall activity of BNCs is determined by the distribution of these 3 cell types, which may become altered through early pregnancy exposure to elevated glucocorticoids. PMID:25332218

  16. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor

    PubMed Central

    Hunter, Richard G.; Seligsohn, Ma’ayan; Rubin, Todd G.; Griffiths, Brian B.; Ozdemir, Yildirim; Pfaff, Donald W.; Datson, Nicole A.; McEwen, Bruce S.

    2016-01-01

    Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria. PMID:27457949

  17. Glucocorticoid receptor monoclonal antibodies define the biological action of RU 38486 in intact B16 melanoma cells.

    PubMed

    Lindemeyer, R G; Robertson, N M; Litwack, G

    1990-12-15

    The mechanism of action of the synthetic glucocorticoid antagonist, RU 38486, has yet to be completely elucidated. Although RU 38486 is a potent antiglucocorticoid in vivo, several studies have indicated that it has some agonist activities in vitro, such as high-affinity steroid binding to the receptor, activation, and DNA binding. Nevertheless, these in vitro postbinding events do not lead to any known gene expression. To understand the action of the glucocorticoid antagonist RU 38486, we studied glucocorticoid receptor localization on a mouse melanoma cell line (B16C3) by indirect immunofluorescent staining techniques, using monoclonal antibodies to the glucocorticoid receptor. Our data in intact cells suggest that, unlike glucocorticoid agonists such as triamcinolone acetonide, and similar to the glucocorticoid antagonist cortexolone, RU 38486-bound receptors do not translocate to the nucleus and hence do not allow for transcription of glucocorticoid-regulated genes to occur. Passage through the nuclear membrane may be a rate-limiting step in the action of glucocorticoid antagonists, and translocation may in itself be an important regulatory mechanism of steroid hormone action.

  18. Oxandrolone blocks glucocorticoid signaling in an androgen receptor-dependent manner.

    PubMed

    Zhao, Jingbo; Bauman, William A; Huang, Ruojun; Caplan, Avrom J; Cardozo, Christopher

    2004-05-01

    The anabolic steroid oxandrolone is increasingly used to preserve or restore muscle mass in those with HIV infection or serious burns. These effects are mediated, in part, by the androgen receptor (AR). Anti-glucocorticoid effects have also been reported for some anabolic steroids, and the goal of our studies was to determine whether oxandrolone had a similar mechanism of action. Studies with in vitro translated glucocorticoid receptor (GR), however, showed no inhibition of cortisol binding by oxandrolone. Conversely, experiments in cell culture systems demonstrated significant antagonism of cortisol-induced transcriptional activation by oxandrolone in cells expressing both the AR and GR. Inhibition was not overcome by increased cortisol concentration, and no inhibition by oxandrolone was observed in cells expressing GR alone, confirming that non-competitive mechanisms were involved. AR-dependent repression of transcriptional activation by oxandrolone was also observed with the synthetic glucocorticoids dexamethasone and methylprednisolone. Furthermore, the AR antagonists 2-hydroxyflutamide and DDE also repressed GR transactivation in an AR-dependent manner. A mutant AR lacking a functional nuclear localization signal (AR(4RKM)) was active in oxandrolone-mediated repression of GR even though oxandrolone-bound AR(4RKM) failed to enter the nucleus and did not affect nuclear import of GR. These data indicate a novel action of oxandrolone to suppress glucocorticoid action via crosstalk between AR and GR.

  19. A glucocorticoid receptor in fetal mouse: its relationship to cleft palate formation.

    PubMed

    Hackney, J F

    1980-02-01

    Fetal mouse tissue was investigated for a glucocorticoid binding receptor which might be responsible for cleft palate formation. Fetal mouse heads contain a soluble component which binds the glucocorticoid triamcinolone acetonide in vitro with high affinity. This binding component is present in small finite amounts. Other glucocorticoids compete with triamcinolone acetonide for the binding site in a manner consistent with their potency ranking as cleft palate teratogens. Several mineralocorticoids and progestins also compete when administered in vitro but not when administered in vivo. Triamcinolone acetonide binding was determined in three mouse strains, A/J, C3H, and C57BL, which are listed in decreasing order of cleft palate susceptibility to cortisone. No positive correlation was found between cortisone cleft palate susceptibility and either triamcinolone acetonide binding affinity or binding amount in fetuses from these strains. Cleft palate dose response curves for triamcinolone acetonide were determined in these strains, but they were not parallel to each other as they were for cortisone. This suggests that triamcinolone acetonide may cause cleft palate by different mechanisms in these strains. Thus, fetal mouse tissue contains an apparent glucocorticoid receptors, but its relationship to cleft palate formation in mice is not clear.

  20. Single point estimation of glucocorticoid receptors in lymphocytes of normal subjects and of children under long term glucocorticoid treatment.

    PubMed

    Lapcík, P; Hampl, R; Bicíková, M

    1992-03-01

    A single point assay of glucocorticoid receptors (GR) in human lymphocytes based on the measurement of specific dexamethasone binding has been developed and compared with a common multi-point Scatchard analysis. The assay conditions-concentration of the ligand 20 nmol/l, incubation time 2 h and the cell count 2-6 mil. cells/tube in the assay volume 0.25 ml were found to be optimal. An attempt was also undertaken to use a cell harvester for the separation of cells from unbound ligand. Though specifically bound dexamethasone measured by whole-cell assay and that using cell harvester correlated well, almost by one order lower values obtained with the latter method render it non-applicable for receptor quantitation. The results from 9 healthy volunteers (average GR concentration 7131 +/- 1256 sites/cell) correlated excellently with those obtained by the Scatchard analysis. The single point assay has been also applied for determination of GH in 10 children treated with large doses of prednisone. The average values from healthy volunteers did not differ significantly from those found in these children, though much broader range was found in patients.

  1. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    PubMed

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  2. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    SciTech Connect

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-06-20

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor {gamma}-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses.

  3. Effect of long term dexamethasone treatment on the glucocorticoid receptor

    SciTech Connect

    Silva, C.M.; DeLorenzo, T.M.; Cidlowski, J.A.

    1986-05-01

    The ability of dexamethasone(dex) to induce alkaline phosphatase activity was found to decrease with chronic hormone exposure. In order to better understand this adaptive resistance, the structure of the receptor from control cells and cells under long term dex (10/sup -6/M) treatment was analyzed. Native isoelectric focusing showed that receptor from dex treated cells focused at more basic pI than receptor from control cells. Denaturing two-dimensional gel analysis resulted in the characteristic 4-5 spots of (/sup 3/H)dexamethasone mesylate (DM) binding of receptor from control cells, but no (/sup 3/H)DM binding could be seen for receptor from dex treated cells. In order to study DNA-binding characteristics, gels were renatured, transferred to nitrocellulose and probed with (/sup 32/P)MMTV-GRE. Receptor from control cells showed 5 spots of DNA-binding at 101 kDa molecular weight and a pI range of 7.42 to 7.32. However, receptor from dex treated cells showed less intense DNA-binding which occurred only at the more basic range of pIs (7.42 to 7.39). Furthermore, no nuclear receptor sites could be measured in the dex treated cells, whereas 20,000 sites were measured in control cells. Even after being taken off hormone treatment for 12 days, cells could regenerate only 50% of their receptors. In conclusion, this system is conducive to studying the mechanism of receptor regulation.

  4. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    SciTech Connect

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-05-15

    Purified rat liver glucocorticoid receptor was covalently charged with (/sup 3/H)glucocorticoid by photoaffinity labeling (UV irradiation of (/sup 3/H)triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with (/sup 3/H)dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with (/sup 3/H)triamcinolone acetonide and Cys-656 after affinity labeling with (/sup 3/H)dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.

  5. Low glucocorticoid receptor (GR), high Dig2 and low Bcl-2 expression in double positive thymocytes of BALB/c mice indicates their endogenous glucocorticoid hormone exposure.

    PubMed

    Boldizsár, Ferenc; Pálinkás, László; Czömpöly, Tamás; Bartis, Domokos; Németh, Péter; Berki, Timea

    2006-01-01

    Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significantly higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker

  6. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner.

    PubMed

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state.

  7. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  8. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes.

    PubMed

    Espinoza, Marlen B; Aedo, Jorge E; Zuloaga, Rodrigo; Valenzuela, Cristian; Molina, Alfredo; Valdés, Juan A

    2017-04-01

    Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc.

  9. Assessment of glucocorticoid lung targeting by ex-vivo receptor binding studies in rats.

    PubMed

    Hochhaus, G; Gonzalez-Rothi, R J; Lukyanov, A; Derendorf, H; Schreier, H; Dalla Costa, T

    1995-01-01

    Triamcinolone acetonide (TA, 22 micrograms) was given to rats by intravenous (i.v.) injection or intratracheal (IT) instillation. Free glucocorticoid receptors were monitored over time in liver and lung using an ex-vivo receptor binding technique. After i.v. administration of a TA solution, the reduction of free receptors over time was very similar in lung and liver (AUCLung = 280 +/- 47% h; AUCLiver = 320 +/- 76% h). Intratracheal instillation of the same solution produced time profiles which mirrored those of i.v. injection (AUCLung = 260 +/- 41% h; AUCLiver = 330 +/- 50% h). The lack of lung targeting was also reflected in the failure to show any significant difference in the pulmonary targeting factor T (AUCLung/AUCLiver) between i.v. (T = 0.84 +/- 0.18) and IT (T = 0.78 +/- 0.03) administration. In contrast, a certain degree of lung specificity was observed after IT instillation of a glucocorticoid suspension (22 micrograms; AUCLung = 160 +/- 135% h; AUCLiver = 65 +/- 91% h, T = 2.3 +/- 0.5) as indicated by significant differences in T between i.v. injection and IT instillation (p = 0.038). The method presented provides a means of simultaneously assessing pulmonary and systemic effects after different forms and routes of administration and might be of value in further studying multiple aspects of inhalation glucocorticoid therapy.

  10. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    PubMed

    De Blasio, Miles J; Boije, Maria; Vaughan, Owen R; Bernstein, Brett S; Davies, Katie L; Plein, Alice; Kempster, Sarah L; Smith, Gordon C S; Charnock-Jones, D Stephen; Blache, Dominique; Wooding, F B Peter; Giussani, Dino A; Fowden, Abigail L; Forhead, Alison J

    2015-01-01

    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.

  11. Research resource: modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay.

    PubMed

    Blackford, John A; Brimacombe, Kyle R; Dougherty, Edward J; Pradhan, Madhumita; Shen, Min; Li, Zhuyin; Auld, Douglas S; Chow, Carson C; Austin, Christopher P; Simons, S Stoney

    2014-07-01

    Glucocorticoid steroids affect almost every type of tissue and thus are widely used to treat a variety of human pathological conditions. However, the severity of numerous side effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high-throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (A(max)) and EC(50) (the position of the dexamethasone dose-response curve). Upon screening 1280 chemicals, 10 with the greatest changes in the absolute value of A(max) or EC(50) were selected for further examination. Qualitatively identical behaviors for 60% to 90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the 10 chemicals in a recently described competition assay determined their kinetically defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of the GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.

  12. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex.

    PubMed

    Gummow, Brian M; Scheys, Joshua O; Cancelli, Victoria R; Hammer, Gary D

    2006-11-01

    Numerous genes required for adrenocortical steroidogenesis are activated by the nuclear hormone receptor steroidogenic factor 1 (SF-1) (NR5A1). Dax-1 (NR0B1), another nuclear hormone receptor, represses SF-1-dependent activation. Glucocorticoid products of the adrenal cortex provide negative feedback to the production of hypothalamic CRH and pituitary ACTH. We hypothesized that glucocorticoids stimulate an intraadrenal negative feedback loop via activation of Dax-1 expression. Reporter constructs show glucocorticoid-dependent synergy between SF-1 and glucocorticoid receptor (GR) in the activation of Dax-1, which is antagonized by ACTH signaling. We map the functional glucocorticoid response element between -718 and -704 bp, required for activation by GR and synergy with SF-1. Of three SF-1 response elements, only the -128-bp SF-1 response element is required for synergy with GR. Chromatin immunoprecipitation (ChIP) assays demonstrate that dexamethasone treatment increases GR and SF-1 binding to the endogenous murine Dax-1 promoter 10- and 3.5-fold over baseline. Serial ChIP assays reveal that that GR and SF-1 are part of the same complex on the Dax-1 promoter, whereas coimmunoprecipitation assay confirms the presence of a protein complex that contains both GR and SF-1. ACTH stimulation disrupts the formation of this complex by abrogating SF-1 binding to the Dax-1 promoter, while promoting SF-1 binding to the melanocortin-2 receptor (Mc2r) and steroidogenic acute regulatory protein (StAR) promoters. Finally, dexamethasone treatment increases endogenous Dax-1 expression and concordantly decreases StAR expression. ACTH signaling antagonizes the increase in Dax-1 yet strongly activates StAR transcription. These data indicate that GR provides feedback regulation of adrenocortical steroid production through synergistic activation of Dax-1 with SF-1, which is antagonized by ACTH activation of the adrenal cortex.

  13. Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain.

    PubMed

    van der Laan, Siem; Sarabdjitsingh, R Angela; Van Batenburg, Marcel F; Lachize, Servane B; Li, Hualing; Dijkmans, Thomas F; Vreugdenhil, Erno; de Kloet, E Ron; Meijer, Onno C

    2008-09-01

    While the actions of glucocorticoids on brain functions have been comprehensively studied, the underlying genomic mechanisms are poorly understood. In this study, we show that glucocorticoid-induced leucine zipper (GILZ) mRNA is strongly and ubiquitously induced in rat brain. To decipher the molecular mechanisms underlying these genomic effects, it is of interest to identify the regulatory sites in the promoter region. Alignment of the rat GILZ promoter with the well-characterized human promoter resulted in poor sequence homology. Consequently, we analyzed the rat 5' flanking sequence by Matrix REDUCE and identified two high-affinity glucocorticoid response elements (GRE) located 2 kb upstream of the transcription start site. These findings were corroborated using the glucocorticoid receptor (GR) expressing Ns-1 PC12 rat cell-line. In these cells, dexamethasone treatment leads to a progressive increase of GILZ mRNA expression levels via a GR-dependent mechanism. Subsequently, using chromatin immunoprecipitation assays we show that the two high-affinity GREs are located within the GR-binding regions. Lastly, we demonstrate using multiple tissue in situ hybridization a marked increase in mRNA expression levels in spleen, thymus, heart, lung, liver, muscle, testis, kidney, colon, ileum, as well as in brain and conclude that the GILZ gene can be used to study glucocorticoid effects in many additional rodent tissues.

  14. Separate regions of glucocorticoid receptor, coactivator TIF2, and comodulator STAMP modify different parameters of glucocorticoid-mediated gene induction.

    PubMed

    Awasthi, Smita; Simons, S Stoney

    2012-05-15

    Increased specificity in steroid-regulated gene expression is a long-sought goal of endocrinologists. Considerable progress has resulted from the discovery of coactivators, corepressors, and comodulators that adjust the total activity (A(max)) of gene induction. Two less frequently quantitated, but equally potent, means of improving specificity are the concentration of agonist steroid required for half-maximal activity (EC(50)) and the residual or partial agonist activity displayed by most antisteroids (PAA). It is usually assumed that the modulatory activity of transcriptional cofactors coordinately regulates A(max), EC(50), and PAA. Here we examine the hypothesis that these three parameters can be independently modified by separate protein domains. The test system involves three differently sized fragments of each of three factors (glucocorticoid receptor [GR], coactivator TIF2, and comodulator STAMP), which are shown to form a ternary complex and similarly affect the induction properties of transfected and endogenous genes. Twenty-five different fragment combinations of the ternary complex are examined for their ability to modulate the A(max), EC(50), and PAA of a transiently transfected synthetic reporter gene. Different combinations selectively alter one, two, or all three parameters. These results clearly demonstrate that A(max), EC(50), and PAA can be independently regulated under some conditions by different pathways or molecular interactions. This new mechanistic insight suggests that selected activities of individual transcription factors are attractive targets for small molecules, which would have obvious clinical applications for increasing the specificity of steroids during endocrine therapies.

  15. An affective disorder in zebrafish with mutation of the glucocorticoid receptor.

    PubMed

    Ziv, L; Muto, A; Schoonheim, P J; Meijsing, S H; Strasser, D; Ingraham, H A; Schaaf, M J M; Yamamoto, K R; Baier, H

    2013-06-01

    Upon binding of cortisol, the glucocorticoid receptor (GR) regulates the transcription of specific target genes, including those that encode the stress hormones corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone. Dysregulation of the stress axis is a hallmark of major depression in human patients. However, it is still unclear how glucocorticoid signaling is linked to affective disorders. We identified an adult-viable zebrafish mutant in which the negative feedback on the stress response is disrupted, due to abolition of all transcriptional activity of GR. As a consequence, cortisol is elevated, but unable to signal through GR. When placed into an unfamiliar aquarium ('novel tank'), mutant fish become immobile ('freeze'), show reduced exploratory behavior and do not habituate to this stressor upon repeated exposure. Addition of the antidepressant fluoxetine to the holding water and social interactions restore normal behavior, followed by a delayed correction of cortisol levels. Fluoxetine does not affect the overall transcription of CRH, the mineralocorticoid receptor (MR), the serotonin transporter (Serta) or GR itself. Fluoxetine, however, suppresses the stress-induced upregulation of MR and Serta in both wild-type fish and mutants. Our studies show a conserved, protective function of glucocorticoid signaling in the regulation of emotional behavior and reveal novel molecular aspects of how chronic stress impacts vertebrate brain physiology and behavior. Importantly, the zebrafish model opens up the possibility of high-throughput drug screens in search of new classes of antidepressants.

  16. Caveolin-1 regulates genomic action of the glucocorticoid receptor in neural stem cells.

    PubMed

    Peffer, Melanie E; Chandran, Uma R; Luthra, Soumya; Volonte, Daniela; Galbiati, Ferruccio; Garabedian, Michael J; Monaghan, A Paula; DeFranco, Donald B

    2014-07-01

    While glucocorticoids (GCs) are used clinically to treat many conditions, their neonatal and prenatal usage is increasingly controversial due to reports of delayed adverse outcomes, especially their effects on brain development. Such alterations may reflect the impact of GCs on neural progenitor/stem cell (NPSC) function. We previously demonstrated that the lipid raft protein caveolin-1 (Cav-1) was required for rapid GC signaling in embryonic mouse NPSCs operating through plasma membrane-bound glucocorticoid receptors (GRs). We show here that genomic GR signaling in NPSCs requires Cav-1. Loss of Cav-1 impacts the transcriptional response of many GR target genes (e.g., the serum- and glucocorticoid-regulated kinase 1 gene) that are likely to mediate the antiproliferative effects of GCs. Microarray analysis of wild-type C57 or Cav-1-deficient NPSCs identified approximately 100 genes that are differentially regulated by GC treatment. These changes in hormone responsiveness in Cav-1 knockout NPSCs are associated with the loss of GC-regulated phosphorylation of GR at serine 211 but not at serine 226. Chromatin recruitment of total GR to regulatory regions of target genes such as Fkbp-5, RhoJ, and Sgk-1, as well as p211-GR recruitment to Sgk-1, are compromised in Cav-1 knockout NPSCs. Cav-1 is therefore a multifunctional regulator of GR in NPSCs influencing both rapid and genomic action of the receptor to impact cell proliferation.

  17. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    NASA Astrophysics Data System (ADS)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  18. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  19. Post-Stress Combined Administration of Beta-Receptor and Glucocorticoid Antagonists as a Novel Preventive Treatment in an Animal Model of PTSD

    DTIC Science & Technology

    2010-05-01

    promising, but mixed results were obtained with the acute drug interventions. Propranolol had no effect, and mifepristone had only a modest effect on...stress, PTSD, open field test, social interaction test, fear conditioning, extinction, beta-adrenergic receptors, glucocorticoids, propranolol ...study, social interaction was unaffected (B). Combined treatment with the β-receptor antagonist, propranolol (10 mg/kg) and glucocorticoid-receptor

  20. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    PubMed Central

    Mwinyi, Jessica; Wenger, Christa; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, which led to the formation of 17 different haplotypes with a certainty of > 95% in 173 individuals. The three most commonly occurring haplotypes were included in the association analysis of the influence of haplotype on steroid therapy outcome or IBD activity. None of the NR3C1 haplotypes showed statistically significant association with glucocorticoid therapy success. CONCLUSION: NR3C1 haplotypes are not related to steroid therapy outcome. PMID:20712049

  1. Role of TATA-element in transcription from glucocorticoid receptor-responsive model promoters.

    PubMed Central

    Wieland, S; Schatt, M D; Rusconi, S

    1990-01-01

    Transcription activation properties of the rat glucocorticoid receptor (GR) on minimal, TATA-box containing or depleted promoters have been tested. We show that a cluster of Glucocorticoid Responsive Elements (GRE), upon activation by the GR, is sufficient to mediate abundant RNA-polymerase II transcription. We find that in absence of a bona fide TATA-element transcription initiates at a distance of 45-55bp from the activated GRE cluster with a marked preference for sequences homologous to the initiator element (Inr). Analyzing defined, bi-directional transcription units we demonstrate that the apparent reduction of specific transcription in strong, TATA-depleted promoters, is mainly due to loss of short-range promoter polarization. The implications for long-range promoter/enhancer communication mechanisms are also discussed. Images PMID:2402438

  2. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, Kent D; Jashari, Denisa; Pappas, Kristina M

    2011-08-01

    When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals ("chirps"). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.

  3. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  4. Downregulation of chicken interleukin-17 receptor A during Eimeria infection.

    PubMed

    Kim, Woo H; Jeong, Jipseol; Park, Ae R; Yim, Dongjean; Kim, Suk; Chang, Hong H; Yang, Seung-Hak; Kim, Dong-Hee; Lillehoj, Hyun S; Min, Wongi

    2014-09-01

    Both interleukin-17A (IL-17A) and IL-17F are proinflammatory cytokines that have an important role in intestinal homeostasis via receptor signaling. These cytokines have been characterized in chickens, but very little is known about their receptors and their functional activity. We provide here the first description of the sequence analysis, bioactivity, and comparative expression analysis of chicken IL-17RA (chIL-17RA) in chickens infected with Salmonella and Eimeria, two major infectious agents of gastrointestinal diseases of poultry of economic importance. A full-length chIL-17RA cDNA with a 2,568-bp coding region was identified from chicken thymus cDNA. chIL-17RA shares ca. 46% identity with mammalian homologues and 29.2 to 31.5% identity with its piscine counterparts. chIL-17RA transcript expression was relatively high in the thymus and in the chicken macrophage cell line HD11. The chIL-17RA-specific small interfering RNA inhibits interleukin-6 (IL-6), IL-8, and IL-1β mRNA expression in chicken embryo fibroblast cells (but not in DF-1 cells) stimulated with chIL-17A or chIL-17F. Interaction between chIL-17RA and chIL-17A was confirmed by coimmunoprecipitation. Downregulation of chIL-17RA occurred in concanavalin A- or lipopolysaccharide-activated splenic lymphocytes but not in poly(I·C)-activated splenic lymphocytes. In Salmonella- and Eimeria-infected chickens, the expression levels of the chIL-17RA transcript were downregulated in intestinal tissues from chickens infected with two Eimeria species, E. tenella or E. maxima, that preferentially infect the cecum and jejunum, respectively. However, chIL-17RA expression was generally unchanged in Salmonella infection. These results suggest that chIL-17RA has an important role in mucosal immunity to intestinal intracellular parasite infections such as Eimeria infection.

  5. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor.

    PubMed

    Nelson, Gregory M; Prapapanich, Viravan; Carrigan, Patricia E; Roberts, Patricia J; Riggs, Daniel L; Smith, David F

    2004-07-01

    Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo. Introducing human Hip into yeast enhances hormone-dependent activation of a reporter gene by glucocorticoid receptor (GR). Because Hip does not similarly enhance signaling by mineralocorticoid, progesterone, or estrogen receptors, a general effect on transcription can be excluded. Instead, Hip promotes functional maturation of GR without increasing steady-state levels of GR protein. Unexpectedly, Hip binding to Hsp70 is not critical for boosting GR responsiveness to hormone. In conclusion, Hip functions by a previously unrecognized mechanism to promote the efficiency of GR maturation in cells.

  6. Characterization of the angiotensin (AT1b) receptor promoter and its regulation by glucocorticoids

    PubMed Central

    Bogdarina, Irina G; King, Peter J; Clark, Adrian J L

    2009-01-01

    Angiotensin II acts through two pharmacologically distinct receptors known as AT1 and AT2. Duplication of the AT1 receptor in rodents into At1a and b subtypes allows tissue-specific expression of the AT1b in adrenal and pituitary tissue. Adrenal expression of this receptor is increased in the offspring of rat mothers exposed to a low-protein diet and this is associated with the undermethylation of its promoter. This phenomenon is blocked by the inhibition of maternal glucocorticoid synthesis by metyrapone. We have mapped the transcriptional start site of the promoter and demonstrated that a 1·2 kbp fragment upsteam of this site is effective in driving luciferase expression in mouse Y1 cells. A combination of bioinformatic analysis, electrophoretic mobility shift analysis (EMSA), and mutagenesis studies demonstrates: i) the presence of a putative TATA box and CAAT box; ii) the presence of three Sp1 response elements, capable of binding SP1; mutation of any pair of these sites effectively disables this promoter; iii) the presence of four potential glucocorticoid response elements which each bind glucocorticoid receptor in EMSA, although only two confer dexamethasone inhibition on the promoter; iv) the presence of two AP1 sites. Mutagenesis of the distal AP1 site greatly diminishes promoter function but this is also associated with the loss of dexamethasone inhibition. These studies will facilitate an understanding of the mechanisms by which fetal programming leads to long term alterations in gene expression and the development of adult disease. PMID:19411305

  7. Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer.

    PubMed

    Abduljabbar, Rezvan; Negm, Ola H; Lai, Chun-Fui; Jerjees, Dena A; Al-Kaabi, Methaq; Hamed, Mohamed R; Tighe, Patrick J; Buluwela, Lakjaya; Mukherjee, Abhik; Green, Andrew R; Ali, Simak; Rakha, Emad A; Ellis, Ian O

    2015-04-01

    The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily of transcription factors, which exerts anti-proliferative and anti-apoptotic activities. The GR is expressed in a large proportion of breast cancer (BC) although levels generally decrease during cancer progression. This study aimed to determine the clinical and biological significance of GR expression using a large series of early-stage BC with long-term follow-up and BC cell lines. Immunohistochemistry was used to assess the expression of GR in 999 cases of primary invasive BC prepared as tissue microarrays. Reverse phase protein microarray was used to assess the expression of GR in MCF7 and MDA-MB-231 cell lines. Nuclear expression of GR was observed in 61.6 % of breast tumours and was associated with features of good prognosis including smaller tumour size and lower grade with less pleomorphism and low mitotic count. GR expression was positively correlated with expression of oestrogen (ER) and progesterone receptors. In ER-positive tumours, GR was associated with other features of favourable outcome including FOXA1, GATA3 and BEX1 expression, while low GR expression was associated with high Ki67, p53 and CD71 expression. GR expression is associated with features of good outcome but does not provide prognostic information independent of size, stage and grade. Understanding the receptor and its effects on BC behaviour is essential for avoiding any unwanted effects from the use of glucocorticoids in routine oncology practice.

  8. REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor.

    PubMed

    Okabe, Takashi; Chavan, Rohit; Fonseca Costa, Sara S; Brenna, Andrea; Ripperger, Jürgen A; Albrecht, Urs

    2016-11-01

    REV-ERBα (encoded by Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, encoded by Nr3c1) influences similar processes, but is not part of the circadian clock, although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes, we studied the interplay between these two nuclear receptors. We found that REV-ERBα binds to the C-terminal portion and GR to the N-terminal portion of HSP90α and HSP90β, a chaperone responsible for the activation of proteins to ensure survival of a cell. The presence of REV-ERBα influences the stability and nuclear localization of GR by an unknown mechanism, thereby affecting expression of GR target genes, such as IκBα (Nfkbia) and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence the transcriptional potential of each other. This indicates that the transcriptional landscape is strongly dependent on dynamic processes at the protein level.

  9. REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor

    PubMed Central

    Okabe, Takashi; Chavan, Rohit; Fonseca Costa, Sara S.; Brenna, Andrea; Ripperger, Jürgen A.

    2016-01-01

    ABSTRACT REV-ERBα (encoded by Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, encoded by Nr3c1) influences similar processes, but is not part of the circadian clock, although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes, we studied the interplay between these two nuclear receptors. We found that REV-ERBα binds to the C-terminal portion and GR to the N-terminal portion of HSP90α and HSP90β, a chaperone responsible for the activation of proteins to ensure survival of a cell. The presence of REV-ERBα influences the stability and nuclear localization of GR by an unknown mechanism, thereby affecting expression of GR target genes, such as IκBα (Nfkbia) and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence the transcriptional potential of each other. This indicates that the transcriptional landscape is strongly dependent on dynamic processes at the protein level. PMID:27686098

  10. Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities.

    PubMed

    Kolšek, Katra; Gobec, Martina; Mlinarič Raščan, Irena; Sollner Dolenc, Marija

    2015-02-01

    A homeostasis of the glucocorticoid and androgen endocrine system is essential to human health. Their disturbance can lead to various diseases, for example cardiovascular, inflammatory and autoimmune diseases, infertility, cancer. Fifteen widely used industrial chemicals that disrupt endocrine activity were selected for evaluation of potential (anti)glucocorticoid and (anti)androgenic activities. The human breast carcinoma MDA-kb2 cell line was utilized for reporter gene assays, since it expresses both the androgen and the glucocorticoid-responsive reporter. Two new antiandrogens, 4,4'-sulfonylbis(2-methylphenol) (dBPS) and 4,4'-thiodiphenol (THIO), and two new antiglucocorticoids, bisphenol Z and its analog bis[4-(2-hydroxyethoxy)phenyl] sulfone (BHEPS) were identified. Moreover, four new glucocorticoid agonists (methyl paraben, ethyl paraben, propyl paraben and bisphenol F) were found. To elucidate the structure-activity relationship of bisphenols, we performed molecular docking experiments with androgen and glucocorticoid receptor. These docking experiments had shown that bulky structures such as BHEPS and bisphenol Z act as antiglucocorticoid, because they are positioned toward helix H12 in the antagonist conformation and could therefore be responsible for H12 conformational change and the switch between agonistic and antagonistic conformation of receptor. On the other hand smaller structures cannot interact with H12. The results of in vitro screening of fifteen industrial chemicals as modulators of the glucocorticoid and androgen receptor activities demand additional in vivo testing of these chemicals for formulating any relevant hazard identification to human health.

  11. Delayed secondary glucocorticoid response elements. Unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of alpha 2u-globulin DNA.

    PubMed

    Chan, G C; Hess, P; Meenakshi, T; Carlstedt-Duke, J; Gustafsson, J A; Payvar, F

    1991-11-25

    Glucocorticoids stimulate the transcription of rat alpha 2u-globulin (RUG) genes. Because this induction occurs after a time lag of several hours and is blocked by inhibitors of protein synthesis, it exemplifies a delayed secondary response to steroid hormones. In this report, we show that a region of RUG-transcribed DNA (approximately +1800 to +2174) contains multiple footprint sites for glucocorticoid receptor that are, apparently, organized into at least three independent binding clusters. The DNA sequences bound by the receptor and the location of binding sites were determined. A family of sequences related to half-sites of the consensus primary glucocorticoid response element (GRE) is discernible at each cluster of sites. Compared to the consensus GRE, which contains two pseudo-palindromic hexanucleotides arranged in a tail-to-tail fashion and separated by three bases, the arrangements of hexanucleotides within this segment of RUG DNA are unusual and heterogeneous. Methylation interference of a binding cluster containing three receptor footprints demonstrates that certain guanines of the GRE-like hexanucleotides are essential for efficient receptor binding. A synthetic 29-base pair (bp) RUG element, containing one receptor footprint from this cluster, selectively binds the receptor. Within this 29-bp element, six nucleotides separate two directly repeated copies of GRE-like hexanucleotides. RUG DNA fragments containing all or part of the three binding clusters, including the 29-bp element, confer a delayed secondary hormone responsiveness upon a linked heterologous promoter and reporter gene in stably transfected cell lines. We speculate that the unusual DNA sequence motifs of the receptor-binding sites are crucial for the generation of certain delayed secondary responses.

  12. Subunit dissociation and activation of wild-type and mutant glucocorticoid receptors.

    PubMed

    Gehring, U; Mugele, K; Arndt, H; Busch, W

    1987-09-01

    Apparent molecular weights of wild-type and nti ('increased nuclear transfer') mutant glucocorticoid receptors were obtained from Stokes radii and sedimentation coefficients. At low salt concentrations molecular forms of Mr 328,000 and 298,000 of the wild-type and mutant, respectively, were predominant. Increasing ionic strength resulted in receptor dissociation. Dissociated forms of Mr 130,000 and 63,000 of the wild-type and mutant, respectively, were obtained at 300 mM KCl and above. Some metal oxi-anions prevented dissociation. Receptor activation to allow DNA binding produced the dissociated forms which could be separated from non-activated receptors by filtration through DNA-cellulose or by DEAE-cellulose chromatography. Non-activated wild-type and nti receptors eluted from DEAE-cellulose under identical conditions while activated wild-type and nti receptors eluted differently. Partially proteolyzed wild-type receptors behaved identically to nti receptors. We conclude that the large forms of wild-type and nti receptors are heteromeric and contain only one hormone-building polypeptide per complex.

  13. Evaluation of glucocorticoid receptor function in COPD lung macrophages using beclomethasone-17-monopropionate.

    PubMed

    Plumb, Jonathan; Robinson, Laura; Lea, Simon; Banyard, Antonia; Blaikley, John; Ray, David; Bizzi, Andrea; Volpi, Giorgina; Facchinetti, Fabrizio; Singh, Dave

    2013-01-01

    Previous studies of glucocorticoid receptor (GR) function in COPD lung macrophages have used dexamethasone to evaluate inhibition of cytokine production. We have now used the clinically relevant corticosteroid beclomethasone-17-monopropionate (17-BMP) to assess GR function in COPD lung macrophages, and investigated the transactivation of glucocorticoid sensitive genes and GR phosphorylation in addition to cytokine production. Lung macrophages were purified from surgically acquired lung tissue, from patients with COPD, smokers, and non-smokers. The transactivation of glucocorticoid sensitive genes (FKBP51 and GILZ) by 17-BMP were analysed by polymerase chain reaction. 17-BMP suppression of LPS-induced TNFα, IL-6 and CXCL8 was measured by ELISA and GR phosphorylation was measured by immunohistochemistry and Western blot. 17-BMP reduced cytokine release in a concentration dependent manner, with >70% inhibition of all cytokines, and no difference between COPD patients and controls. Similarly, the transactivation of FKBP51 and GILZ, and GR phosphorylation was similar between COPD patients and controls. In this context, GR function in COPD lung macrophages is unaltered. 17-BMP effectively suppresses cytokine production in COPD lung macrophages.

  14. Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer.

    PubMed

    Chen, Zhong; Lan, Xun; Wu, Dayong; Sunkel, Benjamin; Ye, Zhenqing; Huang, Jiaoti; Liu, Zhihua; Clinton, Steven K; Jin, Victor X; Wang, Qianben

    2015-09-16

    Glucocorticoids (GCs) have been widely used as coadjuvants in the treatment of solid tumours, but GC treatment may be associated with poor pharmacotherapeutic response or prognosis. The genomic action of GC in these tumours is largely unknown. Here we find that dexamethasone (Dex, a synthetic GC)-regulated genes in triple-negative breast cancer (TNBC) cells are associated with drug resistance. Importantly, these GC-regulated genes are aberrantly expressed in TNBC patients and are associated with unfavourable clinical outcomes. Interestingly, in TNBC cells, Compound A (CpdA, a selective GR modulator) only regulates a small number of genes not involved in carcinogenesis and therapy resistance. Mechanistic studies using a ChIP-exo approach reveal that Dex- but not CpdA-liganded glucocorticoid receptor (GR) binds to a single glucocorticoid response element (GRE), which drives the expression of pro-tumorigenic genes. Our data suggest that development of safe coadjuvant therapy should consider the distinct genomic function between Dex- and CpdA-liganded GR.

  15. Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor.

    PubMed

    Zhang, Jianyun; Zhang, Jing; Liu, Rui; Gan, Jay; Liu, Jing; Liu, Weiping

    2016-01-05

    Many pesticides have been identified as endocrine-disrupting chemicals (EDCs) due to their ability to bind sex-steroid hormone receptors. However, little attention has been paid to the ability of pesticides to interfere with other steroid hormone receptors such as glucocorticoid receptor (GR) that plays a critical role in metabolic, endocrine, immune, and nervous systems. In this study, the glucocorticoidic and antiglucocorticoidic effects of 34 pesticides on human GR were investigated using luciferase reporter gene assay. Surprisingly, none of the test chemicals showed GR agonistic activity, but 12 chemicals exhibited apparent antagonistic effects. Bifenthrin, λ-cyhalothrin, cypermethrin, resmethrin, o,p'-DDT, p,p'-DDT, methoxychlor, ethiofencarb, and tolylfluanid showed remarkable GR antagonistic properties with RIC20 values lower than 10(-6) M. The disruption of glucocorticoid-responsive genes in H4IIE and J774A.1 cells was further evaluated on these 12 GR antagonists. In H4IIEcells, four organochlorine insecticides, bifenthrin, and 3-PBA decreased cortisol-induced PEPCK gene expression, while o,p'-DDT and methoxychlor inhibited cortisol-stimulated Arg and TAT gene expression. Cypermethrin and tolyfluanid attenuated cortisol-induced TAT expression. In J774A.1 cells, λ-cyhalothrin, resmethrin, 3-PBA, o,p'-DDT, p,p'-DDT, p,p'-DDE, methoxychlor- and tolylfluanid-reduced cortisol-stimulated GILZ expression. Furthermore, molecular docking simulation indicated that different interactions may stabilize the binding between molecules and GR. Our findings suggest that comprehensive screening and evaluation of GR antagonists and agonists should be considered to better understand the health and ecological risks of man-made chemicals such as pesticides.

  16. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung

    PubMed Central

    De Blasio, Miles J.; Boije, Maria; Vaughan, Owen R.; Bernstein, Brett S.; Davies, Katie L.; Plein, Alice; Kempster, Sarah L.; Smith, Gordon C. S.; Charnock-Jones, D. Stephen; Blache, Dominique; Wooding, F. B. Peter; Giussani, Dino A.; Fowden, Abigail L.; Forhead, Alison J.

    2015-01-01

    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2–4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth. PMID:26287800

  17. Cytosolic glucocorticoid receptor interaction with nuclear factor-kappa B proteins in rat liver cells.

    PubMed

    Widén, Christina; Gustafsson, Jan-Ake; Wikström, Ann-Charlotte

    2003-07-01

    The glucocorticoid receptor (GR) acts as an anti-inflammatory factor. To a large extent, this activity is exerted by the interference of pro-inflammatory nuclear factor kappa B (NF-kappa B) activity. In their respective inactive forms, both GR and NF-kappa B reside in the cytoplasm and translocate to the nucleus on relevant stimulation. Previously, p65, a component of the NF-kappa B complex, and GR have been shown to interact physically in vitro, and the interaction is assumed to take place in the nucleus of cells [McKay and Cidlowski (1999) Endocrine Rev. 20, 435-459]. We have studied the interaction between GR and NF-kappa B using in vivo -like conditions. Using immunoaffinity chromatography or immunoprecipitation, combined with Western blotting, we observed that, with endogenous protein levels in cytosolic extracts of rat liver and of H4-II-E-C3 hepatoma cells and in contrast with the current belief, p65, p50 and inhibitory kappa B alpha complex interact with GR, even in the absence of glucocorticoid or an inflammatory signal. The interaction between non-liganded/non-activated GR and p65/p50 has also been verified by both p65 and p50 co-immunoprecipitations. Intracellular localization studies, using Western blotting, revealed that glucocorticoids can decrease tumour necrosis factor alpha (TNFalpha)-induced nuclear entry of p65, whereas glucocorticoid-induced GR translocation was much less affected by TNFalpha. We were also able to demonstrate a nuclear interaction of GR and p65 and p50 using in vivo -like protein concentrations. Furthermore, nuclear GR interaction with heat-shock protein 90 was enhanced distinctly by TNFalpha treatment. In conclusion, our studies suggest a strong interconnectivity between the NF-kappa B and GR-signalling pathways where also, somewhat unexpectedly, a physical interaction in the cytosol constitutes an integral part of GR-NF-kappa B cross-talk.

  18. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    PubMed

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

  19. The role of glucocorticoids in pregnancy, parturition, lactation, and nurturing in melanocortin receptor 2-deficient mice.

    PubMed

    Chida, Dai; Miyoshi, Keiko; Sato, Tsuyoshi; Yoda, Tetsuya; Kikusui, Takefumi; Iwakura, Yoichiro

    2011-04-01

    Maternal glucocorticoids are critical for fetal development, but overexpression can be deleterious. Previously we established a mouse line deficient in melanocortin receptor 2 (MC2R). MC2R(-/-) mice have undetectable levels of corticosterone despite high levels of ACTH and defects resembling those in patients with familial glucocorticoid deficiency. Here we analyzed the role of glucocorticoids in pregnancy, parturition, lactation, and nurturing in MC2R(-/-) mice. MC2R(-/-) mice were fertile and produced normal litters when crossed with MC2R(+/+) mice. However, MC2R(-/-) females crossed with MC2R(-/-) males had no live births, and approximately 20% of the embryos at d 18.5 of pregnancy were of normal body size but were dead when born. MC2R(-/-) pregnant females crossed with MC2R(+/+) males had detectable serum corticosterone levels, suggesting the transplacental passage of corticosterone from fetus to mother. MC2R(+/-) pups delivered from MC2R(-/-) females crossed with MC2R(+/+) males mice thrived poorly with MC2R(-/-) mothers but grew to adulthood when transferred to foster mothers after birth, suggesting that MC2R(-/-) females are poor mothers or cannot nurse. MC2R(-/-) females had normal alveoli, but penetration of mammary epithelium into fat pads and expression of milk proteins were reduced. Myoepithelial cells, which force milk out of the alveoli, were fully developed and differentiated. Pup retrieval behavior was normal in MC2R(-/-) mice. Exogenous corticosterone rescued expression of milk proteins in MC2R(-/-) mothers, and the pups of treated mothers grew to adulthood. Our results reveal the importance of glucocorticoids for fetal survival late in pregnancy, mammary gland development, and milk protein gene expression.

  20. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice

    PubMed Central

    Loftspring, Matthew; de Kloet, Annette D.; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N.; Wulsin, Aynara C.; Krause, Eric G.; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G.; Herman, James P.

    2015-01-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism. PMID:26046806

  1. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart.

  2. Antenatal Hypoxia Induces Epigenetic Repression of Glucocorticoid Receptor and Promotes Ischemic-Sensitive Phenotype in the Developing Heart

    PubMed Central

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R.; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-01-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at −4408 and −3896 and Sp1 binding sites at −3425 and −3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2’-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  3. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  4. Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements.

    PubMed

    Ramamoorthy, Sivapriya; Cidlowski, John A

    2013-05-01

    Glucocorticoids are among the most potent and effective agents for treating inflammatory diseases and hematological cancers. However, subpopulations of patients are often resistant to steroid therapy, and determining the molecular mechanisms that contribute to glucocorticoid resistance is thus critical to addressing this clinical problem affecting patients with chronic inflammatory disorders. Since the cellular level of the glucocorticoid receptor (GR) is a critical determinant of glucocorticoid sensitivity and resistance, we investigated the molecular mechanisms mediating repression of glucocorticoid receptor gene expression. We show here that glucocorticoid-induced repression of GR gene expression is mediated by inhibition of transcription initiation. This process is orchestrated by the recruitment of agonist-bound GR to exon 6, followed by the assembly of a GR-NCoR1-histone deacetylase 3-containing repression complex at the transcriptional start site of the GR gene. A functional negative glucocorticoid response element (nGRE) in exon 6 of the GR gene and a long-range interaction occurring between this intragenic response element and the transcription start site appear to be instrumental in this repression. This autoregulatory mechanism of repression implies that the GR concentration can coordinate repression with excess ligand, regardless of the combinatorial associations of tissue-specific transcription factors. Consequently, the chronic nature of inflammatory conditions involving long-term glucocorticoid administration may lead to constitutive repression of GR gene transcription and thus to glucocorticoid resistance.

  5. Expression of glucocorticoid receptor and coactivators in ependymal cells of male rats.

    PubMed

    Iwata, Kinuyo; Ozawa, Hitoshi

    2014-08-29

    Glucocorticoid receptor (GR) is a ligand-activated nuclear receptor which is widely distributed in the brain. Many types of neurons and glial cells are known to express GR, but the expression of GR in ependymal cells has yet to be identified. The present study therefore was undertaken to determine whether ependymal cells express GR and coactivators of GR, such as steroid receptor coactivator 1 (SRC-1) and p300. GR immunoreactivity was found in cells immunopositive to vimentin, a marker of ependymal cells, around the third ventricle (3V), the lateral ventricle (LV), the cerebral aqueduct and the fourth ventricle (4V), whereas the expression of GR in vimentin-immunoreactive (ir) cells was significantly reduced by adrenalectomy (ADX) in male rats. Vimentin-ir cells also expressed both SRC-1 and p300 at around 3V, LV, the cerebral aqueduct and 4V. ADX had no effect on the expression of SRC-1 or p300 in vimentin-ir cells. These results suggest that glucocorticoid may exert effects on ependymal cells through binding to GR followed by association with SRC-1 and p300 to maintain brain environment under stressful conditions.

  6. Do smoking intensity-related differences in vigilance indicate altered glucocorticoid receptor sensitivity?

    PubMed

    Reuter, Martin; Hennig, Juergen; Netter, Petra

    2004-03-01

    The relationship of critical flicker fusion frequency (CFF) and a pharmacologically induced cortisol suppression by means of dexamethasone (DEX) and metyrapone (MET) was investigated during nicotine deprivation in a between-subjects design in 60 male smokers divided into light, medium and heavy smokers. DEX reduced vigilance in medium smokers and improved it in heavy smokers compared to placebo, whereas MET was more detrimental in heavy smokers. The hypothesis was put forward that the intensity of nicotine consumption is related to differences in glucocorticoid and mineralocorticoid receptor sensitivity.

  7. Requisite Role of Basolateral Amygdala Glucocorticoid Receptor Stimulation in Drug Context-Induced Cocaine-Seeking Behavior

    PubMed Central

    Stringfield, Sierra J.; Higginbotham, Jessica A.

    2016-01-01

    Background: Exposure to cocaine-associated stimuli triggers a robust rise in circulating glucocorticoid levels. Glucocorticoid receptors are richly expressed in the basolateral amygdala, a brain region that controls the reinstatement of cocaine-seeking behavior upon exposure to a previously cocaine-paired environmental context. In the present study, we investigated whether glucocorticoid receptor stimulation in the basolateral amygdala is integral to drug context-induced motivation to seek cocaine in a rat model of drug relapse. Methods: Rats were trained to lever press for cocaine reinforcement in a distinct environmental context and were then given daily extinction training sessions in a different context. At test, the rats received bilateral glucocorticoid receptor antagonist (mifepristone; 3 or 10ng/hemisphere) or vehicle microinfusions into either the basolateral amygdala or the overlying posterior caudate-putamen (anatomical control region). Immediately thereafter, drug-seeking behavior (i.e., nonreinforced lever presses) was assessed in the previously cocaine-paired context and locomotor activity was assessed in a novel context. Results: Intra-basolateral amygdala, but not intra-posterior caudate-putamen, mifepristone dose-dependently attenuated drug context-induced cocaine-seeking behavior relative to vehicle, such that responding was similar to that observed in the extinction context. In contrast, mifepristone treatment did not alter locomotor activity. Conclusions: These findings suggest that basolateral amygdala glucocorticoid receptor stimulation is necessary for drug context-induced motivation to seek cocaine. PMID:27521756

  8. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  9. Dexamethasone enhances serum deprivation-induced necrotic death of rat C6 glioma cells through activation of glucocorticoid receptors.

    PubMed

    Morita, K; Ishimura, K; Tsuruo, Y; Wong, D L

    1999-01-23

    Glucocorticoids have been shown to be neurotoxic and appear to play a role in neuronal cell loss during aging and following neuropathological insults. However, very little is known about the effects of these steroid hormones on glial cells. The effect of the synthetic glucocorticoid dexamethasone (DEX) on glial cell viability was therefore examined by measuring neutral red uptake into rat C6 glioma cells. Serum deprivation markedly reduced cell viability, and this effect was significantly enhanced by DEX. Electrophoretic analysis showed that the cell damage induced by either serum deprivation alone or in combination with DEX was not accompanied by the degradation of DNA into nucleosomic fragments. Electron microscopic studies confirmed that serum deprivation and glucocorticoid treatment caused necrotic cell death. Furthermore, the effect of DEX on cell viability could be mimicked by the glucocorticoid receptor agonist RU28362, and completely prevented by the glucocorticoid receptor antagonist RU38486. These results indicate that dexamethasone can enhance the necrotic death of glioma cells induced by serum deprivation, suggesting that glucocorticoids may be involved in the chronic alteration of brain function arising from neuropathological damage to glial cells.

  10. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression.

    PubMed

    Zalachoras, I; Verhoeve, S L; Toonen, L J; van Weert, L T C M; van Vlodrop, A M; Mol, I M; Meelis, W; de Kloet, E R; Meijer, O C

    2016-12-01

    Maladaptive glucocorticoid effects contribute to stress-related psychopathology. The glucocorticoid receptor (GR) that mediates many of these effects uses multiple signaling pathways. We have tested the hypothesis that manipulation of downstream factors ('coregulators') can abrogate potentially maladaptive GR-mediated effects on fear-motivated behavior that are linked to corticotropin releasing hormone (CRH). For this purpose the expression ratio of two splice variants of steroid receptor coactivator-1 (SRC-1) was altered via antisense-mediated 'exon-skipping' in the central amygdala of the mouse brain. We observed that a change in splicing towards the repressive isoform SRC-1a strongly reduced glucocorticoid-induced responsiveness of Crh mRNA expression and increased methylation of the Crh promoter. The transcriptional GR target gene Fkbp5 remained responsive to glucocorticoids, indicating gene specificity of the effect. The shift of the SRC-1 splice variants altered glucocorticoid-dependent exploratory behavior and attenuated consolidation of contextual fear memory. In conclusion, our findings demonstrate that manipulation of GR signaling pathways related to the Crh gene can selectively diminish potentially maladaptive effects of glucocorticoids.

  11. Glucocorticoid Receptor, C/EBP, HNF3, and Protein Kinase A Coordinately Activate the Glucocorticoid Response Unit of the Carbamoylphosphate Synthetase I Gene

    PubMed Central

    Christoffels, Vincent M.; Grange, Thierry; Kaestner, Klaus H.; Cole, Timothy J.; Darlington, Gretchen J.; Croniger, Colleen M.; Lamers, Wouter H.

    1998-01-01

    A single far-upstream enhancer is sufficient to confer hepatocyte-specific, glucocorticoid- and cyclic AMP-inducible periportal expression to the carbamoylphosphate synthetase I (CPS) gene. To identify the mechanism of hormone-dependent activation, the composition and function of the enhancer have been analyzed. DNase I protection and gel mobility shift assays revealed the presence of a cyclic AMP response element, a glucocorticoid response element (GRE), and several sites for the liver-enriched transcription factor families HNF3 and C/EBP. The in vivo relevance of the transcription factors interacting with the enhancer in the regulation of CPS expression in the liver was assessed by the analysis of knockout mice. A strong reduction of CPS mRNA levels was observed in glucocorticoid receptor- and C/EBPα-deficient mice, whereas the CPS mRNA was normally expressed in C/EBPβ knockout mice and in HNF3α and -γ double-knockout mice. (The role of HNFβ could not be assessed, because the corresponding knockout mice die at embryonic day 10). In hepatoma cells, most of the activity of the enhancer is contained within a 103-bp fragment, which depends for its activity on the simultaneous occupation of the GRE, HNF3, and C/EBP sites, thus meeting the requirement of a glucocorticoid response unit. In fibroblast-like CHO cells, on the other hand, the GRE in the CPS enhancer does not cooperate with the C/EBP and HNF3 elements in transactivation of the CPS promoter. In both hepatoma and CHO cells, stimulation of expression by cyclic AMP depends mainly on the integrity of the glucocorticoid pathway, demonstrating cross talk between this pathway and the cyclic AMP (protein kinase A) pathway. PMID:9774647

  12. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor.

    PubMed

    Kino, Tomoshige; Hurt, Darrell E; Ichijo, Takamasa; Nader, Nancy; Chrousos, George P

    2010-02-02

    The availability of nutrients influences cellular growth and survival by affecting gene transcription. Glucocorticoids also influence gene transcription and have diverse activities on cell growth, energy expenditure, and survival. We found that the growth arrest-specific 5 (Gas5) noncoding RNA, which is abundant in cells whose growth has been arrested because of lack of nutrients or growth factors, sensitized cells to apoptosis by suppressing glucocorticoid-mediated induction of several responsive genes, including the one encoding cellular inhibitor of apoptosis 2. Gas5 bound to the DNA-binding domain of the glucocorticoid receptor (GR) by acting as a decoy glucocorticoid response element (GRE), thus competing with DNA GREs for binding to the GR. We conclude that Gas5 is a "riborepressor" of the GR, influencing cell survival and metabolic activities during starvation by modulating the transcriptional activity of the GR.

  13. Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    SciTech Connect

    Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W.

    2012-03-16

    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and

  14. Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish.

    PubMed

    Nesan, Dinushan; Kamkar, Maryam; Burrows, Jeffrey; Scott, Ian C; Marsden, Mungo; Vijayan, Mathilakath M

    2012-03-01

    Glucocorticoid receptor (GR) signaling is thought to play a key role in embryogenesis, but its specific developmental effects remain unclear. Cortisol is the primary ligand for GR activation in teleosts, and in zebrafish (Danio rerio), the prehatch embryo content of this steroid is of maternal origin. Using early zebrafish developmental stages, we tested the hypothesis that GR signaling is critical for embryo growth and hatching. In zebrafish, maternal GR mRNA is degraded quickly, followed by zygotic synthesis of the receptor. GR protein is widely expressed throughout early development, and we were able to knockdown this protein using morpholino oligonucleotides. This led to a more than 70% reduction in mRNA abundance of matrix metalloproteinase-13 (mmp13), a glucocorticoid-responsive gene. The GR morphants displayed delayed somitogenesis, defects in somite and tail morphogenesis, reduced embryo size, and rarely survived after hatch. This correlated with altered expression of myogenic markers, including myogenin, myostatin, and muscle-specific myosin heavy chain and troponin genes. A key finding was a 70-90% reduction in the mRNA abundance of bone morphogenetic proteins (BMP), including bmp2a, bmp2b, and bmp4 in GR morphants. Bioinformatics analysis confirmed multiple putative glucocorticoid response elements upstream of these BMP genes. GR morphants displayed reduced expression of BMP-modulated genes, including eve1 and pax3. Zebrafish GR mRNA injection rescued the GR morphant phenotype and reversed the disrupted expression of BMP and myogenic genes. Our results for the first time indicate that GR signaling is essential for zebrafish muscle development, and we hypothesize a role for BMP morphogens in this process.

  15. Aminosulfhydryl and Aminodisulfide Compounds Enhance Binding of the Glucocorticoid Receptor Complex to Deoxyribonucleic Acid-Coated Cellulose and to Chromatin

    DTIC Science & Technology

    1993-01-01

    glucocorticoid receptor [21]. Diaminosulfhydryl chloroacetic acid was obtained from the Fisher compounds are more active at enhancing GRC Scientific...phase consisting of 0. I M BASE containing 25mM KCI and 3 mM chloroacetic acid and 5mM d/-10-camphorsul- MgCI2, pH 7.6 at 0 0C) was added to each tube...Enhance Binding of the Glucocorticoid Receptor Complex to Deoxy- ribonucleic Acid -Coated Cellulose and to Chromatin 4. AUThOR(S)’ J.M. Karle, R. Olmeda and

  16. Glucocorticoid receptors in primary cultures of mouse mammary epithelial cells: characterization and modulation by prolactin and cortisol

    SciTech Connect

    Schneider, W.; Shyamala, G.

    1985-06-01

    Mammary epithelial cells isolated from midpregant mice and cultured on collagen gels contain soluble glucocorticoid receptors. The kinetics of binding of dexamethasone reveal a saturable binding site (dissociation constant (K /sub d/), approximately 1 nM), and the binding site obeys a steroid specificity characteristic of a glucocorticoid receptor. As with the receptor isolated from intact glands, the receptor from the cultured cells also requires the addition of dithiothreitol for maximal binding of dexamethasone. The receptors are maintained at in vivo levels (approximately 1.3 pmol/mg DNA) for at least a period of 10 days in culture. However, the presence of both cortisol and PRL is required for the maintenance of the receptors, and the effect of both these hormones is dose dependent.

  17. Activated glucocorticoid receptor interacts with the INHAT component Set/TAF-Ibeta and releases it from a glucocorticoid-responsive gene promoter, relieving repression: implications for the pathogenesis of glucocorticoid resistance in acute undifferentiated leukemia with Set-Can translocation.

    PubMed

    Ichijo, Takamasa; Chrousos, George P; Kino, Tomoshige

    2008-02-13

    Set/template-activating factor (TAF)-Ibeta, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Ibeta interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Ibeta was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Ibeta from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Ibeta acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids.

  18. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    PubMed Central

    Zappia, Carlos Daniel; Granja-Galeano, Gina; Fernández, Natalia; Shayo, Carina; Davio, Carlos; Fitzsimons, Carlos P.; Monczor, Federico

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration. PMID:26635083

  19. The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product.

    PubMed Central

    Refaeli, Y; Levy, D N; Weiner, D B

    1995-01-01

    The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 15-kDa virion-associated protein that functions as a regulator of cellular processes linked to the HIV life cycle. We report the interaction of a 41-kDa cytosolic viral protein R interacting protein 1 (Rip-1) with Vpr in vitro. Rip-1 displays a wide tissue distribution, including relevant targets of HIV infection. Vpr protein induced nuclear translocation of Rip-1, as did glucocorticoid receptor (GR)-II-stimulating steroids. Importantly, Vpr and Rip-1 coimmunoprecipitated with the human GR as part of an activated receptor complex. Vpr complementation of a vpr mutant virus was also mimicked by GR-II-stimulating steroids. Vpr and GR-II actions were inhibited by mifepristone, a GR-II pathway inhibitor. Together these data directly link the activity of the vpr gene product to the glucocorticoid steroid pathway and provide a biochemical mechanism for the cellular and viral activity of Vpr, as well as suggest that a unique class of antivirals, which includes mifepristone (RU486), may influence HIV-1 replication. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724608

  20. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle.

    PubMed

    Gupte, Rebecca; Muse, Ginger W; Chinenov, Yurii; Adelman, Karen; Rogatsky, Inez

    2013-09-03

    Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-κB and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle.

  1. Thymic involution in the suspended rat - Adrenal hypertrophy and glucocorticoid receptor content

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    The relationship between thymic involution and adrenal hypertrophy is studied. The thymus, adrenal glands, and tissue water content are evaluated in male Sprague rats suspended in antiorthostatic (AO) or orthostatic (O) positions. A 50 percent decrease in the wet weight of the thymus and hypertrophy of the adrenal glands are observed during the seven days of AO suspension. After seven days of recovery the thymus weight is increased to control level; however, the hypertrophy of the adrenal glands remains unchanged. Thymic and renal responses in O postioned rats are similar to AO reactions. Thymic glucocorticoid (GC) receptor concentrations in the rats are analyzed; a 20 percent decrease in GC receptor site concentration, which is related to thymic involution, is detected in both AO and O rats. It is concluded that there is a temporal correlation between thymic involution and adrenal hypertrophy, which is not affected by AO positioning, and thymic involution is not associated with an increased sensitivity to GC.

  2. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production

    PubMed Central

    Morgan, David J.; Poolman, Toryn M.; Williamson, Andrew J. K.; Wang, Zichen; Clark, Neil R.; Ma’ayan, Avi; Whetton, Anthony D.; Brass, Andrew; Matthews, Laura C.; Ray, David W.

    2016-01-01

    The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function. PMID:27226058

  3. Glucocorticoids and the Cardiovascular System.

    PubMed

    Goodwin, Julie E

    2015-01-01

    Glucocorticoids affect the developing and mature cardiovascular system in profound and, at times, contradictory ways. The glucocorticoid receptor is ubiquitous in most cell types and conserved across species, highlighting its importance in development and homeostasis. Despite the fact that the glucocorticoid receptor is widely expressed, tissue-specific effects of glucocorticoids may have pronounced effects on whole organism phenotypes. Here we will review the interactions between glucocorticoids and the cardiovascular system.

  4. Blockade of glucocorticoid receptors with ORG 34116 does not normalize stress-induced symptoms in male tree shrews.

    PubMed

    Van Kampen, Marja; De Kloet, E Ronald; Flügge, Gabriele; Fuchs, Eberhard

    2002-12-20

    Glucocorticoid receptors play an important role in the regulation of the activity of the hypothalamo-pituitary-adrenal axis, and are thought to be involved in the pathophysiology of depressive disorders. The present study investigated the effect of the specific glucocorticoid receptor antagonist ORG 34116 (a substituted 11,21 bisarylsteroid compound) in the tree shrew (Tupaia belangeri) chronic psychosocial stress model, an established animal model for depressive disorders. Animals were stressed for 10 days before treatment with ORG 34116 started (25 mg/kg p.o. for 28 days). Stress induced a decrease in body weight, which just failed significance, whereas ORG 34116 did not affect body weight in stress and control animals. ORG 34116 enhanced the stress-induced increase in the concentration of urinary-free cortisol, although no differences between the different experimental groups existed during the last week of treatment. In stressed animals, ORG 34116 did not affect marking behavior, but decreased locomotor activity. Post mortem analysis of 5-HT(1A) receptors revealed a decreased affinity of 3[H]-8-OH-DPAT (3[H]-8-hydroxy-2-[di-n-propylamino]tetralin) binding sites in the hippocampus of animals treated with the glucocorticoid receptor antagonist. In conclusion, under our experimental conditions, the glucocorticoid receptor antagonist ORG 34116 did not normalize the depressive-like symptoms in the psychosocial stress model of male tree shrews. This finding, however, does not exclude that specific central, neuroendocrine and behavioral features are affected by the compound.

  5. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  6. Expression of glucocorticoid receptors α and ß in steroid sensitive and steroid insensitive interstitial lung diseases

    PubMed Central

    Pujols, L; Xaubet, A; Ramirez, J; Mullol, J; Roca-Ferrer, J; Torrego, A; Cidlowski, J; Picado, C

    2004-01-01

    Background: Sensitivity to glucocorticoids may be related to the concentration of glucocorticoid receptors α (GRα) and ß (GRß). A study was undertaken to assess GRα and GRß expression in steroid insensitive interstitial lung disease (idiopathic pulmonary fibrosis (IPF)) and steroid sensitive interstitial lung diseases (sarcoidosis and cryptogenic organising pneumonia (COP)). Methods: Lung tissue was obtained from control subjects and from patients with IPF, sarcoidosis, and COP. Pulmonary function tests were carried out at the time of lung biopsy and every 3 months. GRα and GRß expression was evaluated by both competitive RT-PCR and immunohistochemistry. Data are presented as median and 25–75th percentile. Results: GRα mRNA expression (105 cDNA copies/µg total RNA) was higher in patients with steroid sensitive interstitial lung diseases (10.0; 7.8–14.9; n = 11) than in patients with IPF (4.4; 3.2–6.6; n = 19; p<0.001). GRß expression was at least 1000 times lower than that of GRα and did not differ between the three groups. A negative correlation was found between GRα mRNA levels and the fibrotic pathology score of the tissue (r = –0.484, p<0.01) and a positive correlation was found between GRα mRNA levels and improvement in forced vital capacity (r = 0.633; p<0.01) after treatment of patients with glucocorticoids. Immunoreactivity for GR protein was also higher in patients with sarcoidosis and COP than in those with IPF. Conclusion: The variable response of some interstitial lung diseases to steroid treatment may be the result of differences in the expression of GRα. PMID:15282390

  7. Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from target promoter occupancy.

    PubMed

    Blind, Raymond D; Pineda-Torra, Inés; Xu, Yong; Xu, H Eric; Garabedian, Michael J

    2012-04-20

    Glucocorticoid (GC) induction of the tyrosine aminotransferase (TAT) gene by the glucocorticoid receptor (GR) is a classic model used to investigate steroid-regulated gene expression. Classic studies analyzing GC-induction of the TAT gene demonstrated that despite having very high affinity for GR, some steroids cannot induce maximal TAT enzyme activity, but the molecular basis for this phenomenon is unknown. Here, we used RT-PCR and chromatin immunoprecipitation to determine TAT mRNA accumulation and GR recruitment to the TAT promoter (TAT-GRE) in rat hepatoma cells induced by seven GR ligands: dexamethasone (DEX), cortisol (CRT), corticosterone (CCS), 11-deoxycorticosterone (DOC), aldosterone (ALD), progesterone (PRG) and 17-hydroxyprogesterone (17P). As expected, DEX, CRT, CCS and ALD all induced both TAT mRNA and GR recruitment to the TAT-GRE, while PRG and 17P did not. However, while DOC could not induce significant TAT mRNA, it did induce robust GR occupancy of the TAT-GRE. DOC also induced recruitment of the histone acetyltransferase p300 to the TAT-GRE as efficiently as DEX. These DOC-induced effects recapitulated at another GR target gene (sulfonyltransferase 1A1), and DOC also failed to promote the multiple changes in gene expression required for glucocorticoid-dependent 3T3-L1 adipocyte differentiation. Structural simulations and protease sensitivity assays suggest that DOC and DEX induce different conformations in GR. Thus, although steroids that bind GR with high affinity can induce GR and p300 occupancy of target promoters, they may not induce a conformation of GR capable of activating transcription.

  8. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells

    PubMed Central

    Presman, Diego M.; Ganguly, Sourav; Schiltz, R. Louis; Johnson, Thomas A.; Karpova, Tatiana S.; Hager, Gordon L.

    2016-01-01

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR’s oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  9. The BclI polymorphism of the glucocorticoid receptor gene is associated with emotional memory performance in healthy individuals.

    PubMed

    Ackermann, Sandra; Heck, Angela; Rasch, Björn; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2013-07-01

    Glucocorticoids, stress hormones released from the adrenal cortex, are important players in the regulation of emotional memory. Specifically, in animals and in humans, glucocorticoids enhance memory consolidation of emotionally arousing experiences, but impair memory retrieval. These glucocorticoid actions are partly mediated by glucocorticoid receptors in the hippocampus, amygdala and prefrontal cortex, key brain regions for emotional memory. In a recent study in patients who underwent cardiac surgery, the BclI polymorphism of the glucocorticoid receptor gene (NR3C1) was associated with traumatic memories and posttraumatic stress disorder symptoms after intensive care therapy. Based on this finding, we investigated if the BclI polymorphism is also associated with emotional memory in healthy young subjects (N=841). We used a picture-learning task consisting of learning and recalling neutral and emotional photographs on two consecutive days. The BclI variant was associated with short-delay recall of emotional pictures on both days, with GG carriers showing increased emotional memory performance as compared to GC and CC carriers. We did not detect a genotype-dependent difference in recall performance for neutral pictures. These findings suggest that the Bcll polymorphism contributes to inter-individual differences in emotional memory also in healthy humans.

  10. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels.

    PubMed

    Coussens, C M; Kerr, D S; Abraham, W C

    1997-07-01

    The effects of the glucocorticoid receptor agonist RU-28362 on homosynaptic long-term depression (LTD) were examined in hippocampal slices obtained from adrenal-intact adult male rats. Field excitatory postsynaptic potentials were evoked by stimulation of the Schaffer collateral/commissural pathway and recorded in stratum radiatum of area CA1. Low-frequency stimulation (LFS) was delivered at LTD threshold (2 bouts of 600 pulses, 1 Hz, at baseline stimulation intensity). LFS of the Schaffer collaterals did not produce significant homosynaptic LTD in control slices. However, identical conditioning in the presence of the glucocorticoid receptor agonist RU-28362 (10 microM) produced a robust LTD, which was blocked by the selective glucocorticoid antagonist RU-38486. The LTD induced by glucocorticoid receptor activation was dependent on N-methyl-D-aspartate (NMDA) receptor activity, because the specific NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) blocked the facilitation. However, the facilitation of LTD was not due to a potentiation of the isolated NMDA receptor potential by RU-28362. The facilitation of LTD by RU-28362 was also blocked by coincubation of the L-type voltage-dependent calcium channel (VDCC) antagonist nimodipine. Selective activation of the L-type VDCCs by the agonist Bay K 8644 also facilitated LTD induction. Both nimodipine and D-AP5 were effective in blocking the facilitation of LTD by Bay K 8644. These results indicate that L-type VDCCs can contribute to NMDA-receptor-dependent LTD induction.

  11. Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease.

    PubMed

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Pereira, Ana Rita Salgueiro; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-06-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset.

  12. In vitro activation of rat cardiac glucocorticoid antagonist- versus agonist-receptor complexes.

    PubMed

    Schmidt, T J; Diehl, E E

    1988-06-30

    The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25 degrees C for 30 min or at 15 degrees C for 30 min in the presence of 5 mM pyridoxal 5'-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215-250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.

  13. Effect of glucocorticoid receptor gene polymorphisms in Guillain-Barré syndrome.

    PubMed

    Dekker, Marieke J H J; van den Akker, Erica L T; Koper, Jan Willem; Manenschijn, Laura; Geleijns, Karin; Ruts, Liselotte; van Rijs, Wouter; Tio-Gillen, Anne P; van Doorn, Pieter A; Lamberts, Steven W J; Jacobs, Bart C

    2009-06-01

    Guillain-Barré syndrome (GBS) is a postinfectious immune-mediated polyneuroradiculopathy in which host factors influence disease susceptibility and clinical course. Single-nucleotide polymorphisms (SNPs) in the glucocorticoid receptor (GR) gene influence the sensitivity to glucocorticoids and are related to both microbial colonization and susceptibility to develop auto-immune disease. This genetic variation may therefore also influence the chance to develop GBS. In this study, we genotyped 318 GBS patients and 210 control subjects for five known SNPs in the GR gene. We could distinguish six different GR haplotypes of which two carried the BclI polymorphism: haplotype 1, which consists of the minor allele of BclI in combination with the common variant of TthIIII and haplotype 2, which carries the minor allele of BclI as well as the minor allele of TthIIII. The GR haplotypes were not related to susceptibility to develop GBS. Carriers of haplotype 2 had more frequently preceding diarrhea, serum antibodies to GM1 and GD1a, and more severe muscle weakness at entry. Haplotype 1 carriers had a significantly better prognosis. In conclusion, GR haplotypes are not a susceptibility factor for GBS. However, haplotypes carrying the minor allele of the BclI polymorphism were related to the phenotype and outcome of GBS.

  14. Arsenic alters the function of the glucocorticoid receptor as a transcription factor.

    PubMed Central

    Kaltreider, R C; Davis, A M; Lariviere, J P; Hamilton, J W

    2001-01-01

    Chronic human exposure to nonovertly toxic doses of arsenic is associated with an increased risk of cancer. Although its carcinogenic mechanism is still unknown, arsenic does not directly cause DNA damage or mutations and is therefore thought to act principally as a co-mutagen, co-carcinogen, and/or tumor promoter. Previous studies in our laboratory demonstrated that effects of low-dose arsenic (III) (arsenite) on expression of the hormone-regulated phosphoenolpyruvate carboxykinase (PEPCK) gene were strongly associated with the glucocorticoid receptor (GR)-mediated regulatory pathway. We therefore examined specifically the effects of arsenite on the biochemical function of GR in hormone-responsive H4IIE rat hepatoma cells. Completely noncytotoxic arsenite treatments (0.3-3.3 microM) significantly decreased dexamethasone-induced expression of transiently transfected luciferase constructs containing either an intact hormone-responsive promoter from the mammalian PEPCK gene or two tandem glucocorticoid response elements (GRE). Western blotting and confocal microscopy of a green fluorescent protein-tagged-GR fusion protein demonstrated that arsenite pretreatment did not block the normal dexamethasone-induced nuclear translocation of GR. These data indicate that nontoxic doses of arsenite can interact directly with GR complexes and selectively inhibit GR-mediated transcription, which is associated with altered nuclear function rather than a decrease in hormone-induced GR activation or nuclear translocation. PMID:11333185

  15. Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development.

    PubMed

    LaLone, Carlie A; Villeneuve, Daniel L; Olmstead, Allen W; Medlock, Elizabeth K; Kahl, Michael D; Jensen, Kathleen M; Durhan, Elizabeth J; Makynen, Elizabeth A; Blanksma, Chad A; Cavallin, Jenna E; Thomas, Linnea M; Seidl, Sara M; Skolness, Sarah Y; Wehmas, Leah C; Johnson, Rodney D; Ankley, Gerald T

    2012-03-01

    Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo-larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo-larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development.

  16. Maturation and maintenance of cholinergic medial septum neurons require glucocorticoid receptor signaling.

    PubMed

    Guijarro, Christian; Rutz, Susanne; Rothmaier, Katharina; Turiault, Marc; Zhi, Qixia; Naumann, Thomas; Frotscher, Michael; Tronche, Francois; Jackisch, Rolf; Kretz, Oliver

    2006-05-01

    Glucocorticoids have been shown to influence trophic processes in the nervous system. In particular, they seem to be important for the development of cholinergic neurons in various brain regions. Here, we applied a genetic approach to investigate the role of the glucocorticoid receptor (GR) on the maturation and maintenance of cholinergic medial septal neurons between P15 and one year of age by using a mouse model carrying a CNS-specific conditional inactivation of the GR gene (GRNesCre). The number of choline acetyltransferase and p75NTR immuno-positive neurons in the medial septum (MS) was analyzed by stereology in controls versus mutants. In addition, cholinergic fiber density, acetylcholine release and cholinergic key enzyme activity of these neurons were determined in the hippocampus. We found that in GRNesCre animals the number of medial septal cholinergic neurons was significantly reduced during development. In addition, cholinergic cell number further decreased with aging in these mutants. The functional GR gene is therefore required for the proper maturation and maintenance of medial septal cholinergic neurons. However, the loss of cholinergic neurons in the medial septum is not accompanied by a loss of functional cholinergic parameters of these neurons in their target region, the hippocampus. This pinpoints to plasticity of the septo-hippocampal system, that seems to compensate for the septal cell loss by sprouting of the remaining neurons.

  17. Effects of glucocorticoid receptor antagonist, RU486, on the proliferative and differentiation capabilities of bone marrow mesenchymal stromal cells in ovariectomized rats.

    PubMed

    Wei, Na; Yu, Yang; Schmidt, Thomas; Stanford, Clark; Hong, Liu

    2013-05-01

    Glucocorticoids (GCs) potentially regulate the proliferation, differentiation, and premature senescence of bone marrow mesenchymal stem/stromal cells (MSCs). In the present study we investigated the effects mediated by endogenous GCs and the effects of an antagonist of the glucocorticoid receptor, RU486, on the proliferative and differentiation capabilities of MSCs using an ovariectomized (OVX) animal model. Following ovariectomy and a decrease in systemic estradiol levels, the serum concentration of corticosterone is significantly increased in OVX rats. Compared to sham-operated controls, the total superoxide dismutase (SOD) activity in serum of OVX rats and the proliferation of their MSCs are significantly reduced. Furthermore, the osteogenic differentiation capabilities of OVX rat MSCs are significantly decreased, while adipogenic capabilities tend to increase. Subcutaneous administration of RU486 effectively increases the population and proliferative capacity of the MSCs in OVX rats. RU486 treatment also improves osteogenic capabilities and down-regulates adipogenic capabilities of MSCs. These results strongly indicate that the elevated levels of endogenous GCs induced by estrogen depletion might accelerate the premature senescence of MSCs and reduce their proliferative and osteogenic differentiation capabilities, while the blockage of the effects of endogenous GCs may restore their capabilities. These responses could potentially be developed to protect the capabilities of MSCs from oxidative stress-induced premature senescence and extend their lifespan in patients with advancing age and estrogen depletion.

  18. Glucocorticoid--receptor interactions. Studies of the negative co-operativity induced by steroid interactions with a secondary, hydrophobic, binding site.

    PubMed Central

    Jones, T R; Bell, P A

    1980-01-01

    The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only. PMID:7406882

  19. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  20. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin.

    PubMed

    Walther, Rhian F; Lamprecht, Claudia; Ridsdale, Andrew; Groulx, Isabelle; Lee, Stephen; Lefebvre, Yvonne A; Haché, Robert J G

    2003-09-26

    Nucleocytoplasmic exchange of nuclear hormone receptors is hypothesized to allow for rapid and direct interactions with cytoplasmic signaling factors. In addition to recycling between a naïve, chaperone-associated cytoplasmic complex and a liganded chaperone-free nuclear form, the glucocorticoid receptor (GR) has been observed to shuttle between nucleus and cytoplasm. Nuclear export of GR and other nuclear receptors has been proposed to depend on direct interactions with calreticulin, which is predominantly localized to the lumen of the endoplasmic reticulum. We show that rapid calreticulin-mediated nuclear export of GR is a specific response to transient disruption of the endoplasmic reticulum that occurs during polyethylene glycol-mediated cell fusion. Using live and digitonin-permeabilized cells we demonstrate that, in the absence of cell fusion, GR nuclear export occurs slowly over a period of many hours independent of direct interaction with calreticulin. Our findings temper expectations that nuclear receptors respond rapidly and directly to cytoplasmic signals in the absence of additional regulatory control. These results highlight the importance of verifying findings of nucleocytoplasmic trafficking using techniques in addition to heterokaryon cell fusion.

  1. Thymic involution in the suspended rat model for weightlessness - Decreased glucocorticoid receptor concentration

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1984-01-01

    Hindlimb muscle atrophy, thymic involution and adrenal hypertrophy in rats during spaceflight can be simulated using suspension models. Skeletal muscle and thymus are sensitive to gluco-corticoids (GC), and previous studies have demonstrated that muscle atrophy in suspended rats is associated with increased GC receptor concentration. The objectives were to confirm thymic involution during suspension, and determine if involution correlated with increased GC receptor concentration. Seven days of antiorthostatic (AO) suspension of rats produced a significant (P less than 0.001) reduction in thymic wet weight not associated with an alteration of percent water content. GC receptor concentration (pmol/mg protein) decreased 20 percent (P less than 0.025) in thymus glands from 7 day AO suspended rats. Suspension, therefore, is associated with involution of the thymus, but this is not dependent upon AO positioning. Thymus GC receptor concentrations were depressed in 7-day suspended rats, in contrast with previous observations on skeletal muscle, suggesting that different mechanisms may underlie these responses.

  2. Disruption of the glucocorticoid receptor assembly with heat shock protein 90 by a peptidic antiglucocorticoid.

    PubMed

    Dao-Phan, H P; Formstecher, P; Lefebvre, P

    1997-06-01

    Association of glucocorticoid (GR) and progesterone (PR) receptors with a set of molecular chaperones, including the 90-kDa heat shock protein (hsp90), is a dynamic process required for proper folding and maintaining these nuclear receptors under a transcriptionally inactive, ligand-responsive state. Mutational studies of the chicken hsp90 complementary DNA suggested that three regions of this protein (A, B, and Z) interact with the hormone-binding domain of GR, whereas region A is dispensable for hsp90 binding to PR. We found that this 69-amino acid region can be narrowed down to a 35-mer alpha-helical, acidic peptide, which is by itself able to inhibit hsp90 association to GR translated in vitro. The hsp90-free GR did not bind ligand, but was devoid of any specific DNA-binding activity, and higher peptide concentrations specifically inhibited the binding of activated GR to DNA. When overexpressed in cultured cells, this peptide acted as an antiglucocorticoid and inhibited the antiactivating protein-1 activity and the ligand-dependent nuclear transfer of GR. None of these effects, either in vivo and in vitro, was observed for PR. The region from residue 232 to residue 265 of hsp90 is, therefore, a domain critical for its association to GR, an association that is a prerequisite for receptor transcriptional activity. More importantly, these results demonstrate that targeting specific protein/protein interaction interfaces is a powerful means to specifically modulate nuclear receptor signaling pathways in a ligand-independent manner.

  3. Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major)

    PubMed Central

    Senft, Rebecca A.; Meddle, Simone L.; Baugh, Alexander T.

    2016-01-01

    The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids—the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)—are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)—the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual’s behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations

  4. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy

    PubMed Central

    Engler, Jan Broder; Kursawe, Nina; Solano, María Emilia; Patas, Kostas; Wehrmann, Sabine; Heckmann, Nina; Lühder, Fred; Reichardt, Holger M.; Arck, Petra Clara; Gold, Stefan M.

    2017-01-01

    Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell–specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy. PMID:28049829

  5. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-02-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins.

  6. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    PubMed Central

    Schmitt, J; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a synthetic promoter and from the mouse mammary tumor virus (MMTV) promoter is enhanced by recombinant GR in a ligand independent manner. Both transactivation domains contribute to the transcriptional activity, additively on a synthetic promoter and cooperatively on the MMTV promoter. We thus provide the first evidence that in vitro the hormone binding domain has a transcriptional activity even in the absence of ligand. Images PMID:8392705

  7. A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms.

    PubMed

    Thomas-Chollier, Morgane; Watson, Lisa C; Cooper, Samantha B; Pufall, Miles A; Liu, Jennifer S; Borzym, Katja; Vingron, Martin; Yamamoto, Keith R; Meijsing, Sebastiaan H

    2013-10-29

    In addition to guiding proteins to defined genomic loci, DNA can act as an allosteric ligand that influences protein structure and activity. Here we compared genome-wide binding, transcriptional regulation, and, using NMR, the conformation of two glucocorticoid receptor (GR) isoforms that differ by a single amino acid insertion in the lever arm, a domain that adopts DNA sequence-specific conformations. We show that these isoforms differentially regulate gene expression levels through two mechanisms: differential DNA binding and altered communication between GR domains. Our studies suggest a versatile role for DNA in both modulating GR activity and also in directing the use of GR isoforms. We propose that the lever arm is a "fulcrum" for bidirectional allosteric signaling, conferring conformational changes in the DNA reading head that influence DNA sequence selectivity, as well as conferring changes in the dimerization domain that connect functionally with remote regulatory surfaces, thereby influencing which genes are regulated and the magnitude of their regulation.

  8. Post-training glucocorticoid receptor activation during Pavlovian conditioning reduces Pavlovian-instrumental transfer in rats.

    PubMed

    Pielock, Steffi M; Sommer, Susanne; Hauber, Wolfgang

    2013-03-01

    Considerable evidence suggests that glucocorticoid receptor activation can enhance memory consolidation in Pavlovian learning tasks. For instance, post-training injections of the synthetic glucocorticoid receptor agonist dexamethasone increased conditioned responding to reward-predictive Pavlovian stimuli. Here we explored whether post-training dexamethasone injections can enhance appetitive Pavlovian learning and amplify the ability of Pavlovian stimuli to invigorate instrumental behaviour, a phenomenon termed Pavlovian-instrumental transfer (PIT). Animals were given 8 training days with two sessions per day, an instrumental training session in the morning and a Pavlovian training session in the afternoon. Dexamethasone or vehicle injections were administered daily immediately after Pavlovian training sessions. In a subsequent transfer test, we measured the general PIT effect, i.e. the enhancement of lever pressing for expected reward during presentation of an appetitive Pavlovian stimulus predictive for the same reward. Repeated high-dose (1.2 mg/kg, i.p.) dexamethasone injections elicited pronounced body weight loss, markedly reduced instrumental performance and left Pavlovian learning unaltered, whereas repeated low-dose (3 μg/kg, i.p.) dexamethasone injections inhibited body weight gain, slightly reduced instrumental performance and left Pavlovian learning unaltered during training. Importantly, in rats subjected to high- and low-dose dexamethasone injections, the overall response rates and the PIT effect were reduced in the transfer test. Thus, dexamethasone given after Pavlovian training was not able to amplify the invigorating effects of Pavlovian stimuli on instrumental action. Considerable evidence suggests that body weight changes after repeated low- and high-dose dexamethasone treatment as observed here are associated with muscle atrophy that could impair response capabilities. However, our data suggest that impaired response capabilities are not a

  9. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    PubMed Central

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  10. Dissection of Glucocorticoid Receptor-mediated Inhibition of the Hypothalamic-pituitary-adrenal Axis by Gene Targeting in Mice

    PubMed Central

    Laryea, Gloria; Muglia, Lisa; Arnett, Melinda; Muglia, Louis J.

    2014-01-01

    Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders. PMID:25256348

  11. Prenatal Dexamethasone Exposure Increases the Susceptibility to Autoimmunity in Offspring Rats by Epigenetic Programing of Glucocorticoid Receptor

    PubMed Central

    Sun, Yanhong; Ouyang, Juan; Xie, Renfeng; Wang, Xueping

    2016-01-01

    Objective. Prenatal glucocorticoids (GC) can induce long term effects on offspring health. However, reports and related studies regarding the prolonged effects of prenatal GC on the development of autoimmunity are limited. Here, we aimed to explore the immunological effects of dexamethasone (DEX) exposure on young adults and whether glucocorticoid receptor (GR) is involved in this process. Methods. Wistar rats were given DEX during pregnancy. Susceptibility to autoimmunity in offspring was assessed using experimental autoimmune encephalomyelitis (EAE) and adjuvant-induced arthritis (AIA) animal models. To reveal the possible mechanism, glucocorticoid response, GR expression, and methylation status were measured in peripheral blood mononuclear cells (PBMCs). Results. Our results showed that the DEX-treated rats had greater susceptibility to EAE (100% versus 62.5%, P < 0.05) and AIA (63.6% versus 0%, P < 0.05) than saline control group. Glucocorticoid response and GR expression were decreased in DEX rats. Significant difference was also found in the methylation levels of GR exon 1-10 to exon 1-11 region. Conclusions. Prenatal DEX administration increases the susceptibility to autoimmune diseases, which is potentially mediated by programming GR methylation status and glucocorticoid sensitivity. PMID:28078304

  12. Glucocorticoid Receptor ChIP-seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy.

    PubMed

    Sasse, Sarah K; Kadiyala, Vineela; Danhorn, Thomas; Panettieri, Reynold A; Phang, Tzu L; Gerber, Anthony N

    2017-04-04

    Glucocorticoids exert important therapeutic effects on airway smooth muscle (ASM), yet few direct targets of glucocorticoid signaling in ASM have been definitively identified. Here, we show that the transcription factor, KLF15, is directly induced by glucocorticoids in primary human ASM and that KLF15 represses ASM hypertrophy. We integrated transcriptome data from KLF15 overexpression with genome-wide analysis of RNA Polymerase II (RNAPII) and glucocorticoid receptor (GR) occupancy (i.e. ChIP-seq) to identify PLCD1 as both a KLF15-regulated gene and a novel repressor of ASM hypertrophy. Our ChIP-seq data also allowed us to establish numerous direct transcriptional targets of GR in ASM. Genes with inducible GR occupancy and putative anti-inflammatory properties included IRS2, APPL2, RAMP1 and MFGE8. Surprisingly, we also observed GR occupancy in the absence of supplemental ligand, including robust GR binding peaks within the IL11 and LIF loci. Detection of antibody-GR complexes at these areas was abrogated by dexamethasone treatment in association with reduced RNAPII occupancy, suggesting that non-canonical pathways contribute to cytokine repression by glucocorticoids in ASM. Through defining GR interactions with chromatin on a genome-wide basis in ASM, our data also provide an important resource for future studies of GR in this therapeutically relevant cell type.

  13. Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess.

    PubMed

    Bouligand, Jérôme; Delemer, Brigitte; Hecart, Annie-Claude; Meduri, Geri; Viengchareun, Say; Amazit, Larbi; Trabado, Séverine; Fève, Bruno; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc

    2010-10-22

    Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of

  14. Targeted Ablation Reveals a Novel Role of FKBP52 in Gene-Specific Regulation of Glucocorticoid Receptor Transcriptional Activity

    PubMed Central

    Wolf, Irene M.; Periyasamy, Sumudra; Hinds, Terry; Yong, Weidong; Shou, Weinian; Sanchez, Edwin R.

    2009-01-01

    FKBP52 is a tetratricopeptide repeat (TPR) protein with peptidyl-prolyl isomerase activity and is found in steroid receptor complexes, including glucocorticoid receptor (GR). It is generally accepted that FKBP52 has a stimulatory effect on GR transcriptional activity. However, the mechanism by which FKBP52 controls GR is not yet clear, with reports showing effects on GR hormone-binding affinity and/or hormone-induced nuclear translocation. To address this issue, we have generated mice with targeted ablation of the FKBP52 gene. To date, no overt defects of GR-regulated physiology have been found in these animals, demonstrating that FKBP52 is not an essential regulator of global GR activity. To better assess the impact of FKBP52 on GR, mouse embryonic fibroblasts (MEFs) were generated from wild-type (WT) and FKBP52-deficient (KO) animals. Analysis of GR activity at reporter genes showed an approximate 70% reduction of activity in 52KO MEF cells, with no effect of FKBP52 loss on thyroid receptor. Interestingly, GR activity at endogenous genes was not globally affected in 52KO cells, with reduced activity at GILZ and FKBP51, but not at SGK and p21. Thus, FKBP52 appears to be a gene-specific modulator of GR. To investigate the mechanism of this action, analyses of GR heterocomplex composition, hormone-binding affinity, and ability to undergo hormone-induced nuclear translocation and DNA-binding were performed. Interestingly, no effect of FKBP52 loss was found for any of these GR properties, suggesting that the main function of FKBP52 is a heretofore-unknown ability to control GR activity at target genes. Lastly, loss of FKBP52 did not affect the ability of GR to undergo hormone-induced autologous down-regulation, showing that FKBP52 does not contribute to all branches of GR signaling. The implications of these results to the potential actions of FKBP52 on GR activity in vivo are discussed. PMID:19073255

  15. Glucocorticoid Receptor-DNA Dissociation Kinetics Measured in Vitro Reveal Exchange on the Second Time Scale.

    PubMed

    De Angelis, Rolando W; Maluf, Nasib K; Yang, Qin; Lambert, James R; Bain, David L

    2015-09-01

    The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. Recent live cell imaging studies have revealed that interactions of GR with chromatin are highly dynamic, with average receptor residence times of only seconds. These findings were surprising because early kinetic studies found that GR-DNA interactions in vitro were much slower, having calculated residence times of minutes to hours. However, these latter analyses were conducted at a time when it was possible to work with only either partially purified holoreceptor or its purified but isolated DNA binding domain. Noting these limitations, we reexamined GR-DNA dissociation kinetics using a highly purified holoreceptor shown to be amenable to rigorous study. We first observe that GR-DNA interactions in vitro are not slow as previously thought but converge with in vivo behavior, having residence times of only seconds to tens of seconds. This rapid exchange is seen at six individual response elements and the multisite MMTV promoter used in live cell imaging. Second, GR dissociation rates are identical for all response elements. Thus, previously observed differences in receptor affinity toward these sequences are not due to differences in off rate but in on rate. Finally, dissociation kinetics are biphasic in character. A minimal kinetic model consistent with the data is that in which DNA-bound GR interconverts between states on a second time scale, with dissociation occurring via a multistep process. We speculate that receptor interconversion in this time frame can be recognized by the coregulatory proteins that interact with GR, leading to unique transcriptional responses.

  16. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter.

    PubMed

    Chen, Yuping; Ferguson, Stephen S; Negishi, Masahiko; Goldstein, Joyce A

    2003-08-01

    CYP2C19 is an important human drug-metabolizing enzyme that metabolizes a number of clinically used drugs including the antiulcer drug omeprazole, the anxiolytic drug diazepam, the beta-blocker propranolol, the antimalarial drug proguanil, certain antidepressants and barbiturates, and the prototype substrate S-mephenytoin. Previous studies show that compounds such as rifampicin and dexamethasone induce CYP2C19 both in vivo in humans and in vitro in human hepatocytes. This study examines the transcriptional regulation of CYP2C19. Analysis of the CYP2C19 promoter revealed a single constitutive androstane receptor (CAR) binding site (CAR-RE; -1891/-1876 bp) and a glucocorticoid-responsive element (GRE; -1750/-1736 bp). Gel-shift assays showed that CAR-RE binds CAR and pregnane X receptor (PXR). Cotransfection with hCAR, mCAR, or hPXR in HepG2 cells up-regulated transcription of CYP2C19 promoter constructs, whereas mutation of the -1891-bp CAR-RE abolished up-regulation. Expression with hCAR also up-regulated endogenous CYP2C19 mRNA content in HepG2 cells. Androstenol repressed the mCAR-mediated constitutive activation of the CYP2C19 promoter in HepG2 cells, whereas the potent mCAR ligand 1,4-bis[2-3,5-dichloropyridyloxyl)] benzene derepressed this response. Rifampicin produced a modest increase in promoter activity in cells cotransfected with hPXR. Dexamethasone activated the -2.7-kb CYP2C19 promoter constructs in HepG2 cells only in the presence of cotransfected glucocorticoid receptor (GR), whereas the GR antagonist mifepristone inhibits this response. Mutation of the GRE abolishes dexamethasone activation. This is the first study to identify nuclear receptor binding sites (CAR/PXR and GR) in the CYP2C19 promoter and to suggest that these receptors may up-regulate CYP2C19 constitutively and possibly its response to drugs.

  17. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development.

    PubMed

    Mueller, Kristina M; Themanns, Madeleine; Friedbichler, Katrin; Kornfeld, Jan-Wilhelm; Esterbauer, Harald; Tuckermann, Jan P; Moriggl, Richard

    2012-09-25

    Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.

  18. Enhancement of stress resilience through Hdac6-mediated regulation of glucocorticoid receptor chaperone dynamics

    PubMed Central

    Jochems, Jeanine; Teegarden, Sarah L; Chen, Yong; Boulden, Janette; Challis, Collin; Ben-Dor, Gabriel A; Kim, Sangwon F; Berton, Olivier

    2014-01-01

    Background Acetylation of Hsp90 regulates downstream hormone signaling via the glucocorticoid receptor (GR), but the role of this molecular mechanism in stress homeostasis remains poorly understood. We tested whether acetylation of Hsp90 in the brain predicts and modulates the behavioral sequelae of a mouse model of social stress. Methods Mice subjected to chronic social defeat stress (CSDS) were stratified into resilient and vulnerable subpopulations. HPA axis function was probed using a DEX/CRF test. Hsp90 acetylation, Hsp90-GR interactions and GR translocation were measured in the dorsal raphe nucleus (DRN). To manipulate Hsp90 acetylation, we pharmacologically inhibited Hdac6, a known deacetylase of Hsp90 or overexpressed a point-mutant that mimics the hyperacetylated state of Hsp90 at lysine K294 Results Lower acetylated Hsp90, higher GR-Hsp90 association and enhanced GR translocation were observed in DRN of vulnerable mice after CSDS. Administration of ACY-738, an Hdac6-selective inhibitor, led to Hsp90 hyperacetylation in brain and in neuronal culture. In cell-based assays, ACY-738 increased the relative association of Hsp90 with FKBP51 versus FKBP52 and inhibited hormone-induced GR translocation. This effect was replicated by overexpressing the acetylation-mimic point-mutant of Hsp90. In vivo, ACY-738 promoted resilience to CSDS and serotonin-selective viral overexpression of the acetylation-mimic mutant of Hsp90 in raphe neurons reproduced the behaviroral effect of ACY-738. Conclusions Hyperacetylation of Hsp90 is a predictor and causal molecular determinant of stress resilience in mice. Brain-penetrant Hdac6 inhibitors increase Hsp90 acetylation and modulate GR chaperone dynamics offering a promising strategy to curtail deleterious socioaffective effects of stress and glucocorticoids. PMID:25442004

  19. Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation.

    PubMed

    Bose, Sandip K; Hutson, Irina; Harris, Charles A

    2016-12-01

    Exogenous glucocorticoid administration results in hyperglycemia, insulin resistance, hepatic dyslipidemia, and hypertension, a constellation of findings known as Cushing's syndrome. These effects are mediated by the glucocorticoid receptor (GR). Because GR activation in liver and adipose has been implicated in metabolic syndrome (MS), we wanted to determine the role of GR in these tissues in the development of MS. Because GR knockout (KO) mice (whole-body KO) exhibit perinatal lethality due to respiratory failure, we generated tissue-specific (liver or adipose) GRKO mice using cre-lox technology. Real-time PCR analysis of liver mRNA from dexamethasone-treated wildtype (WT) and liver GRKO mice indicated that hepatic GR regulates the expression of key genes involved in gluconeogenesis and glycogen metabolism. Interestingly, we have observed that liver-specific deletion of GR resulted in a significant increase in mRNA expression of key genes involved in gluconeogenesis and glycogen metabolism in kidney tissue, indicating a compensatory mechanism to maintain glucose homeostasis. We have also observed that GR plays an important role in regulating the mRNA expression of key genes involved in lipid metabolism. Liver GRKO mice demonstrated decreased fat mass and liver glycogen content compared with WT mice administered dexamethasone for 2 weeks. Adipose-specific deletion of GR did not alter glucose tolerance or insulin sensitivity of adipose GRKO mice compared with WT mice administrated dexamethasone. This indicates that liver GR might be more important in development of MS in dexamethasone-treated mice, whereas adipose GR plays a little role in these paradigms.

  20. The prognostic value of glucocorticoid receptors for adult acute lymphoblastic leukemia

    PubMed Central

    EL-Maghraby, Shereen M.; Kandil, Noha S.; El-Bendary, Waleed R.

    2015-01-01

    Background Therapeutic protocols used in adult acute lymphoblastic leukemia (ALL) are widely variable, and glucocorticoids (GCs) are essential components in ALL treatment. Therefore, this study aimed to evaluate the distribution of prominent glucocorticoid receptor (GR) gene polymorphic variants among adult ALL patients. We also investigated the association between GR messenger ribonucleic acid (mRNA) isoform expressions and the response to chemotherapy. Methods Fifty-two newly diagnosed Philadelphia-negative adult ALL patients and 30 healthy control subjects were enrolled in this study. Genotyping was carried out using a polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. GR mRNA isoform expressions were assayed by quantitative real-time PCR. Results ALL patients in this study had a median age of 34 years (range, 18-75). GRα expression was associated with complete remission (P=0.03), while GRγ mRNA expression was significantly higher in GC resistant patients (P=0.032) and in non-responders (P=0.019). However, there were no significant associations with GC resistance. The BclI polymorphic variant of the GR gene was the most frequent in adult ALL patients and was not associated with the GC response. Both higher GRα expression and lower GRγ expression were associated with achievement of complete remission, while higher GRγ expression was associated with GC-resistance. Conclusion Our data suggest that the level of GR isoform expression may be useful in predicting GC response, achievement of complete remission, and better event-free survival in ALL patients. However, further evaluation with a larger cohort of patients is warranted. PMID:26770951

  1. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  2. Region-specific Alterations in Glucocorticoid Receptor Expression in the Postmortem Brain of Teenage Suicide Victims

    PubMed Central

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Ren, Xinguo; Dwivedi, Yogesh; Palkovits, Miklós

    2013-01-01

    Introduction Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Methods Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. Results We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. Conclusions These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action

  3. Phenylalanine-780 near the C-terminus of the mouse glucocorticoid receptor is important for ligand binding affinity and specificity.

    PubMed

    Chen, D; Kohli, K; Zhang, S; Danielsen, M; Stallcup, M R

    1994-04-01

    Site-directed mutagenesis was employed to make two single amino acid substitutions for highly conserved amino acid residues near the C-terminus of the 783-amino acid mouse glucocorticoid receptor. Substitution of leucine for histidine-781 caused little or no change in the concentration of dexamethasone required for half-maximal activation of a chloramphenicol acetyltransferase reporter gene expressed from a mouse mammary tumor virus promoter. However, when phenylalanine-780 was changed to alanine, the half-maximal concentrations of various agonists were increased as follows, compared with the wild-type glucocorticoid receptor: triamcinolone acetonide by 7-fold, dexamethasone by 25-fold, and hydrocortisone and deoxycorticosterone by more than 150-fold. Binding of labeled steroids by the mutant receptor in vitro and in vivo was also decreased. In contrast, this mutation caused a small decrease in the concentration of RU486 required for antagonist or partial agonist activity. Thus, the phenyl group of phenylalanine-780 of the mouse glucocorticoid receptor is an important determinant of ligand binding affinity and specificity.

  4. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

    PubMed

    Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B

    2016-02-05

    Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.

  5. Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain.

    PubMed

    Myers, Brent; Greenwood-Van Meerveld, Beverley

    2010-02-01

    Elevated amygdala activity and increased responsiveness of the hypothalamic-pituitary-adrenal axis have been observed in irritable bowel syndrome (IBS) patients. Recently, we demonstrated that corticosterone (Cort) placed on the amygdala induced anxiety-like behavior coupled with decreased thresholds for visceral and somatic pain in rats. Moreover, these studies suggested that the effects of Cort were dependent on both the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR); however, the specific contributions of these receptors to the interaction between corticosteroids and the amygdala are still unclear. In the present study, we sought to define the distinct roles of amygdaloid GR and MR in anxiety-like behavior, visceral sensitivity, and somatic sensitivity through selective pharmacological activation. Male Fischer 344 rats received bilateral implants on the dorsal margin of the central amygdala containing the GR agonist dexamethasone (Dex), the MR agonist aldosterone (Aldo), or cholesterol as a control. Our results showed that GR or MR activation significantly reduced open arm exploration on the elevated plus maze, a measure of anxiety-like behavior. Aldo increased the number of abdominal muscle contractions in response to all levels of colorectal distension (CRD). In contrast, Dex only increased visceral sensitivity at noxious levels of CRD. Furthermore, GR but not MR activation reduced somatic pain thresholds measured by the mechanical force required to elicit hindlimb withdrawal. In summary, GR and MR mediated-mechanisms induce anxiety and visceral hypersensitivity, whereas somatic sensitivity involves only GR, suggesting that corticosteroids may enhance visceral and somatic sensation via divergent processes originating in the amygdala and involving specific steroid receptor mechanisms.

  6. Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims.

    PubMed

    Pérez-Ortiz, José M; García-Gutiérrez, María S; Navarrete, Francisco; Giner, Salvador; Manzanares, Jorge

    2013-08-01

    Recent reports suggest that FKBP5 gene and its corresponding FKBP5 protein play a relevant role in the regulation of anxiety and depression in animal models and human stress-related disorders. In the present study, FKBP5 and glucocorticoid receptor (GR) gene and protein expression were analyzed in the amygdala (AMY) of suicide victims (n=13 males, without clinical psychiatric history and non-treated with anxiolytic or antidepressant drugs) and its corresponding controls (n=13 males) by real-time PCR and Western blotting. The results revealed that FKBP5 and GR gene expression were significantly reduced in the AMY (-38% and -48%, respectively) of suicide victims compared with controls. Interestingly, FKBP5 and GR protein expression were also significantly decreased (-41% and -42%, respectively) in the AMY of suicide victims compared with controls. These results suggest that the FKBP5 plays a relevant role in human emotional responses and suggest this receptor as a new promising target in the treatment of suicide behavior.

  7. Trehalose induces functionally active conformation in the intrinsically disordered N-terminal domain of glucocorticoid receptor.

    PubMed

    Khan, Shagufta H; Jasuja, Ravi; Kumar, Raj

    2016-08-05

    Glucocorticoid receptor (GR) is a classic member of the nuclear receptor superfamily and plays pivotal roles in human physiology at the level of gene regulation. Various constellations of cellular cofactors are required to associate with GR to activate/repress genes. The effects of specific ligands on the AF2 structure and consequent preferential binding of co-activators or co-repressors have helped our understanding of the mechanisms involved. But the data so far fall short of fully explaining GR actions. We believe that this is because work so far has largely avoided detailed examination of the contributions of AF1 to overall GR actions. It has been shown that the GR containing only the N-terminal domain (NTD) and the DNA-binding domain (GR500) is constitutively quite active in stimulating transcription from simple promoters. However, we are only beginning to understand structure and functions of GR500 in spite of the fact that AF1 located within the NTD serves as major transactivation domain for GR. Lack of this information has hampered our complete understanding of how GR regulates its target gene(s). The major obstacle in determining GR500 structure has been due to its intrinsically disordered NTD conformation, frequently found in transcription factors. In this study, we tested whether a naturally occurring osmolyte, trehalose, can promote functionally ordered conformation in GR500. Our data show that in the presence of trehalose, GR500 is capable of formation of a native-like functionally folded conformation.

  8. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes.

    PubMed

    Uhlenhaut, N Henriette; Barish, Grant D; Yu, Ruth T; Downes, Michael; Karunasiri, Malith; Liddle, Christopher; Schwalie, Petra; Hübner, Norbert; Evans, Ronald M

    2013-01-10

    How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1's corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants.

  9. Corticosterone Inhibits the Proliferation of C6 Glioma Cells via the Translocation of Unphosphorylated Glucocorticoid Receptor.

    PubMed

    Nakatani, Yoshihiko; Amano, Taku; Takeda, Hiroshi

    2016-01-01

    Astroglial cells have been considered to have passive brain function by helping to maintain neurons. However, recent studies have revealed that the dysfunction of such passive functions may be associated with various neuropathological diseases, such as schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis and major depression. Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the brain. However, it is still obscure how CORT affects astroglial cell function. In this study, we investigated the effects of CORT on the proliferation and survival of astroglial cells using C6 glioma cells. Under treatment with CORT for 24h, the proliferation of C6 glioma cells decreased in a dose-dependent manner. Moreover, this inhibition was diminised by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist, and was independent of GR phosphorylation and other GR-related intracellular signaling cascades. Furthermore, it was observed that the translocation of GR from the cytosol to the nucleus was promoted by the treatment with CORT. These results indicate that CORT decreases the proliferation of C6 glioma cells by modifying the transcription of a particular gene related to cell proliferation independent of GR phosphorylation.

  10. Glucocorticoid receptor (GR) {beta} has intrinsic, GR{alpha}-independent transcriptional activity

    SciTech Connect

    Kino, Tomoshige; Manoli, Irini; Kelkar, Sujata; Wang, Yonghong; Su, Yan A.; Chrousos, George P.

    2009-04-17

    The human glucocorticoid receptor (GR) gene produces C-terminal GR{beta} and GR{alpha} isoforms through alternative use of specific exons 9{beta} and {alpha}, respectively. We explored the transcriptional activity of GR{beta} on endogenous genes by developing HeLa cells stably expressing EGFP-GR{beta} or EGFP. Microarray analyses revealed that GR{beta} had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GR{beta}-responsive genes was distinct from those modulated by GR{alpha}, while GR{beta} and GR{alpha} mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GR{beta} and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GR{beta} and to induce nuclear translocation. Our results indicate that GR{beta} has intrinsic, GR{alpha}-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GR{alpha}-induced transactivation of GRE-driven promoters.

  11. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice.

    PubMed

    de Almeida, Taís Fontoura; de Castro Pires, Taiza; Monte-Alto-Costa, Andréa

    2016-02-01

    Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway.

  12. Corticosterone targets distinct steps of synaptic transmission via concentration specific activation of mineralocorticoid and glucocorticoid receptors.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2014-02-01

    Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100 nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25 nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100 nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.

  13. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression.

    PubMed

    Quinn, Matthew A; Cidlowski, John A

    2016-02-01

    An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression.

  14. Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states

    PubMed Central

    Zhou, Zhaocai; Song, Xiaomin; Berezov, Alan; Zhang, Geng; Li, Yanjing; Zhang, Hongtao; Murali, Ramachandran; Li, Bin; Greene, Mark I.

    2008-01-01

    Ligation between glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand (GITRL) provides an undefined signal that renders CD4+CD25− effector T cells resistant to the inhibitory effects of CD4+CD25+ regulatory T cells. To understand the structural basis of GITRL function, we have expressed and purified the extracellular domain of human GITR ligand in Escherichia coli. Chromotography and cross-linking studies indicate that human GITRL (hGITRL) exists as dimers and trimers in solution and also can form a supercluster. To gain insight into the nature of GITRL oligomerization, we determined the crystallographic structures of hGITRL, which revealed a loosely associated open trimer with a deep cavity at the molecular center and a flexible C-terminal tail bent for trimerization. Moreover, a tetramer of trimers (i.e., supercluster) has also been observed in the crystal, consistent with the cross-linking analysis. Deletion of the C-terminal distal three residues disrupts the loosely assembled trimer and favors the formation of a dimer that has compromised receptor binding and signaling activity. Collectively, our studies identify multiple oligomeric species of hGITRL that possess distinct kinetics of ERK activation. The studies address the functional implications and structural models for a process by which hGITRL utilizes multiple oligomerization states to regulate GITR-mediated signaling during T cell costimulation. PMID:18378892

  15. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription.

    PubMed Central

    Drouin, J; Trifiro, M A; Plante, R K; Nemer, M; Eriksson, P; Wrange, O

    1989-01-01

    Glucocorticoids rapidly and specifically inhibit transcription of the pro-opiomelanocortin (POMC) gene in the anterior pituitary, thus offering a model for studying negative control of transcription in mammals. We have defined an element within the rat POMC gene 5'-flanking region that is required for glucocorticoid inhibition of POMC gene transcription in POMC-expressing pituitary tumor cells (AtT-20). This element contains an in vitro binding site for purified glucocorticoid receptor. Site-directed mutagenesis revealed that binding of the receptor to this site located at position base pair -63 is essential for glucocorticoid repression of transcription. Although related to the well-defined glucocorticoid response element (GRE) found in glucocorticoid-inducible genes, the DNA sequence of the POMC negative glucocorticoid response element (nGRE) differs significantly from the GRE consensus; this sequence divergence may result in different receptor-DNA interactions and may account at least in part for the opposite transcriptional properties of these elements. Hormone-dependent repression of POMC gene transcription may be due to binding of the receptor over a positive regulatory element of the promoter. Thus, repression may result from mutually exclusive binding of two DNA-binding proteins to overlapping DNA sequences. Images PMID:2586521

  16. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    PubMed

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  17. Subchronic Glucocorticoid Receptor Inhibition Rescues Early Episodic Memory and Synaptic Plasticity Deficits in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Lanté, Fabien; Chafai, Magda; Raymond, Elisabeth Fabienne; Salgueiro Pereira, Ana Rita; Mouska, Xavier; Kootar, Scherazad; Barik, Jacques; Bethus, Ingrid; Marie, Hélène

    2015-01-01

    The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset. PMID:25622751

  18. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring

    PubMed Central

    Desarnaud, Frank; Bader, Heather N.; Makotkine, Iouri; Flory, Janine D.; Bierer, Linda M.; Meaney, Michael J.

    2014-01-01

    Objective Differential effects of maternal and paternal PTSD have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The current study examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor gene (NR3C1) in peripheral blood mononuclear cells (PBMCs), and its relationship to glucocorticoid receptor sensitivity, in Holocaust offspring. Method Adult offspring with at least one Holocaust survivor parent (n=80), and demographically similar participants without parental Holocaust exposure or PTSD (n=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of glucocorticoid receptor gene exon 1F (GR-1F) promoter methylation and cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical-clustering analysis was used to permit visualization of maternal vs. paternal PTSD effects on clinical variables. Results A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater post-dexamethasone cortisol suppression. The clustering analysis confirmed that maternal and paternal PTSD effects were differentially associated with clinical indicators. Conclusions This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities. PMID:24832930

  19. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    PubMed

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  20. PPARα and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    PubMed Central

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M. Inmaculada; Li, Hu; Elmes, Russell R.; Peters, Luanne L.; Lodish, Harvey F.

    2015-01-01

    Summary Many acute and chronic anemias, including hemolysis, sepsis, and genetic bone marrow failure diseases such as Diamond-Blackfan Anemia (DBA), are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production 1,2,3–5,6,7,8,9. Treatment of these anemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently we showed that glucocorticoids specifically stimulate self-renewal of the early erythroid progenitor, the burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells 10,11. Here we demonstrate that activation of the peroxisome proliferator-activated receptor alpha (PPARα) by PPARα agonists, GW7647 and fenofibrate, synergizes with glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures both of mouse fetal liver BFU-Es and of mobilized human adult CD34+ peripheral blood progenitors, the latter employing a new and effective culture system that generates normal enucleated reticulocytes. While PPARα−/− mice show no hematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPARα agonists facilitate recovery of wild-type mice, but not PPARα−/− mice, from PHZ-induced acute hemolytic anemia. We also showed that PPARα alleviates anemia in a mouse model of chronic anemia. Finally, both in control and corticosteroid-treated BFU-E cells PPARα co-occupies many chromatin sites with GR; when activated by PPARα agonists, additional PPARα is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPARα agonists in stimulating self

  1. Eosinophil as a cellular target of the ocular anti-allergic action of mapracorat, a novel selective glucocorticoid receptor agonist

    PubMed Central

    Baiula, Monica; Spartà, Antonino; Bedini, Andrea; Carbonari, Gioia; Bucolo, Claudio; Ward, Keith W.; Zhang, Jin-Zhong; Govoni, Paolo

    2011-01-01

    Purpose Glucocorticoids can either suppress gene transcription (transrepression) or activate it (transactivation). This latter process may contribute to certain side effects caused by these agents. Mapracorat (also known as BOL-303242-X or ZK 245186) is a novel selective glucocorticoid receptor agonist that maintains a beneficial anti-inflammatory activity but seems to be less effective in transactivation, resulting in a lower potential for side effects; it has been proposed for the topical treatment of inflammatory skin disorders. This study assessed the anti-allergic activity of mapracorat at the ocular level and whether eosinophils and mast cells are targets of its action. Methods With in vitro studies apoptosis was evaluated in human eosinophils by flow cytometry and western blot of caspase-3 fragments. Eosinophil migration toward platelet-activating factor was evaluated by transwell assays. Interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), and the chemokine (C-C motif) ligand 5 (CCL5)/regulated upon activation normal T cell expressed, and presumably secreted (RANTES) were measured using a high-throughput multiplex luminex technology. Annexin I and the chemochine receptor C-X-C chemokine receptor 4 (CXCR4) were detected by flow cytometry. With in vivo studies, allergic conjunctivitis was induced in guinea pigs sensitized to ovalbumin by an ocular allergen challenge and evaluated by a clinical score. Conjunctival eosinophils were determined by microscopy or eosinophil peroxidase assay. Results In cultured human eosinophils, mapracorat showed the same potency as dexamethasone but displayed higher efficacy in increasing spontaneous apoptosis and in counteracting cytokine-sustained eosinophil survival. These effects were prevented by the glucocorticoid receptor antagonist mifepristone. Mapracorat inhibited eosinophil migration and IL-8 release from eosinophils or the release of IL-6, IL-8, CCL5/RANTES, and TNF-α from a human mast cell line with equal

  2. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling

    PubMed Central

    Agustini, Bruno; Cleare, Anthony J.; Young, Allan H.

    2017-01-01

    A recent article by Kwan and colleagues could elegantly demonstrate the necessary interaction between neuronal serotonin (5-HT) systems and the hypothalamic-pituitary-adrenal (HPA) axis through glucocorticoid receptors (GR), producing an adequate stress response, in this case, responding to hypoxia with an increase in hematopoietic stem and progenitor cells (HSPC). There is an intricate system connecting brain, body and mind and this exchange is only possible when all these systems—nervous, endocrine, and immune—have receptors on critical cells to receive information (via messenger molecules) from each of the other systems. There is evidence that the expression and function of GR in the hippocampus, mainly MR, is regulated by the stimulation of 5-HT receptors. Stressful stimuli increase 5-HT release and turnover in the hippocampus, and it seems reasonable to suggest that some of the changes in mineralocorticoid and GR expression may be mediated, in part at least, by the increase in 5-HT. Also serotonin and HPA axis dysfunctions have already been implicated in a variety of psychiatric disorders, especially depression. Early life stress (ELS) can have profound impact on these systems and can predispose subjects to a variety of adult metabolic and psychiatric conditions. It is important to analyze the mechanisms of this complex interaction and its subsequent programming effects on the stress systems, so that we can find new ways and targets for treatment of psychiatric disorders. Different areas of research on basic biological sciences are now being integrated and this approach will hopefully provide several new insights, new pharmacological targets and improve our global understanding of these highly debilitating chronic conditions, that we now call mental disorders. PMID:28275643

  3. Glucocorticoid Receptor Activation Inhibits Chemotherapy-induced Cell Death in High-grade Serous Ovarian Carcinoma

    PubMed Central

    Stringer-Reasor, Erica M.; Baker, Gabrielle M.; Skor, Maxwell N.; Kocherginsky, Masha; Lengyel, Ernst; Fleming, Gini F.; Conzen, Suzanne D.

    2015-01-01

    Objectives To test the hypothesis that glucocorticoid receptor (GR) activation increases resistance to chemotherapy in high-grade serous ovarian cancer (HGS-OvCa) and that treatment with a GR antagonist will improve sensitivity to chemotherapy. Methods GR expression was assessed in OvCa cell lines by qRT-PCR and Western blot analysis and in xenografts and primary human tumors using immunohistochemistry (IHC). We also examined the effect of GR activation versus inhibition on chemotherapy-induced cytotoxicity in OvCa cell lines and in a xenograft model. Results With the exception of IGROV-1 cells, all OvCa cell lines tested had detectable GR expression by Western blot and qRT-PCR analysis. Twenty-five out of the 27 human primary HGS-OvCas examined expressed GR by IHC. No cell line expressed detectable progesterone receptor (PR) or androgen receptor (AR) by Western blot analysis. In vitro assays showed that in GR-positive HeyA8 and SKOV3 cells, dexamethasone (100 nM) treatment upregulated the pro-survival genes SGK1 and MKP1/DUSP1 and inhibited carboplatin/gemcitabine-induced cell death. Concurrent treatment with two GR antagonists, either mifepristone (100 nM) or CORT125134 (100 nM), partially reversed these effects. There was no anti-apoptotic effect of dexamethasone on chemotherapy-induced cell death in IGROV-1 cells, which did not have detectable GR protein. Mifepristone treatment alone was not cytotoxic in any cell line. HeyA8 OvCa xenograft studies demonstrated that adding mifepristone to carboplatin/gemcitabine increased tumor shrinkage by 48% compared to carboplatin/gemcitabine treatment alone (P=0.0004). Conclusions These results suggest that GR antagonism sensitizes GR+ OvCa to chemotherapy-induced cell death through inhibition of GR-mediated cell survival pathways. PMID:26115975

  4. Fluorescent Protein–Labeled Glucocorticoid Receptor alpha Isoform Trafficking in Cultured Human Trabecular Meshwork Cells

    PubMed Central

    Dibas, Adnan; Jiang, Ming; Fudala, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Clark, Abbot F.; Yorio, Thomas

    2012-01-01

    Purpose. To characterize the roles of the cytoskeleton and heat shock protein 90 (HSP90) in steroid-induced glucocorticoid receptor alpha (GRα) translocation in cultured human trabecular meshwork cells. Methods. Stably transfected red fluorescent protein (RFP)-GRα NTM5 cell lines were developed. Nuclear localization of RFP-GRα in NTM5 cells treated with vehicle (ethanol), dexamethasone (DEX), or RU486 was measured in cytosolic and nuclear fractions by western blotting and laser confocal microscopy. Cytochalasin D, colchicine, and 17-demethoxygeldanamycin (17AAG, an HSP90 inhibitor), were tested for their abilities to affect GRα trafficking. Nuclear export of RFP-GRα was studied using confocal microscopy following DEX or RU486 removal. Results. NTM5 cells transfected with RFP-GRα showed a clear cytosolic localization of receptor that underwent nuclear localization after DEX treatment. RFP-GRα translocation was temperature sensitive, occurring at 37°C but not at room temperature. Neither cytochalasin D nor colchicine blocked DEX-induced or RU486-induced RFP-GRα nuclear translocation; however, 17AAG prevented DEX-induced RFP-GRα nuclear translocation. Both nuclear import and export of DEX-induced RFP-GRα were faster than RU-486–induced nuclear shuttling. Conclusions. RFP-GRα receptor behaves similarly to the wild-type GRα with its cytosolic localization and shuttling to nucleus after DEX or RU486 treatment. HSP90 is required for nuclear translocation, but the disruption of cytoskeleton had no effect on nuclear translocation of RFP-GRα. PMID:22447868

  5. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep.

    PubMed

    Groch, Sabine; Wilhelm, Ines; Lange, Tanja; Born, Jan

    2013-12-01

    Corticosteroids are known to modulate the consolidation of memories during sleep, specifically in the hippocampus-dependent declarative memory system. However, effects of the major human corticosteroid cortisol are conveyed via two different receptors, i.e., mineralocorticoid (MRs) and glucocorticoid receptors (GRs) whose specific contributions to memory consolidation are unclear. Whereas a shift in the balance between MR and GR activation toward predominant GR activation has been found to impair sleep-dependent consolidation of declarative memories, the effect of predominant MR activation is not well characterized. Here, we examined differential corticosteroid receptor contributions to memory consolidation during post-learning sleep in two placebo-controlled double-blind studies in humans, by comparing the effects of the selective MR agonist fludrocortisone (0.2 mg, orally, Study 1) and of hydrocortisone (22 mg, intravenously, Study 2) with strong binding affinity to both MR and GR. We hypothesized increased activation of MRs during sleep to enhance declarative memory consolidation, but the joint MR/GR activation to impair it. Participants (16 men in each study) learned a declarative (word pair associates) and a procedural task (mirror tracing) before a 7-h period of nocturnal retention sleep, with the substances administered before sleep (Study 1) and during sleep (Study 2), respectively. As hypothesized, retention of word pairs, but not of mirror tracing skill, was selectively enhanced by the MR agonist fludrocortisone. An impairing effect of hydrocortisone on word pair retention remained non-significant possibly reflecting that hydrocortisone administration failed to establish robust predominance of GR activation. Our results show that predominant MR activation benefits declarative memory consolidation presumably by enhancing the sleep-dependent reactivation of hippocampal memories and resultant synaptic plastic processes. The effect is counteracted by

  6. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling.

    PubMed

    Juruena, Mario F; Agustini, Bruno; Cleare, Anthony J; Young, Allan H

    2017-01-01

    A recent article by Kwan and colleagues could elegantly demonstrate the necessary interaction between neuronal serotonin (5-HT) systems and the hypothalamic-pituitary-adrenal (HPA) axis through glucocorticoid receptors (GR), producing an adequate stress response, in this case, responding to hypoxia with an increase in hematopoietic stem and progenitor cells (HSPC). There is an intricate system connecting brain, body and mind and this exchange is only possible when all these systems-nervous, endocrine, and immune-have receptors on critical cells to receive information (via messenger molecules) from each of the other systems. There is evidence that the expression and function of GR in the hippocampus, mainly MR, is regulated by the stimulation of 5-HT receptors. Stressful stimuli increase 5-HT release and turnover in the hippocampus, and it seems reasonable to suggest that some of the changes in mineralocorticoid and GR expression may be mediated, in part at least, by the increase in 5-HT. Also serotonin and HPA axis dysfunctions have already been implicated in a variety of psychiatric disorders, especially depression. Early life stress (ELS) can have profound impact on these systems and can predispose subjects to a variety of adult metabolic and psychiatric conditions. It is important to analyze the mechanisms of this complex interaction and its subsequent programming effects on the stress systems, so that we can find new ways and targets for treatment of psychiatric disorders. Different areas of research on basic biological sciences are now being integrated and this approach will hopefully provide several new insights, new pharmacological targets and improve our global understanding of these highly debilitating chronic conditions, that we now call mental disorders.

  7. Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    PubMed Central

    Ahir, Bhavesh K.; Sanders, Alison P.; Rager, Julia E.

    2013-01-01

    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention. PMID:23458687

  8. Selective Androgen Receptor Down-Regulators (SARDs): A New Prostate Cancer Therapy

    DTIC Science & Technology

    2007-10-01

    PCa (9). Thus far, the techniques that have been used to down-regulate the AR include antisense oligonucleotides (10, 11), ribozyme treatments (12...Our findings suggest that ICI may present a useful treatment option for patients with AR-dependent PCa. Unlike the ribozyme , antisense, siRNA, or...Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme . Mol Endocrinol

  9. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs)

    PubMed Central

    Rimando, Marilyn G.; Wu, Hao-Hsiang; Liu, Yu-An; Lee, Chien-Wei; Kuo, Shu-Wen; Lo, Yin-Ping; Tseng, Kuo-Fung; Liu, Yi-Shiuan; Lee, Oscar Kuang-Sheng

    2016-01-01

    Lineage commitment and differentiation of mesenchymal stromal cells (MSCs) into osteoblasts in vitro is enhanced by a potent synthetic form of glucocorticoid (GC), dexamethasone (Dex). Paradoxically, when used chronically in patients, GCs exert negative effects on bone, a phenomenon known as glucocorticoid-induced osteoporosis in clinical practice. The mechanism on how GC differentially affects bone precursor cells to become mature osteoblasts during osteogenesis remains elusive. In this study, the dose and temporal regulation of Dex on MSC differentiation into osteoblasts were investigated. We found that continuous Dex treatment led to a net reduction of the maturation potential of differentiating osteoblasts. This phenomenon correlated with a decrease in glucocorticoid receptor (GR) expression, hastened degradation, and impaired sub cellular localization. Similarly, Histone Deacetylase 6 (HDAC6) expression was found to be regulated by Dex, co-localized with GR and this GR-HDAC6 complex occupied the promoter region of the osteoblast late marker osteocalcin (OCN). Combinatorial inhibition of HDAC6 and GR enhanced OCN expression. Together, the cross-talk between the Dex effector molecule GR and the inhibitory molecule HDAC6 provided mechanistic explanation of the bimodal effect of Dex during osteogenic differentiation of MSCs. These findings may provide new directions of research to combat glucocorticoid-induced osteoporosis. PMID:27901049

  10. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    SciTech Connect

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki; Oritani, Kenji; Matsuda, Tadashi

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  11. Tetrahydroisoquinoline Phenols: Selective Estrogen Receptor Downregulator Antagonists with Oral Bioavailability in Rat

    PubMed Central

    2015-01-01

    A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat. PMID:26819673

  12. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes.

    PubMed

    Mizuno, Emi; Iura, Takanobu; Mukai, Akiko; Yoshimori, Tamotsu; Kitamura, Naomi; Komada, Masayuki

    2005-11-01

    Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.

  13. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  14. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    SciTech Connect

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-08-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of (/sup 3/H)dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear (/sup 3/H)dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37/sup 0/C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for (/sup 3/H)dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator.

  15. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    PubMed Central

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2015-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor gene NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. The current study examined links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n=171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate-severe maltreatment in the past six months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D, 1F, and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01 respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  16. Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents. The TRAILS study.

    PubMed

    van der Knaap, Lisette J; Oldehinkel, Albertine J; Verhulst, Frank C; van Oort, Floor V A; Riese, Harriëtte

    2015-08-01

    Early life adversity and psychopathology are thought to be linked through HPA-axis deregulation. Changes in methylation levels of stress reactivity genes such as the glucocorticoid receptor gene (NR3C1) can be induced by adversity. Higher NR3C1 methylation levels have been associated with a reduced NR3C1 expression, possibly leading to impaired negative feedback regulation of the HPA-axis. In this study we tested whether methylation levels of NR3C1 were associated with HPA-axis regulation, operationalized as cortisol responses. In 361 adolescents (mean age 16.1, SD=0.6), salivary cortisol samples were collected before, during, and after a social stress task, from which response measures (cortisol activation and recovery) were calculated. Higher NR3C1 methylation levels were associated with a flattened cortisol recovery slope, indicating a delayed recovery time. Cortisol response activation was not associated with NR3C1 methylation. These results suggest that methylation of NR3C1 may impair negative feedback of the HPA-axis in adolescents.

  17. Glucocorticoid receptor positively regulates transcription of FNDC5 in the liver

    PubMed Central

    Kim, Hyoung Kyu; Jeong, Yu Jeong; Song, In-Sung; Noh, Yeon Hee; Seo, Kyo Won; Kim, Min; Han, Jin

    2017-01-01

    Irisin is secreted by skeletal muscle during exercise and influences energy and metabolic homeostasis. This hormone is a cleaved and secreted fragment of fibronectin type III domain-containing 5 (FNDC5). Elucidation of the FNDC5 gene regulation mechanism is necessary to clarify the function of irisin as a potential therapeutic target in human metabolic diseases. Thus, we investigated the genetic and epigenetic mechanisms that regulate expression of the FNDC5 gene. FNDC5 mRNA was strong expressed in major energy-dependent human tissues, including heart, brain, liver, and skeletal muscle. Promoter analysis of the FNDC5 gene revealed that the core promoter region of the FNDC5 gene contained one CpG island that was located just upstream of the transcriptional start site for variants 2 and 3. Treatment with the histone deacetylase inhibitor sodium butyrate and the demethylating agent 5-azacytidine increased mRNA expression of FNDC5 in Huh7 cells. Prediction of transcription factor binding sites suggested that the glucocorticoid receptor was involved in the regulation of FNDC5 expression, and indeed, cortisol treatment increased mRNA expression of FNDC5 in Huh7 cells. Collectively, these findings offer insight into the genetic and epigenetic regulation of FNDC5, providing the initial steps required for understanding the role of irisin in the metabolic homeostasis. PMID:28240298

  18. Glial glucocorticoid receptors in aged Fisher 344 (F344) and F344/Brown Norway rats

    PubMed Central

    Kasckow, J; Xiao, C; Herman, JP

    2009-01-01

    Glucocorticoid receptors (GR) regulate glial function, and changes in astrocyte gene expression are implicated in age-related pathology. We evaluated changes in astroglial GR expression in two strains of rats – Fisher 344 (F344; 4, 12 and 24 months) and F344/Brown Norway strain (F344/BN; 4, 12 and 30 months). In both strains basal levels of corticosterone were higher in the oldest groups of rats. Age-related increases in GR (+) astrocytes but not the percent of astrocytes expressing GR were observed in the hippocampus CA1 region in F344 rats. Age-related decreases in CA1 GR (+) astrocytes and the percentage of GR (+) astrocytes were observed in the F344/BN strain only. Similar strain-specific changes were observed in the dentate gyrus. In the hypothalamic paraventricular nucleus: 1) F344 rats exhibited significant decreases in the overall number of glial profiles with age, 2) F344/BN rats exhibited decreases in the numbers of GR (+) astrocytes with aging and 3) the proportion of GR (+) astrocytes decreased in older F344/BN, but not F344 rats. Overall, the data demonstrate age- and strain-related alterations in GR astrocytic expression that may explain unique phenotypic differences in brain function observed in both strains. PMID:19249343

  19. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements.

    PubMed

    Telorac, Jonas; Prykhozhij, Sergey V; Schöne, Stefanie; Meierhofer, David; Sauer, Sascha; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-07-27

    Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot.

  20. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor.

    PubMed

    Surjit, Milan; Ganti, Krishna Priya; Mukherji, Atish; Ye, Tao; Hua, Guoqiang; Metzger, Daniel; Li, Mei; Chambon, Pierre

    2011-04-15

    The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.

  1. Seasonal changes in cortisol sensitivity and glucocorticoid receptor affinity and number in leukocytes of coho salmon

    USGS Publications Warehouse

    Maule, Alec G.; Schreck, Carl B.; Sharpe, Cameron

    1993-01-01

    To determine if there were organ-specific changes in immune responses or immune-endocrine interaction, we monitored in vitro immune response, cortisol sensitivity and number and affinity of glucocorticoid receptors (GR) in leukocytes from freshwater-adapted juvenile coho salmon (Oncorhynchus kisutch) during the physiological changes that prepare them to enter the marine environment. During this period, absolute immune response declined, but splenic leukocytes generated more antibody-producing cells than did cells from anterior kidney. Splenic leukocytes were initially more sensitive to the suppressive effects of cortisol and had fewer GR than leukocytes from the anterior kidney. Leukocytes from the anterior kidney were initially insensitive to cortisol but developed sensitivity at about the same time as the dissociation constant and number of GR increased. In vitro incubation of anterior kidney leukocytes in cortisol altered GR variables when experiments were conducted during March through September but not during November through February. In some years, changes in GR or immune responses were correlated with plasma cortisol titers, but in other years there was no correlation. Thus, the exact relation between cortisol, GR and immune response in anadromous salmonids is unclear and other factors are involved.

  2. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor.

    PubMed

    Radtke, K M; Ruf, M; Gunter, H M; Dohrmann, K; Schauer, M; Meyer, A; Elbert, T

    2011-07-19

    Prenatal exposure to maternal stress can have lifelong implications for psychological function, such as behavioral problems and even the development of mental illness. Previous research suggests that this is due to transgenerational epigenetic programming of genes operating in the hypothalamic-pituitary-adrenal axis, such as the glucocorticoid receptor (GR). However, it is not known whether intrauterine exposure to maternal stress affects the epigenetic state of these genes beyond infancy. Here, we analyze the methylation status of the GR gene in mothers and their children, at 10-19 years after birth. We combine these data with a retrospective evaluation of maternal exposure to intimate partner violence (IPV). Methylation of the mother's GR gene was not affected by IPV. For the first time, we show that methylation status of the GR gene of adolescent children is influenced by their mother's experience of IPV during pregnancy. As these sustained epigenetic modifications are established in utero, we consider this to be a plausible mechanism by which prenatal stress may program adult psychosocial function.

  3. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens.

    PubMed

    Dong, Zhifang; Han, Huili; Wang, Meina; Xu, Lin; Hao, Wei; Cao, Jun

    2006-01-01

    Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus and nucleus accumbens (NAc). The underlying mechanisms are not fully understood. Here, we examined whether glucocorticoid receptors (GRs) of hippocampus and NAc influenced the formation of morphine CPP in Sprague Dawley rats. We found that systemic or intrahippocampal infused DMSO vehicle (DMSO 20% in saline) 30 min before daily morphine (10 mg/kg, s.c.) conditioning did not affect the formation of morphine CPP. In contrast, systemic administration (5 mg/kg, s.c.) or intrahippocampal infusion (0, 0.1, 1.0, 10, 20 microg per side) of the GR antagonist RU38486 blocked or impaired the formation of CPP in a dose-dependent manner, respectively. Furthermore, intra-NAc infused RU38486 (10 microg per side) but not DMSO vehicle also prevented the formation of CPP. These results demonstrate that both the GRs of hippocampus and NAc are necessary for the formation of morphine CPP, suggesting a neural network function of the GRs in forming the opiate-associated memory.

  4. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    SciTech Connect

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  5. Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay

    PubMed Central

    Block, Thaddeus S; Murphy, Tiffany I; Munster, Pamela N; Nguyen, Dat P; Lynch, Frank J

    2017-01-01

    Background Glucocorticoid receptor (GR) activity plays a role in many aspects of human physiology and may play a crucial role in chemotherapy resistance in a wide variety of solid tumors. A novel immunohistochemistry (IHC) based assay has been previously developed and validated in order to assess GR immunoreactivity in triple-negative breast cancer. The current study investigates the standardized use of this validated assay to assess GR expression in a broad range of solid tumor malignancies. Methods Archived formalin-fixed paraffin-embedded tumor bank samples (n=236) from 20 different solid tumor types were analyzed immunohistochemically. Nuclear staining was reported based on the H-score method using differential intensity scores (0, 1+, 2+, or 3+) with the percent stained (out of at least 100 carcinoma cells) recorded at each intensity. Results GR was expressed in all tumor types that had been evaluated. Renal cell carcinoma, sarcoma, cervical cancer, and melanoma were those with the highest mean H-scores, indicating high levels of GR expression. Colon, endometrial, and gastric cancers had lower GR staining percentages and intensities, resulting in the lowest mean H-scores. Conclusion A validated IHC assay revealed GR immunoreactivity in all solid tumor types studied and allowed for standardized comparison of reactivity among the different malignancies. Impact Baseline expression levels of GR may be a useful biomarker when pharmaceutically targeting GR in research or clinical setting. PMID:28293120

  6. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

    PubMed Central

    Rando, Gianpaolo; Tan, Chek Kun; Khaled, Nourhène; Montagner, Alexandra; Leuenberger, Nicolas; Bertrand-Michel, Justine; Paramalingam, Eeswari; Guillou, Hervé; Wahli, Walter

    2016-01-01

    In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands. DOI: http://dx.doi.org/10.7554/eLife.11853.001 PMID:27367842

  7. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  8. Histone Acetyltransferase Complexes Can Mediate Transcriptional Activation by the Major Glucocorticoid Receptor Activation Domain

    PubMed Central

    Wallberg, Annika E.; Neely, Kristen E.; Gustafsson, Jan-Åke; Workman, Jerry L.; Wright, Anthony P. H.; Grant, Patrick A.

    1999-01-01

    Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates. PMID:10454542

  9. Yokukansan normalizes glucocorticoid receptor protein expression in oligodendrocytes of the corpus callosum by regulating microRNA-124a expression after stress exposure.

    PubMed

    Shimizu, Shoko; Tanaka, Takashi; Tohyama, Masaya; Miyata, Shingo

    2015-05-01

    Stressful events are known to down-regulate expression levels of glucocorticoid receptors (GRs) in the brain. Recently, we reported that stressed mice with elevated plasma levels of corticosterone exhibit morphological changes in the oligodendrocytes of nerve fiber bundles, such as those in the corpus callosum. However, little is known about the molecular mechanism of GR expression regulation in oligodendrocytes after stress exposure. A previous report has suggested that GR protein levels might be regulated by microRNA (miR)-18 and/or -124a in the brain. In this study, we aimed to elucidate the GR regulation mechanism in oligodendrocytes and evaluate the effects of yokukansan (YKS), a Kampo medicine, on GR protein regulation. Acute exposure to stress increased plasma corticosterone levels, decreased GR protein expression, and increased miR-124a expression in the corpus callosum of adult male mice, though the GR mRNA and miR-18 expression levels were not significant changes. YKS normalized the stress-induced changes in the plasma corticosterone, GR protein, and miR124a expression levels. An oligodendrocyte primary culture study also showed that YKS down-regulated miR-124a, but not miR-18, expression levels in dexamethasone-treated cells. These results suggest that the down-regulation of miR124a expression might be involved in the normalization of stress-induced decreases in GR protein in oligodendrocytes by YKS. This effect may imply the molecular mechanisms underlying the ameliorative effects of YKS on psychological symptoms and stress-related behaviors.

  10. Interaction of glucocorticoid receptor (GR) with estrogen receptor (ER) α and activator protein 1 (AP1) in dexamethasone-mediated interference of ERα activity.

    PubMed

    Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2013-08-16

    The role of glucocorticoids in the inhibition of estrogen (17-β-estradiol (E2))-regulated estrogen receptor (ER)-positive breast cancer cell proliferation is well established. We and others have seen that synthetic glucocorticoid dexamethasone (Dex) antagonizes E2-stimulated endogenous ERα target gene expression. However, how glucocorticoids negatively regulate the ERα signaling pathway is still poorly understood. ChIP studies using ERα- and glucocorticoid receptor (GR)-positive MCF-7 cells revealed that GR occupies several ERα-binding regions (EBRs) in cells treated with E2 and Dex simultaneously. Interestingly, there was little or no GR loading to these regions when cells were treated with E2 or Dex alone. The E2+Dex-dependent GR recruitment is associated with the displacement of ERα and steroid receptor coactivator-3 from the target EBRs leading to the repression of ERα-mediated transcriptional activation. The recruitment of GR to EBRs requires assistance from ERα and FOXA1 and is facilitated by AP1 binding within the EBRs. The GR binding to EBRs is mediated via direct protein-protein interaction between the GR DNA-binding domain and ERα. Limited mutational analyses indicate that arginine 488 located within the C-terminal zinc finger domain of the GR DNA-binding domain plays a critical role in stabilizing this interaction. Together, the results of this study unravel a novel mechanism involved in glucocorticoid inhibition of ERα transcriptional activity and E2-mediated cell proliferation and thus establish a foundation for future exploitation of the GR signaling pathway in the treatment of ER-positive breast cancer.

  11. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis

    PubMed Central

    Fino, Kristin K.; Matters, Gail L.; McGovern, Christopher O.; Gilius, Evan L.

    2012-01-01

    Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G1 to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer. PMID:22442157

  12. The glucocorticoid receptor regulates the binding of C/EPBbeta on the alpha-1-acid glycoprotein promoter in vivo.

    PubMed

    Savoldi, G; Fenaroli, A; Ferrari, F; Rigaud, G; Albertini, A; Di Lorenzo, D

    1997-12-01

    A complex interaction between the Glucocorticoid Receptor (GR), C/EBPbeta, and other transcription factors activate the Alpha-1 Acid Glycoprotein (AGP) promoter in HTC(JZ-1) rat hepatoma culture cells. This effect is mediated by the so-called Steroid Responsive Unit (SRU) of the AGP promoter that contains several binding sites for C/EBP transcription factors, some of which overlap with the Glucocorticoid Responsive Element (GRE). Our in vivo footprinting experiments revealed that the GRE- and the C/EBP-binding sites were already occupied glucocorticoid dependently in HTC(JZ-1) cells 10 min after dexamethasone administration (10(-6) M). Furthermore, local changes in the chromatine structure shown by the appearance of DNAse I hypersensitive sites (HS sites) also took place. These changes were probably dependent on a tissue-specific organization of the chromatine at the SRU because they were not detectable in a different glucocorticoid-responsive cell line (PC12) that did not express AGP. Here, we have also shown that withdrawal of dexamethasone or addition of the anti-glucocorticoid RU486 were able to revert the pattern induced by dexamethasone in vivo. The disappearance of the protected region and the hypersensitive sites, typical of the hormone activated promoter, confirmed the necessity of the GR to be bound by the agonist and the inability of the GR-antagonist complex to bind the DNA. By functional assays, we showed that the occupancy of the SRU by these transcriptional proteins in vivo correlated with the activation of the AGP gene transcription. With these results, we have shown that one of the functions of the GR to activate transcription of the AGP gene is to recruit C/EBPbeta and to maintain it bound at its target DNA sequences (SRU). This process was not accomplished by RU486.

  13. Autophagy protects meniscal cells from glucocorticoids-induced apoptosis via inositol trisphosphate receptor signaling.

    PubMed

    Shen, Chao; Gu, Wen; Cai, Gui-Quan; Peng, Jian-Ping; Chen, Xiao-Dong

    2015-09-01

    Intra-articular injection of glucocorticoids (GCs) has been widely used in the management of osteoarthritis and rheumatoid arthritis. Nevertheless, several studies showed that GCs had toxic effects on chondrocytes as well as synovial cells. Previously we reported the protective role of autophagy in the degeneration of meniscal tissues. However, the effects of GCs on autophagy in the meniscal cells have not been fully elucidated. To investigate whether GCs can regulate autophagy in human meniscal cells, the meniscal cells were cultured in vitro and exposed in the presence of dexamethasone. The levels of apoptosis and autophagy were investigated via flow cytometry as well as western blotting analysis. The changes of the aggrecanases were measured using real-time PCR. The role of autophagy in dexamethasone-induced apoptosis was investigated using pharmacological agents and RNA interference technique. An agonist of inositol 1,4,5-trisphosphate receptor (IP3R) was used to investigate the mechanism of dexamethasone-induced autophagy. The results showed that dexamethasone induced autophagy as well as apoptosis in normal human meniscal cells. Using RNA interference technique and pharmacological agents, our results showed that autophagy protected the meniscal cells from dexamethasone-induced apoptosis. Our results also indicated that dexamethasone increased the mRNA levels of aggrecanases. This catabolic effect of dexamethasone was enhanced by 3-MA, the autophagy inhibitor. Furthermore, our results showed that dexamethasone induced autophagy via suppressing the phosphorylation of IP3R. In summary, our results indicated that autophagy protected meniscal cells from GCs-induced apoptosis via inositol trisphosphate receptor signaling.

  14. Mercury inhibits rat liver and kidney glucocorticoid receptor hormone binding activity.

    PubMed

    Brkljacić, J; Vojnović Milutinović, D; Dundjerski, J; Matić, G

    2004-05-01

    The present study was focused on the influence of mercury on the rat liver and kidney glucocorticoid receptor (GR) binding properties. The time-course and dose-dependence of mercury effects, as well as possible involvement of thiol groups were examined after in vivo and in vitro administration of the metal in the form of HgCl2. Mercury led to reduction of the liver and kidney GR hormone binding capacity. In both examined tissues maximal reduction was noticed 4 h after administration of the metal at 2 and 3 mg Hg/kg bw, but the effect was more prominent in kidney as compared to liver. On the other hand, binding affinity in the two tissues was similar. The complete reversal of mercury effects on GR binding capacity by 10 mmol/L DTT was achieved in liver and partially in kidney. The reversal by DTT suggested that mercury caused the decrease of GR binding activity by interacting with thiol groups. The difference in the response of the two tissues reflected the fact that kidney contained a higher mercury concentration and a lower thiol content in comparison to liver. The implicated thiols probably belong to GR, since when applied in vitro at 0 degrees C, mercury produced reduction of the receptor binding activity similar to that observed in vivo. GR protein level examined by quantitative Western blot was either unchanged, when determined by polyclonal antibody, or reduced, when determined by BuGR2 antibody, suggesting that Hg might affect BuGR epitope availability.

  15. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  16. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains.

    PubMed Central

    Schoenmakers, E; Alen, P; Verrijdt, G; Peeters, B; Verhoeven, G; Rombauts, W; Claessens, F

    1999-01-01

    The androgen and glucocorticoid hormones evoke specific in vivo responses by activating different sets of responsive genes. Although the consensus sequences of the glucocorticoid and androgen response elements are very similar, this in vivo specificity can in some cases be explained by differences in DNA recognition between both receptors. This has clearly been demonstrated for the androgen response element PB-ARE-2 described in the promoter of the rat probasin gene. Swapping of different fragments between the androgen- and glucocorticoid-receptor DNA-binding domains demonstrates that (i) the first Zn-finger module is not involved in this sequence selectivity and (ii) that residues in the second Zn-finger as well as a C-terminal extension of the DNA-binding domain from the androgen receptor are required. For specific and high-affinity binding to response elements, the DNA-binding domains of the androgen and glucocorticoid receptors need a different C-terminal extension. The glucocorticoid receptor requires 12 C-terminal amino acids for high affinity DNA binding, while the androgen receptor only involves four residues. However, for specific recognition of the PB-ARE-2, the androgen receptor also requires 12 C-terminal residues. Our data demonstrate that the mechanism by which the androgen receptor binds selectively to the PB-ARE-2 is different from that used by the glucocorticoid receptor to bind a consensus response element. We would like to suggest that the androgen receptor recognizes response elements as a direct repeat rather than the classical inverted repeat. PMID:10417312

  17. Glucocorticoids and the expression of mRNAs for neurotrophins, their receptors and GAP-43 in the rat hippocampus.

    PubMed

    Chao, H M; McEwen, B S

    1994-10-01

    The genes encoding brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and basic fibroblast growth factor (bFGF) are all expressed in the adult rat hippocampus. The colocalization of the these factors with the receptors to which they bind, namely trkB, trkC and the bFGF receptor, respectively, suggests that in the hippocampus they may exert their putative protective and trophic effects through an autocrine mechanism. The morphology and survival of hippocampal neurons are also affected by glucocorticoids, which can act as transcriptional activators of gene expression. In this study we have used in situ hybridization to investigate the adrenal steroid regulation of the mRNAs encoding the neurotrophic factors BDNF, NT-3, and bFGF, their respective receptors, and the growth-associated protein GAP-43. After 7 days of adrenalectomy (ADX), there was an increase in the level of GAP-43 mRNA expression in the CA1 and CA3 pyramidal cell layers of the hippocampus, that was prevented by corticosterone replacement to the ADX animals. In the CA2 subregion, adrenalectomy resulted in a decrease in bFGF mRNA expression, that was reversed by steroid treatment. There was evidence for glucocorticoid modulation of the BDNF and NT-3 mRNAs in pyramidal cell layers and in the dentate gyrus, but not of the mRNAs encoding the trkB, trk C or bFGF receptors.

  18. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation.

    PubMed Central

    Strömstedt, P E; Poellinger, L; Gustafsson, J A; Carlstedt-Duke, J

    1991-01-01

    Expression of the human osteocalcin promoter is negatively regulated by glucocorticoids in vivo. In vitro DNase I and exonuclease III footprinting analysis showed binding of purified glucocorticoid receptor in close proximity to and overlapping with the TATA box of the osteocalcin gene. These results imply competition or interference with binding of the TATA box-binding transcription factor IID as a mechanism of repression of this gene by glucocorticoids. In support of this notion, point mutation analysis of the receptor binding site indicated that flanking nucleotides and not the TATA box motif per se were important for receptor interaction. Moreover, DNA binding competition assays showed specific binding of the receptor only to the TATA box region of the osteocalcin gene and not to the corresponding region of an immunoglobulin heavy-chain promoter. Images PMID:2038339

  19. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.

  20. Exploring Glucocorticoid Receptor Agonists Mechanism of Action Through Mass Cytometry and Radial Visualizations.

    PubMed

    Abraham, Yann; Gerrits, Bertran; Ludwig, Marie-Gabrielle; Rebhan, Michael; Gubser Keller, Caroline

    2017-01-01

    Recent advances in combining flow cytometry and mass spectrometry have led to the development of mass cytometry, allowing for the interrogation of complex cell populations on an unprecedented scale. The volumes and high dimensionality of mass cytometry data pose significant challenges in terms of analysis and visualization. We implement a method called Radviz, where multidimensional single cell data can be visualized as a projection that maintains the original dimensions and data complexity whilst facilitating analysis and visualization. This enables identification of changes in populations, focusing the analysis on the most relevant aspect of large multidimensional datasets. To highlight the potential of Radviz, we profiled peripheral mononuclear blood cells (PBMCs) from three healthy donors and showed donor-specific differences in the number and composition of cell populations. In a second study, we explored the anti-inflammatory effects of two glucocorticoid receptor (GR) ligands (cpd6 and cpd11) compared to dexamethasone (Dex) on human primary macrophages. Standard analysis at the population level showed that cpd6 and cpd11 have an overall anti-inflammatory profile similar to that of Dex. CyTOF profiling and Radviz-driven analysis at the single cell level confirmed this observation, and identified a concentration-dependent effect of cpd6 that was not detected at the population level. Altogether, Radviz combines the strengths of a projection method, reducing the dimensionality of datasets, with that of a scatter plot, where the identity of each point can be inferred from the distance to the axis. This enables the visual exploration, analysis, and interpretation of complex, high dimensional data. © 2016 International Clinical Cytometry Society.

  1. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan.

  2. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action.

    PubMed

    Conboy, Lisa; Sandi, Carmen

    2010-02-01

    Stress and glucocorticoids (GCs) can facilitate memory formation. However, the molecular mechanisms mediating their effects are largely unknown. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) trafficking has been implicated in the changes in synaptic strength at central glutamatergic synapses associated with memory formation. In cell cultures, corticosterone has been shown to condition the synaptic trafficking of the AMPAR GluA2 subunit. In this study, we investigated the involvement of GluA2 trafficking in the facilitation of learning by stress. Using the water maze spatial task involving different stress levels, mice trained under more stressful conditions (water at 22 degrees C) showed better learning and memory, and higher post-training corticosterone levels, than mice trained under lower stress (water at 30 degrees C). Strikingly, this facilitated learning by stress was accompanied by enhanced synaptic expression of GluA2 AMPARs that was not observed in mice trained under less stressful conditions. Interfering with GC actions by injecting the GC synthesis inhibitor, metyrapone, blocked both the memory facilitation and the enhanced GluA2 trafficking induced by stressful learning. Intracerebroventricular infusion of the peptide, pep2m, that blocks GluA2 synaptic trafficking by interfering with the interaction between N-ethylmaleimide-sensitive factor and GluA2, impaired immediate performance at learning as well as long-term memory retrieval, supporting a causal role for GluA2 trafficking in stress-induced facilitation of spatial learning and memory. Evidence for the involvement of the neural cell adhesion molecule N-cadherin in interaction with GluA2 is also provided. These findings underscore a new mechanism whereby stress can improve memory function.

  3. Stoichiometric analysis of the specific interaction of the glucocorticoid receptor with DNA.

    PubMed

    Wrange, O; Carlstedt-Duke, J; Gustafsson, J A

    1986-09-05

    Purified preparations of activated glucocorticoid X receptor complex (GR) contain a Mr 94,000 hormone-binding polypeptide co-purifying together with a Mr 72,000 non-hormone-binding polypeptide (Wrange, O., Okret, S., Radojcic, M., Carlstedt-Duke, J., and Gustafsson, J.-A. (1984) J. Biol. Chem. 259, 4534-4541). GR binds selectively to discrete regions of DNA in mouse mammary tumor virus (Payvar, F., DeFranco, D., Firestone, G.L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J.-A., and Yamamoto, K. R. (1983) Cell 35, 381-392). Such GR-binding DNA fragments were used to measure the stoichiometry of GR to DNA. Quantitative DNaseI protection "footprinting" analysis was used to ensure that saturation conditions for specific DNA-binding were achieved. Glycerol density gradient centrifugation was used to quantitate Mr 94,000 binding to specific and nonspecific DNA sites. One Mr 94,000 entity was bound per specific DNA site. A modified GR purification procedure resulted in increased amounts of Mr 72,000 polypeptide (1.6:1, 94,000:72,000 molar ratio), compared to previous GR preparations. Glycerol gradient centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the specific GR X DNA complex contained similar amounts of Mr 94,000 and Mr 72,000 polypeptide. It is as yet uncertain if the Mr 72,000 polypeptide is a functional subunit of GR or a co-purifying contaminant only.

  4. Structure and Dynamic Properties of a Glucocorticoid Receptor-Induced Chromatin Transition

    PubMed Central

    Fletcher, Terace M.; Ryu, Byung-Woo; Baumann, Christopher T.; Warren, Barbour S.; Fragoso, Gilberto; John, Sam; Hager, Gordon L.

    2000-01-01

    Activation of the mouse mammary tumor virus (MMTV) promoter by the glucocorticoid receptor (GR) is associated with a chromatin structural transition in the B nucleosome region of the viral long terminal repeat (LTR). Recent evidence indicates that this transition extends upstream of the B nucleosome, encompassing a region larger than a single nucleosome (G. Fragoso, W. D. Pennie, S. John, and G. L. Hager, Mol. Cell. Biol. 18:3633–3644). We have reconstituted MMTV LTR DNA into a polynucleosome array using Drosophila embryo extracts. We show binding of purified GR to specific GR elements within a large, multinucleosome array and describe a GR-induced nucleoprotein transition that is dependent on ATP and a HeLa nuclear extract. Previously uncharacterized GR binding sites in the upstream C nucleosome region are involved in the extended region of chromatin remodeling. We also show that GR-dependent chromatin remodeling is a multistep process; in the absence of ATP, GR binds to multiple sites on the chromatin array and prevents restriction enzyme access to recognition sites. Upon addition of ATP, GR induces remodeling and a large increase in access to enzymes sites within the transition region. These findings suggest a dynamic model in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, and is then lost from the template. This model is consistent with the recent description of a “hit-and-run” mechanism for GR action in living cells (J. G. McNally, W. G. Müller, D. Walker, and G. L. Hager, Science 287:1262–1264, 2000). PMID:10938123

  5. Preclinical assessment for selectively disrupting a traumatic memory via post-retrieval inhibition of glucocorticoid receptors

    PubMed Central

    Taubenfeld, Stephen M.; Riceberg, Justin S.; New, Antonia S.; Alberini, Cristina M.

    2009-01-01

    Background Traumatic experiences may lead to debilitating psychiatric disorders including acute stress disorder and post-traumatic stress disorder. Current treatments for these conditions are largely ineffective; therefore, novel therapies are needed. A cardinal symptom of these pathologies is the re-experiencing of the trauma through intrusive memories and nightmares. Studies in animal models indicate that memories can be weakened by interfering with the post-retrieval re-stabilization process known as memory reconsolidation. We previously reported that, in rats, intra-amygdala injection of the glucocorticoid receptor antagonist RU38486 disrupts the reconsolidation of a traumatic memory. Here we tested parameters important for designing novel clinical protocols targeting the reconsolidation of a traumatic memory with RU38486. Methods Using rat inhibitory avoidance, we tested the efficacy of post-retrieval systemic administration of RU38486 on subsequent memory retention and evaluated several key preclinical parameters. Results Systemic administration of RU38486 before or after retrieval persistently weakens IA memory retention in a dose-dependent manner, and memory does not re-emerge following footshock reminders. The efficacy of treatment is a function of the intensity of the initial trauma, and intense traumatic memories can be disrupted by changing the time and number of interventions. Furthermore, one or two treatments are sufficient to maximally disrupt the memory. The treatment selectively targets the reactivated memory without interfering with the retention of another non-reactivated memory. Conclusions RU38486 is a potential novel treatment for psychiatric disorders linked to traumatic memories. Our data provide the parameters for designing promising clinical trials for the treatment of flashback-type symptoms of PTSD. PMID:18708183

  6. Separation of an associated 90K heat shock protein from the glucocorticoid receptor complex

    SciTech Connect

    Miller-Diener, A.; Kirsch, T.; Grove, B.; Robertson, N.; Litwack, G.

    1986-05-01

    A 90K heat shock protein(HSP), observed to copurify with the glucocorticoid receptor(GR), can be separated from the complex by 2 methods, allowing investigation of the role of HSP on kinase activity that was previously reported to be inherent to purified activated GR. Na/sub 2/MoO/sub 4/ stabilized unactivated rat hepatic GR complexes have been purified to >10,000-fold using a purification scheme that involves batchwise treatment of cytosol with phosphocellulose/DNAcellulose, elution from an affinity resin, gel filtration and ion exchange chromatography. Samples were subjected to 10-20% gradient SDS-PAGE. Proteins were transferred to nitrocellulose and blotted against monoclonal antibodies to GR(3A6), HSP or nonspecific IgM/G. Immunoblots indicated that HSP was separated from unactivated GR complexes at the affinity step prior to elution of GR with active steroid. GR eluted from the resin with /sup 3/H Triamcinolone acetonide or /sup 3/H Dexamethasone mesylate had an apparent M/sub r/ = 94-96,000 for the steroid binding subunit and is recognized by 3A6. Purification of GR minus the affinity step resulted in copurification of HSP throughout the procedure. However, after Sephadex G75 filtration and subsequent incubation at 25/sup 0/C, 30 min., HSP was separated from activated (DNA binding) GR on DEAE cellulose-52. HSP did not enhance or inhibit /sup 32/P incorporation of the 94K steroid binding subunit nor did it affect phosphorylation of histones by GR.

  7. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review

    PubMed Central

    Turecki, Gustavo; Meaney, Michael

    2015-01-01

    The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behaviour through epigenetic mechanisms. The hypothalamus-pituitary-adrenal (HPA) axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR; NR3C1). Since Weaver et al published the initial findings in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and 7 human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations. PMID:25687413

  8. Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review.

    PubMed

    Turecki, Gustavo; Meaney, Michael J

    2016-01-15

    The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behavior through epigenetic mechanisms. The hypothalamus-pituitary-adrenal axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR) (Nr3c1). Since initial findings were published in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress, and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and seven human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early-life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations.

  9. Disrupting Hypothalamic Glucocorticoid Receptors Causes HPA Axis Hyperactivity and Excess Adiposity

    PubMed Central

    Laryea, Gloria; Schütz, Günther

    2013-01-01

    The glucocorticoid receptor (GR) regulates hypothalamic-pituitary-adrenal (HPA) axis activity during the stress response. The paraventricular nucleus (PVN) is a major site of negative feedback to coordinate the degree of the HPA axis activity with the magnitude of the exposed stressor. To define the function of endogenous PVN GR, we used Cre-loxP technology to disrupt different GR exons in Sim1-expressing neurons of the hypothalamus. GR exon 2-deleted mice (Sim1Cre-GRe2Δ) demonstrated 43% loss of PVN GR compared with an 87% GR loss in exon 3-deleted mice (Sim1Cre-GRe3Δ). Sim1Cre-GRe3Δ mice display stunted growth at birth but develop obesity in adulthood and display impaired stress-induced glucose release. We observed elevated basal and stress-induced corticosterone levels in Sim1Cre-GRe3Δ mice, compared with control and Sim1Cre-GRe2Δ mice, and impaired dexamethasone suppression, indicating an inability to negatively regulate corticosterone secretion. Sim1Cre-GRe3Δ mice also showed increased CRH mRNA in the PVN, increased basal plasma ACTH levels, and reduced locomotor behavior. We observed no differences in Sim1Cre-GRe2Δ mice compared with control mice in any measure. Our behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions. We conclude that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair-like behaviors. PMID:23979842

  10. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    PubMed

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  11. Cannabinoid CB₁ receptor is downregulated in clear cell renal cell carcinoma.

    PubMed

    Larrinaga, Gorka; Sanz, Begoña; Pérez, Itxaro; Blanco, Lorena; Cándenas, María L; Pinto, Francisco M; Gil, Javier; López, José I

    2010-12-01

    Several studies in cell cultures and in animal models have demonstrated that cannabinoids have important antitumoral properties. Because many of these effects are mediated through cannabinoid (CB) receptors CB₁ and CB₂, the study of their expression in human neoplasms has become of great interest in recent years. Fresh and formalin-fixed tissue samples of 20 consecutive clear cell renal cell carcinomas (CCRCCs) were collected prospectively and analyzed for the expression of both CB receptors by using RT-PCR, Western blot (WB), and immunohistochemical techniques. RT-PCR assays demonstrated the expression of mRNA encoding the CB₁ in tumor tissue and in adjacent non-neoplastic kidney. Conversely, WB and IHC revealed a marked downregulation of CB₁ protein in tumor tissue; CB₂ was not expressed. The obtained data suggest a possible implication of the endocannabinoid system in renal carcinogenesis. A posttranscriptional downregulation of CB₁ and the absence of expression of CB₂ characterize CCRCC.

  12. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  13. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment.

    PubMed

    Arango-Lievano, Margarita; Lambert, W Marcus; Bath, Kevin G; Garabedian, Michael J; Chao, Moses V; Jeanneteau, Freddy

    2015-12-22

    Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.

  14. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements.

    PubMed

    Grøntved, Lars; John, Sam; Baek, Songjoon; Liu, Ying; Buckley, John R; Vinson, Charles; Aguilera, Greti; Hager, Gordon L

    2013-05-29

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR-binding sites are occupied by C/EBPβ. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPβ for GR recruitment. Disruption of C/EBPβ binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell-specific priming proteins and chromatin remodellers.

  15. Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton.

    PubMed

    Mayanagi, Taira; Morita, Tsuyoshi; Hayashi, Ken'ichiro; Fukumoto, Kentaro; Sobue, Kenji

    2008-11-07

    Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.

  16. Enhancement of glucocorticoid receptor-mediated gene expression by constitutively active heat shock factor 1.

    PubMed

    Jones, Thomas J; Li, Dapei; Wolf, Irene M; Wadekar, Subhagya A; Periyasamy, Sumudra; Sánchez, Edwin R

    2004-03-01

    To further define the role of heat shock factor 1 (HSF1) in the stress potentiation of glucocorticoid receptor (GR) activity, we placed a constitutively active mutant of human HSF1 (hHSF1-E189) under the control of a doxycycline (DOX)-inducible vector. In mouse L929 cells, DOX-induced expression of hHSF1-E189 correlated with in vivo occupancy of the human heat shock protein 70 (hHsp70) promoter (chromatin-immunoprecipitation assay) and with increased activity under nonstress conditions at the hHsp70 promoter controlling expression of chloramphenicol acetyl transferase (CAT) (p2500-CAT). Comparison of hHSF1-E189 against stress-activated, endogenous HSF1 for DNA-binding, p2500-CAT, and Hsp70 protein expression activities showed the mutant factor to have lower, but clearly detectable, activities as compared with wild-type factor. Thus, the hHSF1-E189 mutant is capable of replicating these key functions of endogenous HSF1, albeit at reduced levels. To assess the involvement of hHSF1-E189 in GR activity, DOX-induced expression of hHSF1-E189 was performed in L929 cells expressing the minimal pGRE(2)E1B-CAT reporter. hHSF1-E189 protein expression in these cells was maximal at 24 h of DOX and remained constant up to 72 h. hHSF1-E189 expressed under these conditions was found both in the cytosolic and nuclear compartments, in a state capable of binding DNA. More importantly, GR activity at the pGRE(2)E1B-CAT promoter was found to increase after DOX-induced expression of hHSF1-E189. The potentiation of GR by hHSF1-E189 occurred at saturating concentrations of hormone and was dependent on at least 48 h of hHSF1-E189 up-regulation, suggesting that time was needed for an HSF1-induced factor to accumulate to a threshold level. Initial efforts to characterize how hHSF1-E189 controls GR signaling showed that it does not occur through alterations of GR protein levels or changes in GR hormone binding capacity. In summary, our observations provide the first molecular evidence for the

  17. Suppression of granulocyte-macrophage colony-stimulating factor expression by glucocorticoids involves inhibition of enhancer function by the glucocorticoid receptor binding to composite NF-AT/activator protein-1 elements.

    PubMed

    Smith, P J; Cousins, D J; Jee, Y K; Staynov, D Z; Lee, T H; Lavender, P

    2001-09-01

    Increased expression of a number of cytokines including GM-CSF is associated with chronic inflammatory conditions such as bronchial asthma. Glucocorticoid therapy results in suppression of cytokine levels by a mechanism(s) not yet fully understood. We have examined regulation of GM-CSF expression by the synthetic glucocorticoid dexamethasone in human T cells. Transient transfection assays with reporter constructs revealed that dexamethasone inhibited the function of the GM-CSF enhancer, but had no effect on regulation of GM-CSF expression occurring through the proximal promoter. Activation of the GM-CSF enhancer involves cooperative interaction between the transcription factors NF-AT and AP-1. We demonstrate here that glucocorticoid-mediated inhibition of enhancer function involves glucocorticoid receptor (GR) binding to the NF-AT/AP-1 sites. These elements, which do not constitute recognizable glucocorticoid response elements, support binding of the GR, primarily as a dimer. This binding correlates with the ability of dexamethasone to inhibit enhancer activity of the NF-AT/AP-1 elements, suggesting a competition between NF-AT/AP-1 proteins and GR.

  18. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain–gut axis

    PubMed Central

    Wiley, John W.; Higgins, Gerald A.; Athey, Brian D.

    2015-01-01

    Background Chronic psychological stress is associated with enhanced abdominal pain and altered intestinal barrier function that may result from a perturbation in the hypothalamic–pituitary–adrenal (HPA) axis. The glucocorticoid receptor (GR) exploits diverse mechanisms to activate or suppress congeneric gene expression, with regulatory variation associated with stress-related disorders in psychiatry and gastroenterology. Purpose During acute and chronic stress, corticotropin-releasing hormone (CRH) drives secretion of adrenocorticotropic hormone (ACTH) from the pituitary, ultimately leading to the release of cortisol (human) and corticosterone (rodent) from the adrenal glands. Cortisol binds with the GR in the cytosol, translocates to the nucleus, and activates the NR3C1 (nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)) gene. This review focuses on the rapidly developing observations that cortisol is responsible for driving circadian and ultradian bursts of transcriptional activity in the CLOCK (clock circadian regulator) and PER (period circadian clock 1) gene families, and this rhythm is disrupted in major depressive disorder, bipolar disorder, and stress-related gastrointestinal and immune disorders. GR regulates different sets of transcripts in a tissue-specific manner, through pulsatile waves of gene expression that includes occupancy of glucocorticoid response elements located within constitutively open spatial domains in chromatin. Emerging evidence supports a potentially pivotal role for epigenetic regulation of how GR interacts with other chromatin regulators to control the expression of its target genes. Dysregulation of the central and peripheral GR regulome has potentially significant consequences for stress-related disorders affecting the brain–gut axis. PMID:26690871

  19. Discovery of Compound A – a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity

    PubMed Central

    Lesovaya, Ekaterina; Yemelyanov, Alexander; Swart, Amanda C.; Swart, Pieter; Haegeman, Guy; Budunova, Irina

    2015-01-01

    Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer. PMID:26436695

  20. Glucocorticoid receptor and histone deacetylase-2 mediate dexamethasone-induced repression of MUC5AC gene expression.

    PubMed

    Chen, Yajun; Watson, Alan M; Williamson, Chad D; Rahimi, Michael; Liang, Chong; Colberg-Poley, Anamaris M; Rose, Mary C

    2012-11-01

    Airway occlusion in obstructive airway diseases is caused in part by the overproduction of secretory mucin glycoproteins through the up-regulation of mucin (MUC) genes by inflammatory mediators. Some pharmacological agents, including the glucocorticoid dexamethasone (Dex), repress mucin concentrations in lung epithelial cancer cells. Here, we show that Dex reduces the expression of MUC5AC, a major airway mucin gene, in primary differentiated normal human bronchial epithelial (NHBE) cells in a dose-dependent and time-dependent manner, and that the Dex-induced repression is mediated by the glucocorticoid receptor (GR) and two glucocorticoid response elements (GREs) in the MUC5AC promoter. The pre-exposure of cells to RU486, a GR antagonist, and mutations in either the GRE3 or GRE5 cis-sites abolished the Dex-induced repression. Chromatin immunoprecipitation (ChIP) assays showed a rapid temporal recruitment of GR to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in NHBE and in A549 cells. Immunofluorescence showed nuclear colocalization of GR and histone deacetylase-2 (HDAC2) in MUC5AC-expressing NHBE cells. ChIP also showed a rapid temporal recruitment of HDAC2 to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in both cell types. The knockdown of HDAC2 by HDAC2-specific short interfering RNA prevented the Dex-induced repression of MUC5AC in NHBE and A549 cells. These data demonstrate that GR and HDAC2 are recruited to the GRE3 and GRE5 cis-sites in the MUC5AC promoter and mediate the Dex-induced cis repression of MUC5AC gene expression. A better understanding of the mechanisms whereby glucocorticoids repress MUC5AC gene expression may be useful in formulating therapeutic interventions in chronic lung diseases.

  1. A role for glucocorticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice.

    PubMed

    Monje, Francisco J; Kim, Eun-Jung; Cabatic, Maureen; Lubec, Gert; Herkner, Kurt R; Pollak, Daniela D

    2011-08-01

    Abstract Background. The gastrin-releasing peptide receptor (GRPR) is highly expressed in the limbic system, where it importantly regulates emotional functions and in the suprachiasmatic nucleus, where it is central for the photic resetting of the circadian clock. Mice lacking GRPR presented with deficient light-induced phase shift in activity as well altered emotional learning and amygdala function. The effect of GRPR deletion on depression-like behavior and its molecular signature in the amygdala, however, has not yet been evaluated. Methods. GRPR knock-out mice (GRPR-KO) were tested in the forced-swim test and the sucrose preference test for depression-like behavior. Gene expression in the basolateral nucleus of the amygdala was evaluated by micorarray analysis subsequent to laser-capture microdissection-assisted extraction of mRNA. The expression of selected genes was confirmed by RT-PCR. Results. GRPR-KO mice were found to present with increased depression-like behavior. Microarray analysis revealed down-regulation of several glucocorticoid-responsive genes in the basolateral amygdala. Acute administration of dexamethasone reversed the behavioral phenotype and alterations in gene expression. Discussion. We propose that deletion of GRPR leads to the induction of depression-like behavior which is paralleled by dysregulation of amygdala gene expression, potentially resulting from deficient light-induced corticosterone release in GRPR-KO.

  2. Down-regulation of pancreatic transcription factors and incretin receptors in type 2 diabetes

    PubMed Central

    Kaneto, Hideaki; Matsuoka, Taka-aki

    2013-01-01

    Type 2 diabetes is one of the most prevalent and serious metabolic diseases. Under diabetic conditions, chronic hyperglycemia and subsequent induction of oxidative stress deteriorate pancreatic β-cell function, which leads to the aggravation of type 2 diabetes. Although such phenomena are well known as glucose toxicity, its molecular mechanism remains unclear. In this review article, we describe the possible molecular mechanism for β-cell dysfunction found in type 2 diabetes, focusing on (1) oxidative stress, (2) pancreatic transcription factors (PDX-1 and MafA) and (3) incretin receptors (GLP-1 and GIP receptors). Under such conditions, nuclear expression levels of PDX-1 and MafA are decreased, which leads to suppression of insulin biosynthesis and secretion. In addition, expression levels of GLP-1 and GIP receptors are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, it is likely that down-regulation of pancreatic transcription factors (PDX-1 and MafA) and down-regulation of incretin receptors (GLP-1 and GIP receptors) explain, at least in part, the molecular mechanism for β-cell dysfunction found in type 2 diabetes. PMID:24379916

  3. Glucocorticoid receptor-interacting protein 1 mediates ligand-independent nuclear translocation and activation of constitutive androstane receptor in vivo.

    PubMed

    Min, Gyesik; Kemper, J Kim; Kemper, Byron

    2002-07-19

    Phenobarbital (PB) induction of CYP2B genes is mediated by translocation of the constitutively active androstane receptor (CAR) to the nucleus. Interaction of CAR with p160 coactivators and enhancement of CAR transactivation by the coactivators have been shown in cultured cells. In the present studies, the interaction of CAR with the p160 coactivator glucocorticoid receptor-interacting protein 1 (GRIP1) was examined in vitro and in vivo. Binding of GRIP1 to CAR was shown by glutathione S-transferase (GST) pull-down and affinity DNA binding. N- or C-terminal fragments of GRIP1 that contained the central receptor-interacting domain bound to GST-CAR, but the presence of ligand increased the binding to GST-CAR of only the fragments containing the C-terminal region. In gel shift analysis, binding to CAR was observed only with GRIP1 fragments containing the C-terminal region, and the binding was increased by a CAR agonist and decreased by a CAR antagonist. Expression of GRIP1 enhanced CAR-mediated transactivation in cultured hepatic-derived cells 2-3-fold. In hepatocytes transfected in vivo, expression of exogenous GRIP1 alone induced transactivation of the CYP2B1 PB-dependent enhancer 15-fold, whereas CAR expression alone resulted in only a 3-fold enhancement in untreated mice. Remarkably, CAR and GRIP1 together synergistically transactivated the enhancer about 150-fold, which is approximately equal to activation by PB treatment. In PB-treated mice, expression of exogenous CAR alone had little effect, expression of GRIP1 increased transactivation about 2-fold, and with CAR and GRIP, a 4-fold activation was observed. In untreated mice, expression of GRIP resulted in nuclear translocation of green fluorescent protein-CAR. These results strongly suggest that a p160 coactivator functions in CAR-mediated transactivation in vivo in response to PB treatment and that the synergistic activation of CAR by GRIP in untreated animals results from both nuclear translocation and

  4. Stability analysis of a hypothalamic-pituitary-adrenal axis model with inclusion of glucocorticoid receptor and memory

    NASA Astrophysics Data System (ADS)

    Kaslik, Eva; Navolan, Dan Bogdan; Neamţu, Mihaela

    2017-01-01

    This paper analyzes a four-dimensional model of the hypothalamic-pituitary-adrenal (HPA) axis that includes the influence of the glucocorticoid receptor in the pituitary. Due to the spatial separation between the hypothalamus, pituitary and adrenal glands, distributed time delays are introduced in the mathematical model. The existence of the positive equilibrium point is proved and a local stability and bifurcation analysis is provided, considering several types of delay kernels. The fractional-order model with discrete time delays is also taken into account. Numerical simulations are provided to illustrate the effectiveness of the theoretical findings.

  5. Biochemical characterization of nuclear receptors for vitamin D{sub 3} and glucocorticoids in prostate stroma cell microenvironment

    SciTech Connect

    Hidalgo, Alejandro A.; Montecinos, Viviana P.; Paredes, Roberto; Godoy, Alejandro S.; McNerney, Eileen M.; Tovar, Heribelt; Pantoja, Diego; Johnson, Candace; Trump, Donald; Onate, Sergio A.

    2011-08-19

    Highlights: {yields} Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. {yields} Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D{sub 3} in stromal cell microenvironment prostate cancer. {yields} 1a,25-Dyhidroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D{sub 3} is mediated by the 1,25D{sub 3} nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D{sub 3} in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D{sub 3} action. Conversely, VDR

  6. The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors.

    PubMed Central

    Wessely, O; Deiner, E M; Beug, H; von Lindern, M

    1997-01-01

    During development and in regenerating tissues such as the bone marrow, progenitor cells constantly need to make decisions between proliferation and differentiation. We have used a model system, normal erythroid progenitors of the chicken, to determine the molecular players involved in making this decision. The molecules identified comprised receptor tyrosine kinases (c-Kit and c-ErbB) and members of the nuclear hormone receptor superfamily (thyroid hormone receptor and estrogen receptor). Here we identify the glucocorticoid receptor (GR) as a key regulator of erythroid progenitor self-renewal (i.e. continuous proliferation in the absence of differentiation). In media lacking a GR ligand or containing a GR antagonist, erythroid progenitors failed to self-renew, even if c-Kit, c-ErbB and the estrogen receptor were activated simultaneously. To induce self-renewal, the GR required the continuous presence of an activated receptor tyrosine kinase and had to cooperate with the estrogen receptor for full activity. Mutant analysis showed that DNA binding and a functional AF-2 transactivation domain are required for proliferation stimulation and differentiation arrest. c-myb was identified as a potential target gene of the GR in erythroblasts. It could be demonstrated that delta c-Myb, an activated c-Myb protein, can functionally replace the GR. PMID:9029148

  7. Down-regulation of 11β-hydroxysteroid dehydrogenase type 2 by bortezomib sensitizes Jurkat leukemia T cells against glucocorticoid-induced apoptosis.

    PubMed

    Tao, Yi; Gao, Lu; Wu, Xiaosong; Wang, Hongmei; Yang, Guang; Zhan, Fenghuang; Shi, Jumei

    2013-01-01

    11β-Hydroxysteroid dehydrogenases type 2 (11β-HSD2), a key regulator for pre-receptor metabolism of glucocorticoids (GCs) by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion) through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.

  8. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  9. Down-Regulation of the Met Receptor Tyrosine Kinase by Presenilin-dependent Regulated Intramembrane Proteolysis

    PubMed Central

    Foveau, Bénédicte; Ancot, Frédéric; Leroy, Catherine; Petrelli, Annalisa; Reiss, Karina; Vingtdeux, Valérie; Giordano, Silvia; Fafeur, Véronique

    2009-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) acts through the membrane-anchored Met receptor tyrosine kinase to induce invasive growth. Deregulation of this signaling is associated with tumorigenesis and involves, in most cases, overexpression of the receptor. We demonstrate that Met is processed in epithelial cells by presenilin-dependent regulated intramembrane proteolysis (PS-RIP) independently of ligand stimulation. The proteolytic process involves sequential cleavage by metalloproteases and the γ-secretase complex, leading to generation of labile fragments. In normal epithelial cells, although expression of cleavable Met by PS-RIP is down-regulated, uncleavable Met displayed membrane accumulation and induced ligand-independent motility and morphogenesis. Inversely, in transformed cells, the Met inhibitory antibody DN30 is able to promote Met PS-RIP, resulting in down-regulation of the receptor and inhibition of the Met-dependent invasive growth. This demonstrates the original involvement of a proteolytic process in degradation of the Met receptor implicated in negative regulation of invasive growth. PMID:19297528

  10. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock.

    PubMed

    Yang, Chul-Su; Ko, Sung-Ryong; Cho, Byung-Goo; Shin, Dong-Min; Yuk, Jae-Min; Li, Shengjin; Kim, Jin-Man; Evans, Ronald M; Jung, Jun-Sub; Song, Dong-Keun; Jo, Eun-Kyeong

    2008-01-01

    Compound K (C-K), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. Here, we describe a novel therapeutic role for C-K in the treatment of lethal sepsis through the modulation of Toll-like receptor (TLR) 4-associated signalling via glucocorticoid receptor (GR) binding. In mononuclear phagocytes, C-K significantly repressed the activation of TLR4/lipopolysaccharide (LPS)-induced NF-kappaB and mitogen-activated protein kinases (MAPKs), as well as the secretion of pro-inflammatory cytokines. However C-K did not affect the TLR3-mediated expression of interferon-beta or the nuclear translocation of IRF-3. C-K competed with the synthetic glucocorticoid dexamethasone for binding to GR and activated glucocorticoid responsive element (GRE)-containing reporter plasmids in a dose-dependent manner. In addition, the blockade of GR with either the GR antagonist RU486 or a siRNA against GR substantially reversed the anti-inflammatory effects of C-K. Furthermore, TLR4-dependent repression of inflammatory response genes by C-K was mediated through the disruption of p65/interferon regulatory factor complexes. Importantly, pre- or post-treatment with C-K significantly rescued mice from Gram-negative bacterial LPS-induced lethal shock by lowering their systemic inflammatory cytokine levels and by reversing the lethal sequelae of sepsis. Collectively, these results demonstrate that C-K, as a functional ligand of GR, regulates distinct TLR4-mediated inflammatory responses, and suggest a novel therapy for Gram-negative septic shock.

  11. Sex-specific fitness effects of unpredictable early life conditions are associated with DNA methylation in the avian glucocorticoid receptor.

    PubMed

    Rubenstein, Dustin R; Skolnik, Hannah; Berrio, Alejandro; Champagne, Frances A; Phelps, Steven; Solomon, Joseph

    2016-04-01

    Organisms can adapt to variable environments by using environmental cues to modulate developmental gene expression. In principle, maternal influences can adaptively adjust offspring phenotype when early life and adult environments match, but they may be maladaptive when future environments are not predictable. One of the best-studied 'maternal effects' is through modification of the offspring's hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine system that controls responses to stress. In addition to the direct transfer of glucocorticoids from mother to offspring, offspring HPA function and other phenotypes can also be affected by epigenetic modifications like DNA methylation of the glucocorticoid receptor promoter. Here we examine how among-year variation in rainfall is related to DNA methylation during development and fitness in adulthood in the superb starling (Lamprotornis superbus), which lives in a climatically unpredictable environment where early life and adult environments are unlikely to match. We found that DNA methylation in the putative promoter of the glucocorticoid receptor gene is reduced in chicks - particularly in males - born following drier prebreeding periods. Additionally, DNA methylation is lower in males that become breeders than those that never breed. However, there is no relationship in females between DNA methylation and the likelihood of dispersing from the natal group to breed elsewhere. These results suggest that early life conditions may positively affect fitness in a sex-specific manner through chemical modification of an HPA-associated gene. This study is the first to show that epigenetic modifications during early life may influence the fitness of free-living organisms adapted to unpredictable environments.

  12. Short-day aggression is independent of changes in cortisol or glucocorticoid receptors in male Siberian hamsters (Phodopus sungorus).

    PubMed

    Scotti, Melissa-Ann L; Rendon, Nikki M; Greives, Timothy J; Romeo, Russell D; Demas, Gregory E

    2015-06-01

    Testosterone mediates aggression in many vertebrates. In some species, aggression remains high during the non-breeding season (e.g., winter), when testosterone levels are low. In Siberian hamsters (Phodopus sungorus), we have demonstrated photoperiodic changes in aggression with hamsters housed in short, "winter-like" days displaying significantly more territorial aggression than long-day animals, despite low levels of testosterone. The mechanisms by which photoperiod regulates aggression, however, remain largely unknown. Adrenocortical hormones (e.g., glucocorticoids) have been implicated in mediating seasonal aggression; circulating concentrations of these hormones have been correlated with aggression in some species. The goal of this study was to examine the role of cortisol and glucocorticoid receptors in mediating photoperiodic changes in aggression in male Siberian hamsters. Males were housed in long or short days and treated with either exogenous cortisol or vehicle. Circulating levels of cortisol, adrenal cortisol content, and aggression were quantified. Lastly, photoperiodic effects on glucocorticoid receptor (GR) protein levels were quantified in limbic brain regions associated with aggression, including medial prefrontal cortex, amygdala, and hippocampus. Short-day hamsters were more aggressive than long-day hamsters, however cortisol treatment did not affect aggression. Photoperiod had no effect on serum or adrenal cortisol or GR levels in the brain regions examined. Taken together, these data suggest that increases in cortisol levels do not cause increases associated with short-day aggression, and further that GR protein levels are not associated with photoperiodic changes in aggression. The results of this study contribute to our understanding of the role of adrenocortical steroids in mediating seasonal aggression.

  13. Differential Subcellular Localization of the Glucocorticoid Receptor in Distinct Neural Stem and Progenitor Populations of the Mouse Telencephalon In Vivo

    PubMed Central

    Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.

    2013-01-01

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362

  14. Modulation of HIV-1 virulence via the host glucocorticoid receptor: towards further understanding the molecular mechanisms of HIV-1 pathogenesis.

    PubMed

    Hapgood, Janet Patricia; Tomasicchio, Michele

    2010-07-01

    The glucocorticoid receptor (GR) is a steroid receptor that regulates diverse functions, which include the immune response. In humans, the GR acts via binding to cortisol, resulting in the transcriptional modulation of key host genes. Several lines of evidence suggest that the host GR could be a key protein exploited by HIV at multiple levels to ensure its pathogenic success. Endogenous and therapeutic glucocorticoids play important roles in patients with HIV due to their well-established effects on immune function. AIDS patients develop glucocorticoid hypersensitivity, consistent with a mechanism involving an HIV-1-induced increase in expression or activity of the GR. Both the HIV-1 accessory protein Vpr and the host GR affect transcription of viral proteins from the long terminal repeat (LTR) region of the HIV-1 promoter. In addition, Vpr modulates host GR function to affect transcription of host genes, most likely via direct interaction with the GR. Vpr appears to regulate GR function by acting as a co-activator for the GR. Since both the GR and Vpr are involved in apoptosis in T cells and dendritic cells, crosstalk between these proteins may also regulate apoptosis in these and other cells. Given that cortisol is not the only ligand that activates the GR, other endogenous as well as synthetic GR ligands such as progestins may also modulate HIV pathogenesis, in particular in the cervicovaginal environment. Investigating the molecular determinants, ligand-selectivity and role in HIV pathogenesis of the GR-Vpr interaction may lead to new strategies for development of anti-HIV drugs.

  15. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test.

    PubMed

    Solomon, Matia B; Wulsin, Aynara C; Rice, Taylor; Wick, Dayna; Myers, Brent; McKlveen, Jessica; Flak, Jonathan N; Ulrich-Lai, Yvonne; Herman, James P

    2014-04-01

    Pre-clinical and clinical studies have employed treatment with glucocorticoid receptor (GR) antagonists in an attempt to limit the deleterious behavioral and physiological effects of excess glucocorticoids. Here, we examined the effects of GR antagonists on neuroendocrine and behavioral stress responses, using two compounds: mifepristone, a GR antagonist that is also a progesterone receptor antagonist, and CORT 108297, a specific GR antagonist lacking anti-progestin activity. Given its well-documented impact on neuroendocrine and behavioral stress responses, imipramine (tricyclic antidepressant) served as a positive control. Male rats were treated for five days with mifepristone (10mg/kg), CORT 108297 (30mg/kg and 60mg/kg), imipramine (10mg/kg) or vehicle and exposed to forced swim test (FST) or restraint stress. Relative to vehicle, imipramine potently suppressed adrenocorticotropin hormone (ACTH) responses to FST and restraint exposure. Imipramine also decreased immobility in the FST, consistent with antidepressant actions. Both doses of CORT 108297 potently suppressed peak corticosterone responses to FST and restraint stress. However, only the higher dose of CORT 108297 (60mg/kg) significantly decreased immobility in the FST. In contrast, mifepristone induced protracted secretion of corticosterone in response to both stressors, and modestly decreased immobility in the FST. Taken together, the data indicate distinct effects of each compound on neuroendocrine stress responses and also highlight dissociation between corticosterone responses and immobility in the FST. Within the context of the present study, our data suggest that CORT 108297 may be an attractive alternative for mitigating neuroendocrine and behavioral states associated with excess glucocorticoid secretion.

  16. Glucocorticoid hedgehog agonists in neurogenesis.

    PubMed

    Wang, Jiangbo; Barak, Larry S; Mook, Robert A; Chen, Wei

    2011-01-01

    The process of neurogenesis in mammals, which is prolific and widespread at birth, gradually slows with aging and in humans becomes restricted to areas including the cerebellum and hippocampus. It has been reported that exposure to glucocorticoids can impair neurogenesis in both adults and children. Glucocorticoids are known to bind with high affinity to intracellular receptors. Glucocorticoid blood levels are normally regulated by environmental stresses, but because of their clinical utility, exogenous glucocorticoids are frequently administered in drug formulations. Consequently, concerns have arisen about the consequences of glucocorticoid use on neurogenesis and health, especially in the pediatric population. In this article, we will review recent findings that a select number of related glucocorticoids, halcinonide, fluticasone propionate, clobetasol propionate, and fluocinonide, also bind the hedgehog pathway receptor Smoothened. We will discuss their pharmacology and also a most surprising result; that this select group of compounds, which includes FDA approved drugs, unlike typical glucocorticoids such as dexamethasone, stimulate stem cell growth, and thus enhance neurogenesis.

  17. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-12-1-0582 TITLE: Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s...Annual 3. DATES COVERED 25 Sep 2013 - 24 Sep 2014 4. TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury...SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau

  18. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    SciTech Connect

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-08-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with /sup 125/I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of /sup 125/I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites.

  19. An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation.

    PubMed

    Carrigan, Amanda; Walther, Rhian F; Salem, Houssein Abdou; Wu, Dongmei; Atlas, Ella; Lefebvre, Yvonne A; Haché, Robert J G

    2007-04-13

    The glucocorticoid receptor (GR) cycles between a naive chaperone-complexed form in the cytoplasm and a transcriptionally active steroid-bound nuclear form. Nuclear import of GR occurs rapidly and is mediated through the importin alpha/beta karyopherin import pathway. By contrast, nuclear export of GR occurs only slowly under most conditions, despite a dependence on active signaling. In this study we have defined a nuclear retention signal (NRS) in the hinge region of GR that actively opposes the nuclear export of GR as well as the nuclear export mediated through an ectopic CRM1-dependent nuclear export signal (NES). The GR NRS overlaps closely with the basic NL1 nuclear localization signal (NLS) but can be distinguished from NL1 by targeted mutagenesis. Substitution of the classical NLS from SV40 T antigen for the GR NL1 results in a receptor in which nuclear export is accelerated. Remarkably, although the SV40-modified GR remains predominantly nuclear in the presence of steroid and is recruited to transcriptional regulatory regions indistinguishably from wild-type GR, the substitution dramatically weakens the ability of GR to activate transcription of a mouse mammary tumor virus reporter gene. These results suggest that active nuclear retention of GR plays an integral role in glucocorticoid signaling.

  20. Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene

    PubMed Central

    Ostlund, Brendan D.; Conradt, Elisabeth; Crowell, Sheila E.; Tyrka, Audrey R.; Marsit, Carmen J.; Lester, Barry M.

    2016-01-01

    Exposure to stress in utero is a risk factor for the development of problem behavior in the offspring, though precise pathways are unknown. We examined whether DNA methylation of the glucocorticoid receptor gene, NR3C1, was associated with experiences of stress by an expectant mother and fearfulness in her infant. Mothers reported on prenatal stress and infant temperament when infants were 5 months old (n = 68). Buccal cells for methylation analysis were collected from each infant. Prenatal stress was not related to infant fearfulness or NR3C1 methylation in the sample as a whole. Exploratory sex-specific analysis revealed a trend-level association between prenatal stress and increased methylation of NR3C1 exon 1F for female, but not male, infants. In addition, increased methylation was significantly associated with greater fearfulness for females. Results suggest an experience-dependent pathway to fearfulness for female infants via epigenetic modification of the glucocorticoid receptor gene. Future studies should examine prenatal stress in a comprehensive fashion while considering sex differences in epigenetic processes underlying infant temperament. PMID:27462209

  1. Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro.

    PubMed Central

    Suda, T; Tozawa, F; Dobashi, I; Horiba, N; Ohmori, N; Yamakado, M; Yamada, M; Demura, H

    1993-01-01

    To differentiate between ectopic ACTH syndrome and Cushing's disease, gene expression of corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), and glucocorticoid receptor was examined in 10 pituitary adenomas (Cushing's disease) and in 10 ectopic ACTH-producing tumors. CRH increased plasma ACTH levels in all patients with Cushing's disease and in five patients with ectopic ACTH syndrome whose tumors contained CRH and CRH mRNA. In five CRH nonresponders, CRH was not detected in tumors that contained no CRH mRNA or that contained only long-size CRH mRNA. Dexamethasone (Dex) decreased plasma ACTH levels in all patients with Cushing's disease and in three patients with ectopic ACTH-producing bronchial carcinoid. These tumors contained glucocorticoid receptor mRNA. CRH increased and Dex decreased ACTH release and POMC mRNA levels in pituitary adenoma and bronchial carcinoid cells. PMA increased POMC mRNA levels only in carcinoid cells. These results reveal characteristics of ectopic ACTH-producing tumors: long-size CRH mRNA and PMA-induced POMC gene expression. In addition, there are two ectopic ACTH syndrome subtypes: tumors containing ACTH with CRH (CRH responder) and tumors without CRH. Dex decreases ACTH release and POMC mRNA levels in some bronchial carcinoids. Therefore, CRH and Dex tests have limited usefulness in differentiating between Cushing's disease and ectopic ACTH syndrome. Images PMID:8254033

  2. Effects of a Glucocorticoid Receptor Agonist, Dexamethasone, on Fathead Minnow Reproduction, Growth, and Development.

    EPA Science Inventory

    Few studies have examined the effects of synthetic glucocorticoids on the reproductive axis of fish, despite the fact that these chemicals are therapeutically prescribed anti-inflammatory agents that are abundantly produced and consumed. To generate data to assess potential risk ...

  3. Effects of a Glucocorticoid Receptor Agonist, Dexamethasone, on Fathead Minnow Reproduction and Development

    EPA Science Inventory

    Few studies have examined the effects of synthetic glucocorticoids on the reproductive axis of fish, despite the fact that these chemicals are therapeutically prescribed anti-inflammatory agents that are abundantly produced and consumed. To generate data to assess potential risk ...

  4. Glucocorticoid and progestin receptors are differently involved in the cooperation with a structural element of the mouse mammary tumor virus promoter.

    PubMed Central

    Le Ricousse, S; Gouilleux, F; Fortin, D; Joulin, V; Richard-Foy, H

    1996-01-01

    We have previously characterized a regulatory element located between -294 and -200 within the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). This element termed AA element cooperates with the glucocorticoid response elements (GREs) for glucocorticoid activation. Here we show that in a MMTV LTR wild type context, the deletion of this element significantly reduces both glucocorticoid and progestin activation of the promoter. Deletion of the two most distal GREs forces the glucocorticoid receptor (GR) and the progestin receptor (PR) to bind the same response elements and results in a dramatic decrease in the inducibility of the MMTV promoter by the two hormones. The simultaneous deletion of the two distal GREs and of the AA element abolishes completely the glucocorticoid-induced activation of the promoter. In contrast it restores a significant level of progestin-induced activation. This different effect of the double deletion on glucocorticoid- and progestin-induced MMTV promoter activation is not cell specific because it is also observed, and is even stronger, when either GR or PR is expressed in the same cell line (NIH 3T3). This is the first description of a mutated MMTV promoter that, although retaining GREs, is activated by progestins and not by glucocorticoids. This suggests a different functional cooperation between protein(s) interacting with the AA element and GR or PR. Cotransfections with constructs containing wild-type or mutated MMTV LTR with either PR lacking its C-terminal domain or GR/PR chimeras in which the N-terminal domains have been exchanged demonstrate that the N-terminal domains of the receptors specify the different behavior of GR and PR regarding the AA element. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643531

  5. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region.

    PubMed

    Payvar, F; DeFranco, D; Firestone, G L; Edgar, B; Wrange, O; Okret, S; Gustafsson, J A; Yamamoto, K R

    1983-12-01

    Glucocorticoid receptor protein stimulates transcription initiation within murine mammary tumor virus (MTV) DNA sequences in vivo, and interacts selectively with MTV DNA in vitro. We mapped and compared five regions of MTV DNA that are bound specifically by purified receptor; one resides upstream of the transcription start site, and the others are distributed within transcribed sequences between 4 and 8 kb from the initiation site. Each region contains at least two strong binding sites for receptor, which itself appears to be a tetramer of 94,000 dalton hormone-binding subunits. Three of the five binding regions contain nine nuclease footprints that lack extensive homology, although a family of related octanucleotides can be discerned. Receptor interacts with the different regions with similar efficiencies, suggesting that receptor affinity for upstream and internal regions may differ by less than one order of magnitude. Moreover, each region appears to be bound independent of the others. A restriction fragment containing four footprint sequences from one of the regions has previously been shown to act in vivo as a receptor-dependent transcriptional enhancer element, implying that the binding sites detected in vitro may be biologically functional.

  6. Development of an exchange assay for cytosolic glucocorticoid receptors using the synergistic effects of molybdate plus dithiothreitol

    SciTech Connect

    Kalimi, M.; Hubbard, J.R.

    1983-09-01

    A glucocorticoid receptor exchange assay has been developed for the accurate quantification of both free and steroid-bound receptors in rat liver cytosol. Hepatic cytosol from adrenalectomized rats was saturated in vitro with unlabeled corticosterone. Cytosol was subsequently treated with (/sup 3/H)dexamethasone (with and without 1000-fold cold dexamethasone) for 2-28 h at 4 C in the presence of 10 mM molybdate plus 5 mM dithiothreitol (DTT). Complete exchange occurred between 16-28 h in the presence of molybdate plus DTT. In control and 10 mM molybdate (alone) treated samples only about 50% exchange was achieved. In the presence of 5 mM DTT (alone) approximately 60-70% exchange was observed. The exchange assay (utilizing molybdate plus DTT) was also applied to hepatic cytosol of adrenalectomized rats injected with corticosterone in vivo and to samples prebound with unlabeled dexamethasone.

  7. Down-regulation of tumor necrosis factor receptors by blockade of mitochondrial respiration.

    PubMed

    Sánchez-Alcázar, J A; Hernández, I; De la Torre, M P; García, I; Santiago, E; Muñoz-Yagüe, M T; Solís-Herruzo, J A

    1995-10-13

    We have studied the effect of blockade of mitochondrial respiration on the binding of human 125I-TNF alpha to L929 cell receptors. Specific TNF alpha binding was decreased to about 20-40% of controls by blocking mitochondrial respiration. This effect was dose- and time-related and was observed independently of the level at which the respiration was blocked (respiratory chain, proton backflow, ATPase, anaerobiosis). This blockade had no effect on the half-life of the specific TNF alpha binding, the internalization or degradation of TNF alpha-receptor complexes, or the number of TNF alpha-binding sites. Scatchard analysis of TNF alpha binding data indicated a 2-4-fold decrease in the affinity of these binding sites. These effects did not appear to be related to the protein kinase C activity or to reactive oxygen radicals, since they were not antagonized by pretreatment of cells with oxygen radical scavengers, deferoxamine, or inhibitors of protein kinase C. Decrease in TNF alpha binding capacity correlated significantly with cellular ATP content (r = 0.94; p < 0.01) and with the cytocidal activity of TNF alpha against L929 cells. These findings suggest that blockade of mitochondrial respiration down-regulates the binding of TNF alpha to cells, most likely by changing the affinity of receptors for this cytokine. This down-regulation may increase the resistance of cells to TNF alpha cytotoxicity.

  8. Molecular mechanisms of glucocorticoid action in mast cells.

    PubMed

    Oppong, Emmanuel; Flink, Nesrin; Cato, Andrew C B

    2013-11-05

    Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.

  9. Direct stoichiometric evidence that the untransformed Mr 300,000, 9S, glucocorticoid receptor is a core unit derived from a larger heteromeric complex.

    PubMed

    Bresnick, E H; Dalman, F C; Pratt, W B

    1990-01-16

    We have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-Sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with 125I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from [35S]methionine-labeled L cells, and the amount of 35S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. In complexes from L cells which are labeled to steady state (48 h), the ratio of hsp90 to GR is 4:1. When immunoadsorbed receptor complexes are washed extensively with 0.5 M NaCl and 0.4% Triton X-100 in the presence of molybdate, the ratio of hsp90 to GR is 2:1. In addition to hsp90, preparations of [35S]methionine-labeled untransformed receptor complex also contain a 55-kDa protein that the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Glucocorticoid Effects on the Programming of AT1b Angiotensin Receptor Gene Methylation and Expression in the Rat

    PubMed Central

    Bogdarina, Irina; Haase, Andrea; Langley-Evans, Simon; Clark, Adrian J. L.

    2010-01-01

    Adverse events in pregnancy may ‘programme’ offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11β-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence. PMID:20169056

  11. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding.

    PubMed

    Deng, Qiong; Waxse, Bennett; Riquelme, Denise; Zhang, Jiabao; Aguilera, Greti

    2015-06-15

    Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.

  12. Human cytomegalovirus infection downregulates vitamin-D receptor in mammalian cells.

    PubMed

    Rieder, Franz J J; Gröschel, Charlotte; Kastner, Marie-Theres; Kosulin, Karin; Laengle, Johannes; Zadnikar, Rene; Marculescu, Rodrig; Schneider, Martina; Lion, Thomas; Bergmann, Michael; Kallay, Enikö; Steininger, Christoph

    2017-01-01

    Vitamin D (VD) is essential for the human body and involved in a wide variety of critical physiological processes including bone, muscle, and cardiovascular health, as well as innate immunity and antimicrobial responses. Here, we elucidated the significance of the VD system in cytomegalovirus (CMV) infection, which is one of the most common opportunistic infections in immunocompromised or -suppressed patients. We found that expression of vitamin D receptor (VDR) was downregulated in CMV-infected cells within 12h [hrs] post infection [p.i.] to 12% relative to VDR expression in mock-infected fibroblasts and did not recover during the CMV replication cycle of 96h. None of the biologically active metabolites of VD, cholecalciferol, calcidiol, or calcitriol, inhibit CMV replication significantly in human fibroblasts. In a feedback loop, expression of CYP24A1 dropped to 3% by 12h p.i. and expression of CYP27B1 increased gradually during the replication cycle of CMV to 970% probably as a consequence of VDR inhibition. VDR expression was not downregulated during influenza virus or adenovirus replication. The potent synthetic vitamin D analog EB-1089 was not able to inhibit CMV replication or antagonize its effect on VDR expression. Only CMV replication, and none of the other viral pathogens evaluated, inhibited the vitamin D system in vitro. In view of the pleiotropism of VDR, CMV-mediated downregulation may have far-reaching virological, immunological, and clinical implications and thus warrant further evaluations in vitro and in vivo.

  13. Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2.

    PubMed

    Hasdemir, Burcu; Murphy, Jane E; Cottrell, Graeme S; Bunnett, Nigel W

    2009-10-09

    The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.

  14. Transcriptional transactivation functions localized to the glucocorticoid receptor N terminus are necessary for steroid induction of lymphocyte apoptosis.

    PubMed Central

    Dieken, E S; Miesfeld, R L

    1992-01-01

    Genetic studies have suggested that transcriptional regulation of specific target genes (by either induction or repression) is the molecular basis of glucocorticoid-mediated lymphocyte apoptosis. To examine the role of transcriptional regulation more directly, we developed a complementation assay utilizing stable transfection of wild-type (wt) and mutant (nti) glucocorticoid receptor (GR) cDNA constructs into a GR-deficient S49 murine cell line (7r). Our data confirm that the level of functional GR is rate limiting for S49 apoptosis and moreover that the GR amino terminus (N terminus), which as been deleted from the nti GR, is absolutely required for complementation in this system. Surprisingly, we found that at physiological levels of receptor, expression of the nti GR in cells containing wt GR results in enhanced dexamethasone sensitivity rather than a dominant negative phenotype. One interpretation of these data is that DNA binding by wt-nti heterodimers may be functionally similar to that of wt-wt homodimers, indicating that GRE occupancy by at least one transactivation domain may be sufficient to induce the hormonal response. To determine whether acidic activating sequences such as those localized to the GR N terminus are important in the induction of lymphocyte apoptosis, we tested the activity of a chimeric receptor in which we replaced the entire GR N terminus with sequences from the herpes simplex virus VP16 protein. Our results demonstrate that 7r cells expressing VP-GR fusions are indeed steroid sensitive, strongly supporting the idea that S49 apoptosis is dependent on transcriptional regulation of specific genes which respond to acidic activating domains, implying that induction, rather than repression, may be the critical initiating event. Images PMID:1310148

  15. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism.

    PubMed

    De Martino, Massimo U; Alesci, Salvatore; Chrousos, George P; Kino, Tomoshige

    2004-06-01

    Glucocorticoids exert their extremely diverse effects on numerous biologic activities of humans via only one protein module, the glucocorticoid receptor (GR). The GR binds to the glucocorticoid response elements located in the promoter region of target genes and regulates their transcriptional activity. In addition, GR associates with other transcription factors through direct protein-protein interactions and mutually represses or stimulates each other's transcriptional activities. The latter activity of GR may be more important than the former one, granted that mice harboring a mutant GR, which is active in terms of protein-protein interactions but inactive in terms of transactivation via DNA, survive and procreate, in contrast to mice with a deletion of the entire GR gene that die immediately after birth. We recently found that GR physically interacts with the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), which plays a critical role in the metabolism of glucose, cholesterol, and xenobiotics, as well as in the development of the central nervous system in fetus. GR stimulates COUP-TFII-induced transactivation by attracting cofactors via its activation function-1, while COUP-TFII represses the GR-governed transcriptional activity by tethering corepressors, such as the silencing mediator for retinoid and thyroid hormone receptors (SMRT) and the nuclear receptor corepressors (NCoRs) via its C-terminal domain. Their mutual interaction may play an important role in gluconeogenesis, lipoprotein metabolism, and enzymatic clearance of clinically important compounds and bioactive chemicals, by regulating their rate-limiting enzymes and molecules, including the phosphoenolpyruvate carboxykinase (PEPCK), the cytochrome P450 CYP3A and CYP7A, and several apolipoproteins. It appears that glucocorticoids exert their intermediary effects partly via physical interaction with COUP-TFII.

  16. The Glucocorticoid Receptor Regulates the ANGPTL4 Gene in a CTCF-Mediated Chromatin Context in Human Hepatic Cells

    PubMed Central

    Nakamoto, Masafumi; Ishihara, Ko; Watanabe, Takehisa; Hirosue, Akiyuki; Hino, Shinjiro; Shinohara, Masanori; Nakayama, Hideki; Nakao, Mitsuyoshi

    2017-01-01

    Glucocorticoid signaling through the glucocorticoid receptor (GR) plays essential roles in the response to stress and in energy metabolism. This hormonal action is integrated to the transcriptional control of GR-target genes in a cell type-specific and condition-dependent manner. In the present study, we found that the GR regulates the angiopoietin-like 4 gene (ANGPTL4) in a CCCTC-binding factor (CTCF)-mediated chromatin context in the human hepatic HepG2 cells. There are at least four CTCF-enriched sites and two GR-binding sites within the ANGPTL4 locus. Among them, the major CTCF-enriched site is positioned near the ANGPTL4 enhancer that binds GR. We showed that CTCF is required for induction and subsequent silencing of ANGPTL4 expression in response to dexamethasone (Dex) and that transcription is diminished after long-term treatment with Dex. Although the ANGPTL4 locus maintains a stable higher-order chromatin conformation in the presence and absence of Dex, the Dex-bound GR activated transcription of ANGPTL4 but not that of the neighboring three genes through interactions among the ANGPTL4 enhancer, promoter, and CTCF sites. These results reveal that liganded GR spatiotemporally controls ANGPTL4 transcription in a chromosomal context. PMID:28056052

  17. The Glucocorticoid Receptor Regulates the ANGPTL4 Gene in a CTCF-Mediated Chromatin Context in Human Hepatic Cells.

    PubMed

    Nakamoto, Masafumi; Ishihara, Ko; Watanabe, Takehisa; Hirosue, Akiyuki; Hino, Shinjiro; Shinohara, Masanori; Nakayama, Hideki; Nakao, Mitsuyoshi

    2017-01-01

    Glucocorticoid signaling through the glucocorticoid receptor (GR) plays essential roles in the response to stress and in energy metabolism. This hormonal action is integrated to the transcriptional control of GR-target genes in a cell type-specific and condition-dependent manner. In the present study, we found that the GR regulates the angiopoietin-like 4 gene (ANGPTL4) in a CCCTC-binding factor (CTCF)-mediated chromatin context in the human hepatic HepG2 cells. There are at least four CTCF-enriched sites and two GR-binding sites within the ANGPTL4 locus. Among them, the major CTCF-enriched site is positioned near the ANGPTL4 enhancer that binds GR. We showed that CTCF is required for induction and subsequent silencing of ANGPTL4 expression in response to dexamethasone (Dex) and that transcription is diminished after long-term treatment with Dex. Although the ANGPTL4 locus maintains a stable higher-order chromatin conformation in the presence and absence of Dex, the Dex-bound GR activated transcription of ANGPTL4 but not that of the neighboring three genes through interactions among the ANGPTL4 enhancer, promoter, and CTCF sites. These results reveal that liganded GR spatiotemporally controls ANGPTL4 transcription in a chromosomal context.

  18. Temporal variability of glucocorticoid receptor activity is functionally important for the therapeutic action of fluoxetine in the hippocampus.

    PubMed

    Lee, M-S; Kim, Y-H; Park, W-S; Park, O-K; Kwon, S-H; Hong, K S; Rhim, H; Shim, I; Morita, K; Wong, D L; Patel, P D; Lyons, D M; Schatzberg, A F; Her, S

    2016-02-01

    Previous studies have shown inconsistent results regarding the actions of antidepressants on glucocorticoid receptor (GR) signalling. To resolve these inconsistencies, we used a lentiviral-based reporter system to directly monitor rat hippocampal GR activity during stress adaptation. Temporal GR activation was induced significantly by acute stress, as demonstrated by an increase in the intra-individual variability of the acute stress group compared with the variability of the non-stress group. However, the increased intra-individual variability was dampened by exposure to chronic stress, which was partly restored by fluoxetine treatment without affecting glucocorticoid secretion. Immobility in the forced-swim test was negatively correlated with the intra-individual variability, but was not correlated with the quantitative GR activity during fluoxetine therapy; this highlights the temporal variability in the neurobiological links between GR signalling and the therapeutic action of fluoxetine. Furthermore, we demonstrated sequential phosphorylation between GR (S224) and (S232) following fluoxetine treatment, showing a molecular basis for hormone-independent nuclear translocation and transcriptional enhancement. Collectively, these results suggest a neurobiological mechanism by which fluoxetine treatment confers resilience to the chronic stress-mediated attenuation of hypothalamic-pituitary-adrenal axis activity.

  19. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    SciTech Connect

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  20. The Cochaperone SGTA (Small Glutamine-rich Tetratricopeptide Repeat-containing Protein Alpha) Demonstrates Regulatory Specificity for the Androgen, Glucocorticoid, and Progesterone Receptors*

    PubMed Central

    Paul, Atanu; Garcia, Yenni A.; Zierer, Bettina; Patwardhan, Chaitanya; Gutierrez, Omar; Hildenbrand, Zacariah; Harris, Diondra C.; Balsiger, Heather A.; Sivils, Jeffrey C.; Johnson, Jill L.; Buchner, Johannes; Chadli, Ahmed; Cox, Marc B.

    2014-01-01

    Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity. PMID:24753260

  1. The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors.

    PubMed

    Paul, Atanu; Garcia, Yenni A; Zierer, Bettina; Patwardhan, Chaitanya; Gutierrez, Omar; Hildenbrand, Zacariah; Harris, Diondra C; Balsiger, Heather A; Sivils, Jeffrey C; Johnson, Jill L; Buchner, Johannes; Chadli, Ahmed; Cox, Marc B

    2014-05-30

    Steroid hormone receptors are ligand-dependent transcription factors that require the ordered assembly of multichaperone complexes for transcriptional activity. Although heat shock protein (Hsp) 90 and Hsp70 are key players in this process, multiple Hsp70- and Hsp90-associated cochaperones associate with receptor-chaperone complexes to regulate receptor folding and activation. Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was recently characterized as an Hsp70 and Hsp90-associated cochaperone that specifically regulates androgen receptor activity. However, the specificity of SGTA for additional members of the steroid hormone receptor superfamily and the mechanism by which SGTA regulates receptor activity remain unclear. Here we report that SGTA associates with and specifically regulates the androgen, glucocorticoid, and progesterone receptors and has no effect on the mineralocorticoid and estrogen receptors in both yeast and mammalian cell-based reporter assays. In both systems, SGTA knockdown/deletion enhances receptor activity, whereas SGTA overexpression suppresses receptor activity. We demonstrate that SGTA binds directly to Hsp70 and Hsp90 in vitro with similar affinities yet predominately precipitates with Hsp70 from cell lysates, suggesting a role for SGTA in early, Hsp70-mediated folding. Furthermore, SGTA expression completely abrogates the regulation of receptor function by FKBP52 (52-kDa FK506-binding protein), which acts at a later stage of the chaperone cycle. Taken together, our data suggest a role for SGTA at distinct steps in the chaperone-dependent modulation of androgen, glucocorticoid, and progesterone receptor activity.

  2. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  3. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Liu, S; Luo, Y; Fu, J; Zhou, J; Kyzas, G Z

    2016-01-01

    The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR.

  4. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation.

    PubMed

    Row, Paula E; Prior, Ian A; McCullough, John; Clague, Michael J; Urbé, Sylvie

    2006-05-05

    UBPY is a ubiquitin-specific protease that can deubiquitinate monoubiquitinated receptor tyrosine kinases, as well as process Lys-48- and Lys-63-linked polyubiquitin to lower denomination forms in vitro. Catalytically inactive UBPY localizes to endosomes, which accumulate ubiquitinated proteins. We have explored the sequelae of short interfering RNA-mediated knockdown of UBPY. Global levels of ubiquitinated protein increase and ubiquitin accumulates on endosomes, although free ubiquitin levels are unchanged. UBPY-depleted cells have more and larger multivesicular endosomal structures that are frequently associated through extended contact areas, characterized by regularly spaced, electron-dense, bridging profiles. Degradation of acutely stimulated receptor tyrosine kinases, epidermal growth factor receptor and Met, is strongly inhibited in UBPY knockdown cells suggesting that UBPY function is essential for growth factor receptor down-regulation. In contrast, stability of the UBPY binding partner STAM is dramatically compromised in UBPY knockdown cells. The cellular functions of UBPY are complex but clearly distinct from those of the Lys-63-ubiquitin-specific protease, AMSH, with which it shares a binding site on the SH3 domain of STAM.

  5. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank.

  6. Glucocorticoid Receptor Knockdown Decreases the Antioxidant Protection of B16 Melanoma Cells: An Endocrine System-Related Mechanism that Compromises Metastatic Cell Resistance to Vascular Endothelium-Induced Tumor Cytotoxicity

    PubMed Central

    Obrador, Elena; Valles, Soraya L.; Benlloch, María; Sirerol, J. Antoni; Pellicer, José A.; Alcácer, Javier; Coronado, Javier Alcácer-F.; Estrela, José M.

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2−-generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium. PMID:24802641

  7. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    PubMed

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  8. Involvement of tyrosine residues located in the carboxyl tail of the human beta 2-adrenergic receptor in agonist-induced down-regulation of the receptor.

    PubMed Central

    Valiquette, M; Bonin, H; Hnatowich, M; Caron, M G; Lefkowitz, R J; Bouvier, M

    1990-01-01

    Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmic tails of several membrane receptors, such as the low density lipoprotein and mannose-6-phosphate receptors, have been suggested as playing an important role in the agonist-induced internalization of these receptors. Accordingly, we assessed the potential role of two tyrosine residues in the carboxyl tail of the human beta 2AR in agonist-induced sequestration and down-regulation of the receptor. Tyr-350 and Tyr-354 of the human beta 2AR were replaced with alanine residues by site-directed mutagenesis and both wild-type and mutant beta 2AR were stably expressed in transformed Chinese hamster fibroblasts. The mutation dramatically decreased the ability of the beta 2AR to undergo isoproterenol-induced down-regulation. However, the substitution of Tyr-350 and Tyr-354 did not affect agonist-induced sequestration of the receptor. These results suggest that tyrosine residues in the cytoplasmic tail of human beta 2AR are crucial determinants involved in its down-regulation. PMID:2164220

  9. Efficacy and Tolerability of an Inhaled Selective Glucocorticoid Receptor modulator - AZD5423 - in COPD Patients: Phase II Study Results.

    PubMed

    Kuna, Piotr; Aurivillius, Magnus; Jorup, Carin; Prothon, Susanne; Taib, Ziad; Edsbäcker, Staffan

    2017-02-17

    AZD5423 is a novel, inhaled, selective glucocorticoid receptor modulator (SGRM), which in an allergen challenge model in asthmatics improved lung function and airway hyper-reactivity. In the current trial, AZD5423 was for the first time tested in patients with chronic obstructive pulmonary disease (COPD). In this double-blind, randomised and parallel group study, we examined airway and systemic effects of two doses of AZD5423, inhaled via Turbuhaler for 12 weeks, in 353 symptomatic COPD patients (average pre-bronchodilator forced expiratory volume in one second (FEV1) at screening was 50-52% of predicted normal). Pre-bronchodilator FEV1 was primary variable, with other lung function parameters plus symptoms and 24-hr plasma cortisol being secondary variables. Plasma concentrations of AZD5423 were also measured. Effects were compared against placebo and a reference glucocorticoid receptor agonist control. Neither AZD5423, at doses which have shown to be efficacious in allergen-induced asthma, nor the reference control, at double the approved dose, had any clinically meaningful effect in the patient population studied in regard to lung function or markers of inflammation. Both GR modulators were well tolerated and did suppress 24-hr cortisol. The present study suggests that the selected population of COPD patients does not respond to treatment with AZD5423 as regards lung function, whilst showing the expected systemic effects. It cannot be ruled out that a favourable lung function response of AZD5423 can be evoked using another experimental setting and/or within a different population of COPD patients. This article is protected by copyright. All rights reserved.

  10. Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements

    PubMed Central

    1992-01-01

    The immunosuppressant hormone dexamethasone (Dex) interferes with T cell-specific signals activating the enhancer sequences directing interleukin 2 (IL-2) transcription. We report that the Dex-dependent downregulation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and calcium ionophore-induced activity of the IL-2 enhancer are mediated by glucocorticoid receptor (GR) via a process that requires intact NH2- and COOH-terminal and DNA-binding domains. Functional analysis of chloramphenicol acetyltransferase (CAT) vectors containing internal deletions of the -317 to +47 bp IL-2 enhancer showed that the GR- responsive elements mapped to regions containing nuclear factor of activated T cells protein (NFAT) (-279 to -263 bp) and AP-1 (-160 to - 150 bp) motifs. The AP-1 motif binds TPA and calcium ionophore-induced nuclear factor(s) containing fos protein. TPA and calcium ionophore- induced transcriptional activation of homo-oligomers of the NFAT element were not inhibited by Dex, while AP-1 motif concatemers were not stimulated by TPA and calcium ionophore. When combined, NFAT and AP- 1 motifs significantly synergized in directing CAT transcription. Such a synergism was impaired by specific mutations affecting the trans- acting factor binding to either NFAT or AP-1 motifs. In spite of the lack of hormone regulation of isolated cis elements, TPA/calcium ionophore-mediated activation of CAT vectors containing a combination of the NFAT and the AP-1 motifs became suppressible by Dex. Our results show that the IL-2-AP-1 motif confers GR sensitivity to a flanking region containing a NFAT element and suggest that synergistic cooperativity between the NFAT and AP-1 sites allows GR to mediate the Dex inhibition of IL-2 gene transcription. Therefore, a Dex-modulated second level of IL-2 enhancer regulation, based on a combinatorial modular interplay, appears to be present. PMID:1740658

  11. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms.

    PubMed

    Cai, Demin; Wang, Junjian; Jia, Yimin; Liu, Haoyu; Yuan, Mengjie; Dong, Haibo; Zhao, Ruqian

    2016-01-01

    Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H3K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.

  12. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer.

    PubMed

    Aida, Kouichirou; Miyakawa, Reina; Suzuki, Koji; Narumi, Kenta; Udagawa, Takeshi; Yamamoto, Yuki; Chikaraishi, Tatsuya; Yoshida, Teruhiko; Aoki, Kazunori

    2014-02-01

    We have reported that interferon (IFN)-α can attack cancer cells by multiple antitumor mechanisms including the induction of direct cancer cell death and the enhancement of an immune response in several pancreatic cancer models. However, an immunotolerant microenvironment in the tumors is often responsible for the failure of the cancer immunotherapy. Here we examined whether the suppression of regulatory T cells (Tregs) within tumors can enhance an antitumor immunity induced by an intratumoral IFN-α gene transfer. First we showed that an intraperitoneal administration of an agonistic anti-glucocorticoid induced TNF receptor (GITR) monoclonal antibody (mAb), which is reported to suppress the function of Tregs, significantly inhibited subcutaneous tumor growth in a murine pancreatic cancer model. The anti-GITR mAb was then combined with the intratumoral injection of the IFN-α-adenovirus vector. The treatment with the antibody synergistically augmented the antitumor effect of IFN-α gene therapy not only in the vector-injected tumors but also in the vector-uninjected tumors. Immunostaining showed that the anti-GITR mAb decreased Foxp3(+) cells infiltrating in the tumors, while the intratumoral IFN-α gene transfer increased CD4(+) and CD8(+) T cells in the tumors. Therefore, the combination therapy strongly inclined the immune balance of the tumor microenvironment in an antitumor direction, leading to a marked systemic antitumor effect. The CCR5 expression on Tregs was downregulated in the antibody-treated mice, which may explain the decrease of tumor-infiltrating Tregs. The combination of Treg-suppression by GITR mAb and the tumor immunity induction by IFN-α gene therapy could be a promising therapeutic strategy for pancreatic cancer.

  13. Mapracorat, a selective glucocorticoid receptor agonist, causes apoptosis of eosinophils infiltrating the conjunctiva in late-phase experimental ocular allergy

    PubMed Central

    Baiula, Monica; Bedini, Andrea; Baldi, Jacopo; Cavet, Megan E; Govoni, Paolo; Spampinato, Santi

    2014-01-01

    Background Mapracorat, a novel nonsteroidal selective glucocorticoid receptor agonist, has been proposed for the topical treatment of inflammatory disorders as it binds with high affinity and selectivity to the human glucocorticoid receptor and displays a potent anti-inflammatory activity, but seems to be less effective in transactivation of a number of genes, resulting in a lower potential for side effects. Contrary to classical glucocorticoids, mapracorat displays a reduced ability to increase intraocular pressure and in inducing myocilin, a protein linked to intraocular pressure elevation. Allergic conjunctivitis is the most common form of ocular allergy and can be divided into an early phase, developing immediately after allergen exposure and driven primarily by mast cell degranulation, and a late phase, developing from 6–10 hours after the antigen challenge, and characterized by conjunctival infiltration of eosinophils and other immune cells as well as by the production of cytokines and chemokines. Methods In this study, mapracorat was administered into the conjunctival sac of ovalbumin (OVA)-sensitized guinea pigs 2 hours after the induction of allergic conjunctivitis, with the aim of investigating its activity in reducing clinical signs of the late-phase ocular reaction and to determine its mechanism of anti-allergic effects with respect to apoptosis of conjunctival eosinophils and expression of the chemokines C-C motif ligand 5 (CCL5), C-C motif ligand 11 (CCL11), and interleukin-8 (IL-8) and the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Results Mapracorat, administered into the conjunctival sac of OVA-sensitized guinea pigs 2 hours after allergen exposure, was effective in reducing clinical signs, eosinophil infiltration, and eosinophil peroxidase activity in the guinea pig conjunctiva; furthermore, it reduced conjunctival mRNA levels and protein expression of both CCL5 and CCL11. Mapracorat was more

  14. Antileukemia Effect of Ciclopirox Olamine Is Mediated by Downregulation of Intracellular Ferritin and Inhibition β-Catenin-c-Myc Signaling Pathway in Glucocorticoid Resistant T-ALL Cell Lines

    PubMed Central

    Zhang, Ge; Gu, Ling; Zhang, Yanle; Gao, Ju; Wei, Yuquan

    2016-01-01

    Ciclopirox olamine (CPX) is an antifungal drug that has been reported to have antitumor effects. In this study we investigated the antileukemia effects and the possible mechanisms of CPX on glucocorticoid (GC)-resistant T-cell acute lymphoblastic leukemia (T-ALL) cell lines. The results indicated that CPX inhibited the growth of GC-resistant T-ALL cells in a time- and dose-dependent manner, and this effect was closely correlated with the downregulation of intracellular ferritin. CPX induced cell cycle arrest at G1 phase by upregulation of cyclin-dependent kinase (CDK) inhibitor of p21 and downregulation of the expressions of cyclin D, retinoblastoma protein (Rb), and phosphorylated Rb (pRb). CPX also enhanced apoptotic cell death by downregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and Mcl-1. More importantly, CPX demonstrated a strong synergistic antileukemia effect with GC and this effect was mediated, at least in part, by inhibition of the β-catenin-c-Myc signaling pathway. These findings suggest that CPX could be a promising antileukemia drug, and modulation of the intracellular ferritin expression might be an effective method in the treatment of ALL. Therefore, integrating CPX into the current GC-containing ALL protocols could lead to the improvement of the outcome of ALL, especially GC-resistant ALL. PMID:27551974

  15. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  16. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    SciTech Connect

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  17. Effects of PB190 and PB212, new σ receptor ligands, on glucocorticoid receptor-mediated gene transcription in LMCAT cells.

    PubMed

    Skuza, Grażyna; Szymańska, Magdalena; Budziszewska, Bogusława; Abate, Carmen; Berardi, Francesco

    2011-01-01

    The hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis is often observed in patients with major depression. It has even been implicated in the pathophysiology of this disease. Some antidepressant drugs (ADs) inhibit glucocorticoid receptor (GR) function under in vitro conditions. The σ(1) receptor agonists reveal potential antidepressant activity in animals, moreover, igmesine is promising as an AD in humans. As already shown, σ receptors are involved in stress-induced responses (e.g., conditioned fear stress in mice). The aim of the present study was to find out whether the new selective σ receptor ligands, PB190 and PB212, are able to affect directly the endocrine system activity. To this end, we evaluated their influence on GR function in mouse fibroblast cells (L929), stably transfected with mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) plasmid (LMCAT cells). Fluvoxamine, a selective serotonin reuptake inhibitor, recognized as a σ(1) receptor agonist was used for comparison. The obtained results showed that both PB190 and PB212 (potential σ(1) receptor agonist and antagonist, respectively) like fluvoxamine, decreased the corticosterone-induced CAT activity in a concentration-dependent manner. The significance of this fact remains ambiguous and requires further studies.

  18. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins.

    PubMed Central

    Danielsen, M; Northrop, J P; Ringold, G M

    1986-01-01

    We have isolated mouse glucocorticoid receptor (GR) cDNAs which, when expressed in transfected mammalian cells, produce a fully functional GR protein. Sequence analysis reveals an open reading frame of 2349 bp which could encode a protein of approximately 86,000 daltons. We have also isolated two receptor cDNAs from mouse S49 nuclear transfer-deficient (nt-) cells which encode mutant forms of the receptor protein. One cDNA encodes a protein that is unable to bind hormone and represents the endogenous hormone binding deficient receptor recently discovered in S49 cells. The lesion in this receptor is due to a single amino acid substitution (Glu-546 to Gly). The second cDNA from nt- cells produces a receptor protein that is able to bind hormone but has reduced nuclear binding. This cDNA, therefore, encodes for the S49 nt- receptor which has been shown to have reduced affinity for DNA. The lesion maps to a single amino acid substitution (Arg-484 to His) located in a highly Cys, Lys, Arg-rich region of the protein previously implicated in DNA binding. Our studies provide unambiguous identification of receptor domains and specific amino acids critical for the hormone and DNA binding properties of this transcriptional regulatory protein. Contained within the first 106 amino acids of the mouse GR is a stretch of nine glutamines with two prolines which are related to the family of transcribed repetitive elements, opa, found in Drosophila melanogaster. A truncated receptor lacking these 106 amino acids is functionally indistinguishable from the wild-type receptor. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:3780669

  19. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    SciTech Connect

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.; Ciardelli, T.; North, W.G.; Munck, A.

    1988-05-17

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.

  20. Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T; Honma, T; Lameh, J; Sadée, W

    1998-02-27

    Internalization and down-regulation of human muscarinic acetylcholine m2 receptors (hm2 receptors) and a hm2 receptor mutant lacking a central part of the third intracellular loop (I3-del m2 receptor) were examined in Chinese hamster ovary (CHO-K1) cells stably expressing these receptors and G protein-coupled receptor kinase 2 (GRK2). Agonist-induced internalization of up to 80-90% of hm2 receptors was demonstrated by measuring loss of [3H]N-methylscopolamine binding sites from the cell surface, and transfer of [3H]quinuclidinyl benzilate binding sites from the plasma membrane into the light-vesicle fractions separated by sucrose density gradient centrifugation. Additionally, translocation of hm2 receptors with endocytic vesicles were visualized by immunofluorescence confocal microscopy. Agonist-induced down-regulation of up to 60-70% of hm2 receptors was demonstrated by determining the loss of [3H]quinuclidinyl benzilate binding sites in the cells. The half-time (t1/2) of internalization and down-regulation in the presence of 10(-4) M carbamylcholine was estimated to be 9.5 min and 2.3 h, respectively. The rates of both internalization and down-regulation of hm2 receptors in the presence of 10(-6) M or lower concentrations of carbamylcholine were markedly increased by coexpression of GRK2. Agonist-induced internalization of I3-del m2 receptors was barely detectable upon incubation of cells for 1 h, but agonist-induced down-regulation of up to 40-50% of I3-del m2 receptors occurred upon incubation with 10(-4) M carbamylcholine for 16 h. However, the rate of down-regulation was lower compared with wild type receptors (t1/2 = 9.9 versus 2.3 h). These results indicate that rapid internalization of hm2 receptors is facilitated by their phosphorylation with GRK2 and does not occur in the absence of the third intracellular loop, but down-regulation of hm2 receptors may occur through both GRK2-facilitating pathway and third intracellular loop-independent pathways.

  1. Early life stress in depressive patients: role of glucocorticoid and mineralocorticoid receptors and of hypothalamic-pituitary-adrenal axis activity.

    PubMed

    Juruena, Mario Francisco; Werne Baes, Cristiane Von; Menezes, Itiana Castro; Graeff, Frederico Guilherme

    2015-01-01

    Depression is a chronic, recurrent and long-term disorder characterized by high rates of impairment and several comorbidities. Early life stress (ELS) is associated with the increased risk for developing depression in adulthood, influences its clinical course and predicts a poorer treatment outcome. Stressful life events play an important role in the pathogenesis of depression, being well established as acute triggers of psychiatric illness. The vulnerability for developing depression is associated to changes in neurobiological systems related to stress regulation. The hypothalamic-pituitaryadrenal (HPA) axis responds to external and internal stimuli. Reported results indicate that stress in early phases of development can induce persistent changes in the response of the HPA axis to stress in adulthood, leading to a raised susceptibility to depression. These abnormalities appear to be related to the HPA axis deregulation in depression, partially due to an imbalance between glucocorticoid receptors (GR) and mineral ocorticoid receptors (MR). While most studies have consistently demonstrated that GR function is impaired in major depression (reduced GR-mediated feedback in HPA axis), data about the MR role in depression are still limited and contr oversial. Thus, in this review article we summarize the main reported findings about the consequences of ELS in HPA axis functioning and in the responsivity of MR/GR receptors in depression.

  2. The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes

    PubMed Central

    Ebong, Ima-obong; Beilsten-Edmands, Victoria; Patel, Nisha A; Morgner, Nina; Robinson, Carol V

    2016-01-01

    Hormone receptors require participation of the chaperones Hsp40/Hsp70 to form client-transfer complexes with Hsp90/Hop. Interaction with the co-chaperone p23 releases Hop and Hsp70, and the immunophilin FKBP52 mediates transfer of the Hsp90-receptor complex to the nucleus. Inhibition of glucocorticoid receptor (GR) transport by FKBP51, but not by FKBP52, has been observed at the cellular level, but the subunit composition of the intermediates involved has not been deduced. Here we use mass spectrometry to show that FKBP51/52 form analogous complexes with GR/Hsp90/Hop/Hsp70/ATP, but differences emerge upon addition of p23 to client-transfer complexes. When FKBP51 is present, a stable intermediate is formed (FKBP51)1(GR)1(Hsp90)2(p23)2 by expulsion of Hsp70 and Hop. By contrast, in the presence of FKBP52, ejection of p23 also takes place to form the nuclear transfer complex (FKBP52)1(GR)1(Hsp90)2. Our results are therefore consistent with pathways in which FKBP51/52 are interchangeable during the early assembly reactions. Following interaction with p23, however, the pathways diverge with FKBP51 sequestering GR in a stable intermediate complex with p23. By contrast, binding of FKBP52 occurs almost concomitantly with release of p23 to form a highly dynamic transfer complex, primed for interaction with the dynactin transport machinery. PMID:27462449

  3. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    PubMed

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development.

  4. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain in complex with DNA and free in solution.

    PubMed Central

    Eriksson, M A; Härd, T; Nilsson, L

    1995-01-01

    Molecular dynamics simulations have been performed on the glucocorticoid receptor DNA binding domain (GR DBD) in aqueous solution as a dimer in complex with DNA and as a free monomer. In the simulated complex, we find a slightly increased bending of the DNA helix axis compared with the crystal structure in the spacer region of DNA between the two half-sites that are recognized by GR DBD. The bend is mainly caused by an increased number of interactions between DNA and the N-terminal extended region of the sequence specifically bound monomer. The recognition helices of GR DBD are pulled further into the DNA major groove leading to a weakening of the intrahelical hydrogen bonds in the middle of the helices. Many ordered water molecules with long residence times are found at the intermolecular interfaces of the complex. The hydrogen-bonding networks (including water bridges) on either side of the DNA major groove involve residues that are highly conserved within the family of nuclear receptors. Very similar hydrogen-bonding networks are found in the estrogen receptor (ER) DBD in complex with DNA, which suggests that this is a common feature for proper positioning of the recognition helix in ER DBD and GR DBD. Images FIGURE 1 FIGURE 6 FIGURE 8 FIGURE 10 FIGURE 11 FIGURE 14 PMID:7696496

  5. CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A.; Ley, Klaus

    2010-01-01

    Rationale CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE−/− mice. Objective We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Methods and Results Flow cytometry for expression of surface markers in macrophage colony–stimulating factor (M-CSF)– and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin–haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163− macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. Conclusions CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin. PMID:19910578

  6. p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter.

    PubMed

    Zhang, L; Li, H; Su, T P; Barker, J L; Maric, D; Fullerton, C S; Webster, M J; Hough, C J; Li, X X; Ursano, R

    2008-06-02

    Posttraumatic stress disorder (PTSD) is one of the most common psychiatric disorders. Despite the extensive study of the neurobiological correlates of this disorder, the underlying mechanisms of PTSD are still poorly understood. Recently, a study demonstrated that dexamethasone (Dex), a synthetic glucocorticoid, can up-regulate p11, known as S100A10-protein which is down-regulated in patients with depression, (Yao et al., 1999; Huang et al., 2003) a common comorbid disorder in PTSD. These observations led to our hypothesis that traumatic stress may alter expression of p11 mediated through a glucocorticoid receptor. Here, we demonstrate that inescapable tail shock increased both prefrontal cortical p11 mRNA levels and plasma corticosterone levels in rats. We also found that Dex up-regulated p11 expression in SH-SY5Y cells through glucocorticoid response elements (GREs) within the p11 promoter. This response was attenuated by either RU486, a glucocorticoid receptor (GR) antagonist or mutating two of three glucocorticoid response elements (GRE2 and GRE3) in the p11 promoter. Finally, we showed that p11 mRNA levels were increased in postmortem prefrontal cortical tissue (area 46) of patients with PTSD. The data obtained from our work in a rat model of inescapable tail shock, a p11-transfected cell line and postmortem brain tissue from PTSD patients outline a possible mechanism by which p11 is regulated by glucocorticoids elevated by traumatic stress.

  7. Surfactant prevents quartz induced down-regulation of complement receptor 1 in human granulocytes.

    PubMed

    Zetterberg, G; Lundahl, J; Curstedt, T; Eklund, A

    1997-02-01

    Quartz is known to induce an inflammatory response in the alveolar space by recruitment of different effector cells. We investigated the interaction between granulocytes and quartz with respect to expression of complement receptor type 1 (CR1) and CR3, with and without the presence of surfactant. Granulocytes from hemolyzed blood were stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), which mobilize the intracellular pool of CR1 to the surface, and the mean fluorescence intensity (MFI) measured by cytofluorometry was 47.4 (46-63.6) (median; interquartile range). Quartz exposure reduced the CR1 expression to 23.2 (22.8-30.6) MFI units (P < 0.01), a porcine surfactant preparation added during quartz exposure abolished the down-regulation completely, 47.7 (43.2-62.3) MFI units (P < 0.001). Similar results were obtained after preincubation of the cells with surfactant followed by quartz exposure. No significant influence on CR1 expression was found by a synthetic lipid mixture, nor was the CR3 expression affected. In conclusion, this study demonstrates that the presence of surfactant inhibits quartz induced down-regulation of CR1 on activated granulocytes.

  8. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor

    SciTech Connect

    Grovdal, Lene Melsaether; Johannessen, Lene E.; Rodland, Marianne Skeie; Madshus, Inger Helene; Stang, Espen

    2008-04-01

    The protein tyrosine kinase Ack1 has been linked to cancer when over-expressed. Ack1 has also been suggested to function in clathrin-mediated endocytosis and in down-regulation of the epidermal growth factor (EGF) receptor (EGFR). We have studied the intracellular localization of over-expressed Ack1 and found that Ack1 co-localizes with the EGFR upon EGF-induced endocytosis in cells with moderate over-expression of Ack. This co-localization is mainly observed in early endosomes. Furthermore, we found that over-expression of Ack1 retained the EGFR at the limiting membrane of early endosomes, inhibiting sorting to inner vesicles of multivesicular bodies. Down-regulation of Ack1 in HeLa cells resulted in reduced rate of {sup 125}I-EGF internalization, whereas internalization of {sup 125}I-transferrin was not affected. In cells where Ack1 had been knocked down by siRNA, recycling of internalized {sup 125}I-EGF was increased, while degradation of {sup 125}I-EGF was inhibited. Together, these data suggest that Ack1 is involved in an early step of EGFR desensitization.

  9. Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma.

    PubMed

    Cui, Ximao; Yang, Yili; Jia, Deshui; Jing, Ying; Zhang, Shouhua; Zheng, Shan; Cui, Long; Dong, Rui; Dong, Kuiran

    2017-01-29

    Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In this study, we examined the expression of bone morphogenetic protein receptor 2 (BMPR2) in primary NB and adjacent non-tumor samples (adrenal gland). BMPR2 expression was significantly downregulated in NB tissues, particularly in high-grade NB, and was inversely related to the expression of the NB differentiation markers ferritin and enolase. The significance of the downregulation was further explored in cultured NB cells. While enforced expression of BMPR2 decreased cell proliferation and colony-forming activity, shRNA-mediated knockdown of BMPR2 led to increased cell growth and clonogenicity. In mice, NB cells harboring BMPR2 shRNA showed significantly increased tumorigenicity compared with control cells. We also performed a retrospective analysis of NB patients and identified a significant positive correlation between tumor BMPR2 expression and overall survival. These findings suggest that BMPR2 may play an important role in the development of NB.

  10. Downregulation of androgen receptor is strongly associated with diabetes in triple negative breast cancer patients

    PubMed Central

    Collina, Francesca; Cerrone, Margherita; Peluso, Valentina; Laurentiis, Michelino De; Caputo, Roberta; Cecio, Rossella De; Liguori, Giuseppina; Botti, Gerardo; Cantile, Monica; Bonito, Maurizio Di

    2016-01-01

    Developing of personalized therapies for Triple Negative Breast Cancer (TNBC) requires a more detailed knowledge of its biology and a correct stratification of molecular subtypes. Androgen Receptor (AR) is expressed in a large part of TNBCs but its prognostic role in this Breast Cancer (BC) subtype is highly debated. In this study, we analyzed AR expression in a series of 238 TNBCs and correlated its expression with clinical-pathological features, survival, and metabolic profile. We showed a consistent association between AR expression and a better prognosis of TNBC patients, while its downregulation appeared strongly associated with diabetic disease. Since a recent prospective study reported a lower BC risk in diabetic women treated with drugs able to reduce circulating levels of glucose compared with non-diabetic woman, and in vitro studies showed that AR level are regulated directly by hyperglycemia, we speculate on the perspective of new integrated therapies for TNBC. PMID:27648143

  11. Characterization of the Pharmacophore Properties of Novel Selective Estrogen Receptor Downregulators (SERDs)

    PubMed Central

    Kieser, Karen J.; Kim, Dong Wook; Carlson, Kathryn E.; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.

    2010-01-01

    Selective estrogen receptor (ER) downregulators (SERDs) reduce ERα protein levels as well as block ER activity, and therefore are promising therapeutic agents for the treatment of hormone refractory breast cancer. Starting with the triarylethylene acrylic acid SERD 4, we have investigated how alterations in both the ligand core structure and the appended acrylic acid substituent affect SERD activity. The new ligands were based on high affinity, symmetrical cyclofenil or bicyclo[3.3.1]nonane core systems, and in these, the position of the carboxyl group was extended from the ligand core, either retaining the vinylic linkage of the substituent or replacing it with an ether linkage. Although most structural variants showed binding affinities for ERα and ERβ higher than that of 4, only the compounds preserving the acrylic acid side chain retained SERD activity, although they could possess varying core structures. Hence, the acrylic acid moiety of the ligand is crucial for SERD-like blockade of ER activities. PMID:20334372

  12. In vitro and ex vivo binding to uterine progestin receptors of the rat as a tool to assay progestational activity of glucocorticoids.

    PubMed

    Luzzani, F; Gallico, L; Glässer, A

    1982-01-01

    The competition of some widely employed glucocorticoids with the binding of [3H]-promegestone, a highly potent synthetic progestagen, to uterine cytosol progestin receptors of the immature rat has been studied both in in vitro and ex vivo experiments. The relative binding affinities (RBA's) to progesterone were determined in vitro: fluocinolone acetonide greater than triamcinolone acetonide greater than betamethasone 17-valerate greater than prednisolone, betamethasone, triamcinolone and cortisol. After pretreating rats in vivo with progesterone or chlormadinone acetate (subcutaneously), a dose-dependent decrease in in vitro binding of [3H]-promegestone to uterine cytosol was evident. Similar decreases were obtained after pretreatment with some of the other glucocorticoids tested. Potency ratios to progesterone, arbitrarily set at 1.0, were: fluocinolone acetonide 86.7, triamcinolone acetonide 5.6, betamethasone valerate 4.1, chlormadinone acetate 2.6. Prednisolone, betamethasone, triamcinolone and cortisol were inactive. Both the in vitro and the ex vivo results clearly indicate that glucocorticoids interact with the uterine cytosol progestin receptor system, depending on their chemical structures; this interaction may account for some of their unwanted side-effects in the endocrine system. Moreover, this experimental system may prove to be a useful tool for evaluation of the progestational activities of glucocorticoids and other steroids, using the rat as an animal model.

  13. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation.

    PubMed

    Martín-Garrido, A; Boyano-Adánez, M C; Alique, M; Calleros, L; Serrano, I; Griera, M; Rodríguez-Puyol, D; Griendling, K K; Rodríguez-Puyol, M

    2009-11-15

    Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.

  14. Impact of the glucocorticoid receptor BclI polymorphism on reward expectancy and prediction error related ventral striatal reactivity in depressed and healthy individuals.

    PubMed

    Ham, Byung-Joo; Greenberg, Tsafrir; Chase, Henry W; Phillips, Mary L

    2016-01-01

    There is evidence that reward-related neural reactivity is altered in depressive disorders. Glucocorticoids influence dopaminergic transmission, which is widely implicated in reward processing. However, no studies have examined the effect of glucocorticoid receptor gene polymorphisms on reward-related neural reactivity in depressed or healthy individuals. Fifty-nine depressed individuals with major depressive disorder (n=33) or bipolar disorder (n=26), and 32 healthy individuals were genotyped for the glucocorticoid receptor BclI G/C polymorphism, and underwent functional magnetic resonance imaging during a monetary reward task. We examined the effect of the glucocorticoid receptor BclI G/C polymorphism on reward expectancy (RE; expected outcome value) and prediction error (PE; discrepancy between expected and actual outcome) related ventral striatal reactivity. There was a significant interaction between reward condition and BclI genotype (p=0.007). C-allele carriers showed higher PE than RE-related right ventral striatal reactivity (p<0.001), whereas no such difference was observed in G/G homozygotes. Accordingly, C-allele carriers showed a greater difference between PE and RE-related right ventral striatal reactivity than G/G homozygotes (p<0.005), and also showed lower RE-related right ventral striatal reactivity than G/G homozygotes (p=0.011). These findings suggest a slowed transfer from PE to RE-related ventral striatal responses during reinforcement learning in C-allele carriers, regardless of diagnosis, possibly due to altered dopamine release associated with increased sensitivity to glucocorticoids.

  15. Glucocorticoid Receptor Signaling Represses the Antioxidant Response by Inhibiting Histone Acetylation Mediated by the Transcriptional Activator NRF2.

    PubMed

    Alam, Md Morshedul; Okazaki, Keito; Nguyen, Linh Thi Thao; Ota, Nao; Kitamura, Hiroshi; Murakami, Shohei; Shima, Hiroki; Igarashi, Kazuhiko; Sekine, Hiroki; Motohashi, Hozumi

    2017-03-17

    NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). While KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids (GC), dexamethasone (Dex) and betamethasone (Bet), antagonize diethyl maleate (DEM)-induced activation of NRF2 target genes in a GR-dependent manner. Dex treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of HDAC inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of GCs, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.

  16. Expression of eight glucocorticoid receptor isoforms in the human preterm placenta vary with fetal sex and birthweight

    PubMed Central

    Saif, Z.; Hodyl, N.A.; Stark, M.J.; Fuller, P.J.; Cole, T.; Lu, N.; Clifton, V.L.

    2016-01-01

    Introduction Administration of betamethasone to women at risk of preterm delivery is known to be associated with reduced fetal growth via alterations in placental function and possibly direct effects on the fetus. The placental glucocorticoid receptor (GR) is central to this response and recent evidence suggests there are numerous isoforms for GR in term placentae. In this study we have questioned whether GR isoform expression varies in preterm placentae in relation to betamethasone exposure, fetal sex and birthweight. Methods Preterm (24–36 completed weeks of gestation, n = 55) and term placentae (>37 completed weeks of gestation, n = 56) were collected at delivery. Placental GR expression was examined using Western Blot and analysed in relation to gestational age at delivery, fetal sex, birthweight and beta-methasone exposure. Data was analysed using non-parametric tests. Results Eight known isoforms of the GR were detected in the preterm placenta and include GRα (94 kDa), GRβ (91 kDa), GRα C (81 kDa) GR P (74 kDa) GR A (65 kDa), GRα D1–3 (50–55 kDa). Expression varied between preterm and term placentae with a greater expression of GRα C in preterm placentae relative to term placentae. The only sex differences in preterm placentae was that GRα D2 expression was higher in males than females. There were no alterations in preterm placental GR expression in association with betamethasone exposure. Discussion GRα C is the isoform involved in glucocorticoid induced apoptosis and suggests that its predominance in preterm placentae may contribute to the pathophysiology of preterm birth. PMID:25990415

  17. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    PubMed

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-07

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.

  18. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects.

    PubMed

    Kadiyala, Vineela; Sasse, Sarah K; Altonsy, Mohammed O; Berman, Reena; Chu, Hong W; Phang, Tzu L; Gerber, Anthony N

    2016-06-10

    Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.

  19. N-bromotaurine surrogates for loss of antiproliferative response and enhances cisplatin efficacy in cancer cells with impaired glucocorticoid receptor.

    PubMed

    Logotheti, Stella; Khoury, Nikolas; Vlahopoulos, Spiros A; Skourti, Elena; Papaevangeliou, Dimitra; Liloglou, Triantafyllos; Gorgoulis, Vassilis; Budunova, Irina; Kyriakopoulos, Anthony M; Zoumpourlis, Vassilis

    2016-07-01

    Glucocorticoids (GCs) are frequently used in anticancer combination regimens; however, their continuous use adds selective pressure on cancer cells to develop GC-resistance via impairment of the glucocorticoid receptor (GR), therefore creating a need for GC-alternatives. Based on the drug repurposing approach and the commonalities between inflammation and neoplasia, drugs that are either in late-stage clinical trials and/or already marketed for GC-refractory inflammatory diseases could be evaluated as GC-substitutes in the context of cancer. Advantageously, unlike new molecular entities currently being de novo developed to restore GC-responsiveness of cancer cells, such drugs have documented safety and efficacy profile, which overall simplifies their introduction in clinical cancer trials. In this study, we estimated the potential of a well-established, multistage, cell line-based, mouse skin carcinogenesis model to be exploited as an initial screening tool for unveiling covert GC-substitutes. First, we categorized the cell lines of this model to GC-sensitive and GC-resistant, in correlation with their corresponding GR status, localization, and functionality. We found that GC-resistance starts in papilloma stages, due to a dysfunctional GR, which is overexpressed, DNA binding-competent, but transactivation-incompetent in papilloma, squamous, and spindle stages of the model. Then, aided by this tool, we evaluated the ability of N-bromotaurine, a naturally occurring, small-molecule, nonsteroid anti-inflammatory drug which is under consideration for use interchangeably/in replacement to GCs in skin inflammations, to restore antiproliferative response of GC-resistant cancer cells. Unlike GCs, N-bromotaurine inhibited cell-cycle progression in GC-resistant cancer cells and efficiently synergized with cisplatin, thus indicating a potential to be exploited instead of GCs against cancer.

  20. Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure

    PubMed Central

    Bortsov, Andrey V.; Smith, Jennifer E.; Diatchenko, Luda; Soward, April C.; Ulirsch, Jacob C.; Rossi, Catherine; Swor, Robert A.; Hauda, William E.; Peak, David A.; Jones, Jeffrey S.; Holbrook, Debra; Rathlev, Niels K.; Foley, Kelly A.; Lee, David C.; Collette, Renee; Domeier, Robert M.; Hendry, Phyllis L.; McLean, Samuel A.

    2013-01-01

    Individual vulnerability factors influencing the function of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to the risk of the development of persistent musculoskeletal pain after traumatic stress exposure. The objective of the study was to evaluate the association between polymorphisms in the gene encoding FK506 binding protein 51, FKBP5, a glucocorticoid receptor co-chaperone, and musculoskeletal pain severity six weeks after two common trauma exposures. The study included data from two prospective emergency department-based cohorts: a discovery cohort (n=949) of European Americans experiencing motor vehicle collision and a replication cohort of adult European American women experiencing sexual assault (n=53). DNA was collected from trauma survivors at the time of initial assessment. Overall pain and neck pain six weeks after trauma exposure were assessed using a 0–10 numeric rating scale. After adjustment for multiple comparisons, six FKBP5 polymorphisms showed significant association (minimum p <0.0001) with both overall and neck pain in the discovery cohort. The association of rs3800373, rs9380526, rs9394314, rs2817032, and rs2817040 with neck pain and/or overall pain six weeks after trauma was replicated in the sexual assault cohort, showing the same direction of the effect in each case. The results of this study indicate that genetic variants in FKBP5 influence the severity of musculoskeletal pain symptoms experienced during the weeks after motor vehicle collision and sexual assault. These results suggest that glucocorticoid pathways influence the development of persistent post-traumatic pain, and that such pathways may be a target of pharmacologic interventions aimed at improving recovery after trauma. PMID:23707272

  1. Reduced Expression of MAPK/ERK Genes in Perinatal Arsenic-Exposed Offspring Induced by Glucocorticoid Receptor Deficits

    PubMed Central

    Martinez-Finley, Ebany J.; Goggin, Samantha L.; Labrecque, Matthew T.; Allan, Andrea M.

    2011-01-01

    Changes within the glucocorticoid receptor (GR) cellular signaling pathway were evaluated in adolescent mice exposed to 50 ppb arsenic during gestation. Previously, we reported increased basal plasma corticosterone levels, decreased hippocampal GR levels and deficits in learning and memory performance in perinatal arsenic-exposed mice. The biosynthesis of members of the mitogen-activated protein kinase (MAPK) signaling pathway, known to be involved in learning and memory, is modulated by the binding of GR to glucocorticoid response elements (GREs) in the gene promoters. Two genes of the MAPK pathway, Ras and Raf, contain GREs which are activated upon binding of GRs. We evaluated the activity of GRs at Ras and Raf promoters using chromatin immunoprecipitation and real-time PCR and report decreased binding of the GR at these promoters. An ELISA-based GR binding assay was used to explore whether this decreased binding was restricted to in vivo promoters and revealed no differences in binding of native GR to synthetic GREs. The decreased in vivo GR binding coincides with significantly decreased mRNA levels and slight reductions of protein of both H-Ras and Raf-1 in perinatally arsenic-exposed mice. Nuclear activated extracellular-signal regulated kinase (ERK), a downstream target of Ras and Raf, whose transcriptional targets also play an important role in learning and memory, was decreased in the hippocampus of arsenic-exposed animals when compared to controls. GR-mediated transcriptional deficits in the MAPK/ERK pathway could be an underlying cause of previously reported learning deficits and provide the link to arsenic-induced deficiencies in cognitive development. PMID:21784148

  2. Fulvestrant, a selective estrogen receptor down-regulator, sensitizes estrogen receptor negative breast tumors to chemotherapy.

    PubMed

    Jiang, Donghai; Huang, Yuan; Han, Ning; Xu, Mingjie; Xu, Liang; Zhou, Lin; Wang, Shu; Fan, Weimin

    2014-05-01

    Drug resistance frequently results in poor prognosis and high 5-year recurrence rate in estrogen receptor-negative (ER-) breast cancer patients. Herein, we examined the reversal effects of fulvestrant on multidrug resistance (MDR) in ER- breast cancer cells. Co-administration of fulvestrant significantly sensitized ER- MDR tumors to paclitaxel both in vitro and in vivo. Further analyses indicated that fulvestrant did not affect P-gp expression, but could inhibit P-gp function and subsequently reverse P-gp mediated drug resistance in ER- breast cancer cells. These results showed that combination of fulvestrant and chemotherapeutic agents might provide an effective treatment for ER- MDR breast cancers.

  3. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Toulme, Estelle; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2014-07-16

    P2X receptors (P2XRs) are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons or glia. Although purinergic signaling has multiple effects on synaptic transmission and plasticity, P2XR function at brain synapses remains to be established. Here, we show that activation of postsynaptic P2XRs by exogenous ATP or noradrenaline-dependent glial release of endogenous ATP decreases the amplitude of miniature excitatory postsynaptic currents and AMPA-evoked currents in cultured hippocampal neurons. We also observed a P2X-mediated depression of field potentials recorded in CA1 region from brain slices. P2X2Rs trigger dynamin-dependent internalization of AMPA receptors (AMPARs), leading to reduced surface AMPARs in dendrites and at synapses. AMPAR alteration required calcium influx through opened ATP-gated channels and phosphatase or CamKII activities. These findings indicate that postsynaptic P2XRs play a critical role in regulating the surface expression of AMPARs and thereby regulate the synaptic strength.

  4. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay

    PubMed Central

    Park, Ok Hyun; Park, Joori; Yu, Mira; An, Hyoung-Tae; Ko, Jesang; Kim, Yoon Ki

    2016-01-01

    Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses. PMID:27798850

  5. A transition in transcriptional activation by the glucocorticoid and retinoic acid receptors at the tumor stage of dermal fibrosarcoma development.

    PubMed Central

    Vivanco, M D; Johnson, R; Galante, P E; Hanahan, D; Yamamoto, K R

    1995-01-01

    In transgenic mice harboring the bovine papillomavirus genome, fibrosarcomas arise along an experimentally accessible pathway in which normal dermal fibroblasts progress through two pre-neoplastic stages, mild and aggressive fibromatosis, followed by a final transition to the tumor stage. We found that the glucocorticoid receptor (GR) displays only modest transcriptional regulatory activity in cells derived from the three non-tumor stages, whereas it is highly active in fibrosarcoma cells. Upon inoculation into mice, the aggressive fibromatosis cells progress to tumor cells that have high GR activity; thus, the increased transcriptional regulatory activity of GR correlates with the cellular transition to the tumor stage. The intracellular levels of GR, as well as its hormone-dependent nuclear translocation and specific DNA binding activities, are unaltered throughout the progression. Strikingly, the low GR activity observed in the pre-neoplastic stages cannot be overcome by exogenous GR introduced by co-transfection. Moreover, comparisons of primary embryo fibroblasts and their transformed derivatives revealed a similar pattern--modest GR activity, unresponsive to overexpressed GR protein, in the normal cells was strongly increased in the transformed cells. Likewise, the retinoic acid receptor (RAR) displayed similar differential activity in the fibrosarcoma pathway. Thus, the oncogenic transformation of fibroblasts, and likely other cell types, is accompanied by a striking increase in the activities of transcriptional regulators such as GR and RAR. We suggest that normal primary cells have a heretofore unrecognized capability to limit the magnitude of induction of gene expression. Images PMID:7774580

  6. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  7. Disruption of glucocorticoid receptors in the noradrenergic system leads to BDNF up-regulation and altered serotonergic transmission associated with a depressive-like phenotype in female GR(DBHCre) mice.

    PubMed

    Chmielarz, Piotr; Kreiner, Grzegorz; Kot, Marta; Zelek-Molik, Agnieszka; Kowalska, Marta; Bagińska, Monika; Daniel, Władysława Anna; Nalepa, Irena

    2015-10-01

    Recently, we have demonstrated that conditional inactivation of glucocorticoid receptors (GRs) in the noradrenergic system, may evoke depressive-like behavior in female but not male mutant mice (GR(DBHCre) mice). The aim of the current study was to dissect how selective ablation of glucocorticoid signaling in the noradrenergic system influences the previously reported depressive-like phenotype and whether it might be linked to neurotrophic alterations or secondary changes in the serotonergic system. We demonstrated that selective depletion of GRs enhances brain derived neurotrophic factor (BDNF) expression in female but not male GR(DBHCre) mice on both the mRNA and protein levels. The possible impact of the mutation on brain noradrenergic and serotonergic systems was addressed by investigating the tissue neurotransmitter levels under basal conditions and after acute restraint stress. The findings indicated a stress-provoked differential response in tissue noradrenaline content in the GR(DBHCre) female but not male mutant mice. An analogous gender-specific effect was identified in the diminished content of 5-hydroxyindoleacetic acid, the main metabolite of serotonin, in the prefrontal cortex, which suggests down-regulation of this monoamine system in female GR(DBHCre) mice. The lack of GR also resulted in an up-regulation of alpha2-adrenergic receptor (α2-AR) density in the female but not male mutants in the locus coeruleus. We have also confirmed the utility of the investigated model in pharmacological studies, which demonstrates that the depressive-like phenotype of GR(DBHCre) female mice can be reversed by antidepressant treatment with desipramine or fluoxetine, with the latter drug evoking more pronounced effects. Overall, our study validates the use of female GR(DBHCre) mice as an interesting and novel genetic tool for the investigation of the cross-connected mechanisms of depression that is not only based on behavioral phenotypes.

  8. Glucocorticoid osteoporosis.

    PubMed

    Sambrook, Philip N

    2002-01-01

    Postmenopausal women are at greatest risk of rapid bone loss and fracture with glucocorticoids and should be actively considered for prophylactic measures. In men and premenopausal women receiving glucocorticoids, the decision to use anti-osteoporosis prophylaxis is less clear and depends upon baseline bone mineral density [BMD], anticipated dose and duration of glucocorticoids. Based upon evidence the order of choice for prophylaxis would be a bisphosphonate followed by a vitamin D metabolite or hormone replacement therapy [HRT]. Calcium alone appears unable to prevent rapid bone loss in patients starting glucocorticoids. HRT should clearly be considered if hypogonadism is present. In patients receiving chronic low dose glucocorticoids, treatment with calcium and vitamin D may be sufficient to prevent further bone loss. However since fracture risk is a function of multiple factors including the degree of reduction in BMD as well as the duration of exposure, treatment with therapy to increase BMD will reduce fracture risk even in patients receiving chronic low dose glucocorticoids.

  9. Drosophila S6 Kinase Like Inhibits Neuromuscular Junction Growth by Downregulating the BMP Receptor Thickveins

    PubMed Central

    Zhao, Guoli; Wu, Yingga; Du, Li; Li, Wenhua; Xiong, Ying; Yao, Aiyu; Wang, Qifu; Zhang, Yong Q.

    2015-01-01

    Synaptic connections must be precisely controlled to ensure proper neural circuit formation. In Drosophila melanogaster, bone morphogenetic protein (BMP) promotes growth of the neuromuscular junction (NMJ) by binding and activating the BMP ligand receptors wishful thinking (Wit) and thickveins (Tkv) expressed in motor neurons. We report here that an evolutionally conserved, previously uncharacterized member of the S6 kinase (S6K) family S6K like (S6KL) acts as a negative regulator of BMP signaling. S6KL null mutants were viable and fertile but exhibited more satellite boutons, fewer and larger synaptic vesicles, larger spontaneous miniature excitatory junctional potential (mEJP) amplitudes, and reduced synaptic endocytosis at the NMJ terminals. Reducing the gene dose by half of tkv in S6KL mutant background reversed the NMJ overgrowth phenotype. The NMJ phenotypes of S6KL mutants were accompanied by an elevated level of Tkv protein and phosphorylated Mad, an effector of the BMP signaling pathway, in the nervous system. In addition, Tkv physically interacted with S6KL in cultured S2 cells. Furthermore, knockdown of S6KL enhanced Tkv expression, while S6KL overexpression downregulated Tkv in cultured S2 cells. This latter effect was blocked by the proteasome inhibitor MG132. Our results together demonstrate for the first time that S6KL regulates synaptic development and function by facilitating proteasomal degradation of the BMP receptor Tkv. PMID:25748449

  10. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling.

    PubMed

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-12-21

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10(-7) M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu(31), Pro(34)]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  11. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors.

    PubMed

    Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2012-09-01

    A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors.

  12. An overlapping set of genes is regulated by both NFIB and the glucocorticoid receptor during lung maturation

    PubMed Central

    2014-01-01

    Background Lung maturation is a late fetal developmental event in both mice and humans. Because of this, lung immaturity is a serious problem in premature infants. Disruption of genes for either the glucocorticoid receptor (Nr3c1) or the NFIB transcription factors results in perinatal lethality due to lung immaturity. In both knockouts, the phenotype includes excess cell proliferation, failure of saccularization and reduced expression of markers of epithelial differentiation. This similarity suggests that the two genes may co-regulate a specific set of genes essential for lung maturation. Results We analyzed the roles of these two transcription factors in regulating transcription using ChIP-seq data for NFIB, and RNA expression data and motif analysis for both. Our new ChIP-seq data for NFIB in lung at E16.5 shows that NFIB binds to a NFI motif. This motif is over-represented in the promoters of genes that are under-expressed in Nfib-KO mice at E18.5, suggesting an activator role for NFIB. Using available microarray data from Nr3c1-KO mice, we further identified 52 genes that are under-expressed in both Nfib and Nr3c1 knockouts, an overlap which is 13.1 times larger than what would be expected by chance. Finally, we looked for enrichment of 738 recently published transcription factor motifs in the promoters of these putative target genes and found that the NFIB and glucocorticoid receptor motifs were among the most enriched, suggesting that a subset of these genes may be directly activated by Nfib and Nr3c1. Conclusions Our data provide the first evidence for Nfib and Nr3c1 co-regulating genes related to lung maturation. They also establish that the in vivo DNA-binding specificity of NFIB is the same as previously seen in vitro, and highly similar to that of the other NFI-family members NFIA, NFIC and NFIX. PMID:24661679

  13. Downregulation of T cell receptor expression by CD8(+) lymphocytes in kidney allografts.

    PubMed Central

    Mannon, R B; Kotzin, B L; Nataraj, C; Ferri, K; Roper, E; Kurlander, R J; Coffman, T M

    1998-01-01

    Allospecific CD8(+) T lymphocytes are an important component of the cellular response in allograft rejection. These cells recognize and engage MHC class I antigens, leading to allospecific cytolytic responses and graft rejection. In mouse kidney allografts that survive to 3 wk after transplantation, we noted that the majority of CD8(+) cells do not express surface alpha/beta T cell receptor alpha/beta(TCR), gamma/deltaTCR, or CD3. However, these CD8(+)TCR- cells did express surface markers characteristic of T cells, including Thy1.2, CD2, and CD5. In addition, the CD8(+)TCR- cells expressed mRNA for TCR Vbeta gene families, and nearly half stained positive for cytoplasmic Vbeta8 protein, suggesting that they are T cells that have downregulated alpha/betaTCR protein expression from their cell surfaces. When these surface TCR- cells were isolated from kidney allografts by flow cytometry and cultured in the presence of either allogeneic or syngeneic stimulators, nearly 100% of cells reacquired normal levels of alpha/betaTCR expression with disproportionate usage of Vbeta8 chains. After recovery of their surface TCR expression, the CD8(+)TCR- population demonstrated strong alloreactivity in culture. These results suggest that the substantial number of CD8(+)TCR- cells found in long-term surviving mouse kidney allografts are alpha/beta-T cells that have downregulated their cell surface expression of TCR. While in other systems this phenotype may identify cells that have engaged antigen, our results indicate that loss of TCR expression by CD8(+) kidney graft-infiltrating cells may not depend on antigen engagement and that elements in the microenvironment of the kidney graft play a key role in this process. Factors that modulate expression of TCR by graft-infiltrating lymphocytes may have an important role in regulating rejection responses. PMID:9616223

  14. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics.

    PubMed

    Caffino, Lucia; Giannotti, Giuseppe; Malpighi, Chiara; Racagni, Giorgio; Fumagalli, Fabio

    2015-10-01

    Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network.

  15. A Kinase-Independent Activity of Cdk9 Modulates Glucocorticoid Receptor-Mediated Gene Induction

    PubMed Central

    2015-01-01

    A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to affect paused polymerase could reverse the effects of NELF-A and -B. Unexpectedly, Cdk9 and ELL augmented, rather than prevented, the effects of NELF-A and -B. Furthermore, Cdk9 actions are not blocked either by Ckd9 inhibitors (DRB or flavopiridol) or by two Cdk9 mutants defective in kinase activity. The mode and site of action of NELF-A and -B mutants with an altered NELF domain are similarly affected by wild-type and kinase-dead Cdk9. We conclude that Cdk9 is a new modulator of GR action, that Ckd9 and ELL have novel activities in GR-regulated gene expression, that NELF-A and -B can act separately from the NELF complex, and that Cdk9 possesses activities that are independent of Cdk9 kinase activity. Finally, the competition assay has succeeded in ordering the site of action of several cofactors of GR transactivation. Extension of this methodology should be helpful in determining the site and mode of action of numerous additional cofactors and in reducing unwanted side effects. PMID:24559102

  16. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis.

    PubMed

    Qian, Yue-Wei; Schmidt, Robert J; Zhang, Youyan; Chu, Shaoyou; Lin, Aimin; Wang, He; Wang, Xiliang; Beyer, Thomas P; Bensch, William R; Li, Weiming; Ehsani, Mariam E; Lu, Deshun; Konrad, Robert J; Eacho, Patrick I; Moller, David E; Karathanasis, Sotirios K; Cao, Guoqing

    2007-07-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.

  17. Glucocorticoid receptor β regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/TCF transcriptional activity.

    PubMed

    Yin, Ying; Zhang, Xiufen; Li, Zaiwang; Deng, Lingxiao; Jiao, Guoqing; Zhang, Bin; Xie, Ping; Mu, Huijun; Qiao, Weizhen; Zou, Jian

    2013-11-01

    Astrocytes react to central nervous system (CNS) injury and participate in gliotic responses, imparting negative, as well as positive effects on axonal regeneration. Despite the considerable biochemical and morphological changes astrocytes undergo following insult, and the known influence of steroids on glial activation, details surrounding glucocorticoid receptor expression and activity are lacking. Such mechanistic information is essential for advancing and enhancing therapies in the treatment of CNS injuries. Using an in vitro wound-healing assay, we found glucocorticoid receptor β (GRβ), not GRα, is upregulated and acts as a regulator of gliosis after injury. In addition, our results suggest that GRβ interacts with β-catenin and is a necessary component for proliferation and migration in both injured astrocytes and glioma cells. Further analysis indicated GRβ/β-catenin interaction as a key modulator of astrocyte reactivity through sustained Wnt/β-catenin/TCF signaling in its dominant-negative effect on GRα mediated trans-repression by a GSK-3β-independent manner. These findings expand our knowledge of the mechanism of GRβ action in promoting astrocyte proliferation and migration following injury and in glioma. This information furthers our understanding the function of glucocorticoid receptor in CNS injury and disease, as well as in the basic biochemical responses astrocytes undergo in response to injury and glioma pathogenesis.

  18. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors.

    PubMed

    Vukojevic, Vanja; Kolassa, Iris-T; Fastenrath, Matthias; Gschwind, Leo; Spalek, Klara; Milnik, Annette; Heck, Angela; Vogler, Christian; Wilker, Sarah; Demougin, Philippe; Peter, Fabian; Atucha, Erika; Stetak, Attila; Roozendaal, Benno; Elbert, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2014-07-30

    Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid rec